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Abstract

“Peer-to-peer” systems like Napster and Gnutella have recently become popular for sharing informa-

tion. In this paper, we study the relevant issues and tradeoffs in designing a scalable P2P system. We fo-

cus on a subset of P2P systems, known as “hybrid” P2P, where some functionality is still centralized. (In

Napster, for example, indexing is centralized, and file exchange is distributed.) We model a file-sharing

application, developing a probabilistic model to describe query behavior and expected query result sizes.

We also develop an analytic model to describe system performance. Using experimental data collected

from a running, publicly available hybrid P2P system, we validate both models. We then present several

hybrid P2P system architectures and evaluate them using our model. We discuss the tradeoffs between

the architectures and highlight the effects of key parameter values on system performance.

1 Introduction

In a peer-to-peersystem (P2P), distributed computing nodes of equal roles or capabilities exchange infor-

mation and services directly with each other. Various new systems in different application domains have

been labeled as P2P: In Napster [6], Gnutella [2] and Freenet [1], users directly exchange music files. In in-

stant messaging systems like ICQ [3], users exchange personal messages. In systems like Seti-at-home [9],

computers exchange available computing cycles. In preservation systems like LOCKSS [5], sites exchange

storage resources to archive document collections. Every week seems to bring new P2P startups and new

application areas.

All these companies and startups tout the big advantage of P2P: the resources of many users and com-

puters can be brought together to yield large pools of information and significant computing power. Fur-

thermore, because computers communicate directly with their peers, network bandwidth is better utilized.

However, there are often inherent drawbacks to P2P solutions precisely because of their decentralized na-

ture. For example, in Gnutella, users search for files by flooding the network with queries, and having each

computer look for matches in its local disk. Clearly, this type of solution may have difficulty scaling to large

numbers of sites or complex queries. In Napster, on the other hand, users cannot search for files globally;

they are restricted to searching on a single server that has only indexed a fraction of the available files.

Our goal is to study the scalability and functionality of P2P architectures, in order to understand the

tradeoffs. Since we cannot possibly studyall P2P systems at once, in this our initial paper we focus on

data-sharing, hybrid P2P systems. The goal of a data-sharing system is to support search and exchange files

(e.g., MP3s) found on user disks. In a data-sharingpureP2P system, all nodes are equal and no functionality
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is centralized. Examples of file-sharing pure P2P systems are Gnutella and Freenet, where every node is a

“servent” (both a client and a server), and can equally communicate with any other connected node.

However, the most widely used file-sharing systems, such as Napster and Pointera([8]), do not fit this

definition because some nodes have special functionality. For example, in Napster, a server node indexes

files held by a set of users. (There can be multiple server nodes.) Users search for files at a server, and

when they locate a file of interest, they download it directly from the peer computer that holds the file. We

call these types of systemshybrid because elements of both pure P2P and client/server systems coexist.

Currently, hybrid file-sharing systems have better performance than pure systems because some tasks (like

searching) can be done much more efficiently in a centralized manner.

Even though file-sharing hybrid P2P systems are hugely popular, there has been little scientific research

done on them (see Section 2), and many questions remain unanswered. For instance, what is the best way to

organize indexing servers? Should indexes be replicated at multiple servers? What types of queries do users

typically submit in such systems? How should the system deal with users that are disconnected often (dial-in

phone lines)? How will systems scale in the future when user interests and hardware capacity evolve? How

do different query patterns affect performance of systems from different application domains?

In the paper we attempt to answer some of these questions. In particular, the main contributions we

make in this paper are:

� We present (Section 3) several architectures for hybrid P2P servers, some of which are in use in existing

P2P systems, and others which are new (though based on well-known distributed computing techniques).

� We present a probabilistic model for user queries and result sizes. We validate the model with data

collected from an actual hybrid P2P system run over a span of 8 weeks. (Sections 4 and 5.)

� We develop a model for evaluating the performance of P2P architectures. This model is validated via

experiments using an open-source version of Napster [7]. Based on our experiments, we also derive base

settings for important parameters (e.g., how many resources are consumed when a new user logs onto a

server). (Sections 5 and 6.)

� We provide (Section 7.1) a quantitative comparison of file-sharing hybrid P2P architectures, based on

our query and performance models. Because both models are validated on a real music-sharing system,

we begin experiments by focusing on systems in the music domain.

� We project (Section 7.2) future trends in user and system characteristics, analyzing how music-sharing

systems will perform in response to future demands.

� We provide (Section 7.3) a comparison of strategies in domains other than music-sharing, showing how

our models can be extended to a wide range of systems.

We note that P2P systems are complex, so the main challenge is in finding query and performance

models that are simple enough to be tractable, yet faithful enough to capture the essential tradeoffs. While

our models (described in Sections 4 and 6) contain many approximations, we believe they provide a good and

reliable understanding of both the characteristics of P2P systems, and the tradeoffs between the architectures.

Sections 5 and 6 discuss in further detail the steps we took to validate our models.

We also note that the only current, available experimental data on hybrid P2P systems are in the music-

sharing domain. Hence, because it is important to have a validated model as a starting point for analysis,
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our experimental results in Section 7 begin with scenarios from Napster and other music-sharing systems.

However, the models presented in this paper are designed to be general, and we show in Section 7.3 how

they are applied to domains beyond music-sharing as well.

Finally, note that by studying hybrid P2P systems, we do not take any position regarding theirlegality.

Some P2P systems like Napster are currently under legal attack by music providers (i.e., RIAA), because of

copyright violations. Despite their questioned legality, current P2P systems have demonstrated their value

to the community, and we believe that the legal issues can be resolved, e.g., through the adoption of secure

business models involving royalty charging mechanisms.1 Thus, P2P systems will continue to be used, and

should be carefully studied.

2 Related Work

Several papers discuss the design of a P2P system for a specific application without a detailed performance

analysis. For example, reference [1] describes the Freenet project which was designed to provide anonymity

to users and to adapt to user behavior. Reference [12] describes a system that uses the P2P model to address

the problems of survivability and availability of digital information. Reference [15] describes a replicated

file-system based on P2P file exchanges.

Adar and Huberman conducted a study in [10] on user query behavior in Gnutella, a “pure” P2P system.

However, their focus was on anonymity and the implications of “freeloading” user behavior on the robust-

ness of the Gnutella community as a whole. There was no quantitative discussion on performance, and the

study did not cover hybrid P2P systems.

Performance issues in hybrid file-sharing P2P systems have been compared to issues studied in informa-

tion retrieval (IR) systems, since both systems provide a lookup service, and both use inverted lists. Much

work has been done on optimizing inverted list and overall IR system performance (e.g., [18, 27]). However,

while the IR domain has many ideas applicable to P2P systems, there are differences between the two types

of systems such that many optimization techniques cannot be directly applied. For example, IR and P2P

systems have large differences in update frequency. Large IR systems with static collections may choose

to rebuild their index at infrequent intervals, but P2P systems experience updates every second, and must

keep the data fresh. Common practices such as compression of indexes (e.g., [19]) makes less sense in the

dynamic P2P environment. While some work has been done in incremental updates for IR systems (e.g.,

[11, 25]), the techniques do not scale to the rate of change experienced by P2P systems.

