
SIL: Modeling and Measuring Scalable Peer-to-Peer Search
Networks

Brian F. Cooper and Hector Garcia-Molina

Department of Computer Science
Stanford University

Stanford, CA 94305 USA
fcooperb,hectorg@db.Stanford.EDU

Abstract. The popularity of peer-to-peer search networks continues to grow, even
as the limitations to the scalability of existing systems become apparent. We pro-
pose a simple model for search networks, called the Search/Index Links (SIL)
model. The SIL model describes existing networks while also yielding organiza-
tions not previously studied. Using analytical and simulation results, we argue that
one new organization, parallel search clusters, is superior to existing supernode
networks in many cases.

1 Introduction

Peer-to-peer search networks have become very popular as a way to effectively search
huge, distributed data repositories. On a typical day, systems such as Kazaa support
several million simultaneous users, allowing them to search hundreds of millions of
digital objects totaling multiple petabytes of data. These search networks take advantage
of the large aggregate processing power of many hosts, while leveraging the distributed
nature of the system to enhance robustness. Despite the popularityof peer-to-peer search
networks, they still suffer from many problems: nodes quickly become overloaded as
the network grows, and users can become frustrated with long search latencies or service
degradation due to node failures. These issues limit the usefulness of existing peer-to-
peer networks for new data management applications beyond traditional multimedia file
sharing.

We wish to develop techniques for improving the efficiency and fault tolerance of
search in networks of autonomous data repositories. Our approach is to study how we
can place indexes in a peer-to-peer network to reduce system load by avoiding the
need to query all nodes. The scale and dynamism of the system, as large numbers of
nodes constantly join and leave, requires us to re-examine index replication and query
forwarding techniques.

However, the space of options to consider is complex and difficult to analyze,
given the bewildering array of options for search network topologies, query routing and
processing techniques, index and content replication, and so on. In order to make our
explorationmore manageable, we separate the process into two phases. In the first phase,
we construct a coarse-grained architectural model that describes the topology of the
connections between distributed nodes, and models the basic query flow properties and

index placement strategies within this topology. In the second phase, we use the insights
gained from the architectural model to develop a finer-grained operational model, which
describes at a lower level the actual processing in the system. The operational model
allows us to study alternatives for building and maintaining the topology as nodes join
and leave, directing queries to nodes (for example, using flooding, random walks or
routing indices), parallel versus sequential query submission to different parts of the
network, and so on.

Our focus in this paper is on the first phase architectural model. We have developed
the Search/Index Link (SIL) model for representing and visualizing peer-to-peer search
networks at the architectural level. The SIL model helps us to understand the inherent
properties of many existing network architectures, and to design and evaluate novel
architectures that are more robust and efficient. Once we understand which architectures
are promising, ongoing work can examine operational issues. For example, in [6], we
examine the operational question of how the architectures described here might be
constructed. In this paper, we first present and analyze the SIL model, and show how
it can lead to new search network architectures. Then, using analytical and simulation
results, we show that our new organizations can be superior to existing P2P networks in
several important cases, in terms of both efficiency and fault tolerance.

2 The Search/Index Link model

A peer-to-peer search network is a set of peers that store, search for, and transfer
digital documents. We consider here content-based searches, such as keyword searches,
metadata searches, and so on. This distinguishes a peer-to-peer search network from
a distributed hash table [21, 18], where queries are to locate a specific document with
a specific identifier (see Section 7 for more discussion about SIL versus DHTs). Each
peer in the network maintains an index over its content (such as an inverted list of the
words in each document) to assist in processing searches. We assume that the index is
sufficient to answer searches, even though it does not contain the whole content of the
indexed documents.

The search network forms an overlay on top of a fully-connected underlyingnetwork
infrastructure. The topology of the overlay determines where indexes are placed in the
network, and how queries reach either a data repository or an index over that repository’s
content. Peers that are neighbors in the overlay are connected by network links that are
logically persistent, although they may be implemented in a connection-oriented or
connectionless way.

The Search/Index Link (SIL) model allows us to describe and visualize the overlay
topology. In the SIL model, there are four kinds of network links, distinguished by the
types of messages that are sent, and whether a peer receiving a message forwards the
message after processing it:

� A non-forwarding search link (NSL) carries search messages a single hop in the
overlay from their origin. For example, a search generated at one peer A will be
sent to another peer B, but not forwarded beyond B. Peer B processes each search
message and returns results toA.

2

A

B D

C E

Fig. 1. A network with search links.

� A forwarding search link (FSL) carries search messages from A to B. Peer B will
process each search message, return search results to A, and forward the message
along any other forwarding search links originating at B. If A is not the originator
of the query, it should forward any search results received from B (and any other
nodes) along the FSL on which A received the query. Each search message should
have a unique identifier that is retained as the message is forwarded. When a peer
receives a search message with an id it has previously seen, the peer should discard
the message without processing or forwarding it. This will prevent messages from
circulating forever in the network if there is a cycle of FSLs.

� A non-forwarding index link (NIL) carries index update messages one hop in the
overlay from their origin. That is, updates occurring at A will be sent to B, but not
forwarded. Peer B adds A’s index entries to its own index, and then effectively has
a copy of A’s index. Peer B need not have a full copy of A’s content.

� A forwarding index link (FIL) carries index update messages from A to B, as with
non-forwarding index links, but thenB forwards the update message along any other
forwarding index links originatingatB. As with FSLs, update messages should have
unique ids, and a peer should discard duplicate update messages without processing
or forwarding them.

Network links are directed communications channels. A link from peer A to peer B
indicates that A sends messages to B, but B only sends messages to A if there is also a
separate link from B to A. Modeling links as directed channels makes the model more
general. An undirected channel can of course be modeled as a pair of directed links
going in opposite directions. For example, the links in Gnutella can be modeled as a
pair of forwarding search links, one in each direction. Although forwarding links may
at first glance seem more useful, we will see later how non-forwarding links can be used
(Section 3).

