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ABSTRACT
Digital archives can best survive failures if they have made
several copies of their collections at remote sites. In this
paper, we discuss how autonomous sites can cooperate to
provide preservation by trading data. We examine the de-
cisions that an archive must make when forming trading
networks, such as the amount of storage space to provide
and the best number of partner sites. We also deal with
the fact that some sites may be more reliable than others.
Experimental results from a data trading simulator illus-
trate which policies are most reliable. Our techniques focus
on preserving the \bits" of digital collections; other services
that focus on other archiving concerns (such as preserving
meaningful metadata) can be built on top of the system we
describe here.
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1. INTRODUCTION
Digital materials are vulnerable to a number of di�erent

kinds of failures, including decay of the digital media, loss
due to hackers and viruses, accidental deletions, natural dis-
asters, and bankruptcy of the institution holding the collec-
tion. Archives can protect digital materials by making sev-
eral copies, and then recover from losses using the surviving
copies. Copies of materials should be made at di�erent, au-
tonomous archives to protect data from organization-wide
failures such as bankruptcy. Moreover, cooperating archives
can spread the cost of preservation over several institutions,
while ensuring that all archives achieve high reliability. Sev-
eral projects [4, 12, 24, 10] have proposed making muti-
ple copies of data collections, and then repeatedly checking
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those copies for errors, replacing corrupted materials with
pristine versions.
A key question for a digital archive participating in a repli-

cation scheme is how to select remote sites to hold copies of
collections. The archivist must balance the desire for high
reliability with factors such as the cost of storage resources
and political alliances between institutions. To meet these
goals, we propose that archives conduct peer-to-peer (P2P)
data trading: archives replicate their collections by contact-
ing other sites and proposing trades. For example, if archive
A has a collection of images it wishes to preserve, it can
request that archive B store a copy of the collection. In re-
turn, archive A will agree to store digital materials owned by
archive B, such as a set of digital journals. Because archive
A may want to make several copies of its image collection,
it should form a trading network of several remote sites, all
of which will cooperate to provide preservation.
In previous work [5], we have studied the basic steps in-

volved in trading and the alternatives for executing these
steps. For example, in one step a local site selects a trading
partner from among all of the archive sites. This requires
the local site to choose some strategy for picking the best
partner. In another step, the local site asks the partner
to advertise the amount of free space it is willing to trade.
Then, the local site can determine if the partner will trade
enough space to store the local site's collections. We sum-
marize our conclusions from this previous study for these
and other issues in Section 2.2 below.
In this paper, we discuss how a digital archive can use

and extend these basic trading building blocks to provide
preservation services. Archives must take into considera-
tion real-world issues that impact the decisions they make
while trading. For example, an archive may have budgetary
constraints that limit the amount of storage it can provide.
Storage resources cost more than just the expense of buy-
ing disk space. In particular, an archive must also provide
working servers, administrators to maintain those machines,
network access to the servers, and so on. Here, we study how
the amount of storage a site provides impacts its ability to
trade and the number of copies it is able to make.
Another issue that archives must confront is that they

may choose trading partners for a number of reasons be-
yond simply achieving the highest reliability. For example,
the libraries of a particular state university system may be
directed to cooperate by the university's board of regents.
We call such a grouping of sites a trading cluster. The clus-
ter may be large enough to serve the needs of its member
sites, or sites may need to seek binary inter-cluster links



with other archives to expand their trading networks. We
examine the ideal cluster size as well as the number of inter-
cluster links that must be formed to compensate for a too-
small trading cluster.
A site also may have to deal with trading partners that are

more or less reliable than itself. For example, a very reliable
site must decide whether to trade with all archives or only
with those that also have high reliability. We examine these
issues to determine how sites can make the best decisions in
the face of varying site reliabilities.
Other researchers have examined using redundancy to pro-

tect against failures in systems such as RAID [21], replicated
�le systems [8], and so on. Our work is similar to these sys-
tems in that we use replication, we balance resource allo-
cation and high reliability, and we attempt to ensure high
data availability.
Unlike these previous systems, our data trading scheme

is focused on respecting the di�erences between individual
digital archives, even as these archives cooperate to achieve
reliability. Thus, a primary concern of ours is site auton-
omy. Archivists should be able to decide who they trade
with, what types of collections they store and how much
storage they provide. Such local decisions are not as impor-
tant in a system such as RAID, in which a central controller
makes all of the decisions. Archives also may have di�ering
reliability goals, such that one archive is willing to expend
more resources and expects correspondingly higher reliabil-
ity in return. It may therefore be important to consider
di�erent policies for high and low reliability sites, such that
both kinds of sites can protect their data. Similarly, di�er-
ent archives may experience di�erent rates of failure, and
an archive may wish to take these failure rates into account
when replicating collections. An array of similar components
(such as RAID) does not face this issue. Finally, an archivist
has unique concerns that are not addressed in traditional
systems. It is often important to establish the provenance
of collections, and this task is di�cult if the collections are
moved from site to site frequently or without the archivist's
control. An archivist may also wish to keep collections con-
tiguous, so that they can be served to users as a complete
unit. Our trading mechanism is exible enough to address
all of these concerns, from autonomy to contiguous collec-
tions, while still providing a great deal of protection from
failures.
In this paper, we examine how a digital archive can pre-

serve its collections by forming and participating in P2P
trading networks. In particular, we make several contribu-
tions:

� We present a trading mechanism that can be used
by an archive to reliably replicate data. This mech-
anism is tuned to provide the maximum reliability for
the archive's collections, and can be extended if nec-
essary in consideration of individual archivists' needs
and goals.