Research in cooperative web caching (e.g., [13, 20]) has also led to architectures similar to the ones

studied in this paper. However, performance issues are very different due to several key differences in func-

tionality and context. First, most web caches search by key (i.e., URL), making hash-based cooperative

web caches (e.g., [17]) more effective than hash-based P2P systems, which must allow multi-term keyword

queries. Second, URL “queries” in web caches map to exactly one page, whereas queries in file-sharing

systems return multiple results, and the number of results returned is an important metric of system effec-
1The recent attempts by Napster for settlement and the alignment between the music label BMG and Napster seems to point in

this direction.
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Figure 1:System Components and Messages

tiveness. In addition, modeling the probability of gettingn hits in s servers is very different from modeling

the probability of a single hit ins caches. Third, there is no concept of logins or downloads in web caching,

which is a large part of P2P system performance. Fourth, bandwidth consumed by transferring a page from

cache to client is an important consideration in cooperative web caching, but not in P2P systems. Finally,

user behavior in the Web context is fairly well understood, whereas we will see that user behavior in P2P

systems may vary widely depending on system purpose.

Several of the server architectures we present in the next section either exist in actual P2P systems, or

draw inspiration from other domains. In particular, the “chained” architecture is based on the OpenNap [7]

server implementation, and resembles the “local inverted list” strategy [22] used in IR systems, where doc-

uments are partitioned across modes and indexed in subsets. The “full replication” architecture uses the

NNTP [16] approach of fully replicating information across hosts, and a variation of the architecture is im-

plemented by the Konspire P2P system [4]. The “hash” architecture resembles the “global inverted list”

strategy [22] used in IR systems, where entire inverted lists are partitioned lexicographically across nodes.

Finally, the “unchained” architecture is derived from the current architecture in use by Napster [6].

3 Server Architecture

We begin by describing the basic concepts in a file-sharing, hybrid P2P system, based on the OpenNap [7]

implementation of a file-sharing service.2 We then describe each of the architectures in terms of these

concepts. Figure 1 shows the components in the basic hybrid P2P system and how they interact.

General Concepts. There are three basic actions supported by the system: login, query and download.

On login, a client process running on a user’s computer connects to a particular server, and uploads

metadata describing the user’s library. Alibrary is the collection of files that a user is willing to share.

Themetadatamight include file names, creation dates, and copyright information. The server maintains an

index on the metadata of its client’s files. For now, we assume the index takes the form of inverted lists [23].

Every file’s metadata is considered a document, with the text of the file name, author name, and so on, being

its content. The server also maintains a table of userconnection information, describing active connections

(e.g., client IP address, line speed).3 By logging on, the user is now able to query its server, and is allowing
2We are not following the exact protocol used by OpenNap, but rather use a simplified set of actions that represent the bulk of

the activity in the system.
3Often, clients use dial-in connections, so their IP address can vary from connection to connection.
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Parameter Name Default Value Description
FilesPerUser 168 Average files per user library
FracChange .1 Average percent of a user’s library that is changed offline
WordsPerFile 10 Average words per file title
WordsPerQuery 2.4 Average keywords per query
CharPerWord 5 Average characters per word
QueryPerUserSec .000833 Average number of queries per second per user
QueryLoginRatio .45 Ratio of queries to logins per second per user
QueryDownloadRatio .5 Ratio of queries to downloads per second per user
ActiveFrac .05 Percent of the total user population that is active at any given time
�f 100 Inverse frequency skew (to be described in Section 4)
r 4 Query skew to occurrence skew ratio (to be described in Section 4)

Table 1:User-Defined Parameters

other users to download her files.

A system may contain multiple servers, but a user is logged in and connected to only one server, itslocal

server. To that user, all other servers are consideredremote servers. From the perspective of one server,

users logged on to it directly are itslocal users. Depending on the architecture, servers may index the library

information of both local and remote users.

A queryconsists of a list of desired words. When a server receives a query, it searches for matches in

its index. The server sets a maximum number of results to return for any query, and a query is said to be

satisfiedif the maximum number of results are returned. A query is processed by retrieving the inverted

lists for all its words, and intersecting the lists to obtain the identifiers of the matching documents (user

files). Clearly, other query and indexing schemes are possible (e.g., relational queries), and we discuss how

to evaluate these schemes with our models in Section 7.3.

The user examines query results, and when she finds a file of interest, her client directly contacts the

client holding the file, anddownloadsthe file. After a successful download, or after a file is added through

some other means, the client notifies the local server of the new addition to the library. The local server will

add this information to its index. The local server is also notified when local files are deleted. Depending on

architecture, remote servers may also be notified of the addition/deletion of local files.

Upon logoff, the local server updates the index to indicate that the user’s files are no longer available.

Again, remote servers may have to update their indices as well, depending on architecture. The options for

handling logoffs are discussed in the next subsection.

Most hybrid file-sharing P2P systems offer other types of services to users other than just file sharing,

such as chat rooms, hot lists, etc. These services are important in building community and keeping users

attached to the main service. However, for our study we do not consider the effects of these activities on the

system, as our experiments show that they do not significantly contribute to the workload.

As we discuss and study our hybrid P2P architectures, we will introduce a number of descriptive param-

eters. We show all parameters and their base values in Table 1, Table 2, and Table 3, even though many of the

parameters and their values will be described in later sections. Parameters are divided into user-dependent

parameters (Table 1) – those parameters that describe characteristics of user behavior, system parameters

(Table 2) – those parameters that determine available system resources, and derived parameters (Table 3)

– those parameters that are derived from other user and system parameters. The last derived parameter,
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Parameter Name Default Value Description
LANBandwidth 80 Mb/s Bandwidth of LAN connection in Mb/s
WANBandwidth 8 Mb/s Bandwidth of WAN connection in Mb/s
CPUSpeed 800 MHz Speed of processor in MHz
NumServers 5 Number of servers in the system.
MaxResults 100 Maximum number of results returned for a query
User-Server Network WAN The type of network connection between users and servers
Server-Server Network LAN The type of network connection between servers

Table 2:System-Defined Parameters

Parameter Name Description
ExServ Expected number of servers needed to satisfy a query
ExTotalResults Expected number of results returned by all servers
ExLocalResults Expected number of results returned by the local server
ExRemoteResults Expected number of results returned by remote servers
UsersPerServer Number of users logged on to each server

Table 3:Derived Parameters

UsersPerServer, is the value we want to maximize for each server. Our performance model calculates the

maximum users per server supportable by the system, given all other parameters.

Batch and Incremental Logins. In current hybrid P2P systems, when a user logs on, metadata on her

entire library is uploaded to the server and added to the index. Similarly, when she logs off, all of her library

information is removed from the index. At any given time, only the libraries of connected, or active, users

are in the index. We call this approach thebatchpolicy for logging in. While this policy allows the index to

remain small and thereby increases query efficiency, it also generates expensive update activity during login

and logoff.

An alternative is anincrementalpolicy where user files are kept in the index at all times. When a

user logs on, only files that were added or removed since the last logoff are reported. If few user files

change when a user is offline, then incremental logins save substantial effort during login and logoff. (The

parameterFracChangetells us what fraction of files change when a user if offline.) However, keeping file

metadata ofall users requires filtering query results so that files belonging to inactive users are not returned.

This requirement creates a performance penalty on queries. Also notice that in some architectures, the

incremental policy requires that a user must always reconnect to the same server. This restriction may be a

disadvantage in some applications.

Chained Architecture. In this architecture, the servers form a linear chain that is used in answering

queries. When a user first logs on, only the local server adds library metadata to its index; remote servers

are unaffected. When a user submits a query, the local server attempts to satisfy the query alone. However,

if the local server cannot find the maximum number of results, it will forward the query to a remote server

along the chain. The remote server will return any results it finds back to the first server, which will then

forward the results to the user. The local server continues to send the query out to the remaining remote

servers in the chain until the maximum number of results have been found, or until all servers have received

and serviced the query. In this architecture, logins and downloads are fast and scalable because they affect
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only the local server of a user. However, queries are potentially expensive if many servers in the chain are

needed to satisfy the query.