Figure 1 shows an example network containing search links. Non-forwardingsearch
links are represented as single arrows () while forwarding search links are represented
as double arrows (). Imagine that a user submits a query to peer A. Peer A will first
process the query and return any search results it finds to the user. Node A will then
send this query to both B and C, who will also process the query. Node B will forward
the query to D. Node C will not forward the query, since it received the query along an
NSL. The user’s query will not reach E at all, and E’s content will not be searched for
this query.

A peer uses an index link to send copies of index entries to its neighbors. These
index entries allow the content to be searched by the neighbors without the neighbors

3

B

C

A

E

F

H

G
D

- Forwarding search link
- Forwarding index link

Fig. 2. A network with search and index links.

having to store the peer’s actual content. For example, consider a peer A that has an
index link to a peer B. When B processes a query, it will return search results both for
its own content as well as for the content stored at A. Peer A need not process the query
at all. We say that B is searched directly in this case, while A is searched indirectly.

Whenever a peer creates a new index entry or modifies an existing entry, it should
send a message indicating the change along all of its outgoing index links. A peer might
create an index over all of its locally stored documents when it first starts up, and should
send all of the index entries to each of its index link neighbors. Similarly, if a node
deletes a document, it would remove the corresponding entries from its own index as
well as notifying its index link neighbors to do the same.

Figure 2 shows a network that contains both search and index links. ndex links
are represented as dashed lines, single () for non-forwarding index links and double
() for forwarding index links. (Note that Figure 2 contains only FILs.) Nodes A, B,
C and D are connected by a “ring” of FILs. An index update occurring at peer A will
thus be forwarded to B, C, D and back to A (A will not forward the update again). In
fact, all four of the nodes A:::D will have complete copies of the indexes at the other
three nodes in the index “ring”. Nodes E, F , G and H are connected by FSLs, and a
search originating at any peer E:::H will reach, and be processed by, the three other
nodes on the search “ring.” Notice that there is also an FSL between E and D. Any
query that is processed by E will be forwarded to D, who will also process the query.
Since D has a copy of the indexes from A:::C, this means that any query generated at
E, F , G and H will effectively search the content of all eight nodes in the network. In
contrast, a query generated at nodes A:::D will be processed at the node generating the
query, and will only search the indexes of the nodes A:::D.

For the rest of our discussion, it is useful to define the concept of a search path:

Definition 1. A search path from peer X to peer Y is

� a (possibly empty) sequence of FSLs f1; f2; :::fn such that f1 originates at X, fn
terminates at Y , and fi terminates at the same node at which fi+1 originates, or

� an NSL fromX to Y

A search path from X to Y indicates that queries submitted to X will eventually be
forwarded to Y . For example, in Figure 2 there is a search path from F to D but not
from D to F . Note also that there is (trivially) a search path from a node to itself.

4

Similarly, an index path from X to Y is a sequence of FILs from X to Y , or one
NIL from X to Y . In this case, X’s index updates will be sent to Y , and Y will have a
copy of X’s index.

2.1 “Good” networks

The network links we have discussed above are not by themselves new. Forwarding
search links are present in Gnutella, forwarding index links are used in publish/subscribe
systems, non-forwarding index links are used in supernode networks, and so on. How-
ever, different link types tend to be used in isolation or for narrowly specific purposes,
and are rarely combined into a single, general model. Our graphical representation al-
lows us to consider new combinations. In fact, the number of search networks of n nodes
that can be constructed under the SIL model is exponential in n2. Only a small fraction
of these networks will allow users to search the content of most or all the peers in the
network, and an even smaller fraction will also have desirable scalability, efficiency
or fault tolerance properties. We want to use the SIL model to find and study “good”
networks, and this of course requires defining what we mean by “good.”

First, we observe that a search network only meets users’ needs if it allows them
to find content. Since content may be located anywhere in the network, a user must
be able to effectively search as many content repositories as possible, either directly or
indirectly. We can quantify this goal by defining the concept of coverage.

Definition 2. The coverage of peer p in a network N is the fraction of the peers in N
that can be searched, either directly or indirectly, by a query generated by p.

Ideal networks would have full coverage:

Definition 3. A network N has full coverage if every peer p in N has coverage = 1.

A full coverage network is ideal in the sense that if content exists anywhere in the
network, users can find it. It may be necessary to reduce coverage in order to improve
network efficiency.

Even a network that has full coverage may not necessarily be “good.” Good networks
should also be efficient, in the sense that peers are not overloaded with work answering
queries. One important way to improve the efficiency of a network is to reduce or
eliminate redundant work. If peers are duplicating each other’s processing, then they
are doing unnecessary work.

Definition 4. A search network N has redundancy if there exists a network link in N
that can be removed without reducing the coverage for any peer.

Intuitively, redundancy results in messages being sent to and processed by peers, even
when such processing does not add to the network’s ability to answer queries.

Redundancy can manifest in search networks in four ways:

� Search/search redundancy occurs when the same peer P processes the same query
from the same user multiple times.

� Update/update redundancy occurs when the same peer P processes the same update
multiple times.

5

A

B

A B

(a) (b)

Fig. 3. Networks with cycles: a. with search/index redundancy,and b. no search/index redundancy.

� Search/index redundancy means a peer A processes a query even though another
peer B has a copy of A’s index and processes the same query.

� Index/index redundancy is where two different peers B and C both process a search
over a copy of a third peer A’s index.

In each of these cases, a node is doing work that is unnecessary to achieve high or full
coverage.

