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Abstract

Digital archives protect important data collections from
failures by making multiple copies at other archives, so that
there are always several good copies of a collection. In
a cooperative replication network, sites “trade” space, so
that each site contributes storage resources to the system
and uses storage resources at other sites. Here, we examine
bid trading: a mechanism where sites conduct auctions to
determine who to trade with. A local site wishing to make
a copy of a collection announces how much remote space is
needed, and accepts bids for how much of its own space the
local site must “pay” to acquire that remote space. We ex-
amine the best policies for determining when to call auctions
and how much to bid, as well as the effects of “maverick”
sites that attempt to subvert the bidding system. Simulations
of auction and trading sessions indicate that bid trading can
allow sites to achieve higher reliability than the alternative:
a system where sites trade equal amounts of space without
bidding.

KEYWORDS: distributed storage management, data
preservation, archiving, resource trading, auctions, bidding,
data replication
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1. Introduction

Digital archives are sites charged with preserving impor-
tant data over the long term. Making a few local backup
copies of this information is not sufficient, since backup
tapes break, compact discs decay and publishers go out of
business (in addition to a host of other causes of data loss).
Instead, archives need to replicate digital collections to other
archives, so that there are always several good copies and
a failure at one site does not mean that information is lost
forever.

However, archives operate under two main constraints:
the resources (such as storage space) they have are limited,
and individual archives want to preserve their own autonomy
and decision making. For example, a government agency
may want to build a digital archive to preserve vital records.

This agency may have a limited budget, and will not be
willing to spend a lot of money buying and maintaining
storage. Moreover, the agency is likely to be selective about
the remote sites it will entrust with its collections, in order to
protect private or sensitive information. Therefore, it is not
possible to have a central decision maker allocating space in
the most efficient way, since this reduces the autonomy of
the local site.

We have been developing a framework, called data trad-
ing, for replicating collections to achieve reliability, while
allowing sites to make decisions about where to replicate
their collections and how many resources to contribute to
the system. In data trading, two sites agree to “swap” col-
lections, so that each site’s data is replicated [8, 9]. A series
of such agreements between pairs of sites builds up a peer-
to-peer trading network. Although each site is making local
decisions for local benefit, the result is a global network
dedicated to preservation.

In this paper, we focus on the negotiation of an agreement
between sites. For example, site A may want to replicate a
collection that is 100 GB large. Site A can contact site B
and ask for a trade, and site B may respond that it is willing
to trade if it receives 150 GB of site A’s space in return. If
site A contacts multiple sites asking for trades, then site A
will receive multiple such “bids,” and can pick the lowest
bid. Thus, an agreement may be concluded between site A
and some other site C, where site C gives site A 100 GB, and
in return site A gives site C 85 GB. This auctioning process
gives sites the freedom to set their bids using any strategy
that improves their ability to safeguard their data.

Our work draws upon concepts developed in related data
replication systems. Figure 1 shows a schematic classifi-
cation of data management schemes, including our work
and some other sample systems. This classification divides
schemes based on the amount of autonomy given to par-
ticipating sites (horizontal axis) and whether the system is
optimized for query and update performance, or for long
term preservation (vertical axis). Our work is focused on
the upper right box in the figure; that is, our main goal is
to ensure reliability while preserving site autonomy. Such a
community-based replication system necessarily makes dif-
ferent decisions than a system that can centralize control
in one place, or that places data close to users in order
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Figure 1. Classification of data management
schemes.

to improve efficiency. Several systems, including SAV [7]
and LOCKSS [24, 3], can be classified as community-based
replication systems. This paper discusses how such systems
can trade data to find the most reliable replication.

The concepts behind auctions, bidding and market ori-
ented systems have been well studied by economists and
computer scientists. In auction theory, our mechanism
would be classified as a first-price, sealed bid auction [20]:
each bidder submits a bid but does not know the other bids,
and the winner pays the “first-price,” which is the amount
the winner bid. Ferguson et al note that in order to apply
auction theory to a specific problem, several design ques-
tions must be addressed, including how to determine the
value of resources to participants and how to conduct the
auction as a distributed protocol [12]. These are some of the
questions we address for the specific domain of reliable data
replication in this paper.

Other distributed computing systems [26, 22, 13, 11] have
used market-oriented principles (such as auctions) in order
to allocate resources. Our work differs from these previous
systems in several ways. First, most systems have a concept
of “money” distinct from the resources that are being bought
and sold. In our system, there is no concept of “money,” and
resources are traded directly. This is because the location of
the resource, rather than the resource itself, is the source of
value. A local site has storage space of its own, but finds that
storage space at a remote site is more valuable because it can
be used to store a copy of a collection. This barter system is
simpler and more appropriate for an autonomous, peer-to-
peer network than a system that requires some central entity
to control the money supply.

Second, many market-oriented systems assume a clear
distinctionbetween producers and consumers, such that pro-
ducers have different incentives and follow different policies
than consumers. In our peer-to-peer system, every site is
both a producer and a consumer in every transaction, and
thus must follow a policy that reflects this hybrid role.

Third, market-based data storage and management sys-
tems are usually designed to maximize a metric of access
efficiency, or to tune the system for the read/update ratio of
data items. In existing systems, sites must decide whether
to keep a collection centralized, move the collection to a
new location, fragment the collection, or make a copy of
the collection, depending on the current access pattern. In
our system, copies are made to ensure reliability, and the
economic incentive system must be structured to maximize
reliability, rather than access performance. Related work is
discussed further in Section 5.

In this paper, we examine how bid trading works, and
evaluate policies that sites can use to construct bids. Specif-
ically, we make the following contributions:

� We describe a mechanism by which archive sites can
participate in auctions for the purpose of replicating their
collections. This scheme is called bid trading.

� We examine different policies that sites can use for de-
ciding when to call auctions, and how to bid when an
auction is called.

� We present simulation results that show sites can increase
the number of copies they make of their collections (thus
improving their reliability) through bid trading. We also
present results that show which policies are best under
bid trading.

� We examine the effects of increased freedom on the
reliability of the system.

This paper is organized as follows. In Section 2, we
describe the bidding process, including our model and the
auction and bidding algorithms. Next, in Section 3 we dis-
cuss polices for calling auctions and bidding, and ways in
which maverick sites can deviate from “normal behaviors”
for their own benefit. Section 4 presents the results of simu-
lation experiments where we study the various policies and
maverick behaviors. In Section 5 we examine related work,
and in Section 6 we present our conclusions.

2. Bid trading

An archive site is an autonomous provider of an archival
storage service. The archive site takes responsibility for
replicating digital collections deposited at the site by clients.
A collection is a set of related digital material, such as is-
sues of a digital journal, scientific measurements, or digital
photos of newsworthy events. Sites replicate collections as
a whole unit to simplify indexing and access, and to address
archivists’ concerns that collections be kept contiguous (to
simplify issues such as provenance). Here, we treat all
collections as equally worthy of preservation and equally
difficult to preserve.

