
International Journal on Digital Libraries manuscript No.
(will be inserted by the editor)

InfoMonitor: Unobtrusively archiving a World Wide Web
server?

Brian F. Cooper, Hector Garcia-Molina

Department of Computer Science
Stanford University
e-mail: fcooperb,hectorg@DB.Stanford.EDU

Received: date / Revised version: date

Abstract. It is important to provide long-term preser-
vation of digital data even when that data is stored
in an unreliable system, such as a �lesystem, a legacy
database, or even the World Wide Web. In this paper
we focus on the problem of archiving the contents of a
web site without disrupting users who maintain the site.
We propose an archival storage system, the InfoMonitor,
in which a reliable archive is integrated with an unmodi-
�ed existing store. Implementing such a system presents
various challenges related to the mismatch of features
between the components, such as di�erences in naming
and data manipulation operations. We examine each of
these issues as well as solutions for the conicts that
arise. We also discuss our experience using the InfoMon-
itor to archive the Stanford Database Group's web site.

Key words: archiving { preservation { web pages { un-
obtrusive data collection

1 Introduction

Important and irreplaceable data is constantly being
lost. For example, some data from the 1960 U.S. Cen-
sus has disappeared, and �les detailing land usage pat-
terns and the location of natural resources in New York
State are irretrievable now [11]. As more and more data
is placed on the unreliable World Wide Web (technical
papers, virtual museums, product catalogs), the losses
of valuable information are sure to increase. The funda-
mental problem is that important data has been placed
and will continue to be placed on storage systems (web
servers, email servers, �le systems, legacy database sys-
tems) that were not designed with data archiving as the

? This material is based upon work supported by the National
Science Foundation under Award 9811992.

primary goal. The designers of these legacy data stores
focused on other design goals, such as e�ciency, ease-of
use, or reduced cost, usually to the detriment of the long
term reliability of the system.

Our goal is to build an information archiving sys-
tem that combines the best of both worlds, legacy and
archival. This combined system should allow data to be
accessed precisely as it is accessed today in the unreliable
legacy system, so that all applications continue to run,
and users are not aware of the reliability features unless
they need them. At the same time, the combined sys-
tem should preserve the information selected by a site
administrator, storing data for historical purposes and
also making it possible to restore data into the unreli-
able system when necessary.

Let us see how we can build such a combined sys-
tem. Figure 1 illustrates four approaches that might be
considered. The �rst option (Fig. 1a) is to redesign the
legacy system to have both the traits of the unreliable
data store and a reliable archive. This of course is an ex-
pensive solution if we must build a system from scratch.
Even if there is an existing code base, we have to get
access to the code and permission to modify it. In ei-
ther case, the resulting hybrid system may not even be
backwards compatible in the end.

The remaining three solutions avoid these problems
by integrating the existing legacy system with a compo-
nent built for archival storage. In the second solution,
Fig. 1b, an archival repository module intercepts calls
to the legacy system, and performs necessary actions to
preserve information. For example, if a �le is updated,
the previous version may be automatically saved (per-
haps in a di�erent underlying legacy system for added
reliability). In order for users to access the system, their
applications would have to be relinked to access the reli-
able archive module. Even if users have the source code
for all of their applications, the new interface may re-
quire signi�cant application rewriting, and they may not



2 Brian F. Cooper, Hector Garcia-Molina: InfoMonitor: Unobtrusively archiving a World Wide Web server

Reliable
Archive

Reliable
Archive

Users

Data viewaccess
full

Users

read-only

Reliable
Archive

Data store

Users

Reliable
Archive

UsersUsers

Data store

Users

Hybrid
Data store

and
Archive

b ca d

+Data store

Fig. 1. Options for combining an existing data store with an archival component.

be willing to deal with the cost and e�ort to redeploy
applications. In the third solution (Fig. 1c), the data is
actually moved to a reliable archival system, and a read-
only view is made available on the legacy system. This
approach is used today by many web sites, which store
their base data in a database, and generate HTML views
for their web site. The main disadvantage is that only
read access is provided through the original legacy sys-
tem (the web site). Changes to the data must be directed
to the new system, which once again involves changing
any application that updates the data.

Finally, the fourth solution, Fig. 1d, is to take existing
legacy and archival systems and combine them so that
each still o�ers its native services. Users are free to access
legacy data in traditional ways, while the archival system
\tracks" changes in the legacy system and \translates"
them into equivalent archiving operations in order to
preserve the information. Although all four alternatives
have strengths and may be the correct choice for cer-
tain domains, there are situations where the �rst three
options are not available. If existing systems and appli-
cations should be retained unmodi�ed, the alternative
(d) o�ers exibility for accomplishing archiving without
disrupting usage. This is the design we examine here.

In order to implement solution (d), we must build a
component that implements the \arrow" in Figure 1d
between the data store and the archival system. We
have designed and implemented the InfoMonitor, a mod-
ule that archives data from a standard �lesystem into
the Stanford Archival Vault (SAV) [5], a reliable data
archive. To illustrate the challenges and our solutions
we will focus on the case study of a reliably archived
web site. Many web sites still store pages on a stan-
dard �lesystem rather than a DBMS or reliable archive.
This allows users to modify these �les using their fa-

vorite applications, including text editors and graphics
software, while providing a convenient environment for
server side programming, such as CGI scripts. However,
�lesystems are notoriously unreliable. Thus, it is nec-
essary to archive the data served by the web site in a
reliable database system. If the web site authoring and
management software does not provide such archiving
capabilities (and most packages do not; see Sect. 8), a
reliable archive should be integrated with the �lesystem
itself, and that is the design we adopt here.

Here, we use a �lesystem as an example legacy store.
However, the InfoMonitor architecture is applicable to
archiving data on any legacy store, although modi�ca-
tions to the implementation may be required in order to
use the interface provided by the legacy store. For exam-
ple, archiving externally controlled web sites or dynamic
content requires a new component to retrieve the appro-
priate objects, e.g. via HTTP. However, the basic archi-
tecture of the InfoMonitor as a bridge between the web
site and the archive is retained. We discuss extending
the InfoMonitor for this purpose in Section 7.

In this paper we consider the various problems that
arise when integrating an archiving system with a tra-
ditional data store, focusing on the situation where the
data store cannot be expected to provide active assis-
tance for archiving. Speci�cally, we make several contri-
butions:

{ A proposed architecture for adding archiving capa-
bilities to an existing data store. This architecture is
exible and provides archiving transparently.

{ Solutions for speci�c issues that arise when imple-
menting this architecture, including seamless trans-
lation of data features and naming.



Brian F. Cooper, Hector Garcia-Molina: InfoMonitor: Unobtrusively archiving a World Wide Web server 3

{ An implemented system, called the InfoMonitor, for
the archived web server situation, but which is appli-
cable to other domains as well.

{ Discussion of performance and scalability issues. The
system performs well on a large-sized web site, and
this performance scales linearly with the size of the
archived data set.

Our system is similar in many ways to previous work
in areas such as data backup and �le versioning. Unlike
these previous systems, we focus on constantly monitor-
ing a passive �lesystem, copying all updated �les to a
reliable, heterogenous store. We will discuss these dif-
ferences in more detail in Sect. 2 after we present an
overview of our system.

The paper is organized as follows. First, we examine
the architecture of the InfoMonitor in Sect. 2 by exam-
ining the steps users go through to archive data. Next,
we examine issues that arise when implementing the In-
foMonitor. Section 3 illustrates the problem of detecting
�lesystem changes and representing those changes in the
archive. Section 4 examines the problem of representing
�lenames in the archive, while Sect. 5 examines the situ-
ation where only a subset of the �lesystem's data should
be archived. In Sect. 6 we present our experience using
the system to archive our own web site, including per-
formance measurements. Sect. 7 discusses extending the
InfoMonitor to archive external web sites and dynamic
content. Finally, Sect. 8 examines related work and in
Sect. 9 we outline our conclusions.