� We identify how to con�gure an archive for trading by
examining the amount of storage that the site should
provide and the number of copies of collections a site
should try to make.

� We examine the impact of trading with remote part-
ners chosen for political reasons, as opposed to trading
with all archive sites. We also discuss the optimal trad-

ing network size, and examine when an archivist may
wish to seek out additional trading partners.

� We discuss how an archive might trade with sites that
have di�erent site reliabilities, or rates of failure, by
adjusting its trading policies to take these reliabilities
into account. We also discuss the importance of accu-
rately estimating the reliabilities of other sites.

In order to evaluate each of these issues, we have used a sim-
ulator that conducts simulated trading sessions and reports
the resulting reliability. Our concern is primarily in select-
ing remote sites for storing copies of archived collections.
Once trades have been made and collections are distributed,
archivists can use other existing systems to detect and re-
cover from failures, enforce security, manage metadata, and
so on. Other projects have examined these issues in more
detail [4, 22, 17, 23, 19]. It is also possible to enhance our
basic techniques to deal with digital objects which change
over time, or trades with sites that provide a specialized
service (such as storage for a fee). In ongoing work, we are
extending our model to provide negotiation for access ser-
vices (such as search) in addition to storage services. We are
also extending our model to deal with trades of other com-
modites, such as money or processing power, in addition to
storage space.
This paper is organized as follows. In Section 2 we discuss

the basic trading mechanism, as well as extensions to the
basic mechanism for trading networks of digital archives.
Section 3 presents evaluations of alternative trading policies
using simulation results. Section 4 discusses related work,
and in Section 5 we present our conclusions.

2. DATA TRADING
Data trading is a mechanism for replicating data to pro-

tect it from failures. In this section, we summarize the tech-
niques used in data trading. We also discuss the extensions
and enhancements to data trading that are needed to use the
mechanism for digital archives. A full discussion of the basic
data trading algorithm, as well as analysis of the tradeo�s
involved in tuning the algorithm, is presented elsewhere [5].

2.1 Archival services
Our model of a digital archiving service contains the fol-

lowing concepts:
Archive site: an autonomous provider of an archival stor-

age service. A site will cooperate with other autonomous
sites that are under the control of di�erent organizations to
achieve data replication. The focus of this paper is the deci-
sions made by a particular archive site; we refer to this site
as the local site.
Digital collection: a set of related digital material that

is managed by an archive site. Examples include issues of
a digital journal, geographic information service data, or
a collection of technical reports. Although collections may
consist of components such as individual documents, we con-
sider the collection to be a single unit for the purposes of
replication. Here, we assume that all collections are equally
important and require the same e�ort to preserve.
Archival storage: storage systems used to store digital

collections. Some of the storage, called the public storage,
is dedicated to remote sites that have concluded trades with
the local site, and is used to store collections owned by the
remote sites. An archive site must decide how much public
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Figure 1: Reliability example.

storage Ptotal to provide. Here, we assume that a site uses a
storage factor F , such that if the site has N bytes of archived
data, it purchases F �N total storage space. The site uses
N bytes of this space to store its own collections, and has
Ptotal = F �N �N extra space to trade away.
Archiving clients: users that deposit collections into the

archive, and retrieve archived data. When a client deposits
a collection at an archive site, that site is said to \own" the
collection, and takes primary responsibility for protecting it.
Trading network : a local site must connect to remote sites

and propose trades. In the general case, any site can connect
to any other site. In a digital archiving domain, it may be
more desirable to select a set of \trusted" sites to trade with.
This issue is discussed in more detail below.
Automation: The archive should operate as automatically

as possible, while allowing librarians or archivists to oversee
its operation and adjust its con�guration. Thus, an archiv-
ing site may automatically replicate copies of a digital col-
lection, but would do so according to the desired goals and
constraints important to the administrators.
These concepts are used to study the properties of a trad-

ing network primarily concerned with protecting the data
itself from loss. While we do not consider other archival
concerns (such as preserving access or establishing chain of
custody) for simplicity, our model can be extended to deal
with such concerns.
Each archive site can fail (lose data), and we model the

possibility of failures as a site reliability: a number which
indicates the probability that the site does not experience
data loss. Although site reliabilities may change over time,
here we assume for simplicity that reliabilities are constant.
Given site reliabilities and a placement of copies of collec-
tions at these sites, we can calculate two values:

� global data reliability: the probability that no collec-
tion owned by any site is lost.

� local data reliability: the probability that no collection
owned by a particular site is lost.