A site (the “local site”) with an important collection of
size S will contact another site (the “remote site”) and pro-
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pose a trade, requesting S bytes of space. If the remote site
agrees, the two sites swap deeds, where a deed is the right
of one site to use space at another site. Thus, the local site
reserves some amount B of its space for use by the remote
site, and the remote site reserves S bytes of its space for
use by the local site. The local site can then use its deed
for the remote site’s space to make a copy of its collection
at the remote site. Note that each site is agreeing to pro-
vide perpetual, online access to stored data, which means
maintaining server machines, providing network connectiv-
ity, and so on, in addition to providing disk space. The
remote site can hold on to its deed for the local site, or can
use it to replicate a collection of its own. The local site
will continue asking for trades until it has made G copies,
where G is the site’s replication goal. A series of such bi-
nary, peer-to-peer trades between archives creates a trading
network among many sites. Although this network is built
up from individual decisions made at local sites, it serves a
global purpose of preserving data through replication.

The trading negotiation must determine a “price” B for
the trade: the amount of space that the local site must give
to the remote site. In the simplest case, S = B, and the
sites exchange equally sized deeds. We can call this scheme
fixed-price trading. A more general scheme is one in which
B may be more or less than S, depending on the needs of
the remote site. We can call this general scheme bid trading.
In this case, the local site calls an auction, announcing S,
and remote sites s1; s2:::sn respond with bids B1; B2:::Bn.
Bid Bi is the amount of storage the local site will have to
reserve for the remote site in order for the remote site to
devote S space to the local site. The local site can then
choose the most attractive bid; this bid is usually the lowest
Bi although other factors (such as how reliable the remote
site is) may also affect the decision. The remote site chosen
as the “winner” of the auction exchanges deeds with the
local site.

An example is shown in Figure 2. Site A wishes to
replicate a collection of size 80 GB. It calls an auction,
announcing the auction size of 80 GB to the remote sites
(Figure 2a). Each site responds with a bid (Figure 2b); this
bid is the amount of space siteA will have to give to make a
trade. SiteA chooses the winner as siteC, which submitted
the lowest bid. Next a trade is conducted (Figure 2c), with
sites A and C exchanging deeds. Now, site A can use its
deed for site C to make a copy of its collection.

In this paper we examine how increasing the amount of
freedom in the bidding system affects the resulting reliabil-
ity. We can think of a “spectrum of freedom,” illustrated
by the following scenarios, ranging from the most restric-
tive (top of the list) to the least restrictive (bottom of list).
(There are many other scenarios besides the ones we il-
lustrated here.) Figure 3 shows this spectrum of freedom
graphically.
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Figure 2. Bid trading example.
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Figure 3. Spectrum of bidding freedom.

� Fixed-Price Bids. All sites follow the same fixed-price
policy discussed above: A bid B must be the same as
the amount of space requested, S.

� Adaptive Bids. All sites follow the same policy, but the
policy takes into account local conditions. For example,
the bidB may be determined by a function f(R;S) that
takes into account the available free space R at the site
(and the requested space S).

� Multiple Policies. Sites are partitioned into classes, de-
pending on factors such as their free space. For example,
there would be a family of bidding functions f1; f2; :::,
and all sites in a class use the same function.

� Maverick Site. We again have multiple classes, but now
there is a single “maverick” site that follows its own
policy to try to improve its own reliability even at the
expense of the overall reliability. For example, one site
may choose a different bidding function than that used
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Figure 4. Reliability example.

by other sites in its class.

� Free Market. Each sites may use its own policy in an
attempt to maximize its own benefit.

� Malevolent Sites. Some sites break the basic trading
rules and try to subvert the system. For example, a site
may promise to store a collection, and then delete it. Or a
site could carry out a denial of service attack, generating
so many message that other sites cannot trade.

In this paper we confine our attention to scenarios at
the “restrictive” end of the spactrum, specifically the Fixed-
Price, Adaptive, Multiple, and Maverick scenarios. Our
main reason is that the “permissive” scenarios have so many
degrees of freedom that it is very hard to study them, with-
out first gaining an understanding of the more controlled
scenarios. Furthermore, we believe that the restrictive sce-
narios are realistic since archival sites will almost certainly
want to trade with known entities they trust. Thus, it is
reasonable to expect that sites would agree to use particular
classes of bidding functions, ones that given them sufficient
autonomy while still preserving the integrity of the overall
system. Since we are assuming trusted archival sites, we do
not study in this paper mechanisms that enforce the selected
policies or rules, or that detect violations.

2.1. Reliability

Our goal is to provide the most reliable storage for collec-
tions. We can measure the reliabilitywith which a collection
is stored by calculating the probability that the object is not
lost despite site failures. Therefore, we define the following
reliability concepts:

Site reliability: the probability that a site will fail. By
“fail” we mean a failure that results in data loss. A site
can recover from such a failure by retrieving an error free
copy of the lost data, usually from another site in the trading
network. However, for some period after the failure, the
data is locally irretrievable.

Local data mean time to failure (MTTF): the expected
time that at least one copy of all of the local site’s collections
survives, despite site failures.

Figure 4 can be used to illustrate these reliability con-
cepts. The figure shows three sites, A, B and C, storing
copies of collections 1, 2 and 3. The figure indicates (with
a double box) that site A owns collection 1, site B owns
collection 2, and site C owns collection 3. Each of the three
sites (A, B and C) could fail independently. For example, we

can assume that over the course of some interval (say, one
year), that a site has a ten percent chance of failure. Then
the site reliabilityRi, or probability that site si will fail each
year, is 0.1. This value reflects not only the reliability of
the hardware that stores data, but also other factors such as
bankruptcy, viruses, hackers, users who accidentally delete
data, and so on.

From the site reliabilitiesRA; RB:::, and the assignment
of copies to sites (shown in Figure 4), we can calculate
the local data MTTF. First, we calculate the probability Pi
that all copies of any collection owned by site si are lost
in one year. For the example in Figure 4, collection 1 will
be lost if both site A and site C fail, but will not be lost if
either site survives. The probability of both sites failing is
0:1� 0:1 = 0:01. Because this is the only collection owned
by site A, PA = 0:01.

Next, we calculate the expected number of years Mi

before any of site si’s collections are lost. The probability
that a collection is lost in the jth year is (1� Pi)

j�1 � Pi;
that is, the probability that it was not lost in any of the
previous j�1 years but is lost in the jth year. Then, we can
calculate the mean time to failure for site si’s collections as
the expected number of years before its collections are lost,
which is

Mi =
1X

j=1

((1� Pi)
j�1 � Pi � j) = 1=Pi

For site A, with PA = 0:01, the MTTF MA is 100 years.
Similarly, the MB of site B is 100 years, since collection 2
will be lost only if both site B and site C fail. However, MC

is 1000 years. For collection 3 to be lost, all three sites must
fail, and this event has a probability of PC = 0:13 = 0:001.

Our goal here is to find which policies guiding the deci-
sion making of a local site maximize the local data MTTF
for that site.

2.2. Trading process

When a site wishes to replicate a collection, it must either
acquire a new deed for a remote site, or use an existing deed.
In order to acquire a new deed, the local site calls an auction,
inviting remote sites to submit bids. Then, the local site has
taken on the role of the auctioning site. The decision of when
to call an auction is determined by the auction calling policy.
Auction calling policies are described in Section 3.1.1. An
example of the steps that the auctioning site can take is shown
in Figure 5. (Other algorithms are possible; for example, the
auctioning site could broadcast the auction announcement
and receive bids in parallel.)