Note that redundancy may actually be useful to improve the fault tolerance of the
system, since if one node fails another can perform its processing. Moreover, redundancy
may be useful to reduce the time a user must wait for search results, if a node near the
user can process the user’s search even when this processing is redundant. However,
fault tolerance and search latency tradeoff with efficiency, since redundancy results in
extra work for peers.

2.2 Topological features of networks with redundancy

The concept of “redundancy” and even the subconcepts like search/index redundancy
are quite general. Rather than avoiding generalized redundancy when designing a peer-
to-peer search network, it is easier to identify specific features of network topologies
that lead to redundancy, and avoid those features.

One feature that causes search/index redundancy is a specific type of cycle called a
one-cycle. One version of a one-cycle is a one-index-cycle: a nodeA has an index link to
another nodeB, and B has a search path to A. An example is shown in Figure 3a. This
construct leads to redundant processing, since B will answer queries over A’s index,
and yet these queries will be forwarded to A who will also answer them over A’s index.
More formally, a one-index-cycle fits our definition of redundancy because at least one
link in the cycle can be removed without affecting coverage: the index link from A
to B. Another version of a one-cycle is a one-search-cycle, which is when a node A
has an search link to another node B, and B has an index path to A. While one-cycles
(one-index-cycles and one-search-cycles) cause redundancy, not all cycles do. Consider
the cycle in Figure 3b. This cycle may seem to introduce redundancy in the same way
as a one-cycle, except that none of the links can be removed without reducing coverage
for some node.

Another feature that causes search/index redundancy is a fork. A search-fork is when
a node C has a search link to A and a search path to B that does not include A, and
there is an index path from A to B. An example is shown in Figure 4a. Again, A will

6

A

C

B
C

B

A

(a) (b)

Fig. 4. Networks with forks: a. a search-fork, and b. an index-fork.

process any searches from C unnecessarily, since B can process the queries for A. The
redundant link in this example is the linkC A. We specify that there is a search path
from C to B that does not include A because if the only path from C to B included A
there would be no link that could be removed without reducing coverage. The analog of
a search-fork is an index-fork: a node C has an index link to A and an index path to B
that does not include A, and there is a search path from A to B. An example is shown
in Figure 4b.

The third feature that causes redundancy is a loop:

� A search-loop is when a node A has an search link ls to another node B, and also
another search path to B that does not include ls.

� An index-loop is when a node A has an index link li to another node B, and also
another index path to B that does not include li.

Avoiding all of these topological features is sufficient to avoid the general property
of redundancy in a network.

Theorem 1. If a network has no one-cycles, forks or loops, then it has no redundancy.

Proof. We show that redundancy implies at least one of the named features. A redundant
network has a link l fromA toB that can be removed without reducing coverage for any
node. There are two cases: either l is an index link, or l is a search link. If l is an index
link, then B was able to search A. When l is removed, B must still be able to search A.
Node B can search A directly via a search path from B to A, which with l would have
formed a one-index-cycle. Or B can search A indirectly:

� With a search path to a node C such that there is an index path from A to C. The
search path from B to C, the index path from A to C and the link l formed an
index-fork.

� With an index path from A to B other than l. This index path plus l formed an
index-loop.

The second case is that l is a search link. This means that A could search B directly,
and must still be able to search B after l is removed. This can be done directly, with a
search path to B, which with l would have formed a search-loop. Or, indirectly:

� A may have a search path to D, such that there is an index path from B to D. The
search path fromA toD, plus l, plus the index path fromB toD, would have formed
a search-fork.

7

� B may have an index path to A. This index path, plus l, would have formed a
one-search-cycle.

2

3 Network archetypes

We can now identify some archetypical network organizations described by the SIL
model. Each archetype is a family of topologies that share a common general architec-
ture. We restrict our attention to somewhat idealized networks, that is, non-redundant
networks with full coverage, in order to understand the inherent advantages and disad-
vantages of various architectures. We do not claim to examine the entire design space
of peer-to-peer topologies. Instead, by looking at some representative archetypes of
a particular design point, that is, non-redundant full-coverage networks, we can both
understand that design point clearly and also illustrate the value of SIL as a design tool.

We consider only the static topologies described by the SIL architectural model, in
order to determine which topologies have efficiency or fault tolerance benefits and are
worth examining further. If a particular archetype is selected for a given application,
there are then operational decisions that must be made. For example, if a supernode
archetype (described fully below) is chosen as desirable, there must be a way to form
peers into a supernode topology as they join the system. One way to form such a
network is to use a central coordinator that selects which nodes are supernodes and
assigns them responsibility for non-supernodes. Alternatively, nodes could decide on
their own whether to be supernodes or not, and then advertise their supernode status
to connect to other, non-supernode peers. This dynamic process of forming a specific
topology is outside the scope of this paper, as we wish to focus for now on which
topology archetype is most desirable under various circumstances. For a discussion on
how a topology can be constructed dynamically, see [6, 24].

Also, we focus on networks with no search/index or index/index redundancy. The
impact of search/search and update/update redundancies is mitigated by the fact that
a node processes only one copy of a duplicate search or update message and discards
the rest (see Section 2). In contrast, search/index and index/index redundancies involve
unnecessary work being done at two different peers, and it is difficult for those peers
to coordinate and discover that their work is redundant. Therefore, in order to reduce
load it is important to design networks that do not have search/index and index/index
redundancies. To do this, we consider networks that do not have one-cycles or forks.

First, note that there are two basic network archetypes that can trivially meet the
conditions of no search/index or index/index redundancy while providing full cover-
age:

� Pure search networks: strongly connected networks with only search links.

� Pure index networks: strongly connected networks with only index links.

In graph theory, a strongly connected directed graph is one in which there is a directed
path from every node to every other node. Recall from Section 2 that in our SIL model,
a path is either a sequence of forwarding links or a single non-forwarding link. When

8

we say “strongly connected” in the definitions above (and below), we mean “strongly
connected” using this definition of search and index paths.