2 The InfoMonitor

This design of our system is shown in Fig. 2. Each of the
three boxes in the �gure represent a distinct component
that can run on its own machine. The standard data
store is an existing �lesystem supporting a web server.
(See Section 7 for the situation where the �lesystem can-
not be accessed directly or we must archive external re-
sources.) If the InfoMonitor runs on a separate machine
from the web server, it can access the server's �les using a
network �lesystem. The InfoMonitor accesses the archive
using the archive's native protocol. The InfoMonitor can
work with a variety of archives, and the archive may
store other data sets not managed by the InfoMonitor.

The InfoMonitor is started by a system administra-
tor who speci�es which portions of the �lesystem should
be archived. The speci�cation gives a start point for a
depth-�rst traversal of the �lesystem, and a �lter set
that determines which �les are archived (see Sect. 5).
The start point for archiving a web collection is usu-
ally the root of the public html hierarchy. In order to
reach individual user's public html directories, the In-
foMonitor can utilize symbolic links from the central
public html directory (if they exist) or can start at the
root of the �lesystem and �lter out non-WWW speci�c

directories. The administrator also speci�es the archive
to use. After startup, the InfoMonitor runs unattended,
and the administrator only intervenes to restore data
after a failure.

Once the InfoMonitor is started, it scans the �lesys-
tem, transferring all of the �les that pass its �lter set
into the archive. For each �le, the InfoMonitor archives
the content of the �le as well as some metadata (e.g.,
the �lename). Issues related to managing �lename meta-
data are discussed in Sect. 4. Moreover, the InfoMonitor
archives the �lesystem's directory hierarchy as a hierar-
chy of objects in the archive. The InfoMonitor also keeps
an in-memory \summary" of the �les (including a con-
tent signature) to be used to detect new and modi�ed
�les.

After startup, the InfoMonitor unobtrusively moni-
tors �le activity by continually scanning the �lesystem.
When a user creates, modi�es or deletes a �le, the In-
foMonitor detects this event as a discrepancy between
the �lesystem state and its in-memory summary, and
copies the a�ected �le into the archive. Changes are rep-
resented in the archive using version chains. In particu-
lar, deleted �les are a treated as a new, \empty" version.
This process is described in more detail in Sect. 3, where
we also discuss the challenge of e�ciently scanning the
�lesystem.

Because each created object is also timestamped, the
archived �les can be viewed in two ways: historically as
�les change over time, or as an instantaneous �lesys-
tem snapshot. The InfoMonitor provides a GUI for both
of these perspectives. The �les view shows the histori-
cal chain of modi�cations; a screenshot from our oper-
ational system is shown in Fig. 3. Files are displayed
hierarchically, as they exist in the directory structure of
the �lesystem. Each folder icon represents a directory,
while each \stacked document" icon represents a ver-
sion chain. The user can expand a directory to view its
contents, and can expand a version chain to see the indi-
vidual versions. Each version is represented by a \single
document" icon and the timestamp when that version
was archived. In the �gure, the �le cooperb.html exists
in three di�erent versions. The user can select a version
and click the \View" button to see the version's con-
tents. The �les view allows an administrator to navigate
the history of the �lesystem on a �le by �le basis.

A second view, the snapshot view, displays the en-
tire state of the �lesystem at a speci�ed point in time.
An example screenshot is shown in Fig. 4. The snapshot
is organized hierarchically using the directory structure.
The time and date at the bottom of the window is the
instant at which the snapshot was valid. Users can up-
date the snapshot to the current �lesystem state using
the \Reset date" button, or can specify a point in the
past in the \Date" box and click the \Apply date" but-
ton. Users can select a �le and click the \View" button
to examine the �le contents.



4 Brian F. Cooper, Hector Garcia-Molina: InfoMonitor: Unobtrusively archiving a World Wide Web server

InfoMonitor

operations
Reliability

data sets

Users ProgramsUsers

Archived
web pages

Other

Web pages

Standard data store (filesystem)

Reliable archive

Fig. 2. The architecture of our implemented InfoMonitor system.

Fig. 3. The �les view.

Note that the archiving process is both transpar-
ent and comprehensive. It is transparent because users
continue to access and modify �les using their favorite
applications, and do not expend extra e�ort to achieve
archiving. It is comprehensive because it covers objects
not available through the HTTP interface to the web
site, such as CGIs and scripts that generate dynamic
web pages. (See Section 7.)

Human intervention is only necessary in the event of
a �lesystem failure. Both the �les view and the snapshot
view provide facilities for quickly restoring data. In each
case, the restored data is treated as a \new version," al-
lowing the InfoMonitor to maintain a simple linear ver-
sion chain. The \Restore" button in Fig. 3 can be used
to restore previous versions of individual �les. In con-
trast, the \Restore" button in Fig. 4 restores an entire
snapshot. Restoring a snapshot is tricky because it is
possible to overwrite portions of the �lesystem not cov-
ered by the snapshot, especially if the �lter has changed
over time. This issue is discussed in Sect. 5. Failures of

the archive are handled by its own internal mechanisms
without intervention from the InfoMonitor.

It may be necessary to restart the InfoMonitor be-
cause of crashes or upgrades. On startup, the InfoMoni-
tor writes a \bookmark" into the archive referencing the
archived directory hierarchy. When the InfoMonitor is
restarted, it reads the bookmark, traverses the archived
hierarchy, and reconstructs its internal �le summaries.
After this recovery process, it continues scanning the
�lesystem looking for �le modi�cations. This recovery
process is e�cient because the InfoMonitor only needs to
examine its own archived objects, not the entire archive.

2.1 The Stanford Archival Vault (SAV)

In our prototype, the archiving system is the Stanford
Archival Vault (SAV). In this section, we give a brief
overview of the SAV. For more details about the design
and implementation of SAV, see [5].

The SAV system has the following characteristics:



Brian F. Cooper, Hector Garcia-Molina: InfoMonitor: Unobtrusively archiving a World Wide Web server 5

Fig. 4. The snapshot view.

{ Objects are constructed as a list of tagged �elds, con-
taining either data or metadata.

{ A signature function is used to create object names.
Speci�cally, a 64 bit CRC is calculated for every ob-
ject and used as the name. The signature provides
several functions, including
{ A location service: signatures are used to locate
objects in the store. The SAV implements a mech-
anism that maps from signatures to physical stor-
age locations, so objects can be retrieved via sig-
nature.

{ Error detection: signatures are cached and peri-
odically checked against the object; di�erences in-
dicate object corruption.

{ E�cient object comparison: objects are identical
if their signatures are identical.

Although there is the possibility of signature colli-
sions between di�erent objects, we can minimize this
possibility; see below.

{ Metadata �elds in objects can also contain signa-
tures, which are interpreted as references to other
objects. This provides the capability to create graph
structures of objects.

{ The store provides an interface to create new ob-
jects and read existing objects. However, data, once
written, cannot be deleted or overwritten. The goal
is to prevent data loss due to accidental or inten-
tional data erasure. Moreover, this policy eliminates
ambiguities from distributed, replicated data man-
agement, such as the need to determine which object
is the \correct" object if di�erent sites can modify it
simultaneously.

{ Reliability is provided by automatic replication and
periodic comparison of data between several SAV
sites. Corrupted or missing objects at one site are
automatically replaced with pristine copies obtained
from other sites.