The auction procedure finds all the remote sites that do
not already have a copy of collection C, and solicits bids
(via the GetBid() message) from these sites. Note that, for a
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CallAuction(Collection C) f
/* The size of the collection */
S := C.size();

/* The number of bids we receive */
BidCount := 0;

for each i := 0::n such that site si does not
have a copy of C f

Di := Size of any deeds held by local
site for site si’s space;

Bi := si.GetBid(S �Di);
if Bi != NULL then BidCount++;
/* E.g., site i has refused to bid */

g

if (BidCount = 0) then return;
/* No sites have bid */

W := PickWinner(B0 ::Bn);
if (W = NULL) then return;
/* All bids are too high. */

get a deed of size S from site W;
give a deed of size BW to site W;

g

PickWinner(Bids B0::Bn) f
L := LocalAvailableSpace();
select lowest non-NULL bid Bi;
if Bi > L then return NULL;
return i;

g

Figure 5. Auction algorithm.

site si, the auction site only needs S�Di GB of space, since
it already holds deeds for Di GB of si’s space (Di � 0).
It is possible that some (or all) of these sites will not bid
(submitting a bid of NULL), either because they do not
have at least S space, or simply because they do not want to
trade at this time. If no sites bid (or if all remote sites already
have a copy of C), then the auction terminates without any
trading.

If at least one bid is submitted, then the auctioning site
must pick a winner. Figure 5 shows a simple PickWinner()
procedure that selects the site that submitted the lowest bid.
Thus, in this scheme, the bidding site can bid less to have a
better chance of winning the auction, but will get a smaller
deed for space at the auctioning site in return. It is possible to
extend PickWinner() to take more factors into account. For
example, the auctioning site may prefer the most reliable
bidding site, the bidding site with the most free space, or
some combination of these and other factors. Here, we
assume that the auctioning site simply picks the lowest bid.
If the lowest bid is larger than the local free storage space,
then the auctioning site cannot accept any bids, because it
does not have enough space to give the bidding site. In this
case, the winning bid isNULL, e.g. there is no winner and
the auction will terminate.

Figure 5 shows that the auctioning site calculates a value
L, which is the local storage available for public use. The

GetBid(Size S) f
L := LocalAvailableSpace();
if S > L then return NULL;
B := BidPolicy();
return B;

g

Figure 6. Bidding algorithm.

space management policy, which determines how L is cal-
culated, is discussed in Section 2.3.

Once a winner is chosen, then the sites trade. The auc-
tioning site acquires a deed of size S, and must give the
winning site a deed of size BW (the winning site’s bid).
BW may be more, less or the same as S. At this point,
the auctioning site can use its new deed to store a copy of
collection C.

When a local site is asked to bid in an auction, it runs a
local version of GetBid() to choose a bid and send it to the
auctioning site. (The local site is now serving the role of the
biddingsite.) In the simplest case, the bidding site returnsS,
the auction amount. Then, the auctioning site and bidding
site would exchange equally sized deeds, if the bidding site
won the auction. However, the bidding site can choose a
bid based on many factors, such as how urgently it needs
to replicate its own collections, how scarce its local storage
space it, how desirable it is to trade with the auctioning
site, and so on. The policy that guides the construction of an
appropriate bid is called the biddingpolicy. Biddingpolicies
are described in Section 3.1.2.

A basic version of GetBid() that uses a biddingpolicy, en-
capsulated in the function BidPolicy(), is shown in Figure 6.
This figure shows that the bidding site also calculates L,
the amount of publicly available local space (from the space
management policy). If the auction amount S is larger than
L, the bidding site refuses to bid (returning a bid ofNULL).

2.3. Space management policy

The auctioning site follows a space management policy1

to determine how much space to keep for itself, and how
much to release for use by others. This released amount,
L, is used as the locally “free” space, or space that can be
traded away. Although it is possible to set L to be the total
free local storage space, our previous work [9] suggests that
it is better to keep some of the local space in reserve for
future use. (Although [9] focuses on fixed-price trading, it
is reasonable to assume that the conclusion remains valid
here.)

Our space management policy says that sites should “re-
lease” for public use space equal to n � a, where n is the

1The space management policy is called an advertising policy in [9].

5



number of remote copies a site wishes to make and a is the
amount of space used for archiving locally owned collec-
tions (e.g. measured in GB). For example, if a site wishes
to make at least GM = 3 copies, it needs to make at least
2 remote copies; thus, the space management policy is to
release 2� a GB of space for public use, if possible. When
a new collection of size s is deposited at the local site, this
results in 2� s more public space being released at the local
site.

3. Scenarios

The bidding mechanism provides a framework for data
replication. However, sites must make two basic decisions:
when to call an auction, and how much to bid in a particular
auction. These decisions can be guided by an auction calling
policy and a bid policy. In Section 2, we described the
Adaptive Bids scenario, the Multiple Policies scenario, and
the Maverick Site scenario. In this section, we examine the
types of policies that may be adopted under each scenario.

3.1. Adaptive Bids scenario

In the Adaptive Bids scenario, all sites use the same global
auction calling policy and the same global bid policy.

3.1.1 Auction calling policies

The auction calling policy is a set of rules for automatically
deciding when to call an auction and for what collection.
The auction policy can either dictate that auctions are called
periodically, or that they are called in response to some
event. For example, a site may call an auction every night, or
may call auctions when a new collection has been deposited
locally. Here, we assume that sites call auctions when they
need to make copies of their collections, and when they
believe that there is a good chance that an auction will result
in a trade. Thus, if a site calls an auction and no remote sites
bid (e.g. because the remote sites do not have enough storage
space), then it does not make sense to call the auction again
unless the state at the remote sites change (e.g. at least one
site gets more space). Therefore we focus on event-based
auction calling policies. We are not concerned here with the
mechanisms that sites use to detect events. Instead, we can
assume that the implementation of the system allows events
to be detected.

Once a site decides to call one or more auctions, it must
decide which collections to replicate. The collections that
must be most urgently replicated are those collections that
are rarest (have the fewest copies). Thus, a site can call an
auction to replicate each collection, and can do so starting
with the rarest collection. However, a site must decide how

many collections to try and replicate during each round of
auctions. It has two choices:

� CallForAll: call auctions for all of the collections. This
policy tries to use the “call auction” mechanism to make
as many copies as possible of each collection.

� CallForRare: call auctions only for the rarest collec-
tions. For example, a site may be trying to make G
copies of every collection; G is a goal locally defined
by the site administrator. We can define the “rare” col-
lections as those that have less than G=2 copies, and the
“abundant” collections as those that have at least G=2
copies. Rare collections are replicated when the local
site calls an auction for them. Abundant collections can
also be replicated, but only as a result of the local site
bidding in an auction called by a remote site.

3.1.2 Bid policies

The bid policy is a set of rules for automatically calculating
the bid for each auction. There is a huge space of possible
bid policies. We cannot attempt to study them all, so we will
restrict our examination to a subset of the possible policies.
Specifically, we will examine a family of policies defined by
two parameters:

� I: the interval of potential bids.

� P(): the policy function that determine how bids vary
along the interval I. 0 � P () � 1.

We can call the bid policies described by these parameters
I-P policies.