Full Replication Architecture. Forwarding queries to other servers can be expensive: each new server

must process the query, results must be sent to the originating server, and the results must be merged. The

full replication architecture avoids these costs by maintaining on each server a complete index of all user

files, so all queries can be answered at a single server. Even with incremental logins, users can now connect

to any server. The drawback, however, is that all logins must now be sent to every server, so that every server

can maintain their copy of the index (and of the user connection information). Depending on the frequency

ratio of logins to queries, and on the size of the index, this may or may not be a good tradeoff. If servers are

connected by a broadcast network, then login propagation can be more efficient.

Hash Architecture. In this scheme, metadata words are hashed to different servers, so that a given server

holds the complete inverted list for a subset of all words. We assume words are hashed in such a way that

the workload at each server is roughly equal. When a user submits a query, we assume it is directed to a

server that contains the list of at least one of the keywords. That server then asks the remaining servers

involved for the rest of the inverted lists. When lists arrive, they are merged in the usual fashion to produce

results. When a client logs on, metadata on its files (and connection information) must be sent to the servers

containing lists for the words in the metadata. Each server then extracts and indexes the relevant words.

This scheme has some of the same benefits of full replication, because a limited number of servers are

involved in each query, and remote results need not be sent between servers. Furthermore, only a limited

number of servers must add file metadata on each login, so it is less expensive than full replication for logins.

The main drawback of the hash scheme is the bandwidth necessary to send lists between servers. However,

there are several ways to make this list exchange more efficient ([24]).

Unchained Architecture. The “unchained” architecture simply consists of a set of independent servers

that do not communicate with each other. A user who logs on to one server can only see the files of other

users at the same local server. This architecture, currently used by Napster, has a clear disadvantage of

not allowing users to see all other users in the system. However, it also has a clear advantage of scaling

linearly with the number of servers in the system. Though we cannot fairly compare this architecture with

the rest (it provides partial search functionality), we still study its characteristics as a “best case scenario”

for performance.

4 Query Model

To compare P2P architectures, we need a way to estimate the number of query results, and the expected

number of servers that will have to process a query. In this section we describe a simple query model that

can be used to estimate the desired values.

We assume a universe of queriesq1; q2; q3; :::. We define two probability density functions over this

universe:
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� g – the probability density function that describes query popularity. That is,g(i) is the probability that a

submitted query happens to be queryqi.

� f – the probability density function that describes query “selection power”. In particular, if we take a

given file in a user’s library, with probabilityf(i) it will match queryqi.

For example, iff(1) = 0:5, and a library has 100 files, then we expect 50 files to match queryq1. Note that

distributiong tells us what queries users like to submit, whilef tells us what files users like to store (ones

that are likely to match which queries).

Calculating ExServ for the Chained Architecture. Using these two definitions we now computeExServ,

the expected number of servers needed in a chained architecture (Section 3) to obtain the desiredR =

MaxResultsresults. LetP (s) represent the probability that exactlys servers, out of an infinite pool, are

needed to returnR or more results.

The expected number of servers is then:

ExServ =

kX
s=1

s � P (s) +

1X
s=k+1

k � P (s) (1)

wherek is the number of servers in the actual system. (The second summation represents the case where

more thank servers from the infinite pool were needed to obtainR results. In that case, the maximum

number of servers,k, will actually be used.)

In [26] we show that this expression can be rewritten as:

ExServ = k �

k�1X
s=1

Q(s � UsersPerServer� FilesPerUser) (2)

HereQ(n) is the probability thatR or more query matches can be found in a collection ofn or fewer files.

Note thatn = s� UsersPerServer� FilesPerUseris the number of files found ons servers.

To computeQ(n), we first computeT (n;m), the probability of exactlym answers in a collection of

exactlyn files. For a given queryqi, the probability ofm results can be restated as the probability ofm

successes inn Bernoulli trials, where the probability of a success isf(i). Thus,T (n;m) can be computed

as:

T (n;m) =

1X
i=0

g(i)

� 
n

m

!
(f(i))m(1� f(i))n�m

�
: (3)

Q(n) can now be computed as the probability that we do not get0; 1; ::: or R � 1 results in exactlyn

files, or

Q(n) = 1�

R�1X
m=0

T (n;m): (4)

Calculating Expected Results for Chained Architecture. Next we compute two other values required

for our evaluations,ExLocalResultsandExRemoteResults, again for a chained architecture.ExLocalResults
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is the expected number of query results from a single server, whileExRemoteResultsis the expected number

of results that will be returned by a remote server. The former value is needed, for instance, to compute how

much work a server will perform as it answers a query. The latter value is used, for example, to compute

how much data a server receives from remote servers that assist in answering a query.

Both values can be obtained if we computeM(n) to be the expected number of results returned from

a collection ofn files. Then,ExLocalResultsis simplyM(y), wherey = UsersPerServer� FilesPerUser.

Similarly, the expected total number of results,ExTotalResults, is M(k � y). Then ExRemoteResultsis

ExTotalResults - ExLocalResults= M(k � y)�M(y).

In [26] we show that

M(n) =

1X
i=0

g(i)

�
R�

R�1X
m=0

 
n

m

!
(f(i))m(1� f(i))N�m(R�m)

�
: (5)

Calculating Expected Values for Other Architectures. So far we have assumed a chained architecture.

For full replication,ExServis trivially 1, since every server contains a full replica of the index at all other

servers. BecauseExServis 1, all results are local, and none are remote. HenceExRemoteResults= 0,

andExLocalResults = ExTotalResults= M(N), whereM is defined above, andN = s� UsersPerServer�

FilesPerUseris the number of files in the entire system.

For the hash architecture, againExRemoteResults= 0 and ExLocalResults= M(N), since all the

results are found at the server that the client is connected to.ExServis more difficult to calculate, however.

The problem again takes the form of equation (1), but instead of using the probabilityP (s), we want to

use a different probabilityP2(s) that exactlys servers are “involved” in answering the query. A server is

“involved” in a query if it contains at least one of the inverted lists needed to answer the query. We assume

that on average,WordsPerQuerylists are needed to answer a query; however, it is possible for more than

one list to exist at the same server. The problem of finding the probability ofb lists residing at exactly

i servers can be restated as the probability ofb balls being assigned to exactlyi bins, where each ball is

equally likely to be assigned to any of thek total bins. Because the average number of words per query is

typically quite small, we are able to explicitly compute the necessary values, and interpolate the values to

get a close approximation in the case of fractionalWordsPerQuery. For example, sayWordsPerQuery= 3

andNumServers= 5. Then the probability of all lists residing at one, or at 3 distinct servers is:

At 1 server:

 
5

1

!�
1

5

�3
= :04 At 3 distinct servers:

 
5

3

!
3!

�
1

5

�3
= :48 (6)

Finally, the probability of all lists residing at 2 distinct servers is 1 minus the probabilities of 1 and 3 distinct

servers, which is .48. The expected number of servers involved in a query with 3 words over a set of 5

servers is therefore 2.44. Please refer to [26] for a complete solution.