In these basic topologies, there cannot be search/index or index/index redundancies
since index links and search links do not co-exist in the same network. However, these
networks are not “efficient” in the sense that nodes are lightly loaded. In a pure search
network, every node processes every search, while in a pure index network, every node
processes every index update. These topologies may be useful in extreme cases; for
example, a pure search network is not too cumbersome if there are very few searches.
A well known example of a pure search network is the Gnutella network.

Other archetypes combine search links and index links to reduce the load on nodes.
We have studied four topology archetypes that are described by the SIL model, have
full coverage and no search/index or index/index redundancy:

� Supernode networks

� Global index networks

� Parallel search cluster networks

� Parallel index cluster networks

As we discuss in more detail below, each different topology is useful for different sit-
uations. Some of these topologies are not new, and exist in networked systems today.
Supernode networks are typified by the FastTrack network of Kazaa, while the global
index network is similar to the organization of Netnews with a central indexing cluster
(like DejaNews). However, the parallel search and index clusters have not been previ-
ously examined. While these four archetypes are just a sample of the topologies that can
be described by SIL, they illustrate how SIL can be used to model a variety of networks
with different characteristics.

A supernode network is a network where some nodes are designated as “supern-
odes,” and the other nodes (“normal nodes”) send both their indexes and searches to
supernodes. The supernodes are linked by a strongly connected pure search network. A
supernode network can be represented in our SIL model by having normal nodes point
to supernodes with one FSL and one NIL, while supernodes point to each other using
FSLs. An example is shown in Figure 5a. Each supernode therefore has the copies of
several normal nodes’ indexes. Supernodes process searches before forwarding them
to other supernodes. Normal nodes only have to process searches that they themselves
generate. Thus, supernodes networks result in much less load on an average peer than
a pure search network. A disadvantage is that as the network grows, the search load on
supernodes grows as well, and ultimately scalability is limited by the processing ca-
pacity of supernodes. This disadvantage exists even though there is unused processing
capacity in the network at the normal nodes. These normal nodes cannot contribute this
spare capacity to reduce the search load on supernodes, because even if a normal node
is promoted to a supernode, every supernode must still process all the queries in the
network. Supernode networks are most useful when search load is low and when there
are nodes in the network powerful enough to serve as supernodes.

An organization similar to supernodes is a global index network, as illustrated in
Figure 5b. In this organization, some nodes are designated as global indexing nodes, and
all index updates in the system flow to these nodes. A normal node sends its queries to

9

(a) (b)

1

2

3

1

2

3

(c) (d)

Fig. 5. Topology archetypes: a. Supernodes, b. Global index, c. Parallel search clusters, and d.
Parallel index clusters. Some inter-cluster links are omitted in networks c and d for clarity.

one of these global indexing nodes. The global indexing nodes themselves are connected
by a strongly connected pure index network. Under our model, normal nodes have a FIL
to another normal node or to a global index node, and normal nodes also have NSLs to
global index nodes. In this example, the normal nodes form a tree of index paths rooted
at a global index node. Index updates flow from the normal nodes to form a complete
set of global indexes at each of the global index nodes. Note that a similar tree-like
structure could be constructed in the supernode network, where normal nodes would
form a tree of search paths rooted at a supernode, while each normal node would have
an index link directly to a supernode.

The advantages of global index networks are similar to those of supernode networks.
Most nodes process only index updates and their own searches, while leaving the
processing of all other searches to the global index nodes. Moreover, there are multiple
nodes that have a complete set of indexes, so the network can recover from the failure
of one node. However, the load on the global index nodes is high; each global index
peer must process all the index updates in the system and a significant fraction of the

10

searches. Global index networks are most useful when update load is low and when
there are nodes in the network powerful enough to serve as index nodes.

A third organization is called parallel search clusters. In this network, nodes are
organized into clusters of strongly connected pure search networks (consisting of FSLs),
and clusters are connected to other clusters by NIL index links. An example is shown in
Figure 5c. In this figure, the cluster “1” has outgoing NILs to the other clusters “2” and
“3”. Clusters “2” and “3” would also have outgoing NILs to the other clusters, but we
have omitted them in this figure for clarity. The nodes in each cluster collectively have a
copy of the indexes of every node outside the cluster, so full coverage is achieved even
though queries are only forwarded within a cluster. Unlike in a supernode topology,
there are no nodes that must handle all of the queries in the network. Nodes only
handle queries that are generated within their own cluster. Moreover, all of the search
processing resources in the system are utilized, since every node processes some queries.
A disadvantage of this topology is that nodes must ship their index updates to every
other cluster in the network. If the update rate is high, this will generate a large amount
of update load. In Section 4.2, we discuss how to tune the cluster network to minimize
the update load. Parallel search clusters are most useful when the network is relatively
homogeneous (in terms of node capabilities), and when the update rate is low.

Finally, the fourth organization is parallel index clusters. In this organization, clusters
of strongly connected pure FIL index networks are connected by NSL search links. As a
result, nodes in one cluster send their searches to one node of each of the other clusters.
An example is shown in Figure 5d. (Again, some inter-cluster links are omitted in this
figure.) Parallel index clusters have advantages and disadvantages similar to parallel
search cluster networks: no node handles all index updates or all searches, and all
resources in the system are utilized, while inter-cluster links may be cumbersome to
maintain and may generate a large amount of load. Index cluster networks are useful for
relatively homogeneous networks where the search rate is low.

