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Abstract

To regulate network traffic and ensure that every user
can get a reasonable quality of service whatever the
load, networking protocols need to implement some sort
of congestion control. To be able to control congestion,
one must first know when it occurs and to which extent.
This is the scope of congestion detection. Till now, con-
gestion detection has only been based on packet losses.
Protocols like TCP assume that a packet loss is a conse-
quence and a signal of the network’s overload. Anyway,
this detection scheme has a number of flaws1. In this
report, we discuss the possibility of detecting conges-
tion from the packets’ trip times. We first analyse the
characteristics and distribution of One-way Trip Time
or OTT. We then design a scheme of detection based on
OTT measurements, and validate this scheme by simu-
lation over a large range of situations.

1 Distribution of the One-way Trip
Time

1.1 Generalities

The Queueing theory provides a useful framework for
analyzing the distribution of trip times. Of course, re-
sults obtained from the models we use will have to be
corrected by real-world experiments. However our anal-
ysis will provide some interesting insights on the charac-
teristics and dynamics of trip times, which will be used
to design algorithms.

There is obviously no deterministic expression of the
One-way Trip Time in the general case. OTT can be

1First, it denies the fact that losses can occur intrinsically,
without congestion. With the growing number of wireless links
over the Internet, this assumption has to be put into question.
Moreover, the TCP-like congestion detection scheme relies on fre-
quent acknowledgements and thus does not apply well to multi-
media traffic, which does not want to support the excessive cost
of reliability.

viewed as the sum of:

• the physical transmission delay

• a sum of buffering times in routers’ queues along
the path

• the processing times at the routers

Of these three terms, only the first one may be de-
terministic. The other two depend on the nature and
intensity of the considered source’s traffic as well as of
the cross-traffic.

What we call transmission delay is the delay of the
transmission of one byte of a packet. From now on, we
assume that the processing time of a packet is a deter-
ministic function of the packet’s size, namely α(|P |).

1.2 Multiple-hop models

The multiple-hop model is a framework for modeling
network routes. A network route is modeled as a se-
quence of n hops. Each hop is a FIFO queue with infi-
nite buffer representing the queue of a store-and-forward
router, followed by the corresponding transmission link.

Assume that the path between the sender and the
receiver contains n intermediate routers. Then:

OTT =
n+1∑
j=1

Dj + α(|P |) +
n∑

i=1

Bi

where Dj is the physical transmission delay along the
jth link and Bi is the buffering time at the ith router.
We assume that the physical route does not change in
the middle of a connection. Therefore,

∑n+1
j=1 Dj is a

constant value.
We will also assume that the dependence of the pro-

cessing time on the packet’s size is linear, that is to say:
α(|P |) = α.|P |.

We now have to find a model for the sucessive FIFO
queues. The objective is to point out some characteris-
tics of the buffering times Bi.
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1.2.1 M/M/1 model

Assuming that each router queue is a M/M/1 FIFO
queue of arrival intensity λ and service intensity µ, a
classic result is that the waiting time of a given client
follows an exponential law of parameter µ− λ.

According to this first basic model2, the trip-time
equals the sum of a constant, of a variable following the
packets’ size’s distribution, and of a sum of independent
exponential variables of different parameters3.

1.2.2 G/G/1 model

Let us release the Markovian character of arrivals and
services. We can still define an arrival rate λi and a
service rate µi for each hop i. With this notation, the
stability condition is:

∀i ∈ {1, 2, . . . , n} , ρi ≡
λi

µi
< 1

where ρi denotes the load factor of hop i. For a
G/G/1 queue, the probability of being idle at randomly
selected instants is given by:

P[queue idle] = 1− ρ

Thus:

P[route idle] =
n∏

i=1

(1− ρi)

Consequently, each packet has a strictly positive
probability of never having to wait in buffers. If
we adopt a fixed-size packets model, OTT distribu-
tion should thus contain a discrete component of mass
P[route idle] at the minimum value minOTT. In the
real-world, the distribution of the packets’ size would
be reflected on these low-OTT discrete components: for
example, if two different packet sizes coexist in the con-
nection, we should observe two peaks of probability near
the minimum value of OTT.