For the unchained architecture,ExServis trivially 1, since queries are not sent to remote servers.ExRe-

moteResults= 0 andExLocalResults= M(n), wheren =UsersPerServer� FilesPerUseris the number of

files at asingleserver.
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Distributions for f and g. While we can use anyg andf distributions in our model, we have found

that exponential distributions are computationally easier to deal with and provide accurate enough results

(see Section 5) in the music domain. Thus, we assume for now thatg(i) = 1

�g
e
�

i
�g . Since this function

monotonically decreases, this means thatq1 is the most popular query, whileq2 is the second most popular

one, and so on. The parameter�g is the mean. If�g is small, popularity drops quickly asi increases; if�g
is large, popularity is more evenly distributed.

Similarly, we assume thatf(i) = 1

�f
e
�

i
�f . Note that this assumes that popularity and selection power

are correlated. In other words, the most popular queryq1 has the largest selection power, the second most

popular queryq2 has the second largest power and so on. This assumption is reasonable because in a

“library-driven” system where queries are answered over users’ personal collection of files, popular files are

queriedfor frequently, andstoredfrequently4. Stored files can be obtained from the system by downloading

query results, or from an external source. (For example, in the music domain, files can be obtained and

stored from “ripped” CDs, and we expect a correlation between these files and what users are looking for.)

However, the mean�f can be different from�g. For example, if�g is small and�f is large, popularity drops

faster than selection power. That is, a rather unpopular query can still retrieve a fair number of results.

Some readers may be concerned that, under these assumptions, eventually everyone would have stored

the popular files, and no one would need to query for them anymore. However, at least in the music domain,

such a steady state is never reached. One reason is that users do not save all files they search for, or even all

files they download. In particular, a study done by [21] shows that on average, college-age users who have

downloaded over 10 songs eventually discard over 90% of the downloaded files. Hence, the high frequency

of a query does not necessarily drive up the size of the result set returned. Another reason why a steady state

is never reached is that user interests (and hence the ordering of queries by popularity and selectivity) vary

over time. Our model only captures behavior at one instant of time.

From this point on, we will express�g asr ��f , wherer is the ratio�g=�f . For a given query popularity

distributiong, asr decreases toward0, selection powerf becomes more evenly distributed, and queries tend

to retrieve the same number of results regardless of their popularity.

Section 7.3 describes how the query model behaves with different distributions forf andg.

5 OpenNap Experiments

In this section we describe how we obtained statistics from a live P2P system. Using this data we validate

our query model with the given assumptions and derive base values for our query parameters.

The OpenNap project is open source server software that clones Napster, one of the most popular exam-

ples of hybrid P2P systems. An OpenNap server is simply a host running the OpenNap software, allowing

clients to connect to it and offering the same music lookup, chat, and browse capabilities offered by Napster.

In fact, the protocol used by OpenNap follows the official Napster message protocol, so any client following

the protocol, including actual Napster clients, may connect. OpenNap servers can be run independently,

as in the unchained architecture, or in a “chain” of other servers, as in the chained architecture. All users
4This characteristic also holds true for “cache-driven” systems like Freenet that use the LRU replacement strategy.
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Figure 3: Observed and Fitted Frequency Distribu-
tions of Results in Napster

connected to a server can see the files of local users on any of the other servers in the chain (a capability

Napster lacks).

Our data comes from an OpenNap server run in a chain of 5 servers. Up to 400 simultaneous real users

connected to our server alone, and up to 1350 simultaneous users were connected across the entire chain.

Once an hour, the server logged workload statistics such as the number of queries, logins, and downloads

occurring in the past hour, words per query, and the current number of files in the server. Naturally, all

statistics were completely anonymous to protect the privacy of users. The data was gathered over an 8 week

period, and only data from the last six weeks was analyzed, to ensure that the data reflected steady-state

behavior of the system.

The workload on our server varied throughout the experimental period depending on the time of day

and day of week. However, the variation was regular and predictable enough such that we could average the

numbers to get good summary information to work with.

5.1 Query Model Validation

As part of the hourly log, the server recorded how many queries in the period obtained 0 results, how many

obtained 1 result, and so on. In effect, for every hour we obtained a histogram giving the frequency at which

each number of results was returned by the server. For each histogram, we also recorded the number of

files that were indexed at that point. The observed number of files ranged between 40,000 and 95,000 files.

Clearly, the histogram depended on the number of files; when there were more files, users tended to get

more results.

To increase the accuracy of our measurements, we combined 19 histograms that occurred when the

server had roughly 69,000 files (actually between 64,000 and 74,000 files). Thus, the combined histogram

showed us how many queries in all the relevant periods had obtained 0 results, how many had obtained 1

result, and so on. Figure 2 shows the cumulative normalized version of that histogram (solid line). For

example, about87:3% of all the queries had 40 or fewer results. At 100 results we observe a jump in the
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Run Number of Time of M(n) 1�Q(n) �f r Fitted Fitted
Files Day M(n) 1 �Q(n)

1 1335411 morning 80.01 .2585 100 3.68 79.44 .2633
2 1539166 morning 80.03 .2550 100 3.68 80.21 .2538
3 1969233 evening 75.77 .3087 140 4.14 75.86 .3025
4 2038807 evening 76.33 .2963 140 4.14 76.06 .2999
5 1256387 midnight 77.38 .2917 100 3.92 77.21 .2890
6 1468911 midnight 78.17 .2830 100 3.90 77.68 .2830

Table 4:Characteristics of Napster Query Runs

distribution because at most 100 results are returned by the server. Thus, 93.5% of the queries returned 99

or fewer results, and1 � 93:5% = 6:5% of the queries would have returned 100 or more results, but were

forced to return only 100. Keep in mind that Figure 2 shows results for a single server. When a query returns

less than 100 local results, other servers in the chain are contacted for more results, but those results are not

shown in this graph.

Our next step is to fit the curve of Figure 2 to what our query model would predict. SinceT (n;m) is the

probability that a query returnsm results when run againstn files (see Section 4), the cumulative distribution

of Figure 2 should match the functionh(x) =
Px

m=0 T (69000;m) in the range0 � x � 99. By doing a

best fit between this curve and the experimental data, we obtain the parameter values�f = 400 andr = 10

(and�g = 400 � 10 = 4; 000). These parameters mean that the 400th query has the mean selectivity power,

while the 4000th query has the mean probability of occurring. Figure 2 shows the fitted curveh(x) with

�f = 400 andr = 10.

With the fitted parameters, our model predicts a mean number of results ofM(69000) = 14:82,

which differs from the observed mean by only 1.22%. Similarly, our model predicts that with probabil-

ity 1 � Q(69000) = 0:9464, there will be fewer than 100 results. This only differs by0:46% from the

measured value (see Figure 2). Thus, our model clearly describes well the observed data from our OpenNap

experiments.

To observe how our model worked in a different setting, we ran a second set of experiments. We took

a random sample of 660 queries submitted to the OpenNap server and submitted them to Napster. We

submitted the same sample of queries six times at different times of day – evening (7 pm), midnight (12

am), and morning (8 am), when the load on Napster was heaviest, lightest, and average, respectively. We

recorded the number of results returned for the queries, obtained a result frequency distribution for each run,

and fitted curves to the observed data.