These topology archetypes can be varied or combined in various ways. For example,
a variation of the supernode topology is to allow a normal node to have an FSL pointing to
one supernode and an NIL pointing to another. Another example is to vary parallel cluster
search networks by allowing the search clusters to be constructed as mini-supernode
networks instead of (or in addition to) clusters that are pure search networks. These and
other variations are useful in certain cases. Allowing a mini-supernode network as a
search cluster in a parallel search cluster network is useful if the nodes in that cluster are
heterogeneous, and some nodes have much higher capacities than the others. Moreover,
pure index and pure search networks are special cases of our four topology archetypes.
For example, a supernode network where all nodes are supernodes and a parallel search
cluster network where there is only one cluster are both pure search networks.

Note that our restriction of no redundancy can be relaxed to improve the fault
tolerance or search latency of the system at the cost of higher load. For example, in
a supernode network, a normal node could have an NIL/FSL pair to two different
supernodes. This introduces, at the very least, an index/index redundancy, but ensures
that the normal node is still fully connected to the network if one of its supernodes fails.
Similarly, the goal of full coverage could be relaxed to reduce load. For instance, in

11

many real networks, messages are given a time-to-live so that they do not reach every
node. This results both in lower coverage and lower load.

4 Evaluation of network topologies

We quantify the strengths and weaknesses of the various topology archetypes in three
steps. First, we define metrics that are computable over SIL graphs. Then, we use these
metrics to evaluate analytically the strengths and weaknesses of different idealized
architectures. Finally, we run simulations to validate our analytical results for less
idealized networks. In this section, we perform the analytical steps, while Section 5
discusses our simulation results.

For the sake of brevity, we do not compare all of the possible archetypes described by
the SIL model. Instead, we choose two archetypes: supernode networks, which represent
a popular and widely deployed existing architecture, and parallel search clusters, which
is a promising new architecture that we discovered from analysis of SIL. Our results
show that search clusters are more efficient than supernode networks in some important
scenarios, and this illustrates the value of the SIL model as a tool for discovering new
architectures with desirable properties.

4.1 Metrics

First, we can define metrics that measure the amount of load on individual peers:

Definition 5. Search load is the load on peers from processing searches. This is measured
as the number of search messages that reach peers per unit time.

Definition 6. Update load is the load on peers from processing index updates sent via
index links from other peers. This is measured as the number of index messages that
reach peers.

Definition 7. Total load is the sum of the search load and update load.

These metrics can be computed by analyzing SIL graphs. For example, the number of
search messages that reach a peer A can be computed by finding all the peers that have a
search path to A, and taking the sum of the search message rates for those peers. Notice
that we are using a very general definition for “load” which encapsulates both the load
on the network links and the load on the peers themselves. This is because we wish to
define a general architectural model that is independent of the physical characteristics
of networks or machine architectures. Moreover, we are mainly concerned with the
relative measure of these metrics (e.g., network X has less load than network Y) and
not their absolute values. Therefore, we define load in terms of “numbers of messages,”
and make the simplifying assumption that all messages are equally costly to process.
This assumption may not be true, for example, if it is twice as costly to process a search
as an index update. However, this situation is equivalent in our model to one where
there are twice as many search messages as index messages. In fact, we study situations
where there are more search messages than update messages generated in the system,

12

more update messages than search messages, and an equivalent number of search and
update messages. This allows us to model both the situation where one kind of message
is produced more frequently and the case where one kind of message is more expensive
to process.

A robust network must also be able to survive node failures. We can measure the
resistance to failures by defining the fault susceptibility of a network:

Definition 8. Fault susceptibility is the maximum decrease in network coverage caused
by the failure of any one node.

This metric can be calculated by determining which node, when removed from a SIL
graph, causes the coverage in that graph to decrease the most. We assume failures
are fail-stop, so a node that fails ceases to process and forward messages. When this
happens, the network coverage, measured as the fraction of the nodes in the network
that are searchable, may decrease. For example, in a network with full coverage (e.g.,
coverage = 1) a failure may cause the network to partition into three subnetworks, each
unreachable from the other. If the subnetworks are of equal size, the fault susceptibility
is 0.66, since each node can only search one third of the network and the coverage
thus drops to 0.33. We have called this metric “fault susceptibility” instead of the more
traditional “fault tolerance” because we are concerned with the effect of a single node
failure rather than with the number of failures the network can tolerate. Implemented
networks should certainly have a fail-over mechanism for recovering from the failure.
However, recovery is best treated as part of the operational model.

Finally, we note that user satisfaction is increased if queries return results quickly.
To measure this effect, we can define the search latency metric:

Definition 9. The search latency for a peer p is the longest search path that a query
generated by p must travel.

Intuitively, this metric represents the time that a user must wait before all of the search
results are guaranteed to return. When a user submits a query to node p, it will be
forwarded to every peer ri such that there is a search path from p to ri. The user
may quickly get some results, but will only be assured of getting all results when that
query reaches every node ri. Since messages can travel separate paths in parallel, the
maximum time for the query to reach every node ri (and for search results to return) is
proportional to the number of hops from p to the ri that is farthest away.

Definition 10. The search latency for a network N is the average search latency over
all peers p1; p2:::pn.

4.2 Load analysis

Let us now analyze search network topologies using our evaluation framework. We
focus on load, both because the problem of making networks efficient and scalable
is a significant challenge in building peer-to-peer search networks, and because load
turns out to be particularly amenable to an analytical approach. We consider two of
the archetypes from Section 3: supernodes, because they represent the most popular
deployed search networks (for example, Kazaa), and our novel parallel search cluster

13

networks, which use the same SIL primitives as supernode networks (that is, FSLs and
NILs).

