
ProfBuilder: A Package for Rapidly Building
Java Execution Profilers

Brian F. Cooper, Han B. Lee, and Benjamin G. Zorn

Department of Computer Science
Campus Box 430

University of Colorado
Boulder, CO 80309-0430 USA

Telephone: (303) 492-4398
FAX: (303) 492-2844

E-mail: {cooperb,hanlee,zorn}@cs.colorado.edu
CU-CS-853-98 April 1998

University of Colorado at Boulder

Technical Report CU-CS-853-98
Department of Computer Science

Campus Box 430
University of Colorado

Boulder, Colorado 80309

Copyright c© 1998 by
Brian F. Cooper, Han B. Lee, and Benjamin G. Zorn

Department of Computer Science
Campus Box 430

University of Colorado
Boulder, CO 80309-0430 USA

Telephone: (303) 492-4398
FAX: (303) 492-2844

E-mail: {cooperb,hanlee,zorn}@cs.colorado.edu

ProfBuilder: A Package for Rapidly Building Java Execution

Profilers∗

Brian F. Cooper, Han B. Lee, and Benjamin G. Zorn

Department of Computer Science
Campus Box 430

University of Colorado
Boulder, CO 80309-0430 USA

Telephone: (303) 492-4398
FAX: (303) 492-2844

E-mail: {cooperb,hanlee,zorn}@cs.colorado.edu

April 1998

Abstract

ProfBuilder is a collection of Java classes that provide an easy method for constructing Java execution
profiling tools. By instrumenting Java bytecode, a programmer can measure dynamic properties of
an application, such as bytecode count, number of memory allocations, cache misses and branches.
ProfBuilder provides an easy way to create customized tools to measure these and other properties
by writing a small amount of code. Although commercial profiling tools for Java available, there are
currently few, if any, Java profiler generators. In this paper, we describe the Prof Builder meta-tool as
well as two tools built using the package, a bytecode instruction profiler and a memory allocation profiler.
We also describe our experience using these tools on programs, including the overhead of instrumentation
and profiling. Finally, we discuss the results of using the instruction profiler to optimize the execution
time of a Java program, increasing its performance 15% with minor changes to the code.

∗This research is supported in part by NSF Grants CCR-9711398 and IRI-9521046.

1 Introduction

ProfBuilder is a software package for rapid construction of tools used to measure various aspects of Java

program behavior. The package provides a meta-tool for constructing custom profilers, as well as a data

structure for modeling program execution. A user can build a tool, instrument an application with a tool,

and gather dynamic execution data by writing just a few lines of code. This paper describes the design and

implementation of ProfBuilder and describes two specific examples of tools constructed using it.

The dynamic characteristics of a program determine how the program actually behaves during execution.

Examples of dynamic behavior include cache misses, branches taken, and memory allocated. Examination

of this behavior can provide insights into the efficiency of algorithms, allow identification of performance

bottlenecks, and enhance understanding of resource allocation issues. By gathering dynamic execution data,

a programmer can easily identify code and algorithms that can be optimized for speed, memory usage, and

correctness.

Java is an ideal domain for gathering and using dynamic execution data. The ease of programming in

Java coupled with the platform independent nature of the language has encouraged many developers to build

Java applications. However, as an interpreted language, many Java implementations are slow to execute. It is

therefore especially important that the code be as efficient as possible so that the performance is acceptable.

These factors suggest that Java applications are a good target for optimizations based on dynamic execution

data.

The concept of execution profiling has a long history and has been widely available in successful tools,

such as gprof [3], which generates a hierarchical profile of an application. ProfBuilder is a meta-tool for

building sophisticated tools in the style of gprof with a small amount of effort. ProfBuilder provides a

fast and easy way to create a variety of profiling tools with a small amount of code. ProfBuilder uses the

Bytecode Instrumenting Tool (BIT) invented by Lee and Zorn [8, 7] to instrument compiled Java programs.

The central data structure of ProfBuilder is the Calling Context Tree (CCT) [1], which is used to model

the execution of an application and to store arbitrary measurements of dynamic behavior, such as branch

outcomes or memory allocations.

In this paper we describe the CCT, BIT, ProfBuilder, and two tools created using ProfBuilder: IProfTool

(a bytecode instruction profiler) and MProfTool (a memory allocation profiler). We discuss performance

issues related to using the tools to instrument programs and show data on various Java applications. We

also discuss the results of using IProfTool to optimize JLex [2], a lexical analyzer generator. An examination

of the bytecode instruction profile for JLex allowed us to identify a significant performance bottleneck, and

upon reimplementation of a single procedure, the execution time of the application was cut by 15%.

This paper is organized as follows. Section 2 describes the CCT and BIT in more detail. Section 3 provides

a demonstration of one CCT profiling tool, the IProfTool, and walks through the process of building tools,

1

A

B

D

E

C

F

Figure 1: A sample call graph.

instrumenting programs and collecting data. Section 4 describes how profiling tools are built in more detail,

and Section 5 describes the implementation of the CCT. Section 6 describes experimental experience using

the CCT profiling tools to instrument various programs, and Section 7 describes related work. In Section 8,

we present our conclusions.

2 Background

In order to fully understand ProfBuilder, it is first important to understand its two underlying technologies,

the CCT and BIT. Section 2.1 describes the Calling Context Tree, and Section 2.2 describes BIT.

2.1 Calling Context Tree

Ammons, Ball and Larus [1] describe three data structures for recording the runtime behavior of programs,

the dynamic call graph, the dynamic call tree, and the new structure they propose, the Calling Context

Tree. In a dynamic call graph, each subroutine is represented as a vertex, and calls are represented as edges.