We can minimize the probability of signature colli-
sions between di�erent object by increasing the number
of bits in the signature. In [10] it is reported that for a
collection with n objects and a signature size of b bits,
the probability that no signatures collide is:

p � e
�

n(n�1)

2b+1

This expression gives us, then, the probability that the
corruption of an archived object would not be detected,
or that two di�erent objects could be confused for the
same object by the archival system. In our implemen-
tation, we chose a signature size of 64 bits. For the ex-
periments reported in Section 6, where approximately
30,000 objects were archived, the chances of a signature
collision are less than 3 � 10�11. For larger collections,
larger signatures are required. For example, 64 bits is not
appropriate for a collection with 109 objects, since there
is a 0.03 chance of collision. However, a 96 bit signature
for a collection of 109 object ensures that the probability
of collision is less than 6� 10�12.

If the probability of collision must be zero, the SAV
can add extra bits to the signature that a unique ID
for the SAV site. Then each SAV site must only ensure
that signatures are unique locally, and can add extra bits
(e.g. a sequence number) to the object if necessary when
computing the CRC to ensure uniqueness. See [10] for
more details.

2.2 Di�erences with existing approaches

As mentioned in the introduction, there has been a lot of
work on tracking changes and failure recovery. For exam-
ple, a data warehouse monitors data sources and copies
changes to a centralized store [1,20,30]. In our context,
the �lesystem is the data source, the reliable archive is
the warehouse, and the InfoMonitor is the data extrac-
tor. However, unlike data warehousing, the InfoMoni-



6 Brian F. Cooper, Hector Garcia-Molina: InfoMonitor: Unobtrusively archiving a World Wide Web server

tor focuses on the ability to restore data to the origi-
nal source. Thus the InfoMonitor must save information
necessary to map archive objects back into the corre-
sponding source objects. Furthermore, the InfoMonitor
is designed to deal with very large numbers of relatively
small �les (e.g., web pages) as opposed to a few very
large �les (e.g., tables containing sales records). As a re-
sult, the techniques for extracting changes are di�erent
than the ones used in say [21]. Finally, the focus of a data
warehouse is to provide processing, not archiving. While
it is possible for a warehouse to provide data histories,
the primary focus of the InfoMonitor is to store complete
historical snapshots of the archived information.

Our work is also related to �le backup systems [3].
While �le backup systems are in widespread use, there
have not been many academic studies of backup systems.
In addition, backup systems tend use the same data
model as the �lesystem (e.g., �les are named, unstruc-
tured sequences of bytes). In our system, the archive can
use any data model, and the InfoMonitor performs the
translation from �le objects to archive objects. This sup-
ports extensibility to other data sources, besides �lesys-
tems (See Section 7.2). Moreover, we focus on constantly
scanning a �lesystem to record as many changes as pos-
sible, while a backup system may only run periodically
(e.g. once a day or once a week). The InfoMonitor GUI
also o�ers �ne grain control for browsing and restoring
�les.

The InfoMonitor borrows concepts from previous ver-
sioning technologies [13,29]. For instance, versioning sys-
tems like RCS provide a way to maintain a history of
changes to �les. However, there are three important dif-
ferences with \traditional" versioning systems. One, the
InfoMonitor tracks an autonomous �lesystem, and stores
the versions on a separate system. In a traditional sys-
tem, the versioning mechanism is noti�ed whenever an
object is changed. In contrast, the InfoMonitor must de-
tect changes itself and must minimize the number of
missed changes. Two, the �lesystem and the archive use
di�erent object representations. For example, if the name
of a �le is changed, this may generate a di�erent action
at the archive, such as \new object" or \update meta-
data." Three, the InfoMonitor can use a simple version
mechanism targeted to �le restore only. That is, the In-
foMonitor does not need to consider alternatives but can
store versions as a linear chain. (There is always an un-
ambiguous \current version" instead of multiple alter-
nate current versions created by branches in the version
tree.)

Other related work is discussed in Sect. 8.

3 Data manipulation

The archive should record information about operations
performed on the �lesystem, even though those opera-

tions are not native to the SAV. Speci�cally, the follow-
ing types of information should be archived:

{ content : Data contained in the contents of �les.
{ structure: Information about relationships between
�les.

{ events: Information about the sequence of modi�ca-
tions to a �le.

An archive must obviously retain �le content, but struc-
ture between �les is equally important. For example,
when archiving a web site it is important to archive
the hyperlink structure between HTML pages, so that
if the web site must be reconstructed all of the links still
work. This requires the InfoMonitor to both detect struc-
tures and record them in the archive. Unfortunately, in
a �lesystem the only structure that is explicitly repre-
sented is the hierarchical organization of �les in direc-
tories. Other structures, such as hyperlinks, are repre-
sented in an application speci�c manner, and the In-
foMonitor must take steps to interpret and preserve this
structure information. For now, we take advantage of the
fact that hyperlinks between �les utilize the �le naming
convention. Then, e�ectively preserving �le names allows
us to reconstruct the hyperlink structure. If necessary,
we can extend our system to parse the HTML pages,
extract the links and maintain them explicitly.

Finally, the sequence of events should be recorded so
that if necessary certain events can be undone. For ex-
ample, if a user accidentally erases or overwrites impor-
tant data, it should be possible to select that event to
be undone, while preserving previous intentional mod-
i�cations. The concept of a version chain (such as in
versioning systems like RCS [29]) can be used to rep-
resent �lesystem events as a sequence of resulting �le
versions. However, as mentioned earlier, the �lesystem
does not provide explicit noti�cation when a new ver-
sion has been created (e.g., there is no �le \check-in").
Note that here we treat a �le creation as the start of
a new version chain, and �le deletion as a modi�cation
which produces an empty version.

3.1 Detecting �le modi�cations

The InfoMonitor must detect and report �lesystem events:
new �les, modi�cations and deletions. The InfoMonitor
constructs a summary of the �lesystem when the moni-
tor is �rst started, and then continually scans the �lesys-
tem, comparing the summary to the �les. A discrep-
ancy between the summary and the �lesystem indicates
a �lesystem event, causing the InfoMonitor to migrate
the a�ected data into the archive and update the sum-
mary. Because we expect that the �lesystem will contain
a large amount of data, the summary must be small and
facilitate time-e�cient data comparison, or events will
be missed.

We have divided the scanning process into two com-
ponents:



Brian F. Cooper, Hector Garcia-Molina: InfoMonitor: Unobtrusively archiving a World Wide Web server 7

{ quick scan: uses �lesystem timestamps to indicate
events

{ slow scan: compares �le contents using a signature
algorithm

Both scans start at an initial location in the �lesystem,
and perform a depth �rst search of the directory struc-
ture. The selection of initial location and the nature of
the search is further described in Sect. 5.

In order to perform the quick scan, the InfoMonitor
maintains in its in-memory summary a list of �le names
along with the �lesystem timestamp for each �le. By
relying on timestamps, the InfoMonitor is able to quickly
scan the �lesystem for events and archive a�ected data.
The quick scan operates as follows:

{ A �le on the �lesystem that is not in the summary is
new. The �lename and timestamp are added to the
summary and the �le is written to the archive.

{ A �le that is in the summary but does not exist on the
�lesystem has been deleted. The �lename is marked
as \deleted" in the summary and an \empty version"
is archived.

{ A �le that is \deleted" in the summary but exists on
the �lesystem has been undeleted. The deletion mark
is removed from the summary, and the undeleted ver-
sion is archived.

{ If a �le is in the summary and on the �lesystem,
then the �lesystem timestamp is compared to the
timestamp stored in the summary. If the �lesystem
timestamp is newer than the summary timestamp,
the �le has been modi�ed. The summary timestamp
is updated, and the new version of the �le contents
is archived.

Unfortunately, timestamps on the �lesystem cannot
always be trusted. The primary reason for adding the re-
liable archive is that objects in the �lesystem can become
corrupted, including objects containing timestamps.There
are also other factors which may reduce the reliability of
timestamps, such as clock skew between hosts on the
same network �lesystem.