As an example, consider a policy where a site bids be-
tween 0:5� S and 1:5� S (where S is the amount of space
the auctioning site is asking for). Then, the interval I is
0:5� S:::1:5� S. The bid policy may dictate that sites bid
low when their local storage space is abundant, and bid high
when their storage space is more scarce. Then, P () / K,
where K is the fraction of local storage space still free.

A special case of this family of I-P policies is where the
interval I isS:::S. In this case, the bidding site always bidsS
(and P () is immaterial). This is the fixed-price policy. If all
sites use the fixed-price policy, then there is no bidding, and
the result is fixed-price trading (as described in Section 2).

Here, we examine bid policies with different values of
I and P (). For P (), we examine a set of policies based
on two factors: the amount of available local storage space
at the bidding site, and the rareness of the bidding site’s
collections.

In order to construct a bid, the bidding site must determine
how valuable it feels its local space is in relation to the remote
site’s space. In other words, it must determine an exchange
rate between the two space resources. We can represent this
exchange rate E as a ratio of the value of the bidding site’s
space to value of the auctioning site’s space. For example,
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if E = 2, then the bidding site feels that every unit of its
own space is twice as valuable as every unit of the remote
site’s space. In this case, if the auctioning site asks for 3 GB
of space at the bidding site, then the bidding site should ask
for 6 GB in return.

The site’s bid B can thus be calculated as

B = E � S

The exchange rate E can vary from auction to auction de-
pending on the current situation of the bidding site. For
example, the bidding policy may adjust E upward as local
space gets used up to indicate that space is more valuable as
it becomes scarcer. The bidding policy determines the value
of E for each auction, and thus determines how a site bids.
I defines the maximum and minimum bids allowed by the

policy, whileP () determines the bid for a particular auction.
In this paper, our goal is to study how I and P () impact the
reliability a site is able to achieve, so that we can define bid
policies that produce the highest reliability. For simplicity,
here we assume that bid policies are symmetric: the interval
I straddles the value 1. In this case, E varies in the range
(1� I=2):::(1 + I=2). Then, we can calculate E as

E = I � P () + (1� I=2)

and B as

B = S � (I � P () + (1� I=2)) (1)

We have studied four different policy functions P (),
which give us four different bid policies: FreeSpace,
UsedSpace, AbundantCollection and RareCollection. Re-
call that under the Adaptive Bid scenario we are studying
here, all sites would agree to use one of the following op-
tions:

FreeSpace: A site bids more when it has more free space.
In this case, P () = K=T , where K is the amount of free
local space, and T is the total amount of local space (used
and free). Under the FreeSpace policy, a site tends to win
auctions when its space is scarce, because then the site bids
low. This may be the best policy since space scarcity makes
trading more difficult, and thus sites should try to win as
many auctions as possible.

UsedSpace: A site bids more when more of its space is
used. P () = (T � K)=T . Under this policy, sites tend to
bid low and win auctions when their space is abundant, but
bid high (and lose more auctions) when their space is scarce.
This policy may be preferred to allow sites to hoard local
space when that space is scarce.

AbundantCollection: A site bids more when its collec-
tions are abundant. IfC is the number of copies of the rarest
collection (the collection with the fewest copies), and G is
a “goal” number of copies to make of each collection, then
P () = C=G. In other words, when there are very few copies

of the rarest collection, then the site bids low, wins auctions,
and replicates its rare collections. When there are many
copies of its rarest collection (and thus many copies of every
collection), the site bids higher, and wins few auctions. This
policy may be preferred because it allows sites to make more
trades when their collections are rare. In order to keep P ()
between 0 and 1, we treat C=G > 1 as 1.

RareCollection: A site bids more when its collections are
rare. In this case, P () = (G� C)=G. In order to keep P ()
between 0 and 1, we treat G� C < 0 as 0. Although a site
will bid high and win fewer auctions when its collections
are rare, each time it wins an auction the site will acquire a
large amount of space at the auctioning site. This will allow
sites to replicate many collections when they win auctions.

In previous work [8, 9], we have examined the Fixed-
Price Bids scenario. This scheme is even more restrictive
than the Adaptive Bids scenario, since sites cannot bid at
all. In the results of Section 4, we compare the reliability
achievable under bid trading to those achievable under fixed-
price bidding.

3.2. Multiple Policies scenario

Different sites have different resources and resource re-
quirements, and it may be that there is no one policy that is
good for all sites. Therefore, it may be useful to partition
the sites into distinct classes, and allow each class to use
a different policy. This is the Multiple Policies scenario.
For example, we may create a class of sites that have a
large amount of storage space, and another class of sites that
have less storage space. Then, the sites in the high capacity
class could use a policy that best utilizes their abundant re-
sources, while the low capacity sites would use a policy that
best manages their scarce resources. The Multiple Policies
scenario is less restrictive than the Adaptive Bids scenario,
where all sites must use the same policy regardless of needs
or resources.

For the Multiple Policies scenario, we can study the same
alternatives outlined in Section 3.1. In other words, once we
define the classes of sites, we can determine the auction call
policy and bid policy that provides the best reliability for
each class.

3.3. Maverick Site scenario

The data trading network is founded on a principle of
collective benefit from individual action. Sites seek to help
themselves, and in doing so, help other sites. However, it is
possible that individual sites may pursue policies that benefit
only themselves while causing a reduction in reliability for
other sites. In the Maverick Site scenario, most sites use
the policies that are best for their class, but one site deviates
from these policies.
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Although there are a large number of ways in which a
maverick site may attempt to subvert the trading mechanism
for its own benefit, we can only examine a few here. Specif-
ically, we will examine some ways that sites may use the
ability to call auctions and choose their own bids to “un-
fairly” benefit themselves. In Section 4.4 we examine the
effect (if any) these behaviors have on the reliability of sites
in the trading network. Recall that we are focusing here on
behaviors that still fit within the rules of the protocol, and
are not examining behaviors which are malicious and violate
the basic trading framework.

3.3.1 Maverick auction calling behaviors

Trades occur when auctions are called. Although sites can
choose to call or not call an auction depending on their local
situations, there are behaviors that differ markedly from
either the CallForAll or CallForRare policies. Here, we
study the AlwaysCall behavior, and the NeverCall behavior.

AlwaysCall: a site calls auctions constantly. A local site
may try to do this in an attempt to reserve as much space as
possible at remote sites for its own use. In every auction,
the local site must give some of its own space to the winner
of the auction. Thus, we would expect this behavior to
only benefit sites that have a lot of local space to give away.
Otherwise, the maverick site could call lots of auctions but
would only be able to conduct a trade as a result of a few
auctions. This behavior would not normally be followed by
all sites because sites are expected to call auctions when they
need to make a trade, not simply because they wish to hoard
all of the space at remote sites.

NeverCall: a site never calls auctions. A local site may
try to do this so that it could set the price of all trades it
participates in. This behavior would not normally be fol-
lowed by all sites because sites are expected to call auctions;
otherwise, no trading would ever occur.

3.3.2 Maverick bidding behaviors

Under normal bid policies, sites sometimes bid high (E > 1)
and sometimes bid low (E < 1). However, maverick sites
may decide to pattern their bidding in order to take advantage
of other sites, rather than calculating bids based on normal
bid policies. Here, we study the BidHigh, BidLow and
NeverBid behaviors.