The graph compactly represents the dynamic structure of the program. In fact, the compactness is one of

the major advantages of the call graph; the number of nodes is equal to the number of distinct subroutines.

Thus, deep recursion chains or repeated invocations of the same procedure do not require any more space.

Unfortunately, this benefit comes at a price. A great deal of information is lost about any call chains longer

than two routines. For example, Figure 1 shows one example call graph. In the graph, procedures B and C

both call procedure D, which in turn calls procedures E and F. From this graph, it appears that the call chains

BDE, BDF, CDE and CDF all occurred during program execution. However, if D only calls E upon invocation

2

from B, the call chain BDF never really occurs. This information is lost in the call graph, since it only records

the ancestors and descendents of each subroutine, and not actual existent call chains.

This information loss does not occur with the second data structure. The dynamic call tree preserves

all information about the call structure of a program. A call tree has vertices that represent individual

invocations of routines. Thus, the same routine invoked five times will be represented as five nodes in the

tree. This structure preserves the most information, however, it has a significant disadvantage in that it

requires a great deal of space for storage. Any programs with significant recursion or numerous subroutine

calls within loops would certainly strain the memory of the computer that stores the tree.

The third data structure, the Calling Context Tree, captures the advantages of the call graph and the

call tree while attempting to avoid their disadvantages. The CCT is similar to the dynamic call tree except

that vertices represent individual contexts rather than individual procedure activations. A context is a

procedure coupled with the call chain that resulted in the call to that procedure. Thus, repeated invocations

of a procedure are stored in the same node as long as the call stack is the same each time. In addition, a

recursive call is represented as a backedge, so that long recursion chains are compactly stored as a loop in the

tree. Every unique call path is represented by a distinct node in the tree, thus providing more information

than the call graph, while avoiding the memory requirements of the dynamic call tree.

The usefulness of the CCT lies in the ability of a programmer to associate arbitrary metrics with nodes in

the tree. For example, in a specific context, a program can cause a number of cache misses, and this number

can be attached to the CCT node representing that context. Alternately, the number of branches taken

or memory allocations in the context can also be attached to a CCT node. Because any measurement of

dynamic behavior can be connected to nodes representing contexts, it is easy to relate the dynamic context

to the observed program behavior.

2.2 Bytecode Instrumenting Tool (BIT)

BIT is a library of Java classes that allow instrumentation of Java Virtual Machine (JVM) class files for the

purpose of extracting measurements of their dynamic behavior. BIT was built based on the observation that

being able to create customized tools to observe and measure the run-time behavior of programs is valuable

for many tasks including program optimization and system design.

BIT is one of the binary editing or executable editing tools that offer a library of routines for modifying

executable files. Other tools in this group include the OM system [12], EEL [5], and ATOM [11]. These

tools operate on object codes for a variety of operating systems and architectures while BIT works on JVM

class files.

BIT hierarchically decomposes the JVM bytecodes in a class file into different entities including methods,

basic blocks and bytecode instructions, and provides facilities for navigating through these entities. Moreover,

3

Analysis methods

(Class files)
User Program

Bytecode
Instrumented

Program Output

Profile Data Prof Out

BIT

ProfTool

Custom tool

Program Input

Output

Graphical
Profile

Figure 2: The instrumentation and data collection process. Rectangles represent components of the ProfBuilder

package, ovals represent user supplied inputs, and rounded rectangles represent outputs.

BIT allows the user to insert calls to analysis routines before and after each one of these entities. Using BIT,

users can create customized tools that can be used to extract specific dynamic information about the JVM

class files by writing instrumentation code, which specifies how to insert calls (typically by iterating through

certain entities and deciding whether to add before or after each of these). In addition to the instrumentation

code, users write analysis code that is invoked as a result of instrumentation and specifies what computation

or measurements are to be carried out when the program is run. For example, the operations performed

might include collecting profile information during program execution and writing the profiles to a file when

the program completes.

One important property of the instrumentation that is added using BIT is that the analysis routines do

not have any semantic effect on the instrumented program. BIT is the first framework that allows users

to create customized tools to analyze JVM bytecodes quickly and easily. Furthermore, because BIT works

on bytecodes, instrumentation works on programs written in any language that can be compiled into JVM

bytecodes and does not require that the program source be available.

3 Using ProfBuilder to Create Profiling Tools

ProfBuilder provides a set of classes that are used to create profiling tools. The complete system is illustrated

in Figure 2. As the figure illustrates, the core of any tool is class ProfTool, which selects class files for

instrumentation and inserts calls into the classes to accomplish the construction of the Calling Context Tree.

After the class files of the user program have been instrumented, the program is run on the inputs of interest,

and in addition to generating its original output, the instrumentation also generates profile data. This profile

data is essentially an externalized version of the Calling Context Tree that can be visualized in a number of

4

different ways. Bundled with ProfBuilder, we provide ProfOut, which is a program that presents a text-based

visualization of this data as illustrated in this paper. Other more sophisticated graphical visualizations are

also possible.

In order to build a new tool, a user simply has to create a subclass of ProfTool and override one function,

instrumentOneClass. When the tool runs, it iterates through a set of class files in a directory, instrumenting

each one to build the CCT and then calling instrumentOneClass to insert tool-specific instrumentation.

ProfBuilder also includes class CallingContextTree, a Java implementation of the CCT. This class

allows a user to define how many different metrics can be stored at each node in the tree, and provides

operations for building the tree based on the call stack. These operations are invoked during the execution

of the application by the instrumented code. When the application exits, a record of the tree and the

recorded metric values are saved in a data file.

