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Abstract. In a Peer-To-Peer (P2P) system, autonomous computers pool
their resources (e.g., �les, storage, compute cycles) in order to inexpen-
sively handle tasks that would normally require large costly servers. The
scale of these systems, their \open nature," and the lack of centralized
control pose diÆcult performance and security challenges. Much research
has recently focused on tackling some of these challenges; in this paper,
we propose future directions for research in P2P systems, and highlight
problems that have not yet been studied in great depth. We focus on
two particular aspects of P2P systems { search and security { and sug-
gest several open and important research problems for the community
to address.

1 Introduction

Peer-to-peer (P2P) systems have recently become a very active research area, due
to the popularity and widespread use of P2P systems today, and their potential
uses in future applications. Recently, P2P systems have emerged as a popular
way to share huge amounts of data (e.g., [1, 16, 17]). In the future, the advent
of large-scale ubiquitous computing makes P2P a natural model for interaction
between devices (e.g., via the web services [18] framework).

P2P systems are popular because of the many bene�ts they o�er: adapta-
tion, self-organization, load-balancing, fault-tolerance, availability through mas-
sive replication, and the ability to pool together and harness large amounts of
resources. For example, �le-sharing P2P systems distribute the main cost of shar-
ing data { bandwidth and storage { across all the peers in the network, thereby
allowing them to scale without the need for powerful, expensive servers.

Despite their many strengths, however, P2P systems also present several
challenges that are currently obstacles to their widespread acceptance and usage
{ e.g., security, eÆciency, and performance guarantees like atomicity and trans-
actional semantics. The P2P environment is particularly challenging to work in
because of the scale of the network and unreliable nature of peers characterizing
most P2P systems today. Many techniques previously developed for distributed
systems of tens or hundreds of servers may no longer apply; new techniques are
needed to meet these challenges in P2P systems.



In this paper, we consider research problems associated with search and secu-

rity in data-sharing P2P systems. Though data-sharing P2P systems are capable
of sharing enormous amounts of data (e.g., 0.36 petabytes on the Morpheus [17]
network as of October 2001), such a collection is useless without a search mech-
anism allowing users to quickly locate a desired piece of data (Section 2). Fur-
thermore, to ensure proper, continued operation of the system, security measures
must be in place to protect against availability attacks, unauthentic data, and
illegal access (Section 3). In this paper, we highlight several important and open
research issues within both of these topics.

Note that this paper is not meant to be an exhaustive survey of P2P research.
First, P2P can be applied to many domains outside of data-sharing; for example,
computation (e.g., [19, 20]), collaboration (e.g., [21]), and infrastructure systems
(e.g., [22]) are all popular applications of P2P. Each application faces its own
unique challenge (e.g., job scheduling in computation systems), as well as com-
mon issues (e.g., resource discovery). In addition, within data-sharing systems
there exists important research outside of search and security. Good examples
include resource management issues such as fairness and administrative ease. Fi-
nally, due to space limitations, the issues we present within search and security
are not comprehensive, but illustrative. Examples are also chosen with a bias
towards work done at the Stanford Peers group [23], because it is the research
that the authors know best.

2 Search

A good search mechanism allows users to e�ectively locate desired data in a
resource-eÆcient manner. Designing such a mechanism is diÆcult in P2P systems
for several reasons: scale of the system, unreliability of individual peers, etc. In
this section, we outline the basic architecture, requirements and goals of a search
mechanism for P2P systems, and then suggest several areas of open research.

2.1 Overview

In a data-sharing P2P system, users submit queries and receive results (such
as data, or pointers to data) in return, via the search mechanism. Data shared
in the system can be of any type. In most cases users share �les, such as music
�les, images, news articles, web pages, etc. Other possibilities include data stored
in a relational DBMS, or a queryable spreadsheet. Queries may take any form
that is appropriate given the type of data shared. For example, in a �le-sharing
system, queries might be keywords with regular expressions, and the search may
be de�ned over di�erent portions of the document (e.g., header, title, metadata).