Therefore, the InfoMonitor also performs the slow
scan. The slow scan operates using the same steps as
the quick scan. However, instead of comparing times-
tamps, the slow scan compares the current contents on
the �lesystem to the last version that was archived. Dif-
ferences indicate that the �le has changed and that the
new version should be archived.

We examined the possibility of reading each �le from
the reliable archive and comparing it to the �lesystem
�le to detect changes. However, it is prohibitively expen-
sive to read all of the �les out of the archive, especially
since the SAV resides on a di�erent machine than the In-
foMonitor, and the information must be transferred via
the network. Moreover, we cannot cache the contents of
every archived �le in RAM to detect changes, since the
main memory of the machine is not large enough.

In order to achieve reasonable performance, we use
the following signature-based process:

1. The 64 bit CRC of every new or modi�ed �le de-
tected by the quick scan is calculated and stored in
the summary (together with the �lename and times-
tamp).

2. The slow scan calculates the CRC for every �le on
the �lesystem, and compares it to the CRC in the
summary.
{ If the signatures are di�erent, the �le has changed
and the new version must be archived. The new
signature replaces the old signature in the sum-
mary.

Note that if the signatures are di�erent but the times-
tamp has not changed, this is a hint that the �le has
been corrupted, since every \normal" �lesystem oper-
ation should update the timestamp. The InfoMonitor
prints a message to the user that the �le may have been
corrupted, and the user can take appropriate action.

The signature-based scheme has two potential dis-
advantages. First, the signature-based scheme may miss
�le modi�cations if the signature of the modi�ed �le is
the same as the signature of the original �le. The na-
ture of the CRC algorithm allows us to make the prob-
ability of such false negatives arbitrarily small by using
enough signature bits. Second, signatures stored in mem-
ory may become corrupted due to memory errors or be
lost if the InfoMonitor host crashes. The InfoMonitor
can be restarted in these cases and will recalculate all of
the signatures based on the data reliably stored in the
archive. Alternately, the content signatures could also
be archived and retrieved periodically at less cost than
retrieving the entire data set.

The InfoMonitor runs the quick scan much more fre-
quently than the slow scan (which is much more time
consuming). The quick scan will detect most of the �lesys-
tem events. A few modi�ed �les will be missed due to
timestamp problems but these �les will be caught by the
slow scan. A few events will still be missed because the
quick scan is not instantaneous, and a �le may change
several times between repeated examinations. However,
it is unlikely that many vital changes to a �le will be
made in the interval between �le examinations as long
as the interval is small.

4 Naming

The archive must retain �le names as reliably as the �le
contents. Ideally, the InfoMonitor would store a nam-
ing history for each archived �le. There are several chal-
lenges that arise when dealing with naming:

{ It is di�cult to determine when a �le's name has
changed.

{ It must be possible to locate archived objects using
their �lename.



8 Brian F. Cooper, Hector Garcia-Molina: InfoMonitor: Unobtrusively archiving a World Wide Web server

{ Files can have aliases.

We examine each of these issues in this section.

4.1 Detecting name changes

The InfoMonitor must update the archive after a name
change. As with the data modi�cations discussed in Sect. 3.1,
the InfoMonitor cannot expect explicit noti�cation of
a name change. Unlike �le modi�cations, however, the
quick and slow scans are unable to detect name changes.
The problem is that it is di�cult or even impossible to
distinguish between the case where a �le's name changes
and the case where one �le is deleted and another, with
similar content but a di�erent name, is created.

One solution would be to utilize some sort of arbitra-
tor that can determine whether two �les are the same. In
Unix, �les are identi�ed by an inode number that does
not change across simple name changes. Two �les with
the same inode number are the same, even if the �lename
changes. This solution is limited in applicability to Unix
�lesystems; other �lesystems may not have inodes.

The approach we take in the InfoMonitor is to view a
�le renaming as a deletion of one �le followed by the cre-
ation of a di�erent �le. Thus, the InfoMonitor updates
the archive after a name change but does not keep an
explicit naming history for individual �les. The domain
of archiving a web server suggests our approach is ap-
propriate. From the perspective of a web server, objects
with di�erent names are in fact di�erent objects, since
a name change requires links to be updated to point to
a new URL containing the new �lename. Therefore it
is not necessary to resort to an arbitrator to determine
if objects with di�erent names are the same object; we
simply assume that they are not.

4.2 Locating archived �les by �lename

The SAV uses its own naming scheme for objects (specif-
ically, content-based signatures), and does not provide a
direct mechanism for �nding a �le based on the �lesys-
tem name. However, users may need to �nd archive ob-
jects based on the �lename. For example, to restore a �le
to the �lesystem, the user should be able to specify the
�lename, not the SAV signature. The obvious solution
is to build a mapping from �lename to SAV signature
by loading every SAV object and examining its �lename
�eld. We can avoid this expensive process by reusing the
in-memory summarymaintained by the InfoMonitor. By
adding an \archive signature" �eld to the summary, we
can look up a �le name, and �nd the associated SAV sig-
nature. Then, we can retrieve the object from the SAV
using the archive's service for retrieving objects via sig-
nature.

4.3 Filesystem aliasing

Filesystems provide the ability for the same �le to have
di�erent names. Usually, the InfoMonitor can treat two
di�erent names as two di�erent �les (for the same reason
it ignores renaming; see Sect. 4.1). However, symbolic
links can create cycles in the �lesystem graph. Such cy-
cles can create an in�nite number of aliases for the same
�le. For example, if directory /dir contains a symbolic
link named subdir which points to /dir, then every
object named file in /dir is simultaneously named
/dir/file, /dir/subdir/file,/dir/subdir/subdir/-
file, and so on. Because we regard each name as a dif-
ferent �le, there would be an in�nite numer of �les to
be archived. We cannot ignore symbolic links because
they may form a vital part of the �lesystem scan (e.g., a
symbolic link from the central public html directory to
a user's personal public html directory may be the only
way to reach that user's �les from the InfoMonitor's start
point).

We resolved this issue by reducing symbolic links to
check for previously scanned objects. For each �le and di-
rectory, the �lesystem is queried for its canonical name:
the name constructed from the directory hierarchy DAG
that results from removing all symbolic links. If dir is an
actual directory and not a symbolic link, then the canon-
ical name of file is /dir/file. When /dir/subdir is
encountered, it is reduced to its canonical name, /dir,
and ignored since the InfoMonitor has already scanned
/dir.

Moreover, we can archive the symbolic links them-
selves. On a Unix �lesystem, a symbolic link is a �le
that contains a reference to anothre �le. We archive the
symbolic link �le, without following the reference. This
allows the InfoMonitor to record the symbolic link struc-
ture without having to follow all symbolic links (and
possibly enter an in�nite cycle.)

5 Determining what to archive

It is possible to archive the entire contents of the �lesys-
tem, but it is often desirable to archive only a subset. In a
web server, the same networked �lesystem that contains
the web data also contains applications, the operating
system, private user data, etc., none of which should
be archived. The administrator should be able to con-
�gure the InfoMonitor to select a particular set of �les
to archive. This logical set should contain semantically
related items (e.g., all web pages and associated data).

One way to construct this set would be to maintain a
list of all �les to be archived. This scheme would require
frequent human intervention to add newly created �les
to the list, a requirement we want to avoid. Another
option is to specify a directory, and have the InfoMonitor
archive every �le in this directory and its subdirectories.
This option may not be appropriate if there are �les in



Brian F. Cooper, Hector Garcia-Molina: InfoMonitor: Unobtrusively archiving a World Wide Web server 9

that directory tree that should not be archived, or if
�les are scattered throughout the �lesystem in multiple
directories.