Table 4 shows the results for these experiments, together with the�f andr values obtained by curve

fitting. As expected, the values forM(n) and1�Q(n) are closely matched by the fitted values within each

run, and parametersr and�f are fairly close across the runs. Interestingly, the obtained�f andr values do

not only differ from the values we obtained from OpenNap, but they also differ slightly by time of day. Note

for example that, even though more files are available in the evening experiments, fewer average results are

obtained by the queries (smallerM values). The tight correlation between query characteristics and time of

day is highlighted in Figure 3, where the observed Napster distributions are marked in solid lines, and the
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fitted distributions in dotted lines.5

The explanation for the differences in parameters between the two systems, and between the different

times of day, is that the communities that use P2P systems vary, and hence the types of files they make

available (and the queries they submit) differ. Morning Napster users are not at school and wake up early,

and have somewhat different interests from Napster users at midnight, who are more likely to be college

students. Hence, morning and midnight query behavior differ. Similarly, since Napster is widely known, it

tends to have more casual users who access popular songs. OpenNap, on the other hand, is harder to find

and use, so its users tend to be more involved in the music-sharing concept and community, more technically

savvy, and may not always have tastes that conform to the mainstream. As a result, query frequencies and

selectivities for OpenNap are more evenly distributed, accounting for the larger�f and largerr. In contrast,

the popularity skew of songs in Napster is probably high and heavily influenced by the latest trends. Hence,

�f andr are relatively small.

We conclude from these observations that our query model describes the real world sufficiently well,

although we need to consider (as we will do in Section 7.3) the effect of different�f andr values on the

performance of the various architectures.

5.2 Parameter Values

From the experimental data, we were also able to determine average values for most of our user-dependent

model parameters. Table 1 summarizes these parameter values. Due to space limitations we cannot comment

on each value, and how it was obtained. However, we do comment on one parameter which may be biased,

and two parameters we were unable to measure directly.

First, our measured value ofQueryLoginRatiowas 0.45, meaning roughly that on average users submit

one query every other session. We were surprised by this number, as we expected users to at least submit one

query per session. After analyzing our data, we discovered two main reasons for the lowQueryLoginRatio

value. First, many clients operate over unreliable modem connections. If the connection goes down, or even

is slow, the client will attempt to re-login to the server. A client may thus login several times in what is a

single session from the user’s point of view. Second, many users are drawn to the OpenNap chat community.

Users often log on to the server simply to chat or see who is online, rather than to download files. Our data

shows that chat accounts for 14.6 KB/hour of network traffic – not enough to significantly impact the system

performance, but enough to biasQueryLoginRatio. For our evaluation we initially use the measured value

of 0.45, but then we consider higher values that may occur with more reliable connections or with less chat

oriented systems.

ParameterFracChangerepresents the fraction of a user’s library that changes between a logoff and

the next login. Since in OpenNap one cannot relate a new login to a previous logoff, this value cannot be

measured. A library may change offline because a user deletes files, or because she “rips” a CD. We estimate

thatFracChange= 10% of a user’s 168 average number of files may be changed, mainly because files that

were downloaded are played a few times and then removed to make room for new material. In [26] we

perform a sensitivity analysis on parameterFracChangeto see how critical our choice is.
5There is again a jump atR = 100 results to cumulative frequency of1, but it is not shown because the value1 is off the scale.
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ParameterActiveFracindicates what fraction of the user population is currently active. We estimate that

ActiveFrac= 0.05 as follows. Our statistics show an average of 226 active local users at any given time,

and withQueryPerUserSec=QueryLoginRatio= :00184 logins per user per second, there are approximately

36015 logins a day. Let us assume that the average user submits 3 to 4 queries a day. This means the average

user logs inQuerysPerUserPerDay=QueryLoginRatio= 8 times a day. (The high value for logins per user

per day is a direct result of the low value observed forQueryLoginRatio. See discussion above.) If each

user logs on 8 times a day, then there are a total of approximately 4502 users in our local user base, which

means on average, approximately 226/4502 = .050 of all users are active at any given time. Again, in [26]

we study the impact of changing this parameter.

6 Performance Model

In this section, we describe the performance model used to evaluate the architectures. We begin by defining

our system environment and the resources our model will consider. We then present the basic formulas used

to calculate the cost of actions in the system. Finally, we illustrate how we put the parameters and costs

together to model the performance of the chained architecture. Because of space limitations, we are only

able to give detailed examples of just a portion of what our model covers. For a complete description, please

refer to [26].

System Environment and Resources. In our model, we assume the system consists ofNumServersiden-

tical server machines. The machines are connected to each other via a broadcast local area network (LAN),

for example, if they all belong to the same organization, or through a point-to-point wide area network

(WAN). Similarly users may be connected to servers via LAN or WAN. Our system can model any of the

four combinations; let us assume for the examples in the remainder of the section that servers are connected

to each other via LAN, and to users via WAN.

We calculate the cost of actions in terms of three system resources: CPU cycles, inter-server communi-

cation bandwidth, and server-user communication bandwidth. If users and servers are all connected via the

same network (e.g., the same LAN), then the last two resources are combined into one. For the time being,

we do not take I/O costs into consideration, but assume that memory is cheap and all indexes may be kept

in memory. Memory is a relatively flexible resource, and depends largely on the decisions of the system

administrator; hence, we did not want to impose a limit on it. Later in Section 7.1, we will discuss the

memory requirements of each architecture, and point out the tradeoffs one must make if a limit on memory

is imposed.

Table 2 lists the default system parameter values used in our performance analysis. The bandwidth values

are based on commercial enterprise level standards, while the CPU represents current high-end commodity

hardware.NumServersandMaxResultswere taken from the OpenNap chain settings.

CPU Consumption. Table 5 lists the basic formulas for the cost of actions in CPU instructions, for the

simple architecture. In this table, we see that the cost of a query is a function of the number of total and
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Action Formula for CPU instructions

Batch Login/off 152817:6 � FilesPerUser+ 200000

Batch Query (4000 + 3778) � ExTotalResults+ 100000 � ExServ+ 2000 � ExRemoteResults
Batch Download 222348
Incr. Login/off 77408:8 � FilesPerUser� FracChange+ 200000

Incr. Query (4000 + 3778=ActiveFrac) � ExTotalResults+ 100000 � ExServ
+2000 � ExRemoteResults

Incr. Download 222348

Table 5:Formulas for cost of actions in CPU instructions

remote results returned, the cost of logging on is a linear function of the size of the library, and the cost

of a download is constant. The coefficients for the formulas were first estimated by studying the actions

of a typical implementation, and by roughly counting how many instructions each action would take. For

example, in the formula for batch query cost, we estimated that the startup overhead at each server is due

mostly to the cost of an in-memory transaction, which is listed in [14] as roughly 100000 instructions. When

it was hard to estimate the costs of actions, we ran measurement tests using simple emulation code. Finally,

we experimentally validated the overall formulas against our running OpenNap server. The performance

predicted by our formulas matched relatively well the actual values, at least for the chained architecture

(batch policy) that OpenNap implements. For additional details see [26].

To calculate the cost of actions in incremental mode, we use the same formulas derived for batch mode,

but incorporate the changes in the underlying action. Servicing a query in incremental mode has the same

formula and coefficients as in batch mode, except that onlyActiveFracof the elements in the inverted lists

pertain to files that are owned by currently active users, and all other elements cannot be used to answer the

query. As a result, the cost of reading list elements per returned result needs to be divided byActiveFrac.

The CPU cost of actions may also vary depending on architecture. In both the unchained and full replica-

tion architectures, the formula for batch and incremental query costs are exactly the same; however,ExServ

= 1 andExRemoteResults= 0 always. In the hash architecture, there is an additional cost of transferring

every inverted list at a remote server to the local server. Hence, the coefficient describing the cost of list

access per returned result is increased.