1.2.3 M/D/1 model

The M/D/1 queue model is a somewhat more realistic
model as the service times of the packets are obviously
not exponentially distributed. In fact, we can assume

2Since service times constitute a Poisson process, the depen-
dence of the processing time on the packet sizes is irrelevant here.

3There is no analytical expression for this sum, unless all ex-
ponential parameters are equal, in which case the sum follows a
gamma distribution.

that the service time is deterministic and depends only
on the packet’s size. If we call µi the ith link’s band-
width and Si(P ) the service time for packet P at hop i,
we can even assume that:

Si(P ) =
|P |
µi

The Pollaczek-Khintchine formula, reminded in [8],
gives the moment-generating-function of the number of
clients in a M/GI/1 queue, from the Laplace Transform
of the service time Si. A result from this formula is the
explicit expression of the mean number of packets in the
queue, N :

E(N) =
ρ

1− ρ

(
1− ρ

2
(
1− C2

S

))
where C2

S is the service time variation coefficient:

C2
S =

V ar(S)
(ES)2

=
V ar|P |
(E|P |)2

We can now explicit the formula giving the mean
buffering time of a packet 4.

E(Bi) = E(Ni).E(Si)

where E(Si) = E(|P |)
µi

.
Thus:

E

(
n∑

i=1

Bi

)
= E|P | .

n∑
i=1

(
1
µi

ρi

1− ρi

(
1− ρi

2
(
1− C2

S

)))
(1)

Although no explicit analytical expression for the sum
of buffering times can be given, we have figured out a
relation between the non-deterministic part of the OTT,
and load-related characteristics of the route5. In section
2, we will use this relation to design a tentative scheme
of congestion detection.

However, these theoretical models have to be con-
fronted to the experience. Especially, the Poisson mod-
eling of the arrivals at the queues does not correspond
to the real-world traffic, as was shown in [7]. We have
to see how that fact affects the OTT characteristics we
pointed out until now.

4As B =
PN

k=1 Sk, uB =
QN

k=1 uSk . Assuming that the packet
sizes are independent and identically distributed, so are the service

times, so E(uB) =
�
E(uS)

�N
. The final result comes from the fact

that E(B) = dE(uB)
du

�
�
�
u=1

.
5The set of routers’ load factors ρi.
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1.3 Experimental data

1.3.1 Distribution of packet sizes

Packet size distribution is relevant because it impacts
directly on the buffering times at the routers.

To get statistically relevant data, measures have to be
done on a backbone link. The data we use comes from
the IP Monitoring Project (IPMON) Research Group
at Sprint6.

Figure 1: Typical packet size distribution

According to the data contained in Figure 1, the ap-
proximate packet size mean and variance’s orders of
magnitude would be:

E|P | ∝ 100B and V ar|P | ∝ 100, 000B2

To get a more precise – though older – estimation, we
use a 18,929,141-packets trace file recorded from a link
on MCI’s backbone in June 1997. The result is:

E|P | ≈ 354B and V ar|P | ≈ 231, 717B2

As the Internet traffic has changed since 19977, we
looked for an up-to-date estimation, using data from
the National Laboratory for Applied Network Research
(NLANR). The result is consistent with the former one
as:

E|P | ≈ 377B and V ar|P | ≈ 320, 163B2

6Sprint Nextel is one of the biggest US backbone service
provider.

7The pre-2000 tri-modal packet sizes distribution around 40,
576, and 1500B has shifted towards a bimodal one at 40B and
1500B.

1.3.2 Influence of the packet size on the pro-
cessing time

The most reasonable model for the evaluation of the
processing time Si(P ) of packet P at router i is:

Si(P ) =
|P |
µi+1

where µi+1 is the outgoing link’s bandwidth.
Thus, the expression of α(|P |) would be:

α(|P |) = α.|P | = |P |.

n+1∑
j=1

1
µj


i.e.