Thus, global data reliability measures the success of the
trading mechanism as a whole, while local data reliability
measures the success of decisions made by an individual site
participating in data trading. For example, consider Fig-
ure 1. This �gure shows three sites, each of which owns one
collection (shown boxed), while storing copies of collections
owned by other sites. Let us assume that the site reliability
of each site is 0.9, that is, each site has a ten percent chance
of experiencing data loss. In one possible scenario, sites B
and C fail but site A does not, while in another scenario,
none of the sites fail. We can calculate global data relia-

bility by examining all possible scenarios of sites failing or
surviving; in this case, there are eight possibilities. For each
scenario, we assign the score \0" if at least one collection is
lost, or \1" if no data is lost. Thus, in the scenario where
sites B and C fail, collection 2 is lost and we assign the score
0. We then weight each score by the probability of the sce-
nario; the situation where B and C fail but A does not will

occur with probability 0:1� 0:1� 0:9 = 0:009. Finally, we
sum the weighted scores to �nd the expected probability of
data loss. The distribution of collections shown in Figure 1
has a global reliability of 0.981, indicating that there is less
than a two percent chance of data loss.
We can calculate local data reliability in much the same

way, except that we only consider the collections owned by
a particular site when assigning scores. For example, if we
wish to calculate the local reliability of site A, we examine
all possible scenarios, and assign a score of \0" if collection 1
is lost, or \1" if collection 1 is preserved. In this way, we can
calculate the local data reliability of site A and site B to be
0.99, while the local data reliability of site C is 0.999. Site
C enjoys higher data reliability because it has made more
copies of its collection.
We can interpret local and global data reliabilities as the

probability that data will not be lost within a particular
interval, say, one year. Then, we can calculate the expected
number of years before data is lost, known as the mean time

to failure (MTTF). An increase in reliability from 0.99 to
0.999 actually represents an increase in the MTTF from 100
years to 1000 years. Because MTTF better illustrates the
results of a particular policy by giving an indication of how
long data will be protected, we report our simulation results
in Section 3 in terms of MTTF.
In this paper we are primarily concerned about evaluat-

ing the choices made by individual sites, and preserving the
autonomy of those sites. Therefore, we will examine data
trading from the perspective of local data MTTF. In previ-
ous work [5] we have assumed that all sites have the same
probability of failure, but here we consider the possibility
that di�erent sites have di�erent reliabilities.

2.1.1 The trading network
There are two reasons why a local site may choose a par-

ticular remote site as a P2P trading partner. First, the re-
mote site may have a reputation for high reliability. Second,
there may be political or social factors that bring several au-
tonomous archives together. An archive must make trades
that take both reliability and politics into account.
We refer to the set of potential trading partners for a local

site as that site's trading network. In our previous work we
have assumed that a site's trading network includes all other
archive sites. However, a local site may participate in one
or more clusters, or sites that have agreed to form partner-
ships for political, social or economic reasons. For example,
all of the University of California libraries may join together
in one cluster. A local site may also have individual inter-
cluster links for political or reliability reasons. If an archive
at say MIT is well known for high reliability, one of the Uni-
versity of California libraries may form a partnership with
MIT in addition to the California cluster. Once a site has
found trading partners, it can continue to consider politics
and reliability when proposing trades. In Section 2.2 we
discuss how a site can use site reliabilities to select sites for
individual trades.
There are two challenges that face a site when it is con-

structing a trading network. The �rst challenge is deciding
how many sites should be in the network, and what inter-
cluster partnerships to form. The second challenge in con-
structing a trading network is estimating the site reliabilities
of other sites. One possible method is to examine the past
behavior of the site. Sites with many failures are likely to



have more failures in the future, and are assigned a lower site
reliability than sites that rarely fail. Another method is to
examine components of the archive's storage mechanism [6].
Sites that use disks that are known to be reliable or security
measures that have successfully protected against hackers
should be given a higher site reliability. A third possibility
is to use the reputation of the site or institution hosting the
site. Thus, even the perceived reliability of a site can be
inuenced by political or social factors.
We evaluate the ideal size for trading clusters, and give

guidelines for how many inter-cluster partnerships should
be formed in Section 3. We also examine the impact of site
reliability estimates in that section.

2.2 Conducting trades
When a client deposits a collection at an archive site, the

site should automatically replicate this collection to other
sites in the trading network. This is done by contacting
these sites and proposing a trade. For example, if site A is
given a collection of digital journals, site A will then contact
other sites and propose to give away some of its local archival
storage to a site willing to store a copy of the journals.
We have developed a series of steps for conducting trades

in previous work [5]. These steps are summarized in the
DEED TRADING algorithm shown in Figure 2. This is a
distributed algorithm, run by each site individually without
requiring central coordination. A deed represents the right
of a local site to use space at a remote site. Deeds can be
used to store collections, kept for future use, transferred to
other sites that need them, or split into smaller deeds. When
a local site wants to replicate a collection, it requests from a
remote site a deed large enough to store the collection. If the
remote site accepts, the local site compensates the remote
site with a deed to the local site's space. In the simplest
case, the deed that the local site gives to the remote site is
equal to the deed that the remote site gives to the local site.
There are other possibilities; see below.
Several details of the DEED TRADING algorithm can be