Using this framework, it is possible to build a variety of tools. This section illustrates the process

of building and using profiling tools by describing one such tool, a Java bytecode instruction profiler called

IProfTool. IProfTool counts the number of bytecode instructions executed in each context; this information

can be used to determine which contexts are incurring the most overhead in terms of execution time.

3.1 Building the instruction profiler

CCT profiling tools must do two things. First, they must instrument the program to build the CCT during

program execution. Second, they must instrument the program to collect useful data about the execution.

The first task is performed in the same way for all profiling tools using the CCT. For this reason, the

functionality has been encapsulated in the ProfTool class, the base class from which all other profiling tools

are descended. It provides the interface that allows the user to specify a set of class files to be instrumented,

loads each class file into a BIT ClassInfo structure, and inserts the necessary calls to build the tree. Thus,

the first step in building a tool is simply to declare a class that extends ProfTool.

This extension class performs the second task, which is gathering and collecting the specific information

of interest at runtime. In our example, the bytecode instruction profiler, IProfTool, gathers information

about the number of bytecodes executed in each context. In order to accomplish this, the tool consists of

two parts. The first part, shown in Figure 3, is the instrumentation component of the profiler. It consists

of two methods, main and instrumentOneClass. main is the entry point for the program. It instantiates

a new tool, and then calls instrumentClasses, a method inherited from ProfTool. instrumentClasses

takes as a parameter a pointer to the command line arguments, and parses those arguments to find the

directory containing the class files to be instrumented as well as the directory to place the instrumented files

in. This method loads each class file, and then calls instrumentOneClass, the second method in Figure 3.

instrumentOneClass is called for every class being instrumented, and it is here that IProfTool performs the

5

public class IProfTool extends ProfTool {

public static void main(String[] argv) {

IProfTool ipt=new IProfTool();

ipt.instrumentClasses(argv,2);

}

public void instrumentOneClass(BIT.highBIT.ClassInfo ci) {

nameMetric(ci,1,"Instructions");

for (Enumeration e=ci.getRoutines().elements(); e.hasMoreElements();) {

BIT.highBIT.Routine routine= (BIT.highBIT.Routine) e.nextElement();

for (Enumeration f=routine.getBasicBlocks().elements();

f.hasMoreElements();) {

BIT.highBIT.BasicBlock bb=(BIT.highBIT.BasicBlock)f.nextElement();

bb.addBefore("IProfTool", "trackInstructions", String.valueOf(bb.size()));

} //end of basic blocks iteration

} //end of routine iteration

}

}

Figure 3: The instrumentation component of IProfTool.

public static void trackInstructions(String count) {

CCT.AddToMetric(1,Integer.parseInt(count,10));

}

Figure 4: The analysis component of IProfTool.

tool-specific work. The purpose of instrumentOneClass is to navigate all the basic blocks in the program

being instrumented and insert calls to the analysis routine, trackInstructions, before each basic block is

executed. In the example, this navigation is accomplished using the BIT operations getRoutines, an iterator

that returns successive routines in the class file; and getBasicBlocks, an iterator that returns successive

basic blocks in each routine. The call to the bb.addBefore method instructs BIT to add a call to the

routine trackInstructions before the program executes the current basic block. The parameter passed to

trackInstructions is the size of the current basic block (returned by the call to bb.size) converted to a

string.

The profiler consists of one analysis routine, trackInstructions, shown in Figure 4. The instrumentation

phase inserts calls to this method into the bytecode of the instrumented classes, and these calls pass the

number of bytecodes in the basic block to the analysis routine. The routine adds that number to the metric

for the current calling context. This context is stored in CCT, which is the calling context tree member data

constructed by ProfTool. In this way, by calling AddToMetric, the metric data is automatically associated

with the current context.

6

import java.io.*;

class Test {

public static void main(String[] argv) {

System.out.println("main()");

for (int i=0; i<10; i++)

A();

}

public static void A() {

System.out.println("A()");

for (int i=0; i<10; I++) {

B();

C();

B();

}

}

public static void B() {

System.out.println("B()");

D();

}

public static void C() {

System.out.println("C()");

D();

}

public static void D() {

System.out.println("D()");

}

}

Figure 5: Example program.

The correct functioning of IProfTool is dependent on the correct interaction between the instrumentation

and analysis components of the tool. The instrumentation places calls to the analysis routines in the

appropriate places, and the analysis routine collects the data. The ProfTool functionality performs the other

tasks related to instrumentation and analysis, including writing out the instrumented class file, building the

CCT, and writing out the CCT when the program exits.

3.2 Instrumenting a program

Once the profiling tool is built, the next step is to instrument the program to be studied. Figure 5 lists a

very simple program that will illustrate this process. Figure 6 shows the program’s static call graph. This

program calls its methods A, B, C, and D several times. Note that there are two different paths from A to D,

7

A

B C

D

Figure 6: The call graph of the example program

and the path {A, B, D} is taken twice as often as {A, C, D}. This difference will appear in the output from

the CCT and profiling tool.

In order to instrument this program, it is first compiled with a Java compiler, and the class file it produces

is stored in a directory (in this example, called source). The bytecode instruction profiling tool is then run on

the compiled bytecode, and the result stored in another directory (called dest) with the following command

that invokes the Java interpreter:

java IProfTool source dest

The tool automatically instruments every routine of every class file in the source directory.

3.3 Gathering profile data

The instrumented code is now ready for data collection. Since the analysis methods of the IProfTool class

will be called by the instrumented class files, it is important that the directory containing IProfTool.class

be in the CLASSPATH of the environment. In order to collect data, the program is run normally,

java Test

and when the execution is finished, the file Test.Prof is created in the dest directory. This file is a serialized

Calling Context Tree and can be loaded by another program using the appropriate CallingContextTree

method.