α =
1
µ1

+
1
µ2

+ . . . +
1

µn+1

Let us confront this result to the experience, first to
simulations, and then to real-world experiments. Using
ns-2, we were able to simulate the dependence of the
processing time on the packet size. The result is that
the processing time is actually implemented following
this model.

Then, let us have a look at some real-world exper-
iments described in [6]. The result is that a proto-
col encapsulation at the routers leads to an increase in
the real transmitted packet size. Moreover, a minimum
frame size exists, which means that a packet whose size
is smaller than a certain threshold is padded with arbi-
trary characters to reach its full size.

However, for the robustness of our methods, we will
stick to the first simple model.

1.3.3 Experimental OTT distributions

We now have a look at some experimental OTT dis-
tributions, also found on Sprint IPMON’s website[10].
A typical example can be seen on Figure 2.

These observations validate the qualitative results of
our theoretical analysis: the OTT distribution is the
sum of a appoximately-continuous, exponential-looking
law, and of some discrete peaks indirectly reflecting the
most common packet sizes.

2 A tentative to compute a global
charge rate

In this part, we will try to use the analytical expres-
sion (1) obtained in the first part to design a congestion
detection scheme.
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Figure 2: A typical delay distribution

The goal is to compute a quantifier for the congestion
on a network path, that is to say a value x ranging
from 0 to 1 and describing the utilization of the route.
Provided we have such a quantifier x, implementing an
efficient congestion control scheme would be really easy:
the network agents would aim at a value xoptimal of the
quantifier and would iteratively change their sending
rates to adjust x to xoptimal.

2.1 Estimation of the transmission delay
and the processing time

Each trip-time value verifies the following equation:

OTT = D + α. |P |+
n∑

i=1

Bi

From a sample of trip-time values, we want to evalu-
ate the transmission delay D and the processing time
coefficient α.

The objective is to evaluate the total buffering time
B defined by:

B = OTT −D − α. |P |

To evaluate α and D, we have to consider packets
that are unlikely to have waited a significant time in
buffers. Obviously, packets with a small OTT are more
likely not to have spent a long buffering time8.

8Of course the topology of the network has to be taken into ac-

Given a time T , we thus define this set of OTT values:

O(T ) = {o1, o2, . . . , on}

where o1, o2, . . . , on are the n smallest values of OTT
measured from t = 0 to t = T . Hence we can assume
that: 

o1 = D + α.p1 + ε1

o2 = D + α.p2 + ε2
...
on = D + α.pn + εn

where p1, p2, . . . , pn are the packet sizes and
ε1, ε2, . . . , εn are negligible compared to the two other
terms.

A linear regression thus leads to the following α and
D estimates:

α̃ =
cov(o, p)
V ar(p)

D̃ = ō− α̃.p̄

In our implementation of this algorithm, we will use
n = 5. Our simulations show these estimates converge
towards the real values of α and D.

2.2 Estimation of the global charge rate

For each packet received, we now have an estimate of
its total buffering time B:

B̃t = OTTt − D̃ − α̃. |Pt|

From this estimate, we can compute the mean buffer-
ing time B̂t using an exponential averaging.

B̂t+1 = λ.B̂t + (1− λ).B̃t

Thus we deduce from formula (1):

B̂t
∼= E|P | .

n∑
i=1

(
1
µi

ρi

1− ρi

(
1 +

ρi

2
(
C2

S − 1
)))

Furthermore:

α̃ ∼=
n+1∑
j=1

1
µj

count. However for a typical network path, the mean processing
time of a packet is of the same order of magnitude as the transmis-
sion delay, and the mean buffering time is an order of magnitude
higher.
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Let us define a function f :

f : ρ 7→ ρ

1− ρ

(
1 +

ρ

2
(
C2

S − 1
))

Thus:

B̂t
∼= E|P | .

n∑
i=1

(
1
µi

.f(ρi)
)

where ρi is the charge rate of the ith hop. We define
the global charge rate ρ̄ as:

B̂t
∼= E|P |.α̃.f(ρ̄)

f : [0, 1] → [0,+∞] is bijective so the last definition is
possible and univoque. Using the experimental values
obtained in the first part, we find that C2

S ≈ 1.85. The
profile of function f with this value of C2

S can be seen
on Figure 3.