First, we can compute the optimum cluster size for an ideal cluster network if we
know the search and update load patterns in the network. Let N be the number of nodes
in the network, and C be the number of nodes in a cluster (assuming for simplicity that
all clusters are the same size), 1 � C � N . We call the average search load generated
by a node SL, and the average index update load generated by a node UL; these loads
can be measured in messages per unit time. Each node must process the search load
generated by every node in its cluster (including itself), and thus must process a total
search load of C � SL messages per unit time. Assume that the nodes in the cluster
divide the indexes of nodes outside the cluster equally among themselves, so that each
node must store N=C indexes and handle (N=C) � UL messages per unit time update
load. Then the total load on an average node in a cluster network is

Lcl = C � SL + (N=C)� UL (1)

If we differentiate this expression with respect to C, and set the result to zero, we find
that Lcl is minimized by

C =
p
N � UL=SL (2)

This expression shows that the cluster size can be tuned depending on the load in the
network: when UL is high, C should be high (large clusters), while a high SL means
that C should be low (lots of small clusters). Substituting (2) into (1) gives us

Lcl = 2�
p
N � SL � UL (3)

as the load on an average node in an optimized cluster network.
Note that if clusters are small, each node may have to connect to a large number of

nodes in other clusters. Even if bandwidth is plentiful, a node may prefer not to have a
large number of open connections or to have to know the identities of a large number of
nodes. This issue can be solved by using a few forwarding index links to allow a node to
send its index entries to some nodes, who then forward those updates to multiple other
nodes.

We can perform a similar load analysis on supernode networks. Let P be the number
of supernodes, 1 � P � N . If we assume that normal nodes are divided equally among
supernodes, then the load on a supernode is

Lsn = (N=P)� UL + N � SL (4)

that is, the update load received from normal nodes connected to the supernode plus the
search load from the whole network, since for full coverage each supernodes handle all
searches in the network. The load on a normal (non-super) node is only the node’s own
load, or Lnn = SL + UL. In a network with P supernodes and N � P normal nodes,
the expected total load on a node is

Lavg = 2� UL + SL + P � (SL � UL=N � SL=N) (5)

This equation is linear in P , and is minimized by minimizing P , e.g. P = 1. However,
supernode networks are not usually constructed with a single supernode, as the load on

14

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1/10 1/5 1/4 1/3 1/2 1 2 3 4 5 10A
ve

ra
ge

 p
ro

ce
ss

ed
 lo

ad
 (

m
es

sa
ge

s)
Average generated search load / Average generated update load

Supernode network - supernodes
Supernode network - avg. nodes

Cluster network - all nodes

Fig. 6. Load of optimized networks.

this one central indexing node is too high. Usually, some small fraction of the network
nodes, say one tenth, is chosen to serve as supernodes.

Using our expressions forLcl, Lsn andLavg, we can compare optimized cluster and
supernode networks. Figure 6 shows a comparison of cluster networks and supernode
networks for a situation where P = N=10. The horizontal axis in this figure shows
different values of the ratio SL=UL, and the vertical axis shows the number of messages
processed by nodes, assuming SL + UL = 100. As the figure shows, nodes in a
cluster network are always less loaded than supernodes, by up to a factor of 16 (when
SL >> UL). Nodes in a cluster network are only about twice as loaded as the average
node in a supernode network, and sometimes (in the case of SL >> UL) cluster network
nodes are less loaded than the average node in a supernode network. We can draw two
conclusions from these results. First, if the search load is heavy and the update load is
light, search clusters are more efficient than supernode networks for the average node
in the network. Second, in all cases, cluster networks spread the work around more
evenly than supernode networks, which is important when there are no “super-capacity”
nodes that can take on most of the burden in the network. To confirm these analytical
conclusions, we next examine simulations of networks.

5 Experimental results

Our analytical examination of architectures (Section 4) has shown that a new archi-
tecture, parallel search clusters, offers efficiency benefits over existing supernode ar-
chitectures. To confirm this analysis, especially for less idealized and more realistic or
“messy” topologies, we have run simulations. Our simulations also allow us to study
other properties of networks, such as search latency and fault susceptibility.

5.1 Simulation setup

We have constructed a simulator to generate networks with a given topology, and to
evaluate the metrics of load, fault susceptibility and search latency. Our simulator takes
several input parameters, which are summarized in Table 1. Since we are focusing here
on the operational model, we calculate metrics over static topologies and do not deal
with nodes joining or leaving.

15

Parameter Description Base value

n Number of nodes 100
PA Average links per node for PLOD 5
PM Maximum links per node for PLOD 10
NS Number of supernodes 1:::n

NC Number of clusters 1:::n

SL Avg. search load generated by a peer 10:::100
UL Avg. update load generated by a peer 10:::100

Table 1. Simulation parameters

For our experiments, we generated pure search, supernode and parallel search cluster
networks. The details of generating topologies are described in Section 5.5. For each
scenario, we generated 50 instances of each topology, and the results we report represent
averaging our metrics over all of these instances. Each network instance had n nodes.
Although all the results we report used the same number for n (see Table 1) we ran
experiments with different values of n and observed comparable results. In each case,
our results have 95 percent confidence intervals of � 3 percent or less of the value
reported, unless otherwise noted. We assume for simplicity that each node has equivalent
bandwidth and processing capacity. We allowed search/search redundancy, since this
redundancy reduces fault susceptibility and search latency without increasing load, and
because real networks such as Gnutella and Kazaa also have search/search redundancy.

For all types of networks, we assigned two parameters to each peer pi: SLi, the
amount of search load created by the peer, and ULi, the amount of index update load
created by the peer. The mean SLi (denoted SL) and the mean ULi (denoted UL) were
specified per experiment, and the individual SLi’s and ULi’s were normally distributed
with the given mean. The sum SL + UL was constant across all experiments. By ex-
amining a topology and determining for each peer p which peers can send search and
update traffic to p, we can calculate the total load for p (see Definition 7).

Definition 11. The load for a peer p is the sum of:

� The SLi for each peer ri such that there is a search path from ri to p, and

� The ULi for each peer ri such that there is an index path from ri to p.