3.4 Viewing the data

The data that has been gathered can be displayed in any appropriate format. We have written a tool

that loads this data and displays it graphically by showing the structure of the tree as well as a histogram

indicating the value of each metric. The program, ProfOut, is run with the following command line:

java ProfOut Test.PROF

8

and writes the output shown in Figure 7 to stdout. The section of the output entitled “Total Metrics” shows

the sum for all of the metrics over the entire execution of the program. The “Metrics local to procedures”

section displays values of metrics for each context in the program, while the “Metric totals for subtrees”

section sums the metrics for each subtree and displays the sum at the node that roots that subtree.

The output captures the structure of the Calling Context Tree as well as the values of the metrics at

each context. On the left side of the diagram is the numerical value of the metric for each context, with

a horizontal bar that graphically displays that value. The length of the bar represents the value for each

context as a fraction of the maximum value for any context. The right of the output indicates the context

in which that metric data was gathered. Specifically, the indentation is used to indicate the caller/callee

relationship; children of the same parent are aligned at the same indentation. For example:

parent

child1

child2

The output also displays any recursion. Because the CCT handles recursion by introducing backedges into

the tree, the recursive child of a function is represented as a pointer to the previous node for that function

in the tree. The display indicates the recursion with an R:, as in

parent

R: parent

The display does not traverse the backedge, and merely indicates that it exists. Thus, if parent recursively

calls itself to a depth of ten, this is indicated as ten calls to parent rather than a display with the word

“parent” printed ten times.

The output in Figure 7 indicates that the number of calls to D in the context {main, A, B, D} is twice as

large as the number of calls to D in the context {main, A, C, D}, as indicated by the larger bars on the left

hand side for that context as well as a larger value for the metric (indicated in parentheses) on the left of the

display. This conclusion is consistent with the prediction that we made earlier. The output also indicates

that the largest numbers of bytecode instructions were executed in the B function in the context {main, A,

B}.

4 Building Tools

ProfBuilder is designed to allow an easy interface to the CCT data structure and rapid construction of

profiling tools. It provides an API that allows users to build and store information in the tree. By extending

9

Total metrics

Calls: 611

Instructions: 3560

==

Metrics local to procedures

Calls

(1) | Test.main

(10) ** | Test.A

(200) **| Test.B

(200) **| Test.D

(100) ******************** | Test.C

(100) ******************** | Test.D

0 200

Instructions

(60) ** | Test.main

(800) ******************************** | Test.A

(1000) **| Test.B

(800) ******************************** | Test.D

(500) ******************** | Test.C

(400) **************** | Test.D

0 1000

==

Metric totals for subtrees

Calls

(611) **| Test.main

(610) *************************************** | Test.A

(400) ************************** | Test.B

(200) ************* | Test.D

(200) ************* | Test.C

(100) ****** | Test.D

0 611

Instructions

(3560) **| Test.main

(3500) *************************************** | Test.A

(1800) ******************** | Test.B

(800) ******** | Test.D

(900) ********** | Test.C

(400) **** | Test.D

0 3560

Figure 7: IProfTool output for example program

10

class ProfTool, numerous custom tools can be constructed. This section describes in detail the issues related

to building arbitrary tools using ProfBuilder.

4.1 ProfTool API

Class ProfTool provides a set of methods that are common to all profiling tools built with ProfBuilder.

Figures! 8 lists the important parts of the ProfTool class API. The most important functions are the ones

that profiling tools can override to create the individual tool. The instrumentOneClass method is called for

every class that is instrumented by the tool. In the ProfTool class, this method does nothing, so an instance

of class ProfTool could be used to build the CCT without any extra profiling functionality. Subclasses of

ProfTool override the instrumentOneClass method to instrument each class, inserting calls to the analysis

routines unique to that tool. A user can completely specify a tool by simply overriding this one function

and a main function to instantiate the tool. The main function, after creating an instance of the tool, calls

instrumentClasses to instrument all classes specified in the path in the command line, outputting modified

class files to the path in the command line and generating a CCT with the number of metrics specified by

the argument nummetrics. This number includes metric 0, which is used by class ProfTool to count the

number of calls to each procedure.

ProfTool also introduces flexibility in the form of other methods that can be overridden. The StartUp

method is called before any classes are instrumented, and a user can override this function to initialize the

tool in any way necessary.

A tool can also have command line switches. By default, the ProfTool class provides the following

standard switches:

• -c to activate instrumentation to distinguish between distinct call sites (described in Section 4.3).

• -x to search the bytecode for System.exit calls and instrument them to save profile data before exiting

the program. The default is to save the data only when the main function exits.

• -v to activate verbose mode instrumentation.

These switches are parsed in the instrumentClasses method, which should be passed the entire com-

mand line array argv. For each switch in the command line, ProfTool attempts to parse it as -c, -x or -v.

If it cannot, it calls the method parseOneArgument. The subclass of ProfTool can override this method to

attempt to parse argv[index], returning the index of the next unparsed argument if successful or index if

not. This allows the subclass to add any additional switches as necessary.