Figure 3: Profile of function f

Finally:

ρ̄t = f−1

(
B̂t

E|P |.α̃

)

The explicit expression of f−1 being:

f−1(x) =
−x− 1 +

√
2(C2

S − 1)x + x2 + 2x + 1

C2
S − 1

The profile of function f−1 for the same value of C2
S can

be seen on Figure 4.
ρ̄t ranges from 0 to 1 and describes the state of con-

gestion on the considered network path: a value of 0
means that there is no congestion, whereas a value near
1 means the path is overloaded.

Figure 4: Profile of function f−1

2.3 Pseudo-code algorithm

float[] OTT_set;
int[] pktsize_set;

updateLinearRegression(OTT, pktsize){
if (OTT<max(OTT_set)){

OTT_set[argmax(OTT_set)]:=OTT;
pktsize_set[argmax(OTT_set)]:=pktsize;

alpha:=cov(OTT_set,pktsize_set)
/var(pktsize_set);

D:=mean(OTT_set)-alpha*mean(pktsize_set);
}

}

while(newPacket p){
updateLinearRegression(p.OTT, p.pktsize);

B:=p.OTT-D-alpha*p.pktsize;

avg:=lambda*avg+(1-lambda)*B;

rho := f_inverse(avg/(mean_pktsize*alpha));
}

Obviously, the estimating process of α and D takes
some time at the beginning of the algorithm. Thus the
accuracy of the computed ρ̄t would not be too high at
the beginning9. That means that a congestion control
scheme based on this congestion detection algorithm
should wait some time before actually increasing or de-
creasing the sending rate according to ρ̄t.

9Obviously, especially the first 5 estimations should not be con-
sidered as they constitute the initialization of the process.
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3 A simple OTT-based congestion
detection scheme

3.1 Limits of the theoretical approach

3.1.1 Flaws of the model

The model described in section 2 has been developed
based on strong statistical assumptions. The method to
which the model leads is rather simple, but in the end it
relies only on the current averaged mean of OTT. This
leads to the question of whether or not other statistical
characteristics can be used.

However this model led to insightful considerations,
especially on the estimation of transmission delay and
processing time coefficient. In this section we are going
to look for a simple, heuristic method which will prove
easy to implement and yet efficient to detect congestion.

Relevant measurements The formula based on the
model presented in the last section depends only on the
exponential average of the trip time. In the scheme we
are about to present, we also use the second moment of
the trip time: its exponentially-averaged variance.

Variance of OTT is clearly linked to the congestion of
the link: in the most extreme case, if there is no cross-
traffic at all, the OTTs of the packets sent are constant,
i.e. the variance is null.

Simple experiments presented in Figures 5 and 6 show
that as the traffic rises, the variance of the OTT in-
creases along with its mean.

Figure 5: Influence of the traffic growth on V ar(OTT )

Jitter vs. OTT One could think that jitter – the dif-
ference between successive packets’ Inter-Arrival-Time
and Inter-Departure-Time – would convey more infor-
mation on the state of congestion on a network path
than OTT.

Figure 6: Influence of the traffic variation on V ar(OTT )

For example, if the variance of the jitter is high, that
should mean that trip times vary a lot because of con-
gestion.

However we prove that in the first order, variance
of the jitter J does not convey more information than
variance of the OTT:

J = IAT − IDT

J = (R1 −R0)− (S1 − S0)

J = (R1 − S1)− (R0 − S0)

J = OTT1 −OTT0

Thus:

V ar(J) = 2 V ar(OTT ) (1− ρOTT1,OTT2)

where ρOTT1,OTT2 is the correlation between OTT1 and
OTT2.