A search mechanism de�nes the behavior of peers in three areas:

{ Topology: De�nes how peers are connected to each other. In some systems
(e.g., Gnutella [1]), peers may connect to whomever they wish. In other
systems, peers are organized into a rigid structure, in which the number and



nature of connections is dictated by the protocol. De�ning a rigid topology
may increase eÆciency, but will restrict autonomy.

{ Data placement: De�nes how data or metadata is distributed across the
network of peers. For example, in Gnutella, each node stores only its own
collection of data. In Chord [2], data or metadata is carefully placed across
nodes in a deterministic fashion. In super-peer networks [12], metadata for
a small group of peers is centralized onto a single super-peer.

{ Message routing: De�nes how messages are propagated through the net-
work. When a peer submits a query, the query message is sent to a number
of the peer's \neighbors" (that is, nodes to whom the peer is connected),
who may in turn forward the message sequentially or in parallel to some of
their neighbors, and so on. When, and to whom, messages are sent is dic-
tated by the routing protocol. Often, the routing protocol can take advantage
of known patterns in topology and data placement, in order to reduce the
number of messages sent.

In an actual system, the general model described above takes on a di�erent
form depending on the requirements of the system. Requirements are speci�ed
in several main categories:

{ Expressiveness: The query language used for a system must be able to
describe the desired data in suÆcient detail. Key lookups are not expressive
enough for IR searches over text documents, and keyword queries are not
expressive enough to search structured data such as relational tables.

{ Comprehensiveness: In some systems, returning any single result is suÆ-
cient (e.g., anycast), whereas in others, all results are required. The latter
type of system requires a comprehensive search mechanism, in which all
possible results are returned.

{ Autonomy: Every search mechanismmust de�ne peer behavior with respect
to topology, data placement, and message routing. However, autonomy of a
peer is restricted when the mechanism limits behavior that a peer could
reasonably expect to control. For example, a peer may wish to only connect
to its friends or other trusted peers in the same organization, or the peer
may wish to control which nodes can store its data (e.g., only nodes on the
intranet), and how much of other nodes' data it must store. Depending on
the purpose and users of the system, the search mechanism may be required
to meet a certain level of autonomy for peers.

In this paper, we assume the additional requirement that the search mechanism
be decentralized. A P2P system may have centralized search, and indeed, such
\hybrid systems" have been very useful and popular in practice (e.g., [16]).
However, centralized systems have been well-studied, and it is desirable that the
search mechanism share the same bene�ts of P2P mentioned in Section 1; hence,
here we focus only on decentralized P2P solutions.

While a well-designed search mechanism must satisfy the requirements spec-
i�ed by the system, it should also seek to maximize the following goals:



{ EÆciency: We measure eÆciency in terms of absolute resources consumed
{ bandwidth, processing power, storage, etc. An eÆcient use of resources
results in lighter overhead on the system, and hence, higher throughput.

{ Quality of Service: We can measure quality of service (QoS) along many
di�erent metrics depending on the application { number of results, response
time, etc. Note the distinction between QoS and eÆciency: QoS focuses on
user-perceived qualities, while eÆciency focuses on the resource cost (e.g.,
bandwidth) to achieve a particular level of service.

{ Robustness: We de�ne robustness to mean stability in the presence of fail-
ures: quality of service and eÆciency are maintained as peers in the system
fail or leave. Robustness to attacks is a separate issue discussed in Section 3.

By placing current work in the framework of requirements and goals above, we
can identify several areas in which research is much needed. In the following
section, we mention just a few of these areas.

2.2 Expressiveness

In order for P2P systems to be useful in a wide range of applications, they must
be able to support query languages of varying levels of expressiveness. Thus far,
work in P2P search has focused on answering simple queries, such as key lookups.
An important area of research therefore lies in developing mechanisms for richer
query languages. Here, we list a few examples of useful types of queries, and
discuss the related work and challenges in supporting them.

{ Key lookup: The simplest form of query is an object lookup by key or iden-
ti�er. Protocols directly supporting this primitive have been widely studied,
and eÆcient solutions exist (e.g., [2{4]). Ongoing research is exploring how
to make these protocols more eÆcient and robust [5].