BidHigh: a site consistently bids high; E > 1 always. A
maverick site may decide to do this so that whenever it wins
an auction, it receives a lot of remote space while giving
away relatively little local space. This behavior allows a
site to extract more resources from the system than it is
contributing. If every site bid high always, then what a site
gained when it was a bidder it would lose as an auctioner,
and no site would gain benefit. If a BidHigh site accrues

Variable Description Base values

S Number of sites 10 to 15
F Site storage factor 2 to 6
P Site reliability 0.9
CperSMIN ; Min/max CperSMIN = 4;

CperSMAX collections per site CperSMAX = 25

CsizeMIN ; Min/max CsizeMIN = 50GB;
CsizeMAX collection size CsizeMAX = 1000GB
Ctot Total data at a site CtotMIN to CtotMAX
CtotMIN ; Min/max value CtotMIN = 200GB;
CtotMAX ofCtot CtotMAX = 10;000GB
GM Minimum replication goal 3 copies
GI Ideal replication goal 6 copies

Table 1. Simulation variables.

advantage, it is because it is the only site consistently bidding
high.

BidLow: a site consistently bids low, e.g. E < 1 always.
The benefit of BidLow is that a site wins more auctions, and
thus reserves more space at remote sites for its own use. If
every site bid low, then no one site would consistently win
auctions. In other words, normal sites win some auctions
and lose some auctions, but a maverick site tries to win every
auction.

NeverBid: a site never submits a bid to an auction. The
site can still conduct trading, but does so only by calling
auctions. A site may try to do this so that it can always
determine when a trade occurs, and never has to wait for a
remote site to call an auction. The trading network assumes
sites bid in auctions; if all sites refused to bid in auctions
then the network would fall apart as no auctions would result
in trades.

4. Results

We have conducted a series of experiments to study the
tradeoffs involved in bid trading. In these experiments, we
conducted simulated trading sessions between archive sites,
comparing various bid and auction calling policies under
the Adaptive Bids, Multiple Policies and Maverick Sites
scenarios. In this section, we discuss our simulator, and
present the results of our experiments.

4.1. The bid trading simulator

Our simulator conducts a series of simulated auctions and
trades, and the resulting local data reliabilities are then cal-
culated. Table 1 lists the key variables in the simulation and
the initial base values we used; these variables are described
below.

The simulator generates a trading scenario, which con-
tains a set of sites, each of which has a quantity of archival
storage space as well as a number of collections “owned”
by the site. The number of sites S is specified as an input to
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the simulation. Our experiments represent 1200 total sce-
narios, 200 for each S in the range 10:::15. The number of
collections assigned to a site is randomly chosen between
CperSMIN and CperSMAX . All of the collections in the
system are ordered randomly and are deposited at their as-
signed site in this random order; this models collections
being created and archived over time. A site is “born” when
the first of its collections is archived, and no site has advance
knowledge about the creation of other sites or collections.
The collections assigned to a site all have different, ran-
domly chosen sizes between CsizeMIN and CsizeMAX .
The sum of the sizes of all of the collections assigned to a
site is the total data size Ctot of that site, and ranges from
CtotMIN toCtotMAX . The values we chose for these vari-
ables represent a highly diverse trading network with small
and large collections and sites with small or large amounts
of data.

The archival storage space assigned to the site is the
storage factor F of the site multiplied by the Ctot at the
site. This models a situation where a site administrator
chooses to install F times as much disk space as needed
to store the locally owned collections. The space left after
storing collections is public space used to store copies of
collections owned by other sites. In our experiments, we
wanted to study the effect of bid policies on sites with a
large amount of space (relative to their collection size) and
on sites that had comparatively less space relative to data
size. Therefore, in each scenario, some sites may have a
large F (e.g. 6) while others may have a small F (e.g. 2).
Although a particular site is assigned a quantity of storage
space, it does not release all of this space immediately for
public use. Instead, the site follows the space management
policy described in Section 2.3.

Sites call auctions in response to events indicating that
the global state has changed (see Section 3.1.1). In our sim-
ulator, the basic events occur when a user deposits a new
collection at a site. The site receiving the new collection
calls n auctions to replicate the new collection; the value of
n is dictated by the site’s auction policy. At the same time,
other sites also call auctions as dictated by their auction call
policies. The auctions called by different sites are randomly
interleaved to model a series of auctions being called con-
currently by multiple sites. Depositing collections are the
main state-changing events because the space management
policy dictates that new space is released at a site after it
gets a new collection. Thus, a deposit of a new collection
is a signal that there is now more space in the system, and
previously impossible trades may now be feasible.

As described in Section 2.1 we model site failures by
specifying a value Ri: the probability that site si will fail.
In the present work, for all sites Ri = 0:1. (For experi-
ments where the site reliability differs, but specifically in
the context of fixed-price trading, see [8].)

In the following sections, we examine the improvement
or detriment due to using one policy versus another. For ex-
ample, imagine a site achieves a MTTF of 100 years using
policy X, and a MTTF of 300 years using policy Y . Then,
we would report a 200 percent improvement for using policy
Y versus a baseline of policy X. For each experiment, we
ran 1200 simulations, and used the standard deviation of our
measurements to calculate 95 percent confidence intervals.
In our experiments, these intervals were �50 or less except
where noted. For example, the average percent MTTF im-
provement for policyY (versus policyX) might be 200�50
(with 95 percent confidence).

4.2. Adaptive Bids scenario

First, we examined which policies resulted in the highest
reliability under the Adaptive Bids scenario, where all sites
use the same policy. We studied both the auction policy and
the bid policy.

4.2.1 Auction policies

The auction policy dictates when a site will call an auction,
and for which collection. As described in Section 3.1.1, we
examined the CallForAll and CallForRare policies. With the
CallForAll policy, a local site repeatedly calls auctions for
each of its collections, in rarest first order, as long as the local
site is receiving bids from remote sites. The CallForRare
policy is the same, except that the local site does not call
auctions for collections with at least GM = 3 copies.

We ran a set of experiments where we compared the ef-
fects of the auction calling policy. We ran five different
experiments, one for each bid policy (including the Fixed-
Price policy). A sample result for the auction policy, in a
situation where sites used the UsedSpace policy, is shown in
Figure 7. This figure shows the average increase or decrease
in reliability experienced by sites when the CallForRare pol-
icy is used versus a baseline of when the CallForAll policy
is used. The CallForRare policy provides up to 850 percent
improvement in MTTF over the CallForAll policy (when
F = 5:8). The 95 percent confidence interval for this figure
is �50 percentage points, except for F > 4:4, where the
interval expands to as much as �100.

The results for other bid policies are similar: CallForRare
is better than CallForAll regardless of which bid policy is
used. These results suggest that it is detrimental to reliability
if a site calls too many auctions. Although the CallForAll
policy causes the site to actively try to replicate collections
by calling auctions, the end result is that sites call too many
auctions too soon, using up their local storage, and too few
copies are made of collections deposited later in the trading
session. Instead, sites should try to strike a balance between
calling auctions themselves, and bidding in auctions called
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Figure 7. Auction calling policies under the
Adaptive Bids scenario.

by other sites. The first copies of a collection can be made
by calling auctions, in order to ensure that the collection
is replicated at least a few times. Then, the collection can
be replicated more times when the site bids in and wins
auctions. This is what happens with the CallForRare policy.