tuned to provide the highest reliability:
<S>: The trading strategy <S> dictates the order in

which other sites in the trading network will be contacted
and o�ered trades. The best strategy is for a site to trade
again with the same archives it has traded with before. This
is called the clustering strategy, because a site tries to clus-
ter its collections in the fewest number of remote sites. If
there are several sites that have been traded with before, the
local site selects the remote site holding the largest number
of the local site's collections. If there is still a tie, or if there
are no previous partners, the local site chooses a remote site
randomly. For the special case where sites have small stor-
age factors (e.g. F = 2), the best �t strategy is best. Under
best �t, the remote site with the smallest advertised free
space is chosen. In [5] we examine several other strategies,
such as worst �t, where the site with the most advertised
free space is preferred. If di�erent sites have di�erent relia-
bilities, as we assume in this paper, it is possible to adjust
the strategy to reect those reliabilities; see below.
<A>: A site must decide how much of its storage space

to o�er for trades. The best advertising policy <A> is the
data-proportional policy, where a site advertises some multi-
ple y of the total amount of data N owned by the site. If the
amount of remotely owned data stored so far is Pused, and
the amount of free public space is Pfree, then the advertised

amount is:

MIN(N � y � Pused; Pfree)

Thus, the amount of advertised space is the total amount of
\available" public space minus the amount of public space
used so far, except that a site cannot advertise more public
space than it has free. Our experiments show that the best
setting for y is y = F � 1, where F is the site's archival
storage factor (see Section 2.1).
<U>: If a local site has a deed for a remote site, it can

use that deed to make a copy of any collections that �t in
the deed but do not already exist at the remote site. A
site must decide when to use a deed that it holds to make
more copies of collections. The aggressive deed use policy,
which provides the highest reliability, dictates that a site will
use its deeds to replicate as many collections as possible, in
order of rareness. Thus, a site holding a deed will use it
to replicate its \rarest" collection (the collection with the
fewest copies) �rst. If some of the deed is left over, the site
will make a copy of the next rarest collection, and so on.
These collections are replicated even if they have already
met the replication goal <G>.
<R>: If a site is unable to make <G> copies of a collec-

tion CL, it can try to trade again in the future to replicate
the collection. The active retries policy says that a site will
not wait to be contacted by other sites to make copies of CL,
but instead will run DEED TRADING again after some in-
terval to replicate CL. A site must choose an appropriate
event to trigger the retry; for example, the site may wait
one week before trying again.
DEED TRADING also uses the following policies, which

are investigated in this paper:
<G>: A site tries to make <G> copies of a collection.

Once this target is met, the site does not have to make any
more trades. Appropriate values of <G> are discussed in
Section 3.
<D>: The deed that L gives to R may or may not be

the same size as the deed that R gives to L. In our previous
work, we have assumed that the two deeds were of equal
size. Here, we investigate the possibility that the deed size
is inuenced by the site's reliability. This issue is discussed
below.

2.2.1 Adapting trading policies for differing site reli-
abilities

We can extend the basic trading framework presented
in [5] (summarized above) to allow a local site to use the esti-
mated reliabilities of its partners in order to make good trad-
ing decisions. There are two aspects of DEED TRADING
that could be modi�ed based on site reliabilities: the trading
strategy <S>, and the deed size policy <D>.
One way to change the trading strategy <S> is to look

only at site reliabilities when making trades. In the highest
reliability strategy, a site seeks to trade with partners that
have the best reliability. The idea is to make trades that
will best protect the local site's collections. In contrast, the
lowest reliability strategy seeks out sites with the worst reli-
ability. Although each trade may be less bene�cial, the low
reliability sites may be more desperate to trade than high
reliability sites, meaning that the local site can make more
copies of its collections. Finally, the closest reliability strat-
egy seeks to �nd the sites with reliability closest to the local
site's; the local site must then estimate its own reliability.



I. The local site L repeats the following until it has made <G> copies of collection CL, or until all sites in the trading
network have been contacted and o�ered trades:

1. Select a proposed deed size DL = size(CL).

2. Select a remote site R in the trading network according to the trading strategy <S>.

3. If L has a deed for R then:

(a) If the deed is large enough to store CL, then use the deed to make a copy of CL at R. Return to step I.

(b) Otherwise, set DL = DL � size(existing deed).

4. Contact R and ask it to advertise its free space <A>R.

5. If <A>R < DL then:

(a) Contact sites holding deeds for R. Give those sites deeds for local space (at L) in return for the deeds for R.
Add these deeds to the existing deed L holds for R. Adjust DL downward by the total amount of the newly
acquired deeds.

(b) If L cannot obtain enough deeds this way, then it cannot trade with R, and returns to step I.

6. R selects a deed size DR according to the deed size policy <D>.

7. If L's advertised free space <A>L < DR, the trade cannot be completed. Return to step I.

8. The trade is executed, with L acquiring a deed of size DL for R's space, and R acquiring a deed of size DR for
L's space.

9. L uses its deeds for size R to store a copy of CL.

II. If the goal of <G> copies for CL is not met, L can try this process again at some point in the future, according to the
retry policy <R>.