{ Keyword: While much research has focused on search techniques for key-
word queries (e.g., [11, 10, 6]), all of these techniques have been geared to-
wards eÆcient, partial (not comprehensive) search { e.g., all music-sharing
systems currently only support partial search. Partial search is acceptable in
those applications where a few keywords can usually uniquely identify the
desired �le (e.g., music-sharing systems, as opposed to web page reposito-
ries), because the �rst few matches are likely to satisfy the user's request.
Techniques for partial search can always be made comprehensive simply by
sending the query message to every peer in the network; however, such an
approach is prohibitively expensive. Hence, designing techniques for eÆcient,
comprehensive search remains an open problem.

{ Ranked keyword: If many results are returned for comprehensive keyword
search, users will need results to be ranked and �ltered by relevance. While
the query language for ranked keyword search remains the same, the addi-
tional information in the results (i.e., the relevance ranking) poses additional
challenges and opportunities. For example, ranked search can be built on top
of regular search by retrieving all results and sorting locally; however, state-
of-the-art ranking functions usually require global statistics over the total



collection of documents (e.g., document frequency). Collecting and main-
taining these statistics in a robust, eÆcient, and distributed manner is a
challenge. At the same time, ranked results allow the system to return \top
k" results, which provides the opportunity to optimize search if k is much
less than the total number of results (which is generally the case, for ex-
ample, in web searches). Techniques for ranked search exists for distributed
systems of moderate scale (e.g., [7]), but future research must extend these
techniques to support much larger systems.

{ Aggregates: A user may sometimes be interested in knowing aggregate

properties of the system or data collection as a whole, rather than locat-
ing speci�c data. For example, to collect global statistics to support ranked
keyword search mentioned earlier, a user could submit several SUM queries
to sum the number of documents that contain a particular term. Ongoing
research [8] addresses COUNT queries de�ned over a predicate { for example,
counting the number of nodes that belong to the stanford.edu domain.
Further research is needed to extend these techniques into more expressive
aggregates like SUM, MAX, and MEDIAN.

{ SQL: As a complex language de�ned over a rich data model, SQL is the most
diÆcult query language to support among the examples listed. Current re-
search on supporting SQL in P2P systems is very preliminary. For example,
the PIER project [9] supports a subset of SQL over a P2P framework, but
they report signi�cant performance \hotspots" in their preliminary imple-
mentation. A great deal of additional research is needed to advance current
work into a search mechanism with reasonable performance, and to investi-
gate alternative approaches to the problem.

2.3 Autonomy, EÆciency and Robustness

Autonomy, eÆciency and robustness are all desirable features in any system.
These features conceptually de�ne an informal space of P2P systems, as shown in
Figure 1a, where a point in the space represents a system with the corresponding
\values" for each feature. Note that the value of a system with respect to a
feature only provides a partial order, since features can be measured along several
metrics (e.g., eÆciency can be measured by bandwidth, processing power, and
storage). Hence, Figure 1 illustrates the space by showing just a few points for
which the relative order (and not the actual coordinates) along each feature is
fairly obvious.

The space de�ned by autonomy, eÆciency and robustness is not fully ex-
plored; in particular, there appears to be some correlation between autonomy
and eÆciency (Figure 1b), and autonomy and robustness (Figure 1c). A par-
tial explanation for the �rst correlation is that less autonomy allows the search
mechanism to specify a data placement and topology such that:

{ There exist a deterministic way to locate data within bounded cost (e.g.,
Chord)

{ There is a small set of nodes that is guaranteed to hold the answer, if it
exists (e.g., super-peer networks, concept clusters [13])
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Fig. 1. The space of systems de�ned by autonomy, eÆciency and robustness (a). Look-
ing at a few example systems within this space, there appears to be a relationship
between autonomy and eÆciency (b), and autonomy and robustness (c)

{ There is an increased chance of �nding results on a random node (e.g., repli-
cation [6]).