Definition 12. The average load for a networkN is the average over all peers p1; p2:::pn
in N of the load for each peer pi.

Definition 13. The maximum load for a network N is the load at the most heavily
loaded peer p in N .

The search latency for a peer P was calculated using two steps. First, we determined
the shortest path si to each peer Pi where Pi had a search path to P . Then, we calculated
search latency as the length of the longest si. The search latency for the network was
the average search latency of each peer.

Recall that the fault susceptibilityof the network is the maximum change in coverage
that could be caused by removing one peer from the network. This was measured in

16

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1/10 1/5 1/4 1/3 1/2 1 2 3 4 5 10

A
ve

ra
ge

 p
ro

ce
ss

ed
 lo

ad
 (

m
es

sa
ge

s)

Average generated search load / Average generated update load

Supernodes - maximum
Supernodes - average

Clusters - maximum
Clusters - average

Pure search

Fig. 7. Load of different topologies.

a straightforward way, by removing each peer, measuring the change in coverage, and
then restoring the peer and its connections to the network before removing the next peer.

5.2 Load experiments

First, we examined the load characteristics of supernodes and parallel clusters versus
each other and a baseline of a pure search network. To do this, we varied the ratio
between the average SL and UL from SL = UL � 10 to SL = UL=10. For each point
in this interval, we chose network parameters (such as the number of supernodes or
clusters) to tune the networks for efficiency. This process is discussed in Section 5.6.
We also constructed a Gnutella-like pure search network as a baseline comparison.

The results are shown in Figure 7. This figure shows both average and maximum
load for the supernode and parallel cluster topologies, as well as the load for the pure
search network (where the average and maximum are the same.) On the extreme left
of Figure 7, searches are rare (for each search issued 10 index updates are generated),
while the extreme right represents a mostly search scenario. In this result, the 95 percent
confidence interval of the maximum load in a parallel cluster topology is as large as� 10
percent (in the case of SL = UL=10). First, note that the maximum load in the supernode
network is close to, though higher than, the load in the pure search network. This is
because supernodes must handle both searches and updates, while pure search network
peers only handle searches. Note also that the average load for supernode networks is
significantly lower than that for pure search networks, which is to be expected, since
most of the nodes in a supernode network are only handling their own local searches
and updates.

A striking result in Figure 7 is that both the maximum and average load of par-
allel cluster networks are relatively low, roughly comparable to the average load in a
supernode network. In fact, the average load in a parallel cluster network is always (in
these experiments) within a factor of two of the average load in a supernode network,
and the maximum load in a cluster network is only as much as a factor of four larger
than the average load in a supernode network. Moreover, sometimes the average and

17

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40 50 60 70 80 90 100
D

ec
re

as
ed

 c
ov

er
ag

e
Number of clusters or supernodes

Clusters
Supernodes

Fig. 8. Fault susceptibility.

maximum load in a cluster network is less than the average load in a supernode network.
This indicates that nodes in a parallel cluster network are effectively sharing the load,
contributing their resources to reduce the overall load on all nodes in the network. In
contrast, in a supernode network, some nodes are lightly loaded while the supernodes
are heavily loaded, and the most heavily loaded supernode can be up to seven times
more loaded than the most heavily loaded node in a parallel cluster network. Note that
our simulation results are consistent with our analytical comparison from Section 4.2.

We can draw the following conclusions from these results:

� A parallel cluster network ensures that no nodes are overloaded (e.g., more than
twice as loaded as the average node), while only increasing the average load on
nodes by up to a factor of two over a supernode network. This is beneficial:

- Under the assumptions of our simulation (e.g., all nodes have roughly equal
capability), and

- When a primary goal is to reduce both the maximum and average load on nodes
in the system.

� A supernode network ensures that most nodes in the system are lightly loaded, at
the cost of placing heavy load on supernodes. This is beneficial

- When some nodes have higher capacities than others, so that these high capacity
nodes can serve as supernodes, and

- When a primary goal is to reduce the average load on nodes in the system.

5.3 Search latency and fault susceptibility experiments

The next set of experiments we ran was to measure the search latency and fault suscep-
tibility of the supernode and parallel cluster topologies. These metrics do not depend
on the search or update rate; instead, the connectivity and topology of the network
determines how quickly searches will be returned, and how vulnerable the network is
to node failures. In this section, we report search latency and fault susceptibility as the
number of clusters or supernodes vary.

First, Figure 8 shows the results for fault susceptibility. The horizontal axis in this
figure shows the number of clusters or supernodes (depending on the type of network),
and the vertical axis shows fault susceptibility, measured as decreased coverage after

18

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100

H
op

s

Number of clusters or supernodes

Clusters
Supernodes

Fig. 9. Search latency.

a failure. For supernodes, the fault susceptibility drops as the number of supernodes
increases. When there is only one supernode, the failure of that supernode is catastrophic,
while multiple supernodes means that only some of the network nodes are disconnected
if one supernode fails. In contrast, for clusters, fault susceptibility initially increases, and
then slowly decreases. When there is one cluster, there are no indexing links, and failure
only affects the failed node. When there is more than one cluster, a failure prevents other
nodes in a cluster from searching the indexes stored by the failed node. However, as the
number of clusters increase (and their size decreases), fewer nodes depend on any one
node, and the fault susceptibility drops. Overall, cluster networks have a much lower
fault susceptibility than supernode networks, since the failure of a cluster node causes
a slight decrease in coverage, while the failure of a supernode completely disconnects
some nodes.

Next, Figure 9 shows the results for search latency. In a supernode network, the
search latency is low when there is only one supernode, since all searches travel only
one hop to that supernode. Increasing the number of supernodes means that multiple
hops are necessary to reach all supernodes. In a cluster network, as the number of clusters
increases, clusters become smaller, and search latency decreases. Figure 9 shows that
neither topology archetype is clearly superior in terms of search latency, as the latency
for both archetypes varies between one and five hops.