If the tool cannot parse the command line switches, or if there are two few arguments on the command

line (the minimum is a source path and destination path) then the tool calls outputUsageMessage. ProfTool

11

public class ProfTool {

protected static CallingContextTree CCT=null;

//The data member holding the Calling Context Tree

protected boolean InstrumentCallSites=false;

//Distinguish between call sites on true

protected boolean Verbose=false;

//Output messages during instrumentation

protected boolean InstrumentExit=false;

//Search bytecode for System.exit and instrument it to

//save the profile data before exiting

public static void main(String argv[]);

//The entry point of the tool program

public void instrumentClasses(String argv[], int nummetrics);

//Search through the path specified in the argv command line, selecting

//class files, and instrumenting each file, outputting to the path

//specified in argv. nummetrics specifies the number of metrics

//recorded by the tool

public boolean parseCommandLine(String argv[]);

//Parse the tool command line for switches

public void nameMetric(BIT.highBIT.ClassInfo ci, int which, String name);

//Associate a metric number with a name in a particular class file

public void addBeforeMain(BIT.highBIT.ClassInfo ci, String classname,

String methodname, Object arg);

//Add instrumentation code before the Main function to be executed upon

//instrumented application startup

////////Methods that specific tools override /////////////////////

int parseOneArgument(String argv[], int index);

//Tools override this function to parse a single argument

//at argv[index]. Returns a value > index which is the next

//argument to be parsed, or a value == index to indicate

//no value was parsed

public void instrumentOneClass(BIT.highBIT.ClassInfo ci);

//Tools override this function to instrument a single class

void outputUsageMessage();

//Message to output to the user who has invoked the tool

//with an incorrect command line argument

void StartUp();

//Called when any ProfTool descendent starts up, before any

//instrumentation occurs

}

Figure 8: The API for the ProfTool Base Class

12

provides a standard usage message, but subclasses should override this function to provide the tool user with

any necessary additional information.

4.2 CallingContextTree API

The CallingContextTree class provides three types of methods for users: constructors, tree building, and

metrics methods. Figure 9 lists the complete API. Users can construct the tree as an empty structure using

the CallingContextTree constructor. The parameter determines the number of metrics in the tree. The

inputTree method reads in the tree from a serialized ObjectInputStream. The tree can be written out to

an ObjectOutputStream using the Output method. This can be done at arbitrary times, and the tree can

be saved in different files by specifying different ObjectOutputStreams. In this way, a user could save a

snapshot of the CCT at a particular point during execution. By default, ProfTool writes out the tree when

the instrumented program exits.

The tree is built using the Enter and Exit methods. When a routine is called, it should be instrumented

to invoke Enter with the name of the routine as the parameter. The CallingContextTree will generate a

new connection in the tree from the parent routine to the child routine if such a connection does not already

exist. The routine is then instrumented to call Exit upon exiting. This is necessary to preserve the internal

state of the tree. Since these operations are performed by ProfTool, all tools that extend ProfTool will

automatically encapsulate this functionality.

The CallingContextTree class also provides a set of methods for dealing with metrics. The user can

create as many metrics as the memory of the system can support, and decides upon the assignment of each

metric to a meaningful quantity (such as 0: Calls, 1: Instructions, etc.). Each metric can be named for later

reference by the NameMetric method, which associates a string name with a numeric metric. In turn, the

name of a metric can be found using the GetMetricName method.

The values of metrics are changed using AddToMetric, which adds a positive or negative value to a metric,

or SetMetric which sets the value of a metric. These functions define the interface that allow the profile

tool to manipulate the metrics associated with the currently active calling context. In addition, users can

manipulate detail metrics, which allow the information for a metric to be further subdivided into categories.

As an example of how to use detail metrics, consider that in IProfTool metric 1 is used to record the

number of bytecodes executed. Detail metrics could be used in this case to categories the instruction count

into memory instructions, arithmetic instructions, etc. AddToDetailMetric is used to increment the detail

metric associated with the current calling context. GetDetailMetric, GetTotalMetric and GetTreeMetric

return the current value of a detail metric, a total metric for the whole tree, and a metric tied to the current

tree node, respectively.

13

public class CallingContextTree implements Serializable

{

CallingContextTree(int _NumberOfMetrics);

//Constructor to create an empty tree. The number of metrics

//it can store at each node is specified by _NumberOfMetrics

public static CallingContextTree inputTree(ObjectInputStream instream);

//Loads a tree from an ObjectInputStream

public void Output(ObjectOutputStream outstream);

//Serialize the data structure on an ObjectOutputStream

public void Enter(String name);

//Enter a new procedure, creating a new node in the tree

//if necessary

public boolean Exit();

//Exit a procedure. Return true if it is

//the root of the tree that exited.

/////////////////METRICS////////////////////////////////

public int GetNumberOfMetrics();

//Return the number of metrics that can be stored at each node

public VariableList GetTotalDetails(int metricnumber);

//Get the total value of a metric summed over all contexts

public int GetTreeMetric(int metricnumber);

//Get the current value of a tree metric (a metric attached to a

//particular node)

public void AddToMetric(int metricnumber, int newvalue);

public void SetMetric(int metricnumber, int newvalue);

//Change the value of a metric

public int GetDetailMetric(int metricnumber, String metricname);

//Get the current value of a detail metric

public void AddToDetailMetric(int metricnumber, String metricname, int newvalue);

public void SetDetailMetric(int metricnumber, String metricname, int newvalue);

//Change the value of a detail metric

public void NameMetric(int metricnumber, String name);

//Associate a name with a metric

public String GetMetricName(int metricnumber);

//Get the name of a metric

}

Figure 9: The API for class CallingContextTree.

14

4.3 Recording call sites

In constructing a profile, it may be useful to distinguish calls to the same procedure from different call sites.

For example, if method A calls method B twice, each time from a different point in method A, then B has

been invoked from different call sites. For some purposes, these different activations should be regarded as

different calling contexts. The ProfTool class provides functionality for this distinction.

The member variable boolean InstrumentCallSites controls this process. When this variable is set to

true, ProfTool instruments procedures to record call site information. It does this by searching for invoke

bytecodes, and inserting a call to an analysis routine before each invoke. The analysis routine saves the call

site number for use by the CCT. The call site number is dependent only on the number of invoke bytecodes

in the routine; the first invoke is call site 1, the second is call site 2, and so on, even if they invoke different

routines. Thus, if A calls B from its third and fifth invoke bytecode, B will be stored in the CCT as B.3 and

B.5.