At the same time, these rigidly organized networks can be diÆcult or expensive
to maintain, especially as peers join and leave the network at the rapid rate
characteristic of many P2P systems. As a result, robustness is also correlated
with autonomy.

One important area of research is �nding techniques that push beyond the
current tradeo�s between eÆciency, autonomy and robustness. Decoupling eÆ-
ciency from autonomy seems to be the greatest challenge, since existing tech-
niques almost uniformly sacri�ce autonomy to achieve eÆciency. However, the
potential gain is the greatest: a search mechanism that is eÆcient, robust, and
preserves peer autonomy. Decoupling autonomy from robustness is also impor-
tant, because it allows greater exibility in choosing the desired properties of
the mechanism. For example, a search mechanism that is robust, but has low
peer autonomy, can be desirable if the lack of autonomy leads to eÆciency, and
peer autonomy is not a requirement of the system.

Several research projects have tackled the autonomy/robustness tradeo�. For
example, the Viceroy [14] network construction maintains a low level of peer
autonomy, but increases robustness and eÆciency by reducing the cost of main-
taining the network structure to a constant term, for each join/leave of a peer.
In comparison, most distributed hash tables (DHTs) with the same functional-
ity have logarithmic maintenance cost. As another example, super-peer redun-
dancy [12] imposes slightly stricter rules on topology and data placement within
a cluster of peers, but this decrease in autonomy results in greater robustness of
the super-peer and improved eÆciency in the overall network.

Another interesting area of research is providing �ne-granularity tuning of
the tradeo� between autonomy and eÆciency within a single system. A single
user may have varying needs; for example, a company may have a few sensitive
�les that must remain on the intranet, but the remaining �les can be stored
anywhere. A single system that can be tuned to support all of these needs is more
desirable than requiring users to use di�erent systems for di�erent purposes. A
good example of a tunable system is SkipNet [15]. SkipNet allows users to specify



a range of peers on which a document may be stored (e.g., all peers within the
stanford.edu domain). At one extreme, if the range is always limited to a single
peer, then user autonomy is high, but the system ceases to be P2P and loses good
properties such as load-balancing and self-organization. At the other extreme,
if the range always includes all peers in the network, SkipNet functions as a
traditional P2P lookup system with low autonomy, but other good properties.
While SkipNet does not push beyond existing tradeo�s, its value lies in allowing
users to choose the point along the tradeo� that meets their needs.

2.4 Quality of Service

In the previous discussion, we implicitly assume a �xed level of service (e.g.,
number of results per query) that must be maintained as other factors (e.g.,
autonomy) are varied. However, quality of service (QoS) can be measured with
many di�erent metrics, depending on the application, and a spectrum of accept-
able performance exists along each metric. Examples of service metrics include
number of results (e.g., in partial-search systems), response time, and relevance
(e.g., precision and recall in ranked keyword searches). A constant challenge in
designing P2P systems is achieving a desired level of QoS as eÆciently as possi-
ble. Because metrics and applications di�er so widely, this challenge must often
be tackled on a per-case basis.

As an example, the number of results returned is an important QoS met-
ric for partial-search systems like Gnutella. However, in systems where there
is high autonomy (such as Gnutella), there is a clear and unavoidable tradeo�
between number of results and cost; hence, the interesting problem is to get as
close as possible to the lower bounds of the tradeo�. For example, the directed
BFS technique in [11] attempts to minimize cost by sending messages to \pro-
ductive" nodes (e.g., nodes with large collections). Concept-clustering networks
(e.g., [13]) cluster peers together according to \interest" (e.g., music genre), and
send queries to the cluster that best matches the queries' area of interest. These
techniques do improve the tradeo� between cost and number of results, but are
clearly not optimal: performance of directed BFS depends on the ad-hoc topol-
ogy and is therefore unpredictable, while concept-clustering only works well if
queries and interests fall cleanly into single categories. Can there exist a general
technique that can guarantee (with high probability) that the cost/QoS tradeo�
is optimal?