Another option (which we do not use) is to utilize the
hyperlink structure contained in a set of web pages. The
logical set could be de�ned as all web pages reachable
via hyperlinks from a starting web page. Any time a user
modi�es a page in the existing logical set to link to a new
page, that page would be implicitly added to the logical
set. It may be necessary to stipulate that the hyperlink
traversal does not cross �lesystem boundaries, or that it
extends no more than n links from the start page. This
may be the correct approach if the InfoMonitor archived
pages retrieved via HTTP instead of �lesystem �les.

We use simple querying to allow an administrator
to de�ne what kinds of �les should be archived without
having to list all of the �les explicitly. The InfoMonitor
uses simple querying in the form of a �lter set : a sequence
of regular expressions, each of which �lter out certain
�les based on the absolute path and �lename of the �le.
(This is similar to �lter sets in archiving programs such
as tar.) This process gives an administrator exibility in
designing a logical set. For example, the �lter language
makes it possible to accept or reject all names except a
speci�ed few.

This �lter set is applied by the InfoMonitor during
both the quick and slow scans to both select individual
�les in the logical set and to prune the �lesystem search
tree. When the InfoMonitor �nds a directory, it applies
the path name of the directory against the �lter set and
recurses into the directory if the name passes. When the
InfoMonitor �nds a �le, it applies the path and �lename
against the �lter set and examines the �le if the path
and �lename pass.

The administrator does not need to change the �lter
set once it is speci�ed. New �les that are created will be
archived if they pass the �lter set, allowing the logical
set to grow implicitly. However, we do allow the adminis-
trator to change the contents of the �lter set if necessary.
Recall from Sect. 2 that a \snapshot" of the entire logi-
cal set as of a point in the past can be restored; the set
of restored items is de�ned by what �lter set was used
when the snapshot was valid. Therefore, it is important
to store a timestamped version chain of the �lter sets.
A �lter set is just a �le that is automatically added to
every logical set and archived like other �les.

We use the following criteria to determine how a
snapshot is restored, based on the �lter set that was
active at the time of the snapshot:

{ A �le present in the snapshot must have passed the
�lter set, and is restored to the version it had when
the snapshot was valid. This includes �les that no
longer exist on the �lesystem.

{ A �le that was \deleted" when the snapshot was valid
is only deleted from the �lesystem if that �le would
have passed the �lter set for the snapshot. A change
to the �lter set can cause the �le to be removed from

the logical set, and the InfoMonitor would record this
as a \deletion" of the �le. Files removed from the
InfoMonitor's jurisdiction should not be a�ected by
the restore.

{ Files present in the �lesystem but not mentioned in
the snapshot are not a�ected.

Thus, the version chain of �lter sets is critical to the
snapshot restore process.

6 Performance measurements

We have measured the performance of our implemented
system. Our goal is not to produce the most e�cient im-
plementation or a production-level system. Instead, we
wish to demonstrate a proof-of-concept and to explore
performance. Nonetheless, we have attempted to con-
struct a system that performs well. We have focused es-
pecially on performing the quick scan as rapidly as possi-
ble to reduce the number of missed events (see Sect. 3.1).

The InfoMonitor system, including the user interface,
consists of 3,400 lines of Java 2 code. The monitor com-
municates with the SAV, also written in Java, using Visi-
broker CORBA. Table 1 describes the hardware we used
to collect performance data. The InfoMonitor and the
SAV ran on di�erent machines connected via 10 Mbps
ethernet. This models the situation where the SAV is
running on an archiving host and the InfoMonitor serves
as a remote client. The InfoMonitor machine and the
HTTP server machine share the same DFS �lesystem.

We used the InfoMonitor to archive the �les from
the Stanford Database Group's web site. The web data
consists of over 24,000 �les (1.6 gigabytes). In addition
to text HTML �les, this data set contains images, pro-
grams, compressed �les, word processor documents, raw
data �les, and a variety of other �le types. The size and
diversity of this �lesystem allowed us to test the system
for both scalability and robustness for di�erent kinds of
data. While the InfoMonitor was running, users were ac-
tively accessing and modifying �les. The measurements
for the phases of the InfoMonitor's operation are shown
in Table 2. (See Sect. 3.1 for descriptions of these tasks.)

We believe these measurements are appropriate for
an e�ective demonstration of the system. First, the �les
represent a wide variety of data produced by many dif-
ferent users. Moreover, the data set represents an aver-
age sized or larger web site. A study by Inktomi reports
that on average, a website contains 200 HTML pages [7].
Our group's web site contains over �ve times as many
pages, as well as many more non-HTML �les (represent-
ing 23 graphics, scripts, downloadable documents, etc.
per HTML page). Therefore, running the InfoMonitor
on our site reveals the performance of the system for a
typical web site.

Much of the time required to perform the archiving
is unavoidable. To illustrate this point, we list the break-
down of times for the initial load phase in Table 3. An



10 Brian F. Cooper, Hector Garcia-Molina: InfoMonitor: Unobtrusively archiving a World Wide Web server

InfoMonitor SAV Web Server

System Sun Ultra 2 IBM Intellistation Sun Ultra 2
Processor Dual 450 mhz UltraSPARC 450 mhz Pentium II Dual 200 mhz SPARC
Memory 256 MB RAM, 1800 MB swap 256 MB RAM, 512 MB swap 256 MB RAM, 1230 MB swap

Table 1. The hardware speci�cations of the machines used to collect performance data.

Period 24 contiguous weekday hours
Logical Data Set Number of �les 24,885

Total size 1.6 GB

Initial Load Duration 2 hours, 8 minutes

Average duration 5 minutes, 20 seconds
New �les detected 5,020 �les (155 MB)

Quick Scans Modi�ed �les detected 14
Deleted �les detected 14,462
Undeleted �les detected 9,452

Slow Scans Average duration 55 minutes, 31 seconds

Table 2. The results of running the InfoMonitor on the entire web site.

Task Time (seconds) Percent

Read �les from disk 722 9.3 %
Build summary 199 2.6 %
Bu�er copy 2124 27.4 %
Network transfer to SAV 3340 43.1 %
Store in SAV 1373 17.7 %

Table 3. The breakdown of the initial load time.

\ideally performing" archiving system would still have to
read �les, transfer them to the archive, and save them in
the archive's storage. According to Table 3, this unavoid-
able overhead accounts for over 70 percent of the initial
load time. Of the remaining 30 percent, 27.4 percent
is for copying �le data into messages sent to the SAV;
this \bu�er copy" could be avoided with a more stream-
lined implementation. Building the in-memory �lesys-
tem summary only adds 3.5 percent overhead to the
\ideal" archiving system, indicating that the InfoMoni-
tor (other than the bu�er copy) is very e�cient.

To explore scalability, we used the InfoMonitor to
archive data sets ranging from one-third to almost twice
the size of our web site. These data sets were produced
either by taking a subset of the 24,000 �les in the group's
site, or by duplicating certain �les1. Therefore, each of
these data sets contain similar mixtures of �le types.
The measurements are shown in Fig. 5, where we have
plotted the total time for each task against the size of the
data set. The InfoMonitor's performance scales linearly
with the size of the data archived.

Another interesting result shown in Fig. 5 is that the
quick scan duration increases very slowly as the data set
gets larger. This is desirable, since the quick scan is the
task performed most frequently. The use of the quick

1 The InfoMonitor treated aliased �les as a �xed number of dif-
ferent �les, avoiding the in�nite looping discussed in Sect. 4.3.
Aliased �les thus appeared as di�erent objects, and the e�ect is
that the data set contained more �les.

scan as the primary event detection mechanism results
in a system that scales well to larger data sets.