Network consumption. Table 6 lists formulas for the cost, in bytes, of the messages required for every

action in the chained architecture. The coefficients come directly from the Napster network protocol, user-

defined parameters, and a number of small estimates. The issue of network headers is discussed in [26].

For example, when logging on, a client sends a Login message with the user’s personal information, an

AddFile message for some or all files in the user’s library, and possibly a few RemoveFile messages if the

system is operating in incremental mode. The Napster protocol defines these three messages as:

� Login message format:(MsgSize MsgType <username> <password> <port>

‘‘<version>’’ <link-speed>) .

� AddFile message format:(MsgSize MsgType "<filename>" <md5> <size> <bitrate>

<frequency> <time>) .

� RemoveFile message format:(MsgSize MsgType <filename>) .
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Action Formula

Batch Login 42 + (75 + WordsPerFile� CharPerWord) � FilesPerUser
Incr. Login 42 + (46 + WordsPerFile� CharPerWord) � FilesPerUser� FracChange
Query WordsPerQuery� CharPerWord+ 100

QueryResponse 90 + WordsPerFile� CharPerWord
Download 81 + WordsPerFile� CharPerWord

Table 6:Formulas for cost of actions in bytes

Using the user-defined parameter values in Table 1, and estimating 10 characters in a user name and

in a password, 7 characters to describe the file size, and 4 characters to describe the bitrate, frequency,

and time of an MP3 file, the sizes of the Login, AddFile and RemoteFile messages come to 42 bytes, 125

bytes, and 67 bytes, respectively. When a client logs on inbatch mode, a single Login message is sent

from client to server, as well asFilesPerUserAddFile messages.6 Average bandwidth consumption for

payload data is42 + 168 � 125 = 21042 bytes. When a client logs on in incremental mode, a single Login

message is sent from client to server, as well as approximatelyFilesPerUser� FracChange�0:5 AddFile

messages, and the same number of RemoveFile messages. Average bandwidth consumption is therefore

42 + 168 � 0:1 � 0:5(125 + 67) = 1654:8 bytes.

Network usage between servers varies depending on the architecture. For example, for login, the un-

chained architecture has no inter-server communication, so the required bandwidth is 0. Servers in the

chained architecture send queries between servers, but not logins, so again, the bandwidth is 0. With the

full replication architecture, all servers must see every Login, AddFile and RemoveFile message. If servers

are connected on a LAN, then the data messages may be broadcast once. If the servers are connected on a

WAN, however, then the local server must send the messagesNumServers� 1 times. Similarly, in the hash

architecture, if servers are connected via LAN, then the messages may be broadcast once. If the servers are

connected via WAN, however, then the AddFile messages should only be sent to the appropriate servers.

Please refer to [26] for a description on calculating the expected number of servers each message must be

sent to.

Modeling Overall Performance of an Architecture. After deriving formulas to describe the cost of each

action, we can put everything together to determine how many users are supportable by the system. Our

end goal is to determine a maximum value forUsersPerServer. To do this, we first calculate the maximum

number of users supportable by each separate resource, assuming infinite resources of the other two types.

Then, to find the overallUsersPerServer, we take the minimum across the three resources. We cannot

directly directly calculate the maximumUsersPerServerfor a particular resource, however, because the

amount of resource consumed is a complex function ofUsersPerServer. Instead, we use the iterative secant

method for zero-finding, where we guess two values for the parameter, calculate consumed resources for

each of these guesses, and interpolate a new value forUsersPerServerwhere zero resource is unused, which

is maximum capacity. Please see [26] for an example.
6Yes, a separate message is sent to the server for each file in the user’s library. This is inefficient, but it is the way the Napster

protocol operates.
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Figure 4: Overall Performance of Strategies vs.
QueryLoginRatio
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Figure 5:Expected Number of Results

7 Experiments

In this section, we present the results of our performance studies, discussing the behavior of the architectures

and login policies as certain key parameters are varied, and highlighting the tradeoffs between architectures

in different scenarios. We begin by studying music-sharing systems today (Section 7.1). Next, we consider

how such systems might perform in the future when user and system characteristics have changed (Sec-

tion 7.2). Finally, in Section 7.3 we switch focus to other domains and evaluate the performance of systems

that may have very different query and indexing characteristics from music-sharing applications.

Throughout the performance comparisons, the metric of performance is the maximum number of users

each server can support. Hence, we concern ourselves with throughput, and not response time. Unless

otherwise specified, default values for parameters (see Tables 1, 2, and 3) were used during evaluation. For

brevity, we will refer to the chained architecture as CHN, the full replication architecture as FR, the hash

architecture has HASH, and the unchained architecture as UNCH. Because each architecture can be imple-

mented using one of two login policies, we refer to the combination of a particular architecture and policy

as a “strategy”. For example, “batch CHN” is the strategy where the chained architecture is implemented

using the batch login policy. There are a total of 8 strategies.

The experiments presented in this section are representative of the basic trends observed in all of our

experiments. Additional results can be found in [26]. Furthermore, in this section we will highlight the

important conclusions from the experiments and give high level explanations for the results. For a more

detailed discussion of results, please again refer to [26].

7.1 Music-Sharing Today

We begin by evaluating performance of systems with behavior similar to that of music-sharing systems

today (e.g., Napster, OpenNap), described by default user and system parameter values listed in Tables 1

and 2. Figure 4 shows the overall performance of the strategies over various values ofQueryLoginRatio.
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For example, atQueryLoginRatio= 1, incremental FR can support 54203 users per server, whereas batch

FR can only support 7281 users per server. The dashed line represents the experimentally derived value of

QueryLoginRatiofor OpenNap. Figure 5 shows the expected number of results per query for each of the

strategies shown in Figure 4, assuming thatMaxResults= 100. AsQueryLoginRatioincreases, the number

of logins per second decreases, meaning more users can be supported by the system, thereby making more

files available to be searched. As a result, whenQueryLoginRatioincreases, the expected number of results

increases as well.

From this experiment, we can make several important conclusions:

� Incremental strategies outperform their batch counterparts. In particular, incremental CHN and UNCH

have the best performance and are recommended in this scenario. Currently, the incremental policy is

not used by music-sharing systems, but it should clearly be considered (see end of section for memory

requirement considerations).

� Batch UNCH is the strategy that most closely describes Napster’s architecture. As seen in the figures,

surprisingly, adding chaining to the servers (switching from UNCH to CHN) does not affect performance

by much, but returns significantly more results. Assuming the cost of maintaining a LAN between the

servers is acceptable, batch CHN is clearly recommended over batch UNCH.

� Most policies are very sensitive toQueryLoginRationear our measured value of 0.45. Small changes in

QueryLoginRatiocan significantly increase or reduce the maximum number of users supported by the

system, thereby making capacity planning difficult. This sensitivity is especially important to consider

if large increases inQueryLoginRatioare expected in the future when user network connections become

more stable (see Section 7.2).

� In a network-bound system, incremental strategies will always outperform batch because while both

policies consume the same bandwidth for queries, incremental uses significantly less bandwidth than

batch for logins. However, in a CPU-bound system, batch strategies will outperform incremental when

QueryLoginRatiois large, because then queries are frequent, and incremental has poor CPU query per-

formance (see [26] for graph and discussion).

From this point on, we will no longer include the unchained architecture in our comparisons because the

tradeoff is always the same: better performance, but fewer results per query.

Memory Requirements Thus far, we have evaluated the strategies assuming that there was enough mem-

ory to hold whatever indexes a server needed. We will now take a closer look at the memory requirements

of each strategy.