This functionality can be activated by setting the InstrumentCallSites variable to true inside a class

that descends from ProfTool by overriding the virtual StartUp method, which is called when the tool first

begins to execute. Alternately, the -c command line switch, which is parsed by ProfTool, can activate

the call site recording. This switch allows users of profiling tools to determine when they want call site

information.

4.4 Extending IProfTool to MProfTool

ProfTool contains the basic functionality that all tools will need to have, such as building the tree. IProfTool

contains extra functionality to count bytecodes. This extra functionality represents task-specific code that

makes each tool perform its specialized purpose. Instead of counting bytecodes, for example, the tool can

be designed to count only new bytecodes, creating a tool that counts object allocations and thus profiles the

memory allocation of the instrumented program. We built MProfTool, a memory allocation profiler, that

counts new bytecodes as well as newarray, anewarray, and multianewarray bytecodes.

The instrumentation part of MProfTool iterates through the class file, examining every bytecode. When

a new bytecode is found, a call to trackInstructions is inserted before the instruction, and the type of

bytecode (new, newarray, etc) is passed to the trackInstructions routine. This analysis routine increments

the appropriate metric (1: new, 2: newarray, 3: anewarray and 4: multianewarray).

MProfTool also records the types of objects allocated, which is done by static analysis of the bytecode.

The BIT package provides an Instruction.getOperandValue method that returns the operand of the

instruction. Since the operand of a new bytecode is an index into the class’s constant pool, it can be used to

15

newarray

Total details:

[char]: 113

[byte]: 1

[long]: 6557

[int]: 81

(0) | JLex/Main.main

(29) | JLex/CLexGen.<init>

| =>[char]: 29

(2) | JLex/CInput.<init>

| =>[byte]: 1

| =>[char]: 1

(4) | JLex/CSpec.<init>

| =>[char]: 4

(0) | JLex/CNfa2Dfa.<init>

...

(0) | JLex/JavaLexBitSet.get

(4994) ********************| JLex/JavaLexBitSet.<init>

| =>[long]: 4994

...(remaining output deleted)

Figure 10: Sample MProfTool output for JLex.

determine the name of the object allocated, and that name can be passed to IncDetailMetric, for example

as IncDetailMetric(1, "String") to record that a string was allocated by new (metric 1).

MProfTool is useful for understanding the memory allocation behavior of a program. Figure 10 shows

a portion of the output that resulted from using MProfTool to instrument the JLex application (described

further in Section 6). The figure indicates the output for the newarray instruction, which creates arrays of

primitive Java types. For each context (listed on the right) there is an associated number of calls to newarray

(listed on the left) along with a breakdown of the types of arrays created (under the name of the procedure

in which the allocation occurred). Thus, JLex/CInput.<init> called newarray twice, once to allocate an

array of byte and once to allocate an array of char. At the top of the diagram, the total number of arrays

of each type is listed. During this run, 113 char arrays were allocated, 6,557 long arrays were allocated, and

so on.

Other tools, such as a cache miss profiler or a conditional branch counter, can be built in similar ways.

The ProfTool class is used as a framework, and the appropriate places in the bytecode are instrumented to

call analysis routines that increment the appropriate metric.

16

5 Calling Context Tree Implementation

Although the Calling Context Tree data structure is designed to work with BIT in instrumenting programs, it

can also be used independently of BIT. That is, a program can use a CallingContextTree directly, without

also using BIT. This functionality can be useful for loading and manipulating a CCT that has been created

by an instrumented application. Here we describe the implementation of class CallingContextTree in Java.

A CallingContextTree is a collection of CallRecords. A CallRecord represents an invocation of a

routine in a particular calling context. It holds a representation of the name of the procedure, and references

to its parent in the tree as well as its children.

The CallRecord also stores metrics that are specific to a particular context. It has two kinds of metrics:

regular metrics and detail metrics. All call records have the same number of regular metrics, and these are

used to store basic information about the program. In the example in Section 3, the number of bytecodes

was stored in metric number 1. ProfTool reserves metric 0 to count the number of calls to each procedure.

There are also detail metrics, which record more specific details on a CallRecord by CallRecord basis. For

example, in MProfTool, which counts objects allocated by a new bytecode, detail metrics are used to store

the types of objects allocated. A particular routine may have called 50 new instructions, and in doing so,

allocated 30 strings, 10 integers and 10 vectors.

The CallRecord has several static members. A dictionary stores all of the names of the procedures and

maps them to integers. Individual call records store the name of the associated procedure as an integer that

indexes into the dictionary. There is also a stack that is used as an internal copy of the call stack, with

CallRecords pushed and popped on the stack. This is necessary to determine the parent of the currently

called routine and to restore the CallRecord of that parent as the current call record when the routine exits.

The CallingContextTree provides an interface to the CallRecords that are linked in tree fashion. Thus,

it provides methods for tree construction, dealing with metrics, and loading and saving the tree to a file. It

also stores its own set of regular and detail metrics, which represent totals for the whole tree. Whenever a

metric is incremented in a particular context, it is also incremented in the total metrics.

6 Performance and Experience

This section describes the results of using IProfTool on a set of Java applications. Section 6.1 discusses

the overhead that results from the CCT profiling. Section 6.2 describes our experience using IProfTool to

optimize JLex, a lexical analyzer generator.