Although the performance of our system scales lin-
early to data sets on the order of a few gigabytes, it is
reasonable to ask whether this linearity will continue to
much larger data sets (hundreds of gigabytes or larger).
We believe it will. First, each of the data sets shown
in Fig. 5 is larger than the 256 megabytes of physical
RAM, and two of the data sets are larger than the total
swap space available (1,800 megabytes). Thus, working
with data sets that do not �t in main memory (or even
swap space) does not hinder linear scalability. The na-
ture of the algorithms we use require individual �les to
be loaded and examined; since we do not join informa-
tion between �les we do not keep more than one �le in
memory at a time. Even if a �le is large it can be exam-
ined in chunks. Simply examining more �les should not
introduce nonlinearity in performance.

The InfoMonitor keeps an in-memory summary of
the �les, and we can ask what will happen when the sum-
mary no longer �ts in memory. Only 50 bytes of memory
is required per �le2, and if we allocate 128 megabytes of
main memory as the maximum summary size, the In-
foMonitor can index in main memory 2.7 million �les

2 Each entry contains the �lename, timestamp, content signa-
ture, a \�le deleted" ag, the SAV object handle, and a pointer
to the path name. The cost of shared storage of path names is
amortized over an average of 20 �les per directory. The sum of the
�elds, amortized cost of the path name, and hash table overhead
is 50 bytes.



Brian F. Cooper, Hector Garcia-Molina: InfoMonitor: Unobtrusively archiving a World Wide Web server 11

Fig. 5. The total time of the InfoMonitor's tasks as a function of the size of the data set.

(roughly 170 gigabytes). For larger data sets, it is either
necessary to add more RAM (which is relatively inex-
pensive) or to store some of the summary on disk. The
InfoMonitor can organize a disk index using the order in
which �les are examined (based on a depth �rst traver-
sal of the �lesystem), and can load the index sequentially
into memory based on the �les currently being scanned.
As a result, even an index stored on disk incurs a �xed
cost per �le archived, and the performance of the In-
foMonitor for data sets larger than 170 gigabytes (with
128 megabytes of RAM) should be linear in the amount
of data archived.

There are a few more conclusions we can draw from
our experiments. First, the duration of the quick scan
means that some �lesystem events are missed, and we
would like to decrease the quick scan duration. One so-
lution is to divide the data set into subsets, and start a
di�erent InfoMonitor process for each subset. The pro-
cesses could operate in parallel, possibly on di�erent ma-
chines with the same networked �lesystem.

Second, it is apparent that the InfoMonitor is respon-
sible for detecting events in a small fraction of the �lesys-
tem. Although the quick scans detected almost 29,000
�lesystem events in a 24 hour interval, 86 percent of the
events were localized in 10 percent of the directories,
and 65 percent of the directories experienced no events
at all. Perhaps the scans can be optimized to focus more
precisely on the \busy" directories; for example:

{ Increasing the frequency of scans of \busy" directo-
ries while performing fewer scans of directories whose
contents never change.

{ Running multiple instances of the InfoMonitor. Each
instance can quickly scan a small portion of the �lesys-
tem, so we could dedicate an instance to each quickly
changing portion of the �lesystem and one instance
to cover all of the less busy portions.

{ Calculating a signature of the sequence of timestamps
of �les in a particular directory, and performing a �le-

by-�le comparison only when the signature changes.
This is similar to the signature snapshot comparison
algorithm described in [9].

Finally, whenever a �le is undeleted or modi�ed (even
slightly), the entire �le is copied into the archive; 9,466
�les were archived for this reason. The InfoMonitor could
reduce space usage in the archive due to these new ver-
sions by creating a \di�" that represents only the changes
to the �le. Another option is to utilize a compression
algorithm (such as the Lempel-Ziv coding [31] used in
gzip) to reduce the space requirements of all �les. Com-
pression could be time consuming, and should not be
done during the time-sensitive quick scan. Instead, the
InfoMonitor could archive entire �les, and then ask the
archive to lazily compress all versions during periods of
archive inactivity. We examine these possibilities in the
next section.

6.1 Space savings through di�erences and compression

We examined the e�ect of applying two optimizations to
stored objects:

{ Compressing objects.
{ Representing new versions by storing di�erences with
previous versions (instead of as whole �les.)

We used the Unix gzip utility to perform the compres-
sion, and the Unix diff utility to compute the di�er-
ences. We calculated the di�erence over only the �le con-
tents, not the metadata (e.g. timestamp, etc.) To retrieve
the original objects, we apply gunzip to decompress, or
patch to construct a whole object from di�erences. We
examined applying these optimizations separately and
together; when applying them together, we calculated
the di�erence �rst and then compressed objects.

Because the data set reported above had so few �le
modi�cations (14) we collected a new data set to per-
form these experiments. This new set was collected from



12 Brian F. Cooper, Hector Garcia-Molina: InfoMonitor: Unobtrusively archiving a World Wide Web server

the �lesystem over a four day period, and over a larger
portion of the �lesystem. There were 86,694 unique �les
collected, and 2,807 �le modi�cations. The archive had
a total of 11.26 Gb of data.

The results are presented in Table 4. As the table
shows, the compression achieves the most space opti-
mization, reducing the size of the archived objects by
39 percent. Although the time to compress each �le was
only 0.093 seconds (about 0.73 second per Mb), the total
time was quite large (more than two hours). This result
suggests that the compression is best done in the back-
ground or lazily if many objects are added to the archive
at once.

The space savings from the di�erence optimization
was quite small (1.2 percent). Although di�erences can
save signi�cant space per �le, the number of \new ver-
sions" was small compared to the number of \original
versions." Since the original version must be stored whole,
the aggregate e�ect of the di�erence optimization is small.
In a system where there are many updates to �les, the
di�erence optimization may become more important.

7 Extending the InfoMonitor's capabilities

In the discussion so far, we have assumed that the In-
foMonitor archives relatively static content. Files such
as HTML pages may change over time, but between
changes pages exist in a stable state on the �lesystem.
We have also assumed that we have access to the �lesys-
tem used by a web server. In practice, one or both of
these assumptions may not hold. We maywish to archive
\dynamic" content, or content that is generated on the
y as users contact the web server. We may also wish to
archive web sites run by other organizations, to which
there is only an HTTP interface. In this section, we dis-
cuss how we might extend the InfoMonitor to manage
these situations. In each case, the basic architecture of
the InfoMonitor remains the same, and it is only the
interface to the data source that must change. This ex-
tensibility is one of the ways in which the InfoMonitor
improves upon the traditional �le backup model.

7.1 Dynamic content

Much of the web's content is generated dynamically.
Users make requests, and pages are generated on the
y to respond to these requests. Examples include we-
blogs, interactive map services, online travel agencies,
and so on. In these cases, the basic two tiers of HTTP
server and �lesystem are augmented with the following
components:

{ A database system for storing information that forms
the dynamic content. Frequently, this is a relational
database system.

{ Application logic for generating dynamic pages from
the database system based on user requests. This
logic may be encapsulated in simple CGI scripts, or
may be a standalone middle-tier application server.

The consequence of these additions is that dynamic
content does not exist statically as HTML pages. In this
case, we can archive this content by e�ectively archiving
the database tables and the application logic. This will
allow the dynamic pages to be reconstructed from the
archive if necessary by creating a new instance of the
database, and running the application logic on this new
instance. (See Section 7.2 for the case where we cannot
access the database and application logic directly.)

There are two options for archiving the database sys-
tem. One option is to utilize the native archiving fea-
tures of the database system. Unlike �lesystems, many
database systems are designed with archiving capabil-
ities, and we can use these capabilities directly. If the
system has no such features, or they are not appropriate
for our needs, the second option is to use the InfoMonitor
to extract information from the database for archiving.
For example, the InfoMonitor could query the system for
changes (e.g., using the techniques in [21]). We can then
treat changes as new versions, and manage these versions
in the same way we dealt with �le modi�cations.