Figure 6 shows the memory requirement in bytes of the various strategies, as a function of the num-

ber of users. Please refer to [26] for a description on how memory usage is calculated. Here, we assume

ActiveFrac= .1, to keep all architectures within roughly the same scale. Clearly, the batch strategies are

far more scalable than the incremental strategies. For example, when there are 10000 users in the system,

batch CHN requires .35 GB of memory, while incremental CHN requires 10 times that amount. Also, CHN

requires the least amount of memory, while FR requires the most. However, it is important to note that

memory requirement is a function of several parameters, most importantlyNumServersandActiveFrac. As
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NumServersdecreases, FR requires proportionally less memory. On the flip side, asNumServersincreases,

FR also requires proportionally more memory. Likewise, incremental strategies require 1/ActiveFracas

much memory as batch. As connections become more stable andActiveFracincreases, memory required by

incremental strategies will decrease inverse proportionally, until it is much more comparable to batch mem-

ory requirements than it currently is. Furthermore, as memory becomes cheaper and 64-bit architectures

becomes widespread, memory limitations will become much less of an issue than it is now.

Today, it is likely that system administrators will limit the memory available on each server. By imposing

a limit, several new tradeoffs come into play. For example, suppose a 4GB memory limit is imposed on each

server, shown by the dashed line in Figure 6. Now, consider a Napster scenario wherer = 4, �f = 100,

andActiveFrac= .1. Say we determine thatQueryLoginRatio= .75. Our model predicts that the maximum

number of users supported by batch CHN is 26828, and by incremental CHN is 69708. The memory required

by these two strategies is shown in Figure 6 by the large ’x’ marks. While incremental CHN can support

over twice as many users as batch CHN, it also requires very large amounts of memory – far beyond the

4GB limit. If we use the incremental CHN strategy with the 4GB limit, then our system can only supported

12268 users per server, shown as a large triangle in Figure 6, which is fewer than the users supported by

batch CHN. Hence, batch CHN is the preferred architecture for this scenario.

However, let us now supposeQueryLoginRatiois .25. Then, the maximum number of users supported

by batch CHN is 9190, and by incremental CHN is 52088. The memory required by these two strategies is

shown in Figure 6 by the large ’o’ marks. Again, the amount of memory required by incremental CHN is

far too large for our limit. However, looking at incremental CHN performance at the 4 GB limit, we find

that the 12268 users supported by incremental CHN is greater than the 9190 users supported by batch CHN.

Hence, incremental CHN is still the better choice, because within the limit, it still has better performance

than batch CHN.

7.2 Music-Sharing in the Future

In the future, a number of user and system characteristics can change, thereby affecting the performance

of music-sharing systems. We consider three types of changes: change in network stability, change in user

query behavior, and change in system hardware capacity. The first two types will be discussed here, and the

third type, changes in hardware capacity, is discussed in [26].

Changes in Network Stability. As mentioned in Section 5, the experimentally derived value forQuery-

LoginRatiois surprisingly low, and this is most likely due to the fact that most users today have unstable

network connections through dialup modems. In the future, we would expect more users to have stable, high

bandwidth connections from home through DSL or cable modem. How would system performance change

given this trend in network stability? First, if connections are stable and users can remain online for longer

periods of time, then we would expectQueryLoginRatio, the number of queries a user submits per session,

to rise from its current value of 0.45.QueryLoginRatio= 0.45 means that the average user submits 1 query

every other time s/he logs on, which is very low. We would expect that in the future,QueryLoginRatiois at

least an order of magnitude larger, so as a future estimate we will useQueryLoginRatio= 10.
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Second, if users remain online for longer periods of time, then at any given moment, a higher fraction of

total users are logged in. The current value forActiveFrac= 0.05, meaning 1 out of 20 users are logged in at

any given time. ThoughActiveFracwill increase, it probably will not increase as much asQueryLoginRatio,

so as a future estimate, we will useActiveFrac= 0.25, meaning 1 out of 4 users are logged in at any given

time.

Figure 7 shows the performance of the strategies given the default parameter values listed in Tables 1

and 2, but withQueryLoginRatio= 10 andActiveFrac= 0.25. We show performance as a function of the

number of servers in the system, in order to compare the scalability of the strategies. Note that the vertical

axis shows the maximum number of usersper server. A scalable strategy should exhibit a fairly flat curve

in this figure, because as more servers are added to the system, the capacity at each server remains near-

constant and the system will have best-case linear scalability. The lessons in scalability we gather from this

experiment are:

� Incremental CHN continues to be the best performing strategy, and one of the most scalable as well.

CHN scales well because most operations involve only the local server. Logins and downloads are

handled at the local server only, and becauseExServis very low with�f = 100 andr = 4, queries are

mostly handled at the local server as well.

� FR is not scalable because the cost of downloads and logins increase in proportion to the number of

servers in the system. Since the incremental policy has better login performance than batch, incremental

FR has good performance until the number of servers becomes large (~35). However, batch FR is always

unscalable because of the CPU cost of logins. If CPU speeds increase such that CPU is no longer the

bottleneck, batch and incremental FR would perform and scale as well as batch and incremental CHN,

respectively.

� HASH is not scalable in this scenario because all operations become more expensive as the number of

servers increase, in terms of inter-server communication. However, we show in [26] that if network

bandwidth increases such that it is no longer the bottleneck, HASH can have the best performance and

scalability. In addition, we show that when the number of words per query is low, HASH is by far the

most scalable.
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Changes in Query Model. Future changes in query model parameters will also affect the performance

of strategies. For example, suppose user interests become more diverse. In this case, query popularity and

selection power are less skewed, meaning�f andr are larger. In addition, diverse interests translate into

fewer expected results in the query model, meaning users will likely submit more queries before finding the

files they wish to download. In this case,QueryDownloadRatio, the number of queries submitted before a

single download, will increase as well.

Figure 8 shows us performance of strategies when user interests are diverse, that is, wherer = 16,

�f = 1000, andQueryDownloadRatio= 2. In this figure, we also assume that network connections are

stable as in the previous example, meaningQueryLoginRatio= 10 andActiveFrac= 0.25.

We see in this scenario that incremental FR has the best performance. Although FR is still bound by

CPU, now CHN is bound by inter-server communication, because diverse interests mean fewer results,

and fewer results means higherExServfor CHN. CHN does not scale well with highExServbecause many

query and query result messages must be exchanged between servers. FR and HASH, however, are relatively

unaffected by changes inr and�f , becauseExServin these strategies do not depend on these parameters.

Future changes to the query model are difficult to predict; however, from the above experiment and other

experiments not shown, we observe several general trends:

� Changes inr have a much larger effect on system performance than changes in�f . Changes in�f are

generally only noticeable whenr remains the same.

� If r and/or�f decreases, then the distributions are more skewed (e.g., “narrow interests”), andExServ

remains small. As a result, CHN queries are still scalable, and relative performance of the strategies is

unaffected by the changes. Incremental CHN continues to have the best performance and scalability.

� If r and/or�f increases, then the distributions are more evenly distributed (e.g., “diverse interests”), and

ExServincreases. As a result, CHN queries are unscalable, and incremental FR has the best performance

and scalability.

7.3 Beyond Music: Systems in Other Domains

Thus far, we have considered systems that are similar to Napster, with the simple query and indexing scheme

described in Section 3, and where the distributions in the query model are assumed in Section 4 to be

exponential. In this section, we study the performance of systems that have very different query and system

behavior than current music-sharing systems. Due to lack of space, we cannot cover all possible variations

of systems. Instead, we describe the types of systems that can be evaluated well with our models, and show

a few examples.