III. At any time a site may use a deed that it posesses to replicate its collections, according to its deed use policy <U>.

Figure 2: The DEED TRADING algorithm.

Another way to change the trading strategy is to use site
reliabilities in combination with other factors. In the clus-
tering strategy, the local site chooses the remote site holding
the most copies of collections owned by the local site. In the
weighted clustering strategy, the local site weights the num-
ber of collections by the reliability of the site. For example,
site A (reliability 0.5) might hold three collections while site
B (reliability 0.9) might hold two collections. We consider
the partnership value of site A to be 0:5 � 3 = 1:5, while
the partnership value of site B is 0:9 � 2 = 1:8; thus, site
B is chosen. Other strategies could be weighted in a similar
manner. In the case of best �t and worst �t, we can multi-
ply the advertised space by the site's reliability, and use the
weighted value in the best �t or worst �t calculations. In
this way, we are calculating the \expected" amount of space
at the remote site based on the probability that the space
will actually be available.
The deed size policy <D> can use reliabilities to encour-

age a \fair" trade between sites. Under the (previously
studied) same size policy, the local site and remote site ex-
change deeds that are the same size. However, if the re-
liabilities of the two sites di�er, then a deed for the more
reliable site may be considered \more valuable," and the
less reliable site will have to give a larger deed to com-
pensate. We can denote the site reliability of site i as Pi,
and the size of the deed that the site gives in trade as Di.
Then, we can calculate the reliability-weighted value of the
deed as Pi �Di. The weighted size policy dictates that the
reliability-weighted values of the exchanged deeds must be
equal, e.g. if the local site L trades with the remote site
R then PL � DL = PR � DR. The local site chooses a
deed size based on the collection it wants to replicate, so

the size of the deed that the remote site must give in return
is DR = (PL �DL)=PR.
A local site must be able to estimate the site reliability

of its trading partners (and possibly itself) in order to make
decisions which take reliability into account. We can denote
site i's estimate of site j's reliability as Pi;j. In an ideal
situation, each site could calculate reliabilities exactly, such
that Pi;j = Pj. However, it is di�cult to predict which
sites will fail, and thus reliability estimates may be innaccu-
rate. A local site can use information about a remote site's
reputation, any previous failures, and the reliability of the
storage components to estimate the reliability. Thus, it is
likely that sites which are in fact highly reliable are known
to be reliable, while more failure prone sites are known to
be less reliable. In other words, Pi;j � Pj.
In Section 3.3 we examine the reliability resulting from

trading strategies that account for reliability and the impact
of the same size and weighted size policies. We also examine
the e�ects of innaccurately estimating site reliabilities.

3. RESULTS

3.1 The data trading simulator
In order to evaluate the decisions that a local site must

make when trading, we have developed a simulation system.
This system conducts a series of simulated trades, and the
resulting local data reliabilities are then calculated. Table 1
lists the key variables in the simulation and the initial base
values we used; these variables are described below.
The simulator generates a trading scenario, which con-

tains a set of sites, each of which has a quantity of archival
storage space as well as a number of collections \owned" by



Variable Description Base values

S Number of sites 2 to 15
F Site storage factor 2 to 7
PMIN; Min/max site PMIN = 0:5 or 0:8
PMAX reliability PMAX = 0:99
Pest Pi estimate interval 0 to 0:4
CperSMIN ; Min/max CperSMIN = 4;
CperSMAX collections per site CperSMAX = 25
CsizeMIN; Min/max CsizeMIN = 50 Gb;
CsizeMAX collection size CsizeMAX = 1000 Gb
Ctot Total data at a site CtotMIN to CtotMAX

CtotMIN; Min/max value CtotMIN = 200 Gb;
CtotMAX of Ctot CtotMAX = 10; 000 Gb
<G> Replication goal 2-15 copies
<S> Trading strategy 9 strategies tried
<D> Deed size policy same size and

weighted size

Table 1: Simulation variables.

the site. The number of sites S is speci�ed as an input to the
simulation. The number of collections assigned to a site is
randomly chosen between CperSMIN and CperSMAX , and
the collections assigned to a site all have di�erent, randomly
chosen sizes between CsizeMIN and CsizeMAX. The sum
of the sizes of all of the collections assigned to a site is the
total data size Ctot of that site, and ranges from CtotMIN

to CtotMAX. The values we chose for these variables repre-
sent a highly diverse trading network with small and large
collections and sites with small or large amounts of data.
Thus, it is not the absolute values but instead the range of
values that are important.
The archival storage space assigned to the site is the stor-

age factor F of the site multiplied by the Ctot at the site.
In our experiments, the values of F at di�erent sites are
highly correlated (even though the total amount of space
di�ers from site to site). By making all sites have the same
F , we can clearly identify trends that depend on the ratio
of storage space to data. Therefore, we might test the re-
liability that results from a particular policy when all sites
use F = 2. In this case, one site might have 400 Gb of data
and 800 Gb of space, while another site might have 900 Gb
of data and 1800 Gb of space. The scenario also contains a
random order in which collections are created and archived.
The simulation considers each collection in this order, and
the \owning" site replicates the collection. A site is consid-
ered \born" when the �rst of its collections is archived. A
site does not have advance knowledge about the creation of
other sites or collections. Our results represent 200 di�erent
scenarios for each experiment.
We model site failures by specifying a value Pi: the proba-