17

Uninstrumented Number of
Program Description Execution Class File Class Files

(secs) Size (Kb)
JLex Lexical analyzer generator 6.9 76.7 20
aster Asteroids game 14.7 18.6 7
espresso Java compiler 5.5 295.3 105
java cup Parser generator 1.6 117.6 41

Table 1: Overview of Applications Measured

Instrumented with ProfTool Instrumented with IProfTool
Time to Execution Class File Time to Execution Class File

Program Instr. Time (sec) / Size (Kb) / Instr. Time (sec) / Size (Kb) /
(sec) % Increase % Increase (sec) % Increase % Increase

JLex 6.0 35.8 / 421% 85.1 / 11.0 % 35.0 16.3 / 2290 % 108.8 / 41.9%
aster 1.2 15.4 / 5.0% 21.5 / 15.5 % 3.9 21.2 / 43.5% 26.3 / 40.8 %
espresso 25.9 141.5 / 2454% 340.5 / 15.3 % 106.4 289.3 / 5118% 422.5 / 43.1%
java cup 8.7 18.8 / 1058 % 141.8 / 20.6% 40.9 18.8 / 1059 % 176.9 / 50.4 %

Table 2: Overhead for running ProfTool and IProfTool on various programs. The values for ProfTool represent the

base overhead from constructing the Calling Context Tree. Additional instrumentation, such as counting bytecodes

(as IProfTool does) adds overhead.

6.1 Profiling overhead

Because IProfTool inserts calls to analysis routines at every basic block in a compiled bytecode, it can

add a significant amount of overhead to the running program. IProfTool was used to instrument several

programs in order to measure the overhead. These programs are JLex, a lexical analyzer generator [2], aster,

an Asteroids space game (also used in [10]), espresso, a Java compiler [9], and java cup, a “Constructor for

Useful Parsers” [4]. Table 1 summarizes each application, including execution time and compiled bytecode

size.

The applications were compiled and run using Sun’s JDK version 1.1.5 on a machine with a 233 Mhz

Pentium II with 64 MB of RAM. The JDK and applications were run under Windows NT version 4.0. All

data presented is the average over 10 runs of each application. The variation in execution time between runs

was insignificant.

Table 2 summarizes the overhead for instrumenting and running ProfTool and IProfTool on these

applications. The table lists the time to instrument each application, the execution time and class file

size of the instrumented program, and the corresponding increase for execution time and file size over the

18

uninstrumented version. ProfTool builds the CCT only; therefore, the ProfTool data represents the profiling

overhead independent of any specific measurements, such as bytecode counting in IProfTool.

The most significant disadvantage of using ProfBuilder is the increase in program execution time. As

Table 2 indicates, the overhead for building the CCT is very high (over 2000%) for large programs such

as espresso, and the additional instrumentation in IProfTool causes even more overhead. Optimizing the

CallingContextTree methods, which perform most of the runtime profiling computation, can reduce this

overhead. This would reduce the time spent inside CallingContextTree methods, but little can be done

to reduce the number of calls to these methods, since a call is generated for every procedure call in the

instrumented program and, in the case of IProfTool, for every basic block.

Several implementation improvements would significantly decrease the overhead of ProfBuilder. First, the

current version of BIT only allows a single argument to be passed to the analysis routines. Future releases will

eliminate this constraint. Second, as in our examples, often the analysis routine, such as trackInstructions,

is a small procedure, and could be inlined with better compilation technology. Finally, as all the code in

ProfBuilder is itself written in Java, it will benefit substantially from better Java compilers.

6.2 JLex optimization

In order to test how useful tools, such as IProfTool, built using ProfBuilder could be in helping to optimize

programs, we attempted to optimize the performance of a program we had not seen prior to instrumenting

it. For the program, we chose JLex, a lexical analyzer generator for Java written by Elliot Berk and similar

to lex [2]. This program is an example of a moderately sized, publicly distributed Java application written by

an outside party. We were able to instrument the program and collect data without any prior understanding

of the source code or underlying algorithms.

The original application required an average of 6.86 seconds of execution time for a sample grammar

that is included in the JLex distribution. The program was instrumented with IProfTool, and data was

collected. A portion of the output is displayed in Figure 11. The output clearly indicates that a large number

of bytecodes (13,472,313) were executed in one calling context, the context for sortStates. Since the total

number of instructions executed was 24,526,004, this one context accounted for over half of the instructions

executed in the program.

Examination of the JLex source code revealed that the sortStates method used a straight selection

sort, an algorithm with an average running time of O(n2). In order to optimize this code, a merge sort

algorithm (running time: O(n lgn)) was substituted. The merge sort version had an average running time

of 5.81 seconds for the same sample grammar. This represents a 15.4% reduction in execution time from the

reimplementation of a single routine in the program. Clearly, the information provided by the IProfTool

was valuable in the optimization of JLex.

19

Total metrics

Instructions: 24526011

==

Metrics local to procedures

Instructions

(7) | TimeRun.main

(14) | JLex/Main.main

... (detail omitted)

(798) | JLex/JavaLexBitSet.set

(48) | JLex/JavaLexBitSet.resize

(12) | JLex/JavaLexBitSet.nbits2size

(3499882) ***** | JLex/CNfa2Dfa.e_closure

(1457610) ** | JLex/JavaLexBitSet.set

(13472313) ********************| JLex/CNfa2Dfa.sortStates

(2888) | JLex/CNfa2Dfa.add_to_dstates

(988) | JLex/CAlloc.newCDfa

...(remaining output omitted)

Figure 11: A portion of the IProfTool output from JLex.

20

7 Related Work

The data structure and algorithms for the Calling Context Tree were described by Ammons, Ball and

Larus [1]. The data structure was written as described in their paper, with a few modifications for the Java

environment, specifically using arrays of integers instead of hardware counters to record metrics.