4.2.2 Bid policies

Next, we examined different bid policies. The bid policies
described in Section 3.1.2 were implemented by calculating
B using Equation 1. If multiple sites submitted identical
minimum bids, the local site chose the site with which it
had traded the most in the past. If this did not break the tie,
the local site chose randomly among the tied sites. (Choos-
ing previous partners first produces higher reliability than
making random the first tiebreaker; see [9].)

In our experiment, I = 1 and P () was either FreeSpace,
UsedSpace, AbundantCollection, or RareCollection for all
sites; we also tested FixedPrice (e.g., I = 0). The Fixed-
Price policy represents a trading network that does not use
bidding, and comparing against the FixedPrice policy al-
lows us to determine whether bid trading is beneficial versus
a non-bidding data trading network. The results are shown
in Figure 8, which shows the percent MTTF change for each
bid policy versus a baseline of the FixedPrice policy. The
figure shows that no one policy is best. For high capac-
ity sites (with F � 4:4), either the UsedSpace policy or
FreeSpace policy is best. For these policies, the 95 per-
cent confidence interval is �50 for F < 5:6 and �100 for
F � 5:6; thus for high capacity sites the confidence inter-
vals for the UsedSpace and FreeSpace policies overlap and
neither is statistically “better” than the other. (Also, the
dips in peaks for UsedSpace and FreeSpace for F > 4:4
are noise within the confidence interval.) For mid capacity
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Figure 8. Bid policies in the Adaptive Bids
scenario.

sites (3:2 � F < 4:4) all policies are roughly the same,
since all are within the confidence interval of �50. For low
capacity sites (F < 3:2), all policies are the same (within
the confidence interval) as the FixedPrice baseline, except
FreeSpace, which provides up to 140 percent improvement
over FixedPrice.

Low capacity sites tend to have little free space, and thus
these sites bid low (and win auctions) under the FreeSpace
policy. Very low capacity sites (F � 2:6), can rarely bid
in auctions (since they usually do not have enough space to
store the auctioning site’s collection) and must aggressively
try to win all the auctions they do participate in. This means
that FreeSpace benefits low capacity sites. As F increases,
sites tend to have more local storage available, which means
that sites with higher F bid less aggressively, winning fewer
auctions. This causes the downturn seen in the FreeSpace
curve of Figure 8 for F > 2:6. However, the FreeSpace
curve begins to rise again for F > 4:4, e.g. for high ca-
pacity sites. These sites, with a large amount of free space,
bid high and win few auctions. However, when they do
win an auction, they “win big,” getting a large amount of
remote space while giving little away in return. Therefore,
there are two competing effects: bidding low and winning
many auctions, or bidding high and winning big in a few
auctions. Low capacity sites, which often cannot bid at all,
benefit from FreeSpace because when they do bid, they bid
aggressively. In the range 2:6 � F < 4:4, sites still cannot
bid in very many auctions, but now tend to lose the ones they
do bid in. For F � 4:4, the “winning big” effect dominates,
since high capacity sites can bid in many auctions and thus
can afford to wait until they can win an auction with a high
bid.

Under the UsedSpace policy, sites bid more when they
have little free space. In this case, high capacity sites (which
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usually have lots of free space) bid low and win auctions.
Although these sites are not getting much remote storage per
auction (because they bid low) they are winning many auc-
tions, and get a large amount of remote space in aggregate.
Low capacity sites win fewer auctions under UsedSpace be-
cause they are bidding higher. As noted above, low capacity
sites only benefit by bidding aggressively, which they cannot
do under UsedSpace.

This experiment suggests that may be better if high capac-
ity sites and low capacity sites use different policies. This is
the Multiple Policies scenario, which we study next.

4.3. Multiple Policies scenario

In the Multiple Policies scenario different sites use differ-
ent polices based on some partition of the sites. The results
in Figure 7 suggest that all sites benefit from the CallForRare
policy, so we did not study the case where different classes
used different auction policies. However, Figure 8 suggests
that for bid policies, the storage factor F is a good way to
partition sites into classes. Therefore, we constructed three
classes: high capacity sites (F � 4:4), mid capacity sites
(3:2 � F < 4:4) and low capacity sites (F < 3:2).

We ran simulations in which all of the sites in one class
used the same bid policy, while different classes may have
used different policies. We can summarize the results as
follows:

� The best class division is actually two classes, with low
capacity F � 3:4 and high capacity F > 3:4, rather
than three classes. Recall that sites are trying to make at
least GM = 3 copies. This means a site with F > 3:4
has enough space to make 3 copies, and intuitively has
a high storage capacity relative to the storage needed to
make trades. A site with F � 3:4 has trouble making 3
copies, and intuitively has low storage capacity relative
to the needed storage.

� High capacity sites (F > 3:4) should use the UsedSpace
policy with any I > 0. UsedSpace allows high capacity
sites to bid low and win many auctions, so the sites can
make as many copies as possible of their collections.

� Low capacity sites (F � 3:4) should use the FreeSpace
policy with I = 2. FreeSpace allows low capacity sites
to bid low and win many of the auctions they participate
in, so the sites can aggressively try to make at least 3
copies of their collections.

� Bid trading as a mechanism is useful, since it allows sites
to improve their reliability over fixed-price trading.

In order to determine these results, we tested every combi-
nation of a possible bid policy for low, mid and high capacity
sites; since there are five different policies and three storage
classes there are 125 combinations. To start with, I = 1
in each case except FixedPrice. We analyzed the results
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Figure 9. Best bid policy for (a) high capacity
and (b) mid capacity sites.

by plotting the effect of bid policies on the reliability for a
particular class for each combination of policies used by the
other two classes.

For example, we plotted the effect on high capacity sites
(where F � 4:4) of the bid policy used by those sites, in
the scenario where mid capacity sites used the UsedSpace
policy and low capacity sites used the AbundantCollection
policy. The results are shown in Figure 9a. As the figure
shows, the UsedSpace policy is significantly better for high
capacity sites than other policies. This general result, and
the shape of the plotted curves, remains the same regardless
of the bid policies used by mid and low capacity sites. Recall
that under UsedSpace, sites bid low and win auctions when
they have lots of free space. Even though high capacity
sites make lots of trades, they tend to still have a lot of free
space, and thus continue to win auctions and make copies
of their collections. In other words, the high capacity sites
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have enough space so that they can afford to continually bid
low. In this figure, the 95 percent confidence interval is�50
except in the range F > 4:8, where the confidence interval
is �100. The dips and peaks in the UsedSpace curve are
noise within these confidence intervals.

The results for other combinations of policies used by
low and mid capacity sites are the same: UsedSpace is best
for high capacity sites regardless of the policy used by other
classes of sites.