bility that site i will not fail. This value reects not only the
reliability of the hardware that stores data, but also other
factors such as bankruptcy, viruses, hackers, users who ac-
cidentally delete data, and so on. In our experiments, we
consider the situation where all sites are relatively reliable
(e.g. 0:8 � Pi � 0:99) as well as the case where some sites
are quite unreliable (e.g. 0:5 � Pi � 0:99). To consider site
reliability estimates, we assume that site i's estimate Pi;j of
site j's reliability is randomly chosen in the range Pj�Pest.

Figure 3: The trading goal and storage capacity.

3.2 Local configuration issues
An archive site should have enough space to store the

collections deposited by local clients. In order to participate
in data trading, a site also needs extra public storage space
that it trades away. We call the ratio of total space to locally
owned collections the storage factor F . In this section we
examine the best value of F , which indicates the appropriate
amount of extra storage a site must provide.
A related issue is the number of copies of collections that

a site will attempt to make. If more copies are made, higher
reliability results. However, remote sites must have enough
storage to hold all of the copies, and the local site must have
enough public storage space to trade away to make these
copies. In other words, the goal <G> number of copies is
related to the storage factor F .
To examine the relationship between <G> and F , we

tested a situation where 15 archive sites replicate their col-
lections; each site had a reliability of 0.9. We varied F in
the range 2 � F � 6 and tested goals from 2 to 15 copies.
The results are shown in Figure 3. Note that the vertical
axis in this �gure has a logarithmic scale, and that there are
separate data series for F = 3; 4; 5 and 6. As expected, pro-
viding more storage increases the local reliability. The best
reliability (11,000 years MTTF) is obtained when F = 6 and
sites try to make �ve copies. (We are mainly concerned with
�nding the policy that has the highest reliability, regardless
of the actual magnitude of the MTTF value.) Trying to
make more copies results in decreased reliability because
there is not enough space to make more than �ve copies of
every site's collections. If one site tries to make too many
copies, this site uses up much of the available space in the
trading network, resulting in decreased reliability for other
sites.
Sites may wish to purchase less space than six times the

amount of data for economic reasons. Our results show that
with F = 5 and <G>= 4, sites can achieve 2,000 years
MTTF, and with F = 4 sites can achieve 360 years MTTF
if the goal is three copies. Therefore, while buying a lot
of space can provide very high reliability, archives can still
protect their data for hundreds of years with a more modest
investment.



Figure 4: Trading strategies.

3.3 Trading policies that consider reliability
Archive sites can use reliability information about other

sites to make trading decisions (Section 2.2). First, we ex-
amined trading strategies by running simulations where each
site had di�erent reliabilities; site reliabilities were randomly
chosen in the range 0:5 � Pi � 0:99. In this experiment,
there were 15 sites, each with a storage factor of F = 4 and
a target <G> of three copies. We also assumed (for the
moment) that each site was able to predict site reliabilities
accurately, so that Pi;j = Pj. The results are shown in Fig-
ure 4. (For clarity, not all strategies are shown; the omitted
strategies are bounded by those in the �gure.) Recall that
the clustering strategy is to trade again with previous trad-
ing partners, the closest reliable strategy is to trade with
sites of reliability close to that of the local site, and the
least reliable strategy is to prefer the least reliable site. The
results indicate that the clustering strategy is best for sites
with relatively low reliability, but that sites with Pi � 0:8
are better o� using the closest reliability strategy. For exam-
ple, a site with Pi = 0:9 achieves a local data MTTF of 540
years using closest reliability, versus 110 years MTTF result-
ing from clustering. These results assume that all sites are
using the same strategy. We ran another experiment where
the high reliability sites (Pi � 0:8) used one strategy, but
the lower reliability sites used another. These results (not
shown) con�rm that it is always best for the high reliability
sites to use the closest reliable strategy, and for the low re-
liability sites to use clustering. We ran similar experiments
with 0:8 � Pi � 0:99, and reached the same conclusions,
although the range of high reliability sites that should use
closest reliability was Pi � 0:9.
High reliability sites clearly bene�t by trading among them-

selves, so that every trade they initiate places a copy of a
collection at a very reliable site. If low reliability sites were
to try to trade only among themselves, they would lose re-
liability by excluding the bene�ts of trading with high re-
liability sites. If low reliability sites were to try to trade
preferentially with the high reliability sites (as in the high-
est reliability strategy), they would quickly �nd the high
reliability sites overloaded. Therefore, the best strategy is
to make as many trades as possible in a way that is neutral

Figure 5: The deed size policy.