With other metrics of QoS, there is not such an obvious tradeo� between
quality and cost. In these cases, the goal is to maintain the same level of service
while decreasing cost. For example, consider the \satisfaction" metric, which is
binary and is true when a threshold number of results is found. Satisfaction is an
important metric in partial-search systems where only the �rst k results are dis-
played to the user (e.g., [16, 1]). Reference [11] shows that, compared to current
techniques, cost can be drastically reduced while maintaining satisfaction. Fur-
thermore, even better performance is probably possible if we discard this work's
requirement of peer autonomy and simplicity. Additional research is required to
explore this space further.



3 Security

Securing P2P data sharing applications is challenging due to their open and
autonomous nature. Compared to a client-server system in which servers can be
relied upon or trusted to always follow protocols, peers in a P2P system may
provide no such guarantee. The environment in which a peer must function is a
hostile one in which any peer is welcome to join the network; these peers cannot
necessarily be trusted to route queries or responses correctly, store documents
when asked to, or serve documents when requested. In this part of the paper, we
outline a number of security issues that are characteristic to P2P data sharing
systems, discuss a few examples of research that has taken place to address some
of these issues, and suggest a number of open research problems.

We organize the security requirements of P2P data sharing systems into
four general areas: availability, �le authenticity, anonymity, and access control.
Today's P2P systems rarely address all of the necessary requirements in any
one of these areas, and developing systems that have the exibility to support
requirements in all of these areas is expected to be a research challenge for quite
some time.

For each of these areas, it will be important to develop techniques that pre-
vent, detect, manage, and are able to recover from attacks. For example, since
it may be diÆcult to prevent a denial-of-service attack against a system's avail-
ability, it will be important to develop techniques that are able to 1) detect
when a denial-of service attack is taking place (as opposed to there just being a
high load), 2) manage an attack that is \in-progress" such that the system can
continue to provide some (possibly reduced) level of service to clients, and 3)
recover from the attack by disconnecting the malicious nodes.

3.1 Availability

There are a number of di�erent node and resource availability requirements that
are important to P2P �le sharing systems. In particular, each node in a P2P
system should be able to accept messages from other nodes, and communicate
with them to o�er access to the resources that it contributes to the network.

A denial-of-service (DoS) attack attempts to make a node and its resources
unavailable by overloading it. The most obvious DoS attack is targeted at us-
ing up all of a node's bandwidth. This type of attack is similar to traditional
network-layer DoS attacks (e.g. [31]). If a node's available bandwidth is used up
transferring useless messages that are directly or indirectly created by a mali-
cious node, all of the other resources that the node has to o�er (including CPU
and storage) will also be unavailable to the P2P network.

A speci�c example of a DoS attack against node availability is a chosen-
victim attack in Gnutella that an adversary constructs as follows: a malicious
super-node maneuvers its way into a \central" position in the network and then
responds to every query that passes thru it claiming that the victim node has a
�le that satis�es the query (even though it does not). Every node that receives
one of these responses then attempts to connect to the victim to obtain the



�le that they were looking for, and the number of these requests overloads the
bandwidth of the victim such that any other node seeking a �le that the victim
does have is unable to communicate the victim.

The key aspect to note here is that in our example the attacker exploited a
vulnerability of the Gnutella P2P protocol (namely, that any node can respond
to any query claiming that any �le could be anywhere). In the future, P2P
protocols need to be designed to make it hard for adversaries to construct DoS
attacks by taking advantage of loosely constrained protocol features.

Attackers that construct DoS attacks typically need to �nd and take advan-
tage of an \ampli�cation mechanism" in the network to cause signi�cantly more
damage than they could with only their own resources. In addition, if they would
like to have control over how their attack is carried out, they must also �nd or
create a back-door communication channel to communicate with \zombie" hosts
that they in�ltrate using manual or automatic means. It is important to de-
sign future P2P protocols such that they do not open up new opportunities for
attackers to use as ampli�ers and back-door communication channels.