We can archive program logic in a straightforward
way. Since CGI scripts, Enterprise Java Beans, PHP
scripts and other application components are usually
stored as �les on a �lesystem, we can archive these �les in
the course of normal InfoMonitor operations. However,
we may not be able to run these program modules when
we retrieve them from the archive. Programs and scripts
are written or compiled for a speci�c architecture and
execution environment, and if this environment is not
availablewhen the program is retrieved from the archive,
it cannot be run. This problem is partially ameliorated
by platform-independent languages such as Java (and
to a certain extent Perl and other scripting languages).
However, even these languages require an interpreter or
virtual machine for the correct language version to be
available for the machines of the day. Moreover, since
we assume \non-intrusive" archiving, we cannot dictate
that website designers use a particular language simply
to facilitate archiving. Solving this problem in the gen-
eral case is di�cult, and researchers are only beginning
to make progress (see for example [22]).

Once the InfoMonitor can use an appropriate inter-
face for extracting database information and application
logic, it can archive these objects in the same way it man-
ages static �les. The basic architecture of the InfoMoni-
tor as a bridge between a data source and an archive is
retained.

7.2 External web sites

If we want to archive a web site run by an external orga-
nization, we cannot access the �lesystem or underlying



Brian F. Cooper, Hector Garcia-Molina: InfoMonitor: Unobtrusively archiving a World Wide Web server 13

Time Total archive size
(to compress or calculate di�erence)

Base (no optimizations) - 11.26 Gb
Compress only 2 hours 19 min. 40 sec. 6.88 Gb
Di�erence only 7 min. 4 sec. 11.12 Gb
Compress and di�erence 2 hours 19 min. 4 sec. 6.70 Gb

Table 4. Results from compression and di�erence optimizations.

database directly. Instead, we can only access the HTTP
interface to the site. By building a component that uti-
lizes HTTP to extract the web site's content, we allow
the InfoMonitor to treat the pages in the same way that
it treats �les; that is, as a series of version chains repre-
senting the changes undergone by individual pages.

If the external web site contains static content, we
can crawl the hyperlink structure to �nd all of the pages
served by the web site. For now, we assume that all of
the content of the site exists within one domain (e.g.
stanford.edu) and is reachable from the root page of
the site. The �rst time we archive the site, we can start
at the root page and crawl until we have discovered all of
the pages at the site. Links to pages outside the domain
are not followed.

After the initial crawl, we must discover new pages
added to the site and new versions of existing pages. We
can restart the crawl at the root, and follow the hyper-
link structure. In this case we discover new pages and
new versions of existing pages as a part of the crawl.
However, restarting the crawl requires retrieving and
examining every page in the site, an expensive process
(similar to the slow scan).

A more e�cient alternative would be to emulate the
quick scan by retrieving just the timestamp or other in-
formation indicating that the page has changed, without
retrieving the whole page. The HTTP 1.1 protocol de-
�nes a request type called \HEAD" which allows the
crawler to retrieve metadata about the page, such as
\Content-length" and \Last-modi�ed," without retriev-
ing the whole page. This metadata allows the crawler
to detect new versions of existing pages; the crawler can
then use a \GET" request to retrieve the whole page if
it is a new version. Newly created pages must be linked
to by an existing page, and this existing page must have
changed to incorporate the link to the new page. Thus,
when the crawler retrieves a new version of an existing
page, it should parse the page to �nd links to any new
pages. In this way, the crawler can e�ciently retrieve
both new versions and new pages. More techniques for
e�ciently crawling are described in [4].

We must also deal with the case where we want to
crawl more than just one physical web site. That is, we
want to crawl a \logically coherent" collection of pages
that may span several machines, or may form only a
subset of a larger domain. For example, acm.org con-
tains the website of the ACM as well as a mirror of the

DBLP3, a bibliography web site. Imagine that we wanted
to archive just the DBLP pages. Because the DBLP con-
tains links to the ACM site proper, the rule \do not leave
acm.org." is not su�cient. If the crawler starts at the
root DBLP page, it will eventually follow a link to a
non-DBLP ACM page, and thus will �nd and archive
the entire ACM site. Therefore, the crawler must have
more expressive rules for determining the extent of its
crawling and archiving activity.

Finally, the most di�cult challenge is to archive dy-
namic content residing at an external web site. In this
case, we cannot access the database or application logic
directly; the only access is via HTTP. Dynamic pages
may be generated as a result of a form request, or they
may be generated automatically but accessed using the
same hyperlink process as static pages. In the case of
form-based dynamic content, it is possible to extract
all or part of the accessible content by automatically
�lling out forms. For example, Raghavan and Garcia-
Molina [24] describe techniques for \guessing" the ap-
propriate values for form �elds. In the case of hyperlink-
accessed dynamic pages, the crawler can retrieve pages
in the same way as static web pages, but may need to
crawl more frequently since dynamic pages change more
frequently. If the dynamic page is always changing (e.g.
a new page is generated for every request), then it is im-
possible to retrieve all versions of the page. In this case,
the InfoMonitor administrator must decide how many
instances of the page should be archived to form a rep-
resentative sample.

8 Related work

Considerable work has been done in the area of increas-
ing the reliability of traditional �lesystems. Some of this
work has focused on data backup. A survey of current
backup techniques is presented by Chervenak et al in [3],
and Hutchinson et al [15] discuss the nature of the backup
snapshot. Traditional strategies often require human in-
tervention to mount magnetic tape, run the backup, and
store backup tapes in a coherent way. Recently, systems
designed to better automate this process have been intro-
duced by IBM [6,16] and UniTree Corporation [17]. King
et al [19] suggest that a remote system storing backed
up data could provide quick recovery in the event of a

3 http://www.acm.org/sigmod/dblp/db/index.html



14 Brian F. Cooper, Hector Garcia-Molina: InfoMonitor: Unobtrusively archiving a World Wide Web server

crisis. We discuss di�erences between the InfoMonitor
and backup systems in Sect. 2.2.

Other work has focused on making the primarymedium
itself more reliable. Patterson et al argue for Redundant
Arrays of Inexpensive Disks (RAID) in [23], and Schloss
and Stonebraker extend this idea using distributed disks
in [28]. Several researchers have proposed using logs as
an integral part of �lesystems to increase reliability; these
include Rosenblumand Ousterhout's Log-Structured Filesys-
tem [26]. Goldberg et al [12,2] have designed and imple-
mented an \Archival Intermemory" system that models
a reliable archive as a RAM-like data store. Each sys-
tem assumes the �lesystem can modi�ed signi�cantly
to incorporate the reliability features, which may not
be possible. Moreover, these systems do not address the
problem of integrating components with di�erent prop-
erties; instead, the feature set of these reliable systems
resemble that of a �lesystem.

The data store integration problem is a common one
in data warehousing. Researchers have investigated the
problems of designing the architecture of warehouses,
detecting changes in source data and maintaining view
consistency [20,21,1,30].We discuss the relation of data
warehouses to our work in Sect. 2.2. Layered �lesystems
are examined by Khalidi and Nelson [18], although they
assume that �lesystems contain hooks to facilitate lay-
ering.

Archiving data, including legacy data, is a signi�cant
challenge facing the digital library community. A sur-
vey of the problems and possible solutions is presented
in [11], and the implications for solving archiving prob-
lems are discussed in [27]. Many digital library archiving
schemes circumvent the component integration problem
by migrating data to a reliable archive and providing ac-
cess as a service. Examples include the Computing Re-
search Repository (CoRR) [14], and the collections be-
ing built by the San Diego Supercomputer Center [25].
These schemes do not allow direct access to the original
data store, which could be important to minimize the
impact on users.