In the first order, two succesive OTTs can be assumed
to be uncorrelated10, so the variance of the jitter is equal
to two times the variance of OTT.

V ar(J) = 2V ar(OTT ) + Θ(OTT )

3.1.2 Related work

Getting properties of the traffic from the study of
trip times is not a new idea. However computing a
direct quantification of the congestion from OTTs is an
original tentative.

A tentative to decide if there is congestion or not,
based on the increase of the RTT is done in Wang and
Crowcroft’s DUAL algorithm [3], also cited in Brakmo
and O’Malley’s paper on TCP Vegas [4]. Congestion is
tested positive if the current RTT is greater than the

10which is a less strong assumption than their independence.
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average of the minimum and maximum RTTs seen so
far. This scheme does not appear to be statistically
robust as it relies on outliers of the observed trip times.

A good example of getting properties of the traffic
from the distribution of OTT (and not only its extrema)
is presented in [5]. Although the goal is different (differ-
entiating between losses due to wireless link errors and
losses due to congestion), this paper shows that study-
ing the distribution of OTT can be an efficient way to
get characteristics of the traffic.

Pathload [9], developed by Manish Jain and Con-
stantinos Dovrolis, would be the most related work as
it aims at estimating available bandwidth on a network
path, from the distribution of OTT.

An essential difference with our present work is that
Pathload, as several other bandwidth estimation tools,
is based on streams of probes, whereas our scheme is
based on the stream of data itself.

Also, Pathload has got a number of limitations: it
is long (about 20s) and needs rather complex calculus,
which makes it more a measurement tool than a real-
time traffic monitor.

But more importantly, Pathload is a complex
congestion-control-enabling scheme, implying two-ends
cooperation. Thus it does not quantify the congestion
but the available bandwidth of a network path. While it
can be argued that the available bandwidth is more di-
rectly usable in a congestion control protocol, this kind
of two-ends protocol goes beyond the objective of this
work.

3.1.3 Two-dimensional classification of the
traffic

Due to the complexity of modeling the OTT distri-
bution, it is wise to restrict ourselves to the first two
moments of it, i.e. its mean and variance. This leads
to a two-dimensional classification of the traffic as in
Figure 7, one variable being the mean E(OTT ) and the
other being the variance V ar(OTT ).

Of course, the metrics used to evaluate mean and vari-
ance have to be made explicit. Given one particular pro-
file of traffic, one cannot say if it represents a congested
state from its mean and variance alone. Given one con-
nection, we have to remind the past values of mean and
variance and infer the current state of congestion from
those past values. That is why any scheme of conges-
tion detection based on the mean and variance will not
be truly accurate in the first seconds of the connection,
but it will have to adapt itself over a short period of

Figure 7: Two-dimensional classification

time – exactly as the TCP flow control scheme.
The sketch of the two-dimensional differentiation is

the following:

• if the mean of OTT is low as well as its variance,
compared to the past history of the connection,
then most certainly the path is experiencing no con-
gestion.

• whereas if the mean and variance are high rel-
atively, the buffers on the path must be rather
strongly-occupied, which means that the path is
likely to experience congestion.

• the two other cases are more problematic. If the
mean is rather low but the variance is high, it
should mean that the buffers’ occupancy changes a
lot over short periods of time, but that congestion
is not too important. If the mean is high but vari-
ance is low, it could mean that congestion causes
the buffers to be full but that packets always wait
for the same amount of time in them. Or it could
mean that the routing has changed and the packets
now follow a different, longer path.

3.2 Description of the algorithm

3.2.1 Sketch of the method

The goal of the algorithm is to give, as an output, a
quantification of the congestion on the considered path
of the network. The algorithm we describe here outputs
a value between 0 and 1. A value of 0 means that there
is no congestion at all, whereas a value of 1 indicates a
strong overload of the traffic.