Query Model. In Section 4, we describe a query model where, given distributions for query frequency

and query selection power, we can calculate the expected number of results for a query, and the expected

number of servers needed to satisfy the query. The model itself is completely general in that it makes no

assumptions about the type of distributions used forf andg; however, for the purposes of modeling music-

sharing systems and validating the model, we made the temporary assumption thatf andg are exponential

distributions. Implied by this assumption is the additional assumption thatf andg arepositively correlated
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– that is, the more popular or frequent and query is, the greater the selection power it has (i.e. the larger the

result set).

While we believe that our “music” model can be used in many other domains, one can construct exam-

ples where thef andg distributions have different properties. For example, if the system supported complex,

expressive relational queries, an obscure query such asselect * from Product where price >

0 would return as many results as a common query such asselect * from Product . In this case,

there is very little, if any, correlation between the popularity of a query and the size of its result set. We

say that such systems haveno correlationdistributions. Another example might be an “archive-driven” sys-

tem, where users provide old, archived files online but keep their current, relevant information offline. This

scenario might occur in the business domain where companies do not want their current data available to

the public or their competitors, but might be willing to provide outdated information for research purposes.

Because archives hold historical data, popular queries which refer to recent times return less data, whereas

rare queries which refer to the past will return more. In this case, there is anegative correlationbetween

query popularity and selection power.

In [26], we show through detailed analysis how the behavior of systems with negative and no correlation

distributions can in fact be approximated very closely by systems with positive correlation distributions.

Although the input to the query model, thef andg distributions, are very different, the output of the model,

values forExServandExResults, are closely matched. In particular,no correlationdistributions are closely

approximated by positive correlation distributions wherer = 1, andnegative correlationdistributions are

closely approximated whenr is very large. Thus, we can understand the behavior of systems with nega-

tive and no correlation distributions by studying the performance of systems with a wide range of positive

correlation distributions.

To illustrate, Figure 9 shows CPU performance of each strategy asr is varied. For comparison, the

r value derived for the OpenNap system is shown by a dotted line in the figure. In addition, in [26] we

presented several “representative” curves for negative and no correlation distributions, and determined the

best-fit positive correlation approximations for each distribution. For comparison, ther values derived for

the approximations of the negative and no correlation curves are also shown in Figure 9 by dotted lines.

From this figure, we can make several observations about the performance of strategies in different query

models:

� With negative correlation distributions, or positive correlation distributions with highr, incremental

strategies are recommended over batch. CPU performance of incremental strategies is usually bound by

expensive queries (see [26]), but with negative correlation or highr, the expected number of results is

very low, thereby making queries inexpensive.

� With no correlation distributions, or positive correlation with lowr, batch strategies outperform incre-

mental (except for FR). This is because whenr is low, the expected number of results is very high,

thereby making queries expensive and incremental performance poor. Again, batch FR performs so

poorly because of expensive logins.

� CHN and HASH show greater improvement than FR asr increases. FR, which has poor login per-

formance but excellent query performance, is least affected by a decrease inExResultscaused by an
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increase inr. Hence, its performance improves the least asr increases.

Performance Model. Unlike the query model described in Section 4, the performance model described

in Section 6 does make assumptions about the query and indexing scheme used in the system. These as-

sumptions are implied by thestructureof the cost formulas listed in Tables 5 and 6. For example, Table 5

lists that the CPU cost of a query has the formc1 � x + c2 � y + c3 � z, wherex is the expected number of

results,y is the expected number of remote results,z is the expected number of servers needed to satisfy the

query. This formula reflects the assumption thatExTotalResults, ExRemoteResultsandExServhave linear

effects on query cost, and that they are the only variables affecting query cost. Clearly, the actual cost of a

query in any system would be a much more complex expression involving a number of variables; however,

as long as the cost of a query can be approximated well within these assumptions, we can model the system

simply by setting coefficients to values appropriate for that system (which we show in the next example).

It is only if the cost of processing a query can not be approximated well within these assumptions that the

system cannot be analyzed well within our performance model.

For systems that can be described by our performance model, performance depends heavily on the

coefficients used in the cost formulas. For example, in [26] we described how we derived the CPU cost-per-

result coefficient for queries in the OpenNap system. However, we can easily imagine how other systems

could have very different costs per result. For example, suppose queries consist of a simple key or ID, and

the indices are simple hash tables. When a user submits a query, the server simply probes into the hash table

with the given ID. In this case, searches would be very inexpensive in terms of CPU cycles – possibly on

the order of hundreds of cycles. On the other extreme, suppose the system holds an image database, and

queries consist of low resolution images. The system is meant to retrieve all images that are similar to the

query image by some comparison technique and criteria. Processing a query in this system would be very

expensive because for every result, the server would have to run an expensive image comparison algorithm,

and furthermore the cost for all non-matching comparisons would be amortized over the cost for each match.
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In this case, cost-per-result could be on the order of millions of cycles.

Figure 10 shows the effect that varying the cost-per-result coefficient has on overall performance. The

coefficient derived in Table 5 for the OpenNap system is 7778, marked by a dotted line in the figure. A

higher value for the coefficient, for example, 15556, means that twice as many cycles are required to both

search for and process a single result. From this experiment, we find that:

� For systems with a small cost-per-result coefficient (e.g., OpenNap, hash-lookup systems), incremental

strategies are recommended over batch, particularly incremental CHN.

� For systems with large cost-per-result (e.g., image databases), batch CHN is the recommended strategy.

Batch performs better when cost-per-result is high because incremental strategies suffer from poor CPU

query performance.

� Batch CHN is also recommended for systems where cost-per-result is unknown or highly variable, since

the performance of batch CHN is steady, while even a small increase in cost-per-result causes the per-

formance of incremental CHN to decreases dramatically.

If necessary, all cost coefficients can be varied in the same way in order to view how systems with different

query and indexing characteristics perform.

8 Conclusion

In this paper, we studied the behavior and performance of hybrid P2P systems. We developed a probabilistic

model to capture the query characteristics of these systems, and an analytical model to evaluate the perfor-

mance of various architectures and policies. We validated both models using experimental data from actual

hybrid P2P systems. Finally, we evaluated and compared the performance of each strategy. A summary of

our findings (including results in our extended report [26]) for each architecture and policy are as follows:

� In our opinion, thechainedarchitecture is the best strategy for today’s music-sharing systems, and will

continue to be unless network bandwidth increase significantly, or user interests become more diverse.

This architecture has fast, scalable logins and requires the least amount of memory. However, query

performance can be poor if many servers are involved in answering a single query.

� Thefull replication architecture has good potential in the future when network connections will be more

stable and memory is cheaper. The architecture performs comparatively well in applications where user

interests are diverse, and when result sets are relatively large.

� Thehasharchitecture has very high bandwidth requirements. Hence, it is the best choice only if network

bandwidth increases significantly in the future, or in systems where it is not necessary for servers to

exchange large amounts of metadata (e.g., systems supporting only single-word queries such as search

by key or ID).

� Theunchainedarchitecture is generally not recommended because it returns relatively few results per

query and has only slightly better performance than other architectures. It is only appropriate when the

number of results returned is not very important, or when no inter-server communication is available.

� Theincremental policy is recommended in systems with negative correlation (e.g., historical or “archive-

driven” systems), and performs best when sessions are short and network bandwidth is limited.
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