Many web sites use tools to author and manage the
web pages, and it may be possible to integrate versioned
archiving into these tools. For example, Microsoft's Front-
Page package [8] provides RCS-like versioning of docu-
ments. However, current tools do not provide archiving
at the level provided by the SAV system, and may not
even provide any backup capabilities at all. Moreover,
a robust solution should be applicable to web sites that
do not use a central authoring system, allowing di�erent
users to use di�erent HTML editing packages.

9 Conclusions

In this paper we have presented the InfoMonitor, a sys-
tem that increases the long term reliability of data ob-
jects, even if those objects are not already stored on a re-

liable archive. This problem is especially apparent in the
context of a web server's unreliable �lesystem. Although
this �lesystem is convenient for users, an archiving com-
ponent must be added to provide long-term reliable stor-
age. The InfoMonitor demonstrates how the �lesystem
can be unobtrusively archived, preserving information
without disrupting users. The InfoMonitor must bridge
the gap between the features of the �lesystem and the
reliable archive. We have discussed how the system de-
tects data modi�cation events, deals with naming, and
�nds members of a logical set. We have also explored
the performance of the InfoMonitor, examining the scal-
ability to large data sets and studying improvements
which could further optimize the system. The InfoMon-
itor deals with the speci�c situation of a web server, but
the principles it illustrates can be applied to a wide va-
riety of data storage systems whenever it is desirable to
construct additional layers to preserve data.

References

1. S.S. Chawathe, A. Rajarman, H. Garcia-Molina, and
J. Widom. Change detection in hierarchically structured
information. In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, June
1996.

2. Yuan Chen, Jan Edler, Andrew Goldberg, Allan Got-
tlieb, Sumeet Sobti, and Peter Yianilos. A prototype
implementation of archival intermemory. In Proceedings
of the Fourth ACM International Conference on Digital
Libraries, 1999.

3. Ann Chervenak, Vivekenand Vellanki, and Zachary Kur-
mas. Protecting �le systems: A survey of backup tech-
niques. In Proceedings Joint NASA and IEEE Mass Stor-
age Conference, March 1998.

4. Junghoo Cho and Hector Garcia-Molina. The evolu-
tion of the web and implications for an incremental
crawler. In Proceedings of the Conference on Very Large
Databases (VLDB), September 2000.

5. Brian Cooper, Arturo Crespo, and Hector Garcia-
Molina. Implementing a reliable digital object archive.
In Proceedings of the 4th European Conference on Re-
search and Technologies for Digital Libraries (ECDL),
September 2000.

6. IBM Corporation. Adstar distributed storage man-
ager (ADSM) - distributed data recovery white pa-
per. http://www.storage.ibm.com/storage/software/-
adsm/adwhddr.htm, 1999.

7. Inktomi Corporation. Web surpasses one bil-
lion documents. http://www.inktomi.com/new/press/-
billion.html, 2000.

8. Microsoft Corporation. Microsoft FrontPage. http://-
www.microsoft.com/frontpage/, 2000.

9. Arturo Crespo and Hector Garcia-Molina. Awareness
services for digital libraries. In Lecture Notes in Com-
puter Science, volume 1324, 1997.

10. Arturo Crespo and Hector Garcia-Molina. Archival stor-
age for digital libraries. In Proceedings of the Third
ACM International Conference on Digital Libraries,



Brian F. Cooper, Hector Garcia-Molina: InfoMonitor: Unobtrusively archiving a World Wide Web server 15

1998. Accessible at http://www-diglib.stanford.edu/cgi-
bin/WP/get/SIDL-WP-1998-0082.

11. John Garrett and Donald Waters. Preserving digital
information: Report of the Task Force on Archiving of
Digital Information, May 1996. Accessible at http://-
www.rlg.org/ArchTF/.

12. Andrew Goldberg and Peter Yianilos. Towards an
archival intermemory. In Advances in Digital Libraries,
1998.

13. Anja Haake and David Hicks. Verse: Towards hypertext
versioning styles. In Hypertext '96, 1996.

14. Joseph Halpern and Carl Lagoze. The Computing Re-
search Repository: Promoting the rapid dissemination
and archiving of computer science research. In Pro-
ceedings of the Fourth ACM International Conference on
Digital Libraries, August 1999.

15. Norman C. Huchinson, Stephen Manley, Mike Feder-
wisch, Guy Harris, Dave Hitz, Steven Kleiman, and Sean
O'Malley. Logical vs. physical �le system backup. In Pro-
ceedings of the Third USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 1999.

16. Tivoli Systems Inc. Tivoli storage manager.
http://www.tivoli.com/products/index/storage mgr/,
1999.

17. UniTree Software Inc. Unitree technical overview.
http://www.unitree.com/overview/overview.htm, 1999.

18. Yousef Khalidi and Michael Nelson. Extensible �le sys-
tems in spring. In Proceedings 14th Symposium on Op-
erating Systems Principles, December 1993.

19. Richard P. King, Nagui Halim, Hector Garcia-Molina,
and Christos A. Polyzois. Management of a remote
backup copy for disaster recovery. TODS, 16(2):338{68,
1991.

20. W. J. Labio, D. Quass, and B. Adelberg. Physical
database design for data warehousing. In Proceedings of
the International Conference on Data Engineering, April
1997.

21. Wilburt Labio and Hector Garcia-Molina. E�cient snap-
shot di�erential algorithms in data warehousing. In Pro-
ceedings of the 22nd International Conference on Very
Large Data Bases, September 1996.

22. Raymond A. Lorie. Long term preservation of digital
information. In Proceedings of the 1st Joint ACM/IEEE
Conference on Digital Libraries (JCDL), June 2001.

23. David Patterson, Garth Gibson, and Randy H. Katz. A
case for redundant arrays of inexpensive disks (RAID).
SIGMOD Record, 17(3):109{116, September 1988.

24. Sriram Raghavan and Hector Garcia-Molina. Crawling
the hidden web. In Proceedings of the Conference on
Very Large Databases (VLDB), September 2001.

25. Arcot Rajasekar, Richard Marciano, and Rea-
gan Moore. Collection-based persistent archives.
http://www.sdsc.edu/NARA/Publications/OTHER/-
Persistent/Persistent.html, 2000.

26. Mendel Rosenblum and John K. Ousterhout. The design
and implementation of a log-structured �le system. In
Proceedings 13th Symposium on Operating Systems Prin-
ciples, 1991.

27. Jerome H. Saltzer. Technology, networks, and the library
of the year 2000. In A. Bensoussan and J.-P. Verjus, ed-
itors, In Future Tendencies in Computer Science, Con-
trol, and Applied Mathematics. Proceedings of the Inter-

national Conference on the Occasion of the 25th Anniver-
sary of INRIA, pages 51{67, New York, 1992. Springer-
Verlag.

28. G.A. Schloss and M. Stonebraker. Highly redundant
management of distributed data. In Proceedings of Work-
shop on the Management of Replicated Data, pages 91{
95. IEEE, IEEE Computing Society, November 1990.

29. Walter Tichy. RCS - a system for version control. Soft-
ware - Practice and Experience, 15(7):637{654, 1985.

30. Yue Zhuge, Hector Garcia-Molina, Joachim Hammer,
and Jennifer Widom. View maintenance in a warehous-
ing environment. In Proceedings of the 1995 ACM SIG-
MOD International Conference on Management of Data,
pages 316{327, May 1995.

31. Jacob Ziv and Abraham Lempel. A universal algorithm
for sequential data compression. IEEE Transactions on
Information Theory, 23(3):337{343, 1977.