To get this output, we use two values describing the
current relative values of the mean and variance of the
total buffering time. That is to say, we subtract to
the OTT the constant transmission delay and the esti-
mate of the packet-size-related processing delay. Then
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we compute two quantifiers for congestion, the first one
based on mean, the second one based on variance. These
quantifiers range from 0 to 1 and we combine them to
get the quantification of the congestion, as explained in
the last paragraph.

To combine the two different quantifiers into a single
relevant one, we have to choose a relevant function f :
[0; 1] × [0; 1] → [0; 1]. This function has to rise against
both of its variables. In this report, we will use f :
(x, y) 7→ √

x.y.

3.2.2 Pseudo-code algorithm

while(newPacket){
updateLinearRegression(p.OTT, p.pktsize);

B:=p.OTT-D-alpha*p.pktsize;
avg:=lambda*avg+(1-lambda)*B;
var:=lambda*var+(1-lambda)*(B-avg)*(B-avg);

avg_min:=min(avg,avg_min);
avg_max:=max(avg,avg_max);
var_min:=min(var,var_min);
var_max:=max(var,var_max);

x_avg:=(avg-avg_min)/(avg_max-avg_min);
x_var:=(var-var_min)/(var_max-var_min);

x_congestion := sqrt(x_avg * x_var);
}

4 Experimental results

We ran a series of simulations to evaluate the two pre-
sented schemes. Experiments are carried out in ns-2,
a popular Wide Area Network simulator developed by
the VINT project [11].

The agent performing the quantification of the con-
gestion is a mpeg-udp sink. Thus packet sizes are vari-
able, and the packet-size-dependence of the algorithms
is highlighted. mpeg-udp packets, whose implementa-
tion is based on [1], are timestamped, which permits
computation of OTT11.

We tested our two schemes on two different network
topologies, I and II. In both topologies, cross-traffic
comes from ftp-tcp sources turned on and off during
the simulation pattern. Each link that connects a source
or destination node to a network node has 10 Mbps link

11The possibility of a clock offset between the two end-hosts does
not matter as we are only interested in the variations of OTT.

Figure 8: First simulation pattern

capacity and 1 ms of delay. Links connecting two net-
work nodes have 1 Mbps or 400 kbps link capacity and
10 ms of delay.

Congestion Control Scheme The congestion con-
trol scheme we used is derived from the one used in
[1]. When MPEG encodes video, it generates a stream
of frame types I, P and B, associated with a typical
frame pattern called Group of Pictures (GOP), such as
IBBPBBPBBPBB. Among the three frame types, only
I-frames (intra-coding frames) can be decoded on their
own. P-frames and B-frames are respectively, forward
prediction, and bidirectional prediction frames.

The congestion control scheme is the following: the
stream’s destination agent computes the congestion
quantifier from the packets’ timestamps. According to
certain thresholds, it then maps the quantifier to a scale
value, an integer ranging from 0 to 4. If the quantifier is
almost 1, which means that congestion is high, the scale
will be set to 0. If the quantifier is low, the scale will
be set to 4. This scale value is sent to the source in an
acknowledgement packet, and the mpeg-udp source reg-
ulates its sending rate accordingly: a scale of 4 means all
frames are transmitted, whereas a scale of 0 means only
I-frames are transmitted. A scale of 1, 2 or 3 means that
I-frames, P-frames, and a gradually growing number of
B-frames, are transmitted.

We tested the efficiency of this congestion control
scheme with evalvid, which is a tool for evaluating
MPEG video transmission quality.

4.1 First topology

The first network topology tested is the simplest pos-
sible, with only one backbone link and a TCP source
being turned on and off during the experiment The de-
tailed pattern is showed on Fig. 8.
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Figure 9: Topology I - Scheme 1

Figure 10: Topology I - Scheme 2

Figure 11: Second simulation pattern

Figure 12: First scheme

Figures 9 and 10 show the result of these
experiments. The congestion quantifier called
indice-congestion.txt appears to be relevant. As
of Scheme 2, the beginning of the quantification is pre-
dictably overestimated, due to the iterative nature of
the algorithm.