to the remote sites' reliability, and this is what the clustering
strategy does. The high reliability sites will not seek out low
reliability sites to make trades, but will accept trade o�ers
made by those sites.
In order to use strategies that depend on site reliabilities,

a site must be able to estimate the reliabilities of itself and
its trading partners. We examined the importance of accu-
racy in these estimates by allowing the probability estimate
interval Pest to vary. The failure probability Pi of each site is
selected at random from the range 0:5 � Pi � 0:99, and sites
with Pi � 0:8 used closest reliability while other sites used
clustering. Each local site i's estimate of the remote site
j's reliability was randomly chosen in the range Pj � Pest.
The results (not shown) indicate that the best reliability re-
sults in the ideal case: when the estimates are completely
accurate. As long as sites are able to make estimates that
are within seven percent of the true value, their local data
reliability is quite close to the ideal case. However, as the er-
ror increases beyond seven percent, the local data reliability
drops. For example, when estimates are innaccurate by 30
percent, archives using closest reliability can only achieve a
local MTTF of 200 years, versus 500 in the ideal case. If sites
can estimate a site reliability close to the true value, they can
usually separate high reliability archives from low reliability
archives, and select the high reliability sites for trading. If
estimates are very innaccurate (e.g. by 25 percent or more)
very high reliability sites (e.g. Pi � 0:94) achieve better re-
liability using the clustering strategy. However, moderately
reliable sites (0:8 � Pi � 0:94) still achieve better MTTF
with the closest reliability strategy.
Another policy that can take site reliabilities into ac-

count is the deed size policy <D>. We have compared the
weighted size policy with the same size policy in an experi-
ment with 15 sites, where 0:5 � Pi � 0:99, the storage fac-
tor F = 4, and the target <G>= 3. The results are shown
in Figure 5. (In this experiment, the high reliability sites,
Pi � 0:8, used the closest reliability strategy, and other sites
used clustering.) The �gure indicates that the weighted size
policy, which considers deeds from reliable sites to be more
valuable, is good for high reliability sites (F � 0:8). For
example, a site with Pi = 0:9 can achieve 240 years MTTF
using the weighted size policy, a 14 percent increase over



Figure 6: The impact of estimating site reliabilities.

the same size policy MTTF of 210 years. In contrast, low
reliability sites are hurt by the weighted size policy, with
as much as a 50 percent decrease in MTTF (from 25 years
to 12 years) when Pi = 0:64. High reliability sites are the
bene�ciary of the weighted size policy because they receive
more space in trades, and the most reliable sites can demand
the most space from other sites. These results indicate that
it may be better for low reliability sites to avoid paying the
high penalties of the weighted size policy by trading only
with other low reliability sites. However, the results (not
shown) of another experiment we conducted indicate that
it is still better for low reliability sites to try to trade with
high reliability archives, even when the weighted size policy
is used. If the low reliability sites ignore the high reliability
sites by using closest reliability instead of clustering, they
experience an average decrease in local data MTTF of 15
percent (from 16 years to 14 years).
Once again, we have examined the e�ect of estimating re-

liabilities. Figure 6 shows the impact on local data MTTF
versus the accuracy of the estimates. In this experiment,
0:5 � Pi � 0:99 and sites estimated reliabilities randomly
in the range Pj � Pest such that a larger Pest resulted in a
larger average error (shown on the horizontal axis in Fig-
ure 6). These results show that high reliability sites suf-
fer when estimates are innacurate, while low reliability sites
bene�t. This is because a low reliability site can be mistaken
for a high reliability site, and thus can get larger deeds from
its trading partners. Similarly, high reliability sites can be
mistakenly judged to have less reliability, and must accept
correspondingly smaller deeds. Nonetheless, most high re-
liability sites (0:8 � Pi � 0:98) still achieve higher MTTF
under the weighted size policy than under the same size pol-
icy, even when estimates are as much as 30 percent wrong
on average.
In summary, if some archives are more reliable than oth-

ers:

� Highly reliable sites should trade among themselves.
However, if site reliability estimates are o� by 25 per-
cent or more, then the clustering strategy is better.

� Less reliable sites should continue to use clustering.

Figure 7: The impact of cluster size.

� Highly reliable sites can use the weighted size policy
to extract larger deeds from low reliability sites.

� Less reliable sites should try to trade using the same
size policy, but should continue to trade with highly
reliable sites even if the weighted size policy is used.

3.4 The trading network
In this section, we investigate the ideal trading network

size. Speci�cally, we examine the e�ects of clusters, or
groupings of sites that cooperate for political or social rea-
sons. If the cluster is not large enough to serve a site's
trading needs, the site will have to seek inter-cluster part-
nerships to expand the trading network. Note that in previ-
ous sections, we assumed a local site could potentially trade
with any remote site. Even with the clustering strategy, any
site was eligible to become a trading partner. In this section
we consider the case where clusters are pre-ordained.
In order to determine the ideal cluster size, we ran a simu-

lation in which 15 archive sites were divided into N clusters,
where N = 1; 2:::7. In this experiment, each cluster is fully
isolated : there are no inter-cluster links. Thus, when N = 1
all sites trade with each other, but when N = 3 there are
three clusters of �ve sites, and sites trade only within a clus-
ter. We examined the case where F = 4 and <G>=3, as
well as F = 6 and <G>=5. The results are shown in Fig-
ure 7. When space is tight (F = 4), a cluster of about 5 sites
provides the best reliability (with a MTTF of 630 years). In
contrast, when there is more space (F = 6), then about
seven sites is the best cluster size, with a MTTF of 26,000
years. In both cases, larger clusters are actually detrimen-
tal, decreasing the local data reliability of the member sites.
Large clusters mean that a member site must trade with
many other archives, and this can cause some sites to be-
come overloaded; thus their public storage becomes �lled
up. When this happens, the overloaded sites are less able
to make trades, and their reliability su�ers. Therefore it is
not necessary or even desirable to form very large clusters

in order to achieve reliability.