Sample results for mid capacity sites (in the case
where high capacity uses UsedSpace and low capacity uses
FreeSpace) are shown in Figure 9b. (The 95 percent confi-
dence interval in this figure is �30.) As this figure shows,
UsedSpace is clearly the best policy for F > 3:4, but in
the interval 3:2 � F � 3:4 there is no clearly best policy.
The same result is observed regardless of the low capacity
bid policy used. (We restricted our examination to the cases
where high capacity sites use UsedSpace, since it is clearly
the best policy for those sites.) This suggests that F > 3:4
is a better definition of high capacity sites than F > 4:4.
Moreover, further experiments (results not shown) suggest
that the interval 3:2 � F � 3:4 is best considered part of the
low capacity class; all sites in the rangeF � 3:4 do best with
the FreeSpace policy when high capacity sites (F > 3:4) use
UsedSpace. In other words, high capacity sites do best with
UsedSpace and low capacity sites do best with FreeSpace,
for the same reasons discussed in Section 4.2.2.

In order to examine the impact of I on reliability, we ran
an experiment where I varied between 0 and 2 for high ca-
pacity (F > 3:4) sites using UsedSpace, while low capacity
sites (F � 3:4) used FreeSpace (with I = 1). The results
(not shown) for high capacity sites indicates that the MTTF
does not change significantly as I changes. Although sites
achieve better reliability with I > 0, with up to 100 percent
improvement in MTTF versus I = 0, the actual value of I
does not matter. Increasing I increases the maximum bid
that the high capacity site makes. While this means that the
site receives more remote storage when it wins an auction,
it also means the site wins fewer auctions because it is more
likely that some other site is bidding less. The simulation
results indicate that these effects cancel out.

We also ran an experiment where I varied between 0 and
2 for low capacity sites using FreeSpace, while high capacity
sites use UsedSpace with I = 1. The results for are shown
in Figure 10, which shows the percent difference in MTTF
achieved by sites for each value of I versus a baseline of
I = 0. As the figure shows, low capacity sites achieve
the highest reliability with I = 2, with up to a 420 percent
improvement over I = 0. By increasing the bid span, low
capacity sites magnify the benefits of the free space policy:
they win even more auctions, by bidding lower more often.
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Figure 10. Best bid span for the FreeSpace
policy and low capacity sites.

4.4. Maverick Site scenario

Some sites may decide not to follow the best policy for
their storage class as a whole. Instead, they may behave
differently, in the hope of achieving benefit for themselves.
This situation is the Maverick Site scenario. Here, we con-
sider whether the behaviors outlined in Section 3.3 can be
used to benefit an individual site. Specifically, we are inter-
ested in two questions:

� Can a site accrue benefit by behaving in a manner dif-
ferent from the rest of its class?

� Does the differing behavior reduce the reliability
achieved by the sites that are following their class’s pol-
icy?

In other words, it is not useful to a site to act differently
from its class if it achieves no benefit. At the same time, it
may not detrimental for normal sites if one site’s behavior
deviates. We study these questions in this section.

We have implemented maverick behaviors as described
in Section 3.3. With the BidHigh behavior, the maverick site
uses E = 1:5 always, and with the BidLow behavior, the
maverick site uses E = 0:5 always. With the AlwaysCall
behavior, the maverick site continually calls auctions of size
50 GB (the minimum collection size in our simulations) in
addition to regular auctions for its collections. With the Nev-
erCall and NeverBid behaviors, the maverick site never calls
auctions and never bids in auctions (respectively). While this
is not an exhaustive list of the behaviors sites may engage in,
they represent a variety of ways in which sites may behave
differently than the rest of the sites in their class. In that
sense, studying these behaviors helps us to get an idea of
how much a site can benefit itself or damage the system by
acting differently.

12



-50

0

50

100

150

200

2 2.5 3 3.5 4 4.5 5 5.5 6

M
T

T
F

 d
iff

er
en

ce
 v

s.
 n

o 
m

av
er

ic
k 

si
te

s 
(p

er
ce

nt
)

Local storage factor (F)

Normal
Maverick

No maverick sites

(a)

-50

0

50

100

150

200

2 2.5 3 3.5 4 4.5 5 5.5 6

M
T

T
F

 d
iff

er
en

ce
 v

s.
 n

o 
m

av
er

ic
k 

si
te

s 
(p

er
ce

nt
)

Local storage factor (F)

Normal
Maverick

No maverick sites

(b)

Figure 11. Maverick behaviors: (a) BidHigh
and (b) NeverCall.

The results were:

� A maverick high capacity site can sometimes benefit
from the BidHigh behavior, but does not harm other
sites doing so.

� A maverick high capacity site can also benefit from the
NeverCall policy, and in doing so may harm other sites.

We first examined the situation where a maverick high
capacity site deviates from the behavior recommended for
its class. In this case, duringeach simulation, a high capacity
site was chosen randomly as the “maverick” site. The results
for the BidHigh behavior is shown in Figure 11a. This
figure shows two curves: one curve for the maverick site
(labeled “Maverick”) and one curve for the other sites in the
same simulations as the maverick site but that themselves
are not deviating (labeled “Normal”). Both of these curves

represent the percent change in reliability for a site versus
a baseline of no maverick sites (e.g., the Multiple Policies
scenario).

The figure shows that the MTTF difference for maverick
sites varies widely, sometimes with an increase in MTTF
(up to 130 percent) and sometimes with a decrease (by up to
25 percent) versus the case where the site does not deviate.
Moreover, the variance in our measurements is very high:
the 95 percent confidence interval for the “Maverick” curve
is �175 percentage points. The result is that the average
plotted in the figure is very noisy with many dips and peaks
within the wide confidence interval; for any given F a Mav-
erick site may experience a large benefit or detriment. In
order to understand this variability, we must understand the
situations in which the BidHigh behavior is beneficial. Bid-
High helps the maverick site because the site is able to get a
large amount of space at the remote site, while giving away
comparatively little. On the other hand, a BidHigh site may
not win very many auctions, since it is bidding higher than
other sites, and low bidders win an auction. In some trading
sessions, the maverick site is frequently the lone bidder in an
auction, and thus acquires a large amount of remote space
at little cost to itself. In other sessions, there are usually
more bidders in an auction, and thus the maverick site wins
few auctions, makes fewer trades and experiences a loss in
reliability. The end result is that the BidHigh behavior is
risky; sometimes it pays off and sometimes not.

However, Figure 11a also indicates that non-maverick
sites do not experience a significant decrease in reliability
versus the case where no site is maverick. (The dips and
peaks in the “Normal” curve are noise within the 95 percent
confidence interval of �50 for F < 5:2 and �75 for F �

5:2.) Although the maverick site is able to extract a high
price in an auction, other sites are still able to make copies of
their collections and achieve reliability. This indicates that
the BidHigh behavior is not likely to decrease the reliability
of the system.

Figure 11b shows the results from another experiment,
where one high capacity site pursues the NeverCall behavior.
As with the BidHigh behavior, the maverick site sometimes
does well (achieving up to a 75 percent increase in MTTF)
and sometimes does poorly (achieving up to a 25 percent de-
crease in MTTF). Once again, the variance is very high: the
confidence interval for the “Maverick” curve is�100, result-
ing in a noisy average with many dips and peaks within this
interval. Recall that a high capacity site uses the UsedSpace
policy, often bidding low and winning auctions. When the
site’s storage space begins to fill up, the site starts losing
auctions, because it is bidding higher. Normally in this sit-
uation, a site still trades by calling auctions, but must often
pay a high price in these trades (since the remote site sets the
price.) However, a maverick site refuses to call auctions, in-
stead bidding (and bidding high). If the maverick site is the
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only bidder, then it gets a large amount of remote space and
makes several copies of its collectons. If there are other bid-
ders, the maverick site loses auctions and makes no trades.
Thus, as with the BidHigh behavior, sometimes NeverCall
benefits a maverick site and sometimes hurts the site. This
produces the high variance observed in our results.