Some research has taken place to date to speci�cally address DoS attacks in
P2P networks. In particular, [38] addresses DoS attacks based on query-oods
in the Gnutella network. However, more research is necessary to understand the
e�ects of other types of DoS attacks in various P2P networks.

Aside from DoS attacks, node availability can also be attacked by malicious
users that in�ltrate victim nodes and induce their failure. These types of attacks
can be modeled as fail-stop or byzantine failures, which could potentially be dealt
with using many techniques that have already been developed (e.g. [34]). How-
ever, these techniques have typically not been popular due to their ineÆciency,
unusually high message overhead, and complexity. In addition, these techniques
often assume complete and secure pairwise connectivity between nodes, which
is not the case in most P2P networks. Further research will be necessary to
make these or similar techniques acceptable from a performance and security
standpoint in a P2P context.

In addition, there are many proposals to provide signi�cant levels of fault-
tolerance in the face of node failure including CAN [3], Chord [2], Pastry [4],
and Viceroy [14]. Security analyses of these types of proposals can be found in
[43] and [36]. The IRIS [25] project seeks to continue the investigation of these
types of approaches.

A malicious node can also directly attack the availability of any of the par-
ticular resources at a node. The CPU availability at a node can be attacked by
sending a modest number of complex queries to bog down the CPU of a node
without consuming all of its bandwidth. The available storage could be attacked
by malicious nodes who are allowed to submit bogus documents for storage. One
approach to deal with this is to allocate storage to nodes in a manner propor-
tional to the resources that a node contributes to the network as proposed in
[28].

We might like to ensure that all �les stored in the system are always available
regardless of which nodes in the network are currently online. File availability



ensures that �les can be perpetually preserved, regardless of factors such as
the popularity of the �les. Systems such as Gnutella and Freenet provide no
guarantees about the preservation of �les, and unpopular �les tend to disappear.

Even if �les can be assured to physically exist and are accessible, a DoS attack
can still be made against the quality-of-service with which they are available.
In this type of a DoS attack, a malicious node makes a �le available, but when
a request to download the �le is received, it serves the �le so slowly that the
requester will most likely lose patience and cancel the download before it com-
pletes. The malicious node could also claim that it is serving the �le requested
but send some other �le instead. As such, techniques such as hash trees [26]
could to be used by the client to incrementally ensure that the server is sending
the correct data, and that data is sent at a reasonable rate.

3.2 File Authenticity

File authenticity is a second key security requirement that remains largely unad-
dressed in P2P systems. The question that a �le authenticity mechanism answers
is: given a query and a set of documents that are responses to the query, which
of the responses are \authentic" responses to the query? For example, if a peer
issues a search for \Origin of Species" and receives three responses to the query,
which of these responses are \authentic"? One of the responses may be the ex-
act contents of the book authored by Charles Darwin. Another response may be
the content of the book by Charles Darwin with several key passages altered. A
third response might be a di�erent document that advocates creationism as the
theory by which species originated.

Note that the problem of �le authenticity is di�erent than the problem of �le
(or data) integrity. The goal of �le integrity is to ensure that documents do not
get inadvertently corrupted due to communication failures. Solutions to the �le
integrity problem usually involve adding some type of redundancy to messages in
the form of a \signature." After a �le is sent from node A to node B, a signature
of the �le is also sent. There are many fewer bits in the signature than in the �le
itself, and every bit of the signature is dependent on every bit of the �le. If the �le
arrived at node B corrupted, the signature would not match. Techniques such
as CRCs (cyclic redundancy checks), hashing, MACs (message authentication
codes), or digital signatures (using symmetric or asymmetric encryption) are
well-understood solutions to the �le integrity problem.

The problem of �le authenticity, however, can be viewed as: given a query,
what is (or are) the \authentic" signature(s) for the document(s) that satisfy
the query? Once some �le authenticity algorithm is used to determine what is
(or are) the authentic signatures, a peer can inspect responses to the query by
checking that each response has an authentic signature.

In our discussion until this point, we have not de�ned what it means for a
�le to be authentic. There are a number of potential options: we will outline four
reasonable ones.