4.2 Second topology

The second network topology is more complex, with
cross-traffic occuring on different successive links of the
backbone (cf. Fig. 11). This leads to a broader scale
of possible traffic: the tested path can experience con-
gestion on a particular segment or on all the links at a
time. Thus our schemes should be able to differentiate
between levels of congestion better than in the first case
tested.

Once again, Figure 12 seems to show Scheme 1 is
performing well. However Scheme 2 should be more
accurate in the long term, as it incorporates data on the
past mean and variance of OTT as opposed to Scheme
1 which only relies on the current mean OTT.
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Figure 13: Second scheme - Version a

Figure 14: Second scheme - Version b

Figure 13 shows the results of the experiment for
Scheme 2 with some particular parameters. The result
is disappointing as the quantifier does not seem to be
relevant, even after the first few seconds.

By looking in more detail at the mean-based quan-
tifier x_avg and the variance-based one x_var, one
can see that the variance-based quantifier’s behavior is
wrong: every time the traffic pattern changes suddenly,
the typical OTT changes suddenly as well, which causes
the exponential-averaged variance to be highly overes-
timated for a while. Thus x_var is almost equal to
1 just after the change, and then decreases gradually.
This leads to a bias in the evaluation of the congestion
quantifier. The solution we found is to use two different
averaging constants for the mean and for the variance.
Instead of using λ = 0.95 for both B_avg and B_var,
Version b of the algorithm uses λavg = 0.90 for B_avg
and λvar = 0.995 for B_var. Thus variance variations
are smoother, whereas mean variations follow the cur-
rent OTT more closely.

Figure 14 shows the results of Version b. This time,
the quantifier is relevant. One could add that in the
real world, traffic conditions changes are less sudden
and more continuous, which means that the algorithm
should be less sensitive to the variance over-estimation
bias at the transitions.

5 Influence of the Inter-Departure-
Time

5.1 General Framework

The scheme proposed in the last part is legitimate,
if congestion caused by the considered source itself is
negligible compared to the external congestion. On the
contrary, if the source’s traffic is important compared
to the cross-traffic, then a refinement of the method is
needed to take this into account.

The source can have an influence on the global path
congestion if it sends a high volume of data over a short
period of time. As the current packet’s size has already
been taken into account, the main remaining factor is
the frequency of the sendings, which can be described
by the Inter-Departure-Time or IDT. Another relevant
factor is the size of the preceding packets.

The point of this refinement is to compute the IDT
every time a packet arrives, by subtracting timestamps
with the preceding packet. If IDT is low, it means that
the packets have been sent almost at the same time
and that the second one has probably waited longer in
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Figure 15: Assumed influence of IDT on the buffering
time

queues because of the presence of the first one right
before12. If IDT is high, the influence of the preceding
packet on the second one is supposed to be negligible.

Thus, let us define a modified buffering time approx-
imate or unbiased buffering time, with |P0| being the
preceding packet’s size:

Ḃ = OTT − D̃ − α̃. |P | − f(IDT, |P0|)
Function f models the influence of IDT on the buffer-

ing time. The model we use is a simple linear model:
when |P0| is fixed, f(IDT ) = F if IDT = 0 and
f(IDT ) = 0 if IDT ≥ IDTmax. IDTmax is the IDT
value after which the preceding packet does not have an
influence anymore.

Now let us find relevant values for F and IDTmax.
When two packets are sent back-to-back13, as in the
packet pair methods, the Inter-Arrival-Time is deter-
mined by the first packet’s size and the bottleneck band-
width minµi:

IAT =
|P0|

minµi

Thus, we assume that f(IDT, |P0|) = 1
min µi

.|P0| −
IDT . That is to say, the influence of IDT decreases lin-
early until the corresponding packet pair’s IAT, where
it equals 0, as shown in Fig. 15.

A small calculation shows that a typical back-to-back
packets’ IAT is far from being negligible, which gives
legitimacy to this refinement. For example in Topol-
ogy I, the bottleneck bandwidth was 400 kbps and the
standard batch packet size was 1000 B, so IAT ≈ 20ms.