There is a difference in the case of NeverCall, however:
non-maverick sites may be hurt by this behavior. This is
because the maverick site is either winning auctions at high
prices and reserving much of the space in the system for
itself, or losing auctions and therefore not giving away its
own space. In either case, some sites that may otherwise use
this space cannot, resulting in less reliability for those sites.
This is seen most clearly in Figure 11b in the case of F =
5:6, where the decrease in MTTF of 56 percent verses “No
maverick sites” is larger than the �50 confidence interval.
Non-maverick sites may need to pursue some corrective to
discourage sites from following the NeverCall behavior. For
example, they can attempt to identify a maverick site and
refuse to trade with it altogether, encouraging the maverick
site to pursue normal behavior.

Our experiments have also shown that other maverick
behaviors are not effective, resulting in either no benefit or
sharply reduced reliability for the maverick site. BidLow is
not effective because although a site wins many auctions, it
always does so by giving away much of its own space and
getting little in return. NeverBid is also ineffective because
the local site is at the mercy of bids cast by other sites. In
other words, every auction the site participates in results
in a trade (because the site is the auctioner) but many of
these trades come at a loss for the local site if other sites are
bidding high. AlwaysCall is not effective for two reasons.
First, a site may acquire many deeds at many sites, but there
is no guarantee it will acquire a large enough deed at any
site to be useful. As a consequence, the site uses up all
of its local space without necessarily replicating many of
its collections. Second, AlwaysCall is like the NeverBid
behavior in that most trades are a result of the maverick site
calling an auction, and then potentially paying a high price
in the trade.

In no case does a maverick behavior benefit a low capacity
site. Low capacity sites are rarely the only bidder in auctions,
because their lack of storage space means that they often
cannot bid at all. As noted above, being the only bidder in an
auction is key to benefiting from the BidHigh or NeverCall
behaviors.

4.5. Number of sites

All of the results reported here are for relatively small
peer-to-peer networks of 10 to 15 sites. A small network
is appropriate for our problem domain, where we assume
a small federation of libraries and archives cooperating to

provide preservation. A library is unlikely to entrust its
collections to thousands of Gnutella-like clients running on
unknown, unreliable home computers. Instead, the library
will choose a set of remote sites that are relatively well
trusted, and conduct bid trading among these sites.

In previous work [8], we have examined the impact of
the site count on reliability for the Fixed Price scenario,
and found that a relatively small network of about 5-7 sites
is in fact the most reliable. In the context of this paper,
we have conducted experiments under the Adaptive Bids,
Multiple Policies and Maverick Site scenarios, and found
that once again 5-7 sites is the optimal network size. These
results suggest that a larger network of sites can achieve high
reliability by forming trading groups of 5-7 sites.

5. Related work

Previous investigators have studied distributed replica-
tion systems. Examples include traditional data manage-
ment schemes, such as replicated DBMS’s [5, 15], replicated
filesystems [19] and RAID disk arrays [23]. Such schemes
utilize replication to protect against failures in the short term.
However, they do not provide a high level of autonomy to
the nodes participating in the replication network, relying
instead on a central controller to determine data placement
or manage free-space tables. Also, traditional solutions are
concerned with load distribution, query time and update
performance, in addition to reliability [10, 25, 28]. Thus,
traditional replicated databases tend to trade some reliability
for increased performance [18]. Here, we are primarily con-
cerned about preservation (given the constraint of preserving
site autonomy).

Similarly, replicated filesystem schemes such as
Coda [16] or Andrew [21] use caching to improve avail-
ability. Andrew and Coda treat replicates as cached copies
that are created on demand and ejected from the cache when
necessary. Data trading places data in response to reliability
needs, and we assume that a site accepting data is making a
long term commitment to provide access.

Systems such as the Archival Intermemory [14, 6] and
OceanStore [17] are very good at preserving digital objects.
High replication is achieved at the cost of site autonomy,
as sites do not have control over where their collections are
replicated or which remotely-owned collections they store.

Our work is also related to existing peer to peer trading
systems such as Freenet [1] or Gnutella [2]. Such systems
are focused on finding resources within a dynamic, ever-
changing collection, and not on reliability, and less popular
or infrequently accessed items can be deleted. Thus, sys-
tems like Gnutella provide searching but do not guarantee
preservation. A searching and resource discovery mecha-
nism could be built on top of our data trading system; how-
ever, our primary focus is surviving failures over the long
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term.
Auction theory, in both economics and computer science,

has been extensively developed. Many auction theory results
are theorems about optimal allocation in abstract models,
and work is needed to apply theoretical mechanisms to real
systems (as pointed out in [12]). Moreover, auction theorists
usually make assumptions that are not applicable here, such
as the existence of a currency different from the resources
themselves, a distinctionbetween producers and consumers,
and global pricing [27]. Other investigators have looked at
“efficient clearing”, or the best way to assign resources to
bidders so as to maximize utility across the system. In this
scenario, methods such as integer programming [4] can be
used to solve the auction, but this assumes all resources and
bids are known at the same time. In our system, resources
and bids appear over time as new collections are created and
new storage is added, and archives, which must make copies
as soon as possible to avoid failures, cannot wait until all
resources and bids are known.

Several systems have attempted to apply market-oriented
programming, and specifically auction techniques, to re-
source allocation problems. Schwartz and Kraus [26] sur-
vey methods for using auctions to distribute data collections.
They assume that there is a common currency, that there is
one copy of each collection, and that the performance met-
ric is access time. Some or all of these assumptions are
shared by computational economies such as the Blue-Skies
digital library [22], the Mariposa transaction processing sys-
tem [11], and Ferguson, Nikolaou and Yemini’s replicated
data processing economy [13]. Our unique application,
replication to achieve reliability, means that we can draw
from this previous work but must also develop new tech-
niques and policies.

6. Conclusion

We have described bid trading: a mechanism for allowing
sites to conduct peer-to-peer data trading to achieve high
reliability. Collections are replicated when two sites agree
to trade space, such that each site can store data using the
other site’s storage space. Bid trading allows a local site to
determine how much space at the remote site to ask for in
return for giving a deed of a certain size to the remote site.
This results in a situation where a site calls an auction when
it wants to trade. Other sites submit bids, and the auctioning
site chooses the lowest bid.

We have described how the auction and bidding process
works, and examined policies for deciding when to call an
auction and how much to bid. Using a trading simulator, we
have determined which policies provide the highest reliabil-
ity. Although the CallForRare policy is good for all sites,
there is no one bid policy that is universally most reliable.
Bid trading with the UsedSpace policy provides the high-

est reliability for sites with a lot of storage capacity. Sites
with less storage capacity should use the FreeSpace policy
instead. We have also shown that if some sites deviate from
the recommended policy for their class, they may benefit
themselves slightly but only in some cases damage the reli-
ability of other sites. Our results suggest that bid trading is
an effective, general model for peer-to-peer data trading and
preservation.
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