Oldest Document. The �rst de�nition of authenticity considers the oldest doc-
ument that was submitted with a particular set of metadata to be the authentic



copy of that document. For example, if Charles Darwin was the �rst author to
ever submit a document with the title \Origin of Species," then his document
would be considered to be an authentic match for a query looking for \Origin of
Species" as the title. Any documents that were submitted with the title \Origin
of Species" after Charles Darwin's submission would be considered unauthentic
matches to the query even if we decided to store these documents in the system.
Timestamping systems (e.g. [35]) can be helpful in constructing �le authenticity
systems based on this approach.

Expert-Based. In this approach, a document would be deemed authentic by
an \expert" or authoritative node. For example, node G may be an expert that
keeps track of signatures for all �les ever authored by any user of G. If a user
searching for documents authored by any of G's users is ever concerned about
the potential authenticity of a �le received as a response to a query, node G
can be consulted. Of course, if node G is unavailable at any particular time
due to a transient or permanent failure, is in�ltrated by an attacker, or is itself
malicious, it may be diÆcult to properly verify the authenticity of �les that G's
users authored. O�ine digital signature schemes (i.e., RSA) can be used to verify
�le authenticity in the face of node failures, but are limited by the lifetime and
security of public/private keys.

Voting-Based. To deal with the possible failure of G or a compromised key
in our last approach, our third de�nition of authenticity takes into account the
\votes" of many experts. The expert nodes may be nodes that are run by hu-
man experts quali�ed to study and assess the authenticity of particular types of
�les, and the majority opinion of the human experts can be used to assess the
authenticity of a �le. Alternatively, the expert nodes may simply be \regular"
nodes that store �les, and will vote that a particular �le is authentic if they store
a copy of it. In this scheme, users are expected to delete �les that they do not
believe are authentic, and a �le's authenticity is determined by the number of
copies of the �le that are distributed throughout the system. The key technical
issues with this approach are how to prevent spoo�ng of votes, of nodes, and of
�les.

Reputation-Based. Some experts might be more trustworthy than others (as
determined by past performance), and we might weight the votes of more trust-
worthy experts more heavily. The weights in this approach are a simple exam-
ple of \reputations" that may be maintained by a reputation system. A rep-
utation system is responsible for maintaining, updating, and propagating such
weights and other reputation information [41]. Reputation systems may or may
not choose to use voting in making their assessments. There has been some study
of reputation systems in the context of P2P networks, but no such system has
been commercially successful (e.g. [33, 24]).

3.3 Anonymity

There is much work that has taken place on anonymity in the context of the
Internet both at the network-layer (e.g. [30]) as well as at the application-layer



Type of Anonymity DiÆcult for Adversary to Determine:

Author Which users created which documents?

Server Which nodes store a given document?

Reader Which users access which documents?

Document Which documents are stored at a given node?
Table 1. Types of Anonymity

(e.g. [40]). In this section we speci�cally focus on application-layer anonymity
in P2P data sharing systems.

While some would suggest that many users are interested in anonymity be-
cause it allows them to illegally trade copyrighted data �les in an untraceable
fashion, there are many legitimate reasons for supporting anonymity in a P2P
system. Anonymity can enable censorship resistance, freedom of speech without
the fear of persecution, and privacy protection. Malicious parties can be pre-
vented from deterring the creation, publication, and distribution of documents.
For example, such a system may allow an Iraqi nuclear scientist to publish a
document about the true state of Iraq's nuclear weapons program to the world
without the fear that Saddam Hussein's regime could trace the document back to
him or her. Users that access documents could also have their privacy protected
in such a system. An FBI agent could access a company's public information
resources (i.e., web pages, databases, etc.) anonymously so as not to arouse sus-
picion that the company may be under investigation.

There are a number of di�erent types of anonymity that can be provided in a
P2P system. It is diÆcult for the adversary to determine the answers to di�erent
questions for di�erent types of anonymity. Table 1 summarizes a few types of
anonymity discussed in [39].