12Routers are still supposed to behave like FIFO queues.
13i.e., with the minimum intra-pair distance, determined by the

sender’s bandwidth.

5.2 First method

From now on, we note β = 1
min µi

. Thus:

Ḃ = OTT + IDT − D̃ − α̃. |P | − β̃. |P0|

We now have to evaluate β in addition to α and D.
The goal is once again to have a good approximate of
the unbiased buffering time of a packet on a network
path.

The first method we apply to evaluate the unbiased
buffering time is a linear regression similar to the one
used to evaluate α and D, but this time simultaneously
evaluating β. That is to say, we perform a 3-dimensional
linear regression.

Again, we have to consider a set of packets that are
unlikely to have spent a significant time in buffers. For
these packets Ḃ ≈ 0 so:

o1 + i1 = D + α.p1 + β.p0
1 + ε1

o2 + i2 = D + α.p2 + β.p0
2 + ε2

...
on + in = D + α.pn + β.p0

n + εn

where p1, p2, . . . , pn are the current packets’ sizes,
p0
1, p

0
2, . . . , p

0
n are the preceding packets’ sizes, and

ε1, ε2, . . . , εn are negligible compared to the other terms.
However the design of this scheme raises some ques-

tions. In particular, which samples should be used to
perform the linear regression? We have to discriminate
between packets’ likelihood of having spent a short time
in buffers, based not only on their OTT, but also on
their IDT.

Obviously, packets with a small OTT are more likely
not to have spent a long buffering time. But between
two packets whose OTT, size and preceding packet’s
size are equal, we know that the one with the smallest
IDT has spent less unbiased buffering time, because of
the influence of its preceding packet. Thus we have to
choose samples of low OTT and IDT. An example of a
simple way to choose such samples is to order them by
increasing value of OTT +IDT and select the first ones.

5.3 Second method

The second idea is to evaluate firstly α and D us-
ing the same scheme as before14, and then to evaluate
β when α̃ and D̃ are supposed to be relevant enough.
Again, the question of which samples to use is raised.

14a two-dimensional linear regression, without taking any IDT
into account.
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We choose to select once again the packets of lowest
(OTT + IDT ). For these packets Ḃ ≈ 0 so β̃ is given
directly by:

β̃ ≈ OTT + IDT − D̃ − α̃. |P |
|P0|

By averaging the values obtained, we can get a good
approximate value of β. Thus this second method is
easier to implement and simpler in terms of complexity,
and yet efficient.

5.4 Extension to multi-packet batches

So far, we only took into account the influence of one
preceding packet. However the generalization to several
packets is easy: assuming that we keep track of a small
number n+1 of the preceding packets, we can, for each
of them, subtract f(IDT, |P0|) = β̃.|P0| − IDT from Ḃ
if they have an influence on Ḃ according to the scheme,
i.e. if IDT ≥ 0 and IDT

|P0| ≤ β̃.
Thus, if we call P0, P−1, . . . , P−n the n + 1 preceding

packets:

Ḃ = OTT − D̃ − α̃.|P |

−
∑n

m=0

(
β̃.|P−m| − IDT

)
.1l{IDT≥0}∩{ IDT

|P−m|≤β̃}

6 Conclusion

We presented a simple stochastic model for the one-
way trip time. This model is based on the differenti-
ation of the packet’s trip’s parts and provides us with
interesting insights on the transmission of data over a
network.

Two estimation methods for a quantifier of the con-
gestion on a particular path were then designed. The
initial experiments we performed using simulation tools
gave encouraging results. In particular the second
scheme appeared to be robust and relevant. However
further work is needed to test and improve the accu-
racy of the method in real-world conditions.

If the improved method proves to be relevant, several
ways of using it are conceivable. It could be used as
a measurement tool, i.e. as a punctually-used way to
evaluate the state of the buffers on a route, or it could
be part of a real-time detection scheme actually imple-
mented in a networking protocol.
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