Digital Equipment Corporation developed ATOM [11], or Analysis Tools using OM, for instrumenting

binaries on DEC machines. Lee and Zorn developed BIT [7, 8], a Java tool similar to ATOM. The Calling

Context Tree tools use BIT to instrument the bytecode. Both ATOM and BIT allow the user to construct

tools that monitor dynamic program execution by inserting calls to analysis routine directly into the compiled

code.

Profiling tools originated with gprof [3], a dynamic execution profiler. gprof describes path profiles by

describing the caller/callee connection between two routines. From these connections, the structure of the

call graph is inferred. Descendents based on gprof include HiProf [13], a commercial hierarchical profiling

tool for the x86 architecture that inspired our IProfTool, mprof [14], a memory allocation profiler that is

the basis for the MProfTool described here, and cprof [6], a cache profiler. Each of these tools can be used to

profile programs written in languages like C, but are not implemented for Java bytecode. Sun’s JDK version

1.1.5 provides a profiling mechanism for Java programs by specifying the -prof option to the interpreter.

However, this profile only provides information about Java library functions and not the application being

run. Moreover, there are many profiling tools available, but few, if any, profiler generators. ProfBuilder is

the only mechanism we are aware of that provides CCT profiling and the ability to rapidly construct new

tools.

The CCT-based tools IProfTool and MProfTool differ from gprof and related tools in that they record

the entire call path to each routine, and distinguish between different paths to the same routine. Thus, gprof

can generate a dynamic call graph, but in a call graph, different paths merge at points where they share

the same routine. Even if two paths share the same routine in a calling context tree, these paths are not

merged, providing more detailed information about the dynamic behavior of the program.

8 Summary

We have implemented ProfBuilder, a software package for rapidly generating Java profiling tools. This

package includes an implementation of a Calling Context Tree data structure in Java. Using the BIT

library, we have constructed tools that instrument Java bytecode to construct a CCT and store metric data

in it. Using CCT-based profiling tools, including the bytecode instruction profiler and memory allocation

profiler, provides a more complete picture of the dynamic characteristics of a program. These characteristics

include the efficiency of algorithms, excessive memory usage, and possible optimizations of the program, as

21

our experience with JLex demonstrates. ProfBuilder can be used to build a variety of tools to study branch

prediction, caching algorithms, the differences in code produced by different Java compilers, and other details

of dynamic program execution.

This implementation of the CCT and profiling tools not only demonstrates the effectiveness of using the

CCT to profile programs, but the feasibility of using it to profile Java programs given the facilities of BIT.

As the number of programs implemented in Java grows and the need for efficiency in execution continues to

be relevant, the CCT profiling tools will provide a useful mechanism for understanding and optimizing these

applications.

ProfBuilder is available for distribution by contacting the authors.

Acknowledgements

This research is supported in part by NSF Grants CCR-9711398 and IRI-9521046.

References

[1] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hardware performance counters with flow and
context sensitive profiling. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI-97), volume 32, 5 of ACM SIGPLAN Notices, pages 85–96, New York, June 1997.
ACM Press.

[2] Elliot Berk. JLex: A lexical analyzer generator for Java. Available at
http://www.cs.princeton.edu/~appel/modern/java/JLex.

[3] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. An execution profiler for modular programs.
Software—Practice and Experience, 13:671–685, 1983.

[4] Scott Hudson. Java based constructor of useful parsers (CUP). Available at
http://www.cc.gatech.edu/gvu/people/Faculty/hudson/java cup/home.html.

[5] James R. Larus and Eric Schnarr. EEL: Machine-independent executable editing. In Proceedings of the 1995
ACM SIGPLAN Conference on Programming Language Design and Implementation, pages 291–300, La Jolla,
CA, June 1995.

[6] Alvin R. Lebeck and David A. Wood. Cache profiling and the SPEC benchmarks: A case study. Computer,
27(10):15–26, October 1994.

[7] Han Bok Lee. BIT: Bytecode instrumenting tool. Master’s thesis, University of Colorado, Boulder, Department
of Computer Science, University of Colorado, Boulder, CO, June 1997.

[8] Han Bok Lee and Benjamin G. Zorn. BIT: A tool for instrumenting Java bytcodes. In Proceedings of the 1997
USENIX Symposium on Internet Technologies and Systems (USITS97), pages 73–82, Monterey, CA, December
1997. USENIX Association.

[9] Martin Odersky, Michael Philippsen, and Christian Kemper. EspressoGrinder. Available at
http://wwwipd.ira.uka.de/~espresso.

[10] Theodore H. Romer, Dennis Lee, Geoffrey M. Voelker, Alec Wolman, Wayne A. Wong, Jean-Loup Baer, Brian N.
Bershad, and Henry M. Levy. The structure and performance of interpreters. In Proceedings of the 7th Interna-
tional Conference on Architectural Support for Programming Language and Operating Systems (ASPLOS VII),
pages 150–159, Cambridge, MA, October 1996.

22

[11] A. Srivastava and A. Eustace. ATOM: A system for building customized program analysis tools. In Proceedings
of the SIGPLAN’94 Conference on Programming Language Design and Implementation, pages 196–205. ACM,
1994.

[12] Amitabh Srivastava and David W. Wall. A practical system for intermodule code optimizations at link-time.
Journal of Programming Languages, March 1993.

[13] Inc. TracePoint. Hierarchical profiling white paper. Available at http://www.tracepoint.com/frames.html, 1997.

[14] Benjamin Zorn and Paul Hilfinger. A memory allocation profiler for C and Lisp programs. In Proceedings of the
Summer 1988 USENIX Conference, pages 223–237, San Francisco, CA, June 1988.

23