If sites participate in trading clusters that are smaller than
the ideal size, they can seek inter-cluster partnerships to
enhance reliability. We have simulated a situation where 12



Figure 8: Inter-cluster partnerships, F = 6.

Figure 9: Inter-cluster partnerships, F = 4.

sites were divided into small clusters, and each site randomly
chose partners outside of its own cluster. Figure 8 shows
the results for F = 6, where average local data reliability
is plotted against the number of inter-cluster partnerships
per site. The results show that smaller clusters must seek
out many inter-cluster partnerships to achieve the highest
reliability. Thus, sites in clusters of three or fewer archives
must �nd roughly seven partners in other clusters, while
clusters with four sites should �nd roughly �ve additional
partners. Even sites in relatively large clusters (e.g. with six
sites) can bene�t by seeking four inter-cluster partnerships.
Seeking too many inter-cluster partners can hurt reliability.
A local site may try to �nd partners outside the cluster, but
unless the partners are fully integrated into the cluster, then
the local site must �eld all of the partner's trading requests,
and quickly becomes overloaded. Similarly, when F = 4,
inter-cluster partnerships are bene�cial. Our results, shown
in Figure 9, indicate that for clusters of less than �ve sites,
six or seven inter-cluster partnerships are needed to achieve
the best reliability.
In summary:

� Sites in clusters of about �ve archives (for F = 4) or
seven archives (for F = 6) achieve the highest reliabil-
ity.

� Sites in smaller clusters can seek inter-cluster partner-
ships to improve their reliability.

� If a cluster is too large or if a site has too many inter-
cluster partners, reliability can su�er.

4. RELATED WORK
The problems inherent in archiving data are well known

in the digital library community [11]. Researchers have con-
fronted issues such as maintaining collection metadata [23,
17], dealing with format obsolescence [25, 19, 14], or enforc-
ing security policies [22]. These e�orts complement attempts
to simply \preserve the bits" as exempli�ed by projects like
SAV [4], Intermemory [12], LOCKSS [24], or OceanStore [10].
The work we present here can be used to replicate collections
in order to best preserve the bits, and can be augmented if
necessary (e.g. with a metadata management scheme.)
Many existing data management systems use replication

to provide fault tolerance. However, these systems tend to
focus on access performance and load balancing [7, 26, 27],
whereas we are primarily concerned about reliability. Sites
using our clustering strategy attempt to emulate mirrored

disks [2]. In contrast, database systems tend to prefer a
strategy called chained declustering [15], which trades some
reliability for better load balancing after a failure [18]. Dig-
ital archives, which are primarily concerned with preserva-
tion, prefer the more reliable mirrored disks; hence, they
use the clustering strategy. Moreover, we are concerned
with placing archived data that is not likely to change, and
therefore are not as concerned as previous researchers with
the ability to correctly update distributed replicates [1, 13].
Thus, while a distributed transaction protocol could be added
if necessary, e�cient or correct updates are less important
than preserving the data.
Other systems (such as Coda [16] or Andrew [9]) use repli-

cation in the form of caching: data is moved to the users
to improve availability. Then, if the network partitions, the
data is still readable. Our goal is to place data so that it is
most reliably stored, perhaps sacri�cing short term availabil-
ity (during network partitions) for long term preservation.
Speci�cally, Andrew and Coda eject data from caches when
it is no longer needed. Our scheme assumes that data is
never ejected.
The problem of optimally allocating data objects given

space constraints is well known in computer science. Dis-
tributed bin packing problems [20] and the File Allocation
Problem [3] are known to be NP-hard. Trading provides a
exible and e�cient way of achieving high reliability, with-
out the di�culties of �nding an optimal con�guration.

5. CONCLUSIONS
In this paper, we have examined how archives can use

and extend peer-to-peer data trading algorithms to serve
their data preservation needs. This provides a reliable stor-
age layer that can be enhanced with other services (such
as format migration or authenticity veri�cation) to create a
complete archiving solution. In order to trade e�ectively, a
site must make certain policy decisions. We have provided
guidelines for selecting the amount of storage a local site



must provide. We have presented and evaluated trading
policies that exploit site reliability estimates, signi�cantly
improving reliability. In particular, we have shown that high
reliability sites should trade amongst themselves, while low
reliability sites should try to trade their collections using the
clustering strategy. Finally, we have examined the impact
of trading clusters shaped by political and social concerns,
and how many extra trading partners a member of such a
cluster must �nd to achieve the highest reliability.
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