We would ideally like to provide anonymity while maintaining other desir-
able search and security features such as eÆciency, decentralization, and peer
discovery. Unfortunately, providing various types of anonymity often conicts
with these design goals for a P2P system.

To illustrate one of these conicting goals, consider the natural trade-o� be-
tween server anonymity and eÆcient search. If we are to provide server anonymity,
it should be impossible to determine which nodes are responsible for storing a
document. On the other hand, if we would like to be able to eÆciently search for
a document, we should be able to tell exactly which nodes are responsible for
storing a document. A P2P system such as Free Haven that strives to provide
server anonymity resorts to broadcast search, while others such as Freenet [27]
provide for eÆcient search but do not provide for server anonymity. Freenet does,
however, provide author anonymity. Nevertheless, supporting server anonymity
and eÆcient search concurrently remains an open issue.

There exists a middle-ground: we might be able to provide some level of server
anonymity by assigning pseudonyms to each server, albeit at the cost of search
eÆciency. If an adversary is able to determine the pseudonym for the server of



a controversial document, the adversary is still unable to map the pseudonym
to the publisher's true identity or location. The document can be accessed in
such a way as to preserve the server's anonymity by requiring that a reader (a
potential adversary) never directly communicate with a server. Instead, readers
only communicate with a server through a chain of intermediate proxy nodes that
forward requests from the reader to the server. The reader presents the server's
pseudonym to a proxy to request communication with the server (thereby hiding
a server's true identity), and never obtains a connection to the actual server for
a document (thereby hiding the server's location). Reader anonymity can also
be provided using a chain of intermediate proxies, as the server does not know
who the actual requester of a document is, and each proxy does not know if the
previous node in the chain is the actual reader or is just another proxy. Of course,
in both these cases, the anonymity is provided based on the assumption that
proxies do not collude. The degradation of anonymity protocols under attacks
has been studied in [44], and this study suggests that further work is necessary
in this area.

Free Haven and Crowds [40] are examples of systems that use forwarding
proxies to provide various types of anonymity with varying strength. Each of
these systems di�er in how the level of anonymity degrades as more and more po-
tentially colluding malicious nodes take on the responsibilities of proxies. Other
techniques that are commonly found in systems that provide anonymity include
mix networks (e.g. [32]), and using cryptographic secret-sharing techniques to
split �les into many shares (e.g. [42]).

3.4 Access Control

Intellectual property management and digital rights management issues can be
cast as access control problems. We want to restrict the accessibility of docu-
ments to only those users that have paid for that access. P2P systems currently
cannot be trusted to successfully enforce copyright laws or carry out any form of
such digital rights management, especially since few assumptions can be made
about key management infrastructure. This has led to blatant violation of copy-
right laws by users of P2P systems, and has also led to lawsuits against companies
that build P2P systems.

The trade-o�s involved in enforcing access control in a P2P data sharing
system are challenging because if a system imposes restrictions over what types of
data it shares (i.e., only copy-protected content), then its utility will be limited.
On the other hand, if it imposes no such restrictions, then it can be used as a
platform to freely distribute any content to anyone that wants it [37].

Further e�ort must go into exploring whether or not it is reasonable to have
the P2P network enforce access control, or if the enforcements should take place
at the endpoints of the network. In either case, only users that own (or have
paid for) the right to download and access certain �les should be able to do so
to legally support data sharing applications.



If the bene�ts of P2P systems are to be realized, we need to explore the fea-
sibility of and the technical approaches to instrumenting them with appropriate
mechanisms to allow for the management of intellectual property.

4 Conclusion

Many of the open problems in P2P data sharing systems surround search and
security issues. The key research problem in providing a search mechanism is
how to provide for maximum expressiveness, comprhensiveness, and autonomy
with the best possible eÆciency, quality-of-service, and robustness. The key to
securing a P2P network lies in designing mechanisms that ensure availabiity, �le
authenticity, anonymity, and access control. In this paper, we have illustrated
some of the trade-o�s at the heart of search and security problems in P2P data
sharing systems, and outlined several major areas of importance for future work.
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