5.4 Discussion

Supernode networks are used as an alternative to pure search networks like Gnutella
because they reduce the load on normal nodes and thus increase the scalability of the
system. However, our results confirm our qualitative observation that the scalability of
the system is limited by the capacity of supernodes. In a network with full coverage, the
supernodes handle all of the searches, and therefore must have very high capacity. If we
are interested in constructing a network that bounds the maximum load, parallel search
clusters is a more attractive option. This is useful if there are not many super-high-

19

capacity nodes that can acts as supernodes, because we can better utilize the aggregate
resources of the system.

Even if a network is heterogeneous and some nodes are high capacity, we still
may choose a parallel cluster network. Consider a situation where we want the system
to be robust in the face of failures. We may specify that we want a failure to result
in a small decrease in coverage, say, no more than five percent of the nodes become
unreachable. This is barely feasible in a supernode network; as shown in Figure 8, we
would need more than 80 percent of the nodes to be supernodes to achieve such a low
fault susceptibility. Then, the network would resemble a pure search network and would
lose the scalability advantages of the supernode network. The other alternative, having
normal nodes connect to more than one supernode, results in index/index redundancy
with an attendant increase in load on the supernodes. On the other hand, a parallel cluster
network easily achieves low fault susceptibility without increasing load. As shown in
Figure 8, even the most fault susceptible network of five clusters experiences no more
than three percent unavailable nodes after a failure.

5.5 Generating network topologies

We constructed pure search networks using the Gnutella model, where we connect two
nodes using a pair of FSLs going in opposite directions. Since other investigators have
noted that Gnutella networks tend towards a power law distribution [10, 19], we have
constructed pure search networks using the PLOD algorithm [16]. The PLOD algorithm
takes two parameters, the average number of links per node and the maximum number
of links per node, and generates a power-law network. The values we chose for these
parameters (see Table 1) were determined experimentally to ensure full coverage, reduce
fault-susceptibility, and reduce search latency. (For a discussion of this process, see [5].)

We built supernode networks by designating some nodes as supernodes; the number
of supernodes NS is specified as an input parameter to the simulation. Each normal
node was assigned to a supernode randomly using a generator that produced normally
distributed random values (via the polar Box-Muller algorithm [3]). The number of
normal nodes assigned to a given supernode is normally distributedwith a mean ofn=NS
and the standard deviation of one quarter of the mean. Normal nodes were connected
to their supernode with one outgoing FSL and one outgoing NIL. Supernodes were
connected using a Gnutella-like network of FSLs similar to the pure search network.

We made parallel search cluster networks by assigning nodes to clusters of FSLs,
and connecting separate clusters with NILs. The number of clusters NC is specified as
an input parameter to the simulation. The number of nodes in a given cluster is normally
distributed with a mean of n=NC and a standard deviation of one quarter of the mean.
Note that this means that the number of nodes in a cluster is similar to the number of
normal nodes assigned to a supernode. Within a cluster, we built a power law search
network of FSLs, similar to the pure search network above. After we had constructed
clusters, every node in the network was given one NIL to one randomly chosen member
of each other cluster.

20

5.6 Tuning networks

The archetypes of Section 3 are really families of widely varying topologies (as men-
tioned earlier). For example, different supernode networks can differ in the number of
supernodes, the distribution of normal nodes to supernodes, the topology of the pure
search network between supernodes, and so on. Given this diversity, which supernode
variant do we compare to which parallel clusters variant? Our approach to this dilemma
is as follows. First, we select a scenario with a given number of nodes and a given
query and update load. Then, we search for parameters that lead to “tuned” supern-
ode networks, that is, networks that minimize load for this scenario while retaining
full coverage. We similarly find “tuned” parallel cluster networks. Then, we compare
tuned instances of supernode networks to tuned instances of parallel cluster networks.
We iterate over different scenarios, comparing different supernode and parallel cluster
instances in each case. The process of finding good networks is described in Section 6.

In summary, for supernodes, we used:

� 5 supernodes for the interval SL = 10� UL to SL = 5� UL, and

� 20 supernodes for the interval SL = 4� UL to SL = UL=10.

For parallel clusters, we used:

� 15 clusters for the interval SL = 10�UL to SL = 3�UL, and

� 10 clusters for the interval SL = 2� UL to SL = UL=2, and

� 5 clusters for the interval SL = UL=3 to SL = UL=10.

6 Simulating “good” networks

In order to compare network archetypes, we must first find good values for the parameters
that describe a network. For example, the load, fault susceptibility and search latency of
a supernode network varies depending on the number of supernodes. In this section we
describe the process of tuning the parameters of pure-search, supernode, and parallel
search cluster networks. The “tuned” networks that result are the ones used in the
experiments described in Section 5.

6.1 Power-law pure search networks

First, we studied the construction of power law pure search networks. All three of
the topology types have subnetworks that are pure search networks, and thus it is
necessary to decide how to construct power law graphs before we conduct the rest of
our experiments. The PLOD algorithm for constructing power-law graphs allowed us to
specify two parameters: the maximum number of connections and the average number
of connections. Our approach was to find suitable values for these parameters for a
Gnutella-like pure search network. Then, we used these same parameters to construct
the search networks within clusters and between supernodes. This allows us to perform
an “apples-to-apples” comparison between the different topology types as much as
possible by constraining the search network topology to have similar connectivity. Note
that as long as there are no partitions in the search network, the average and maximum

21

connectivity only impacts the search latency and fault susceptibility of the network. The
load of a full coverage search network does not vary depending on how we construct
the power law graph, since every node still handles every query.

We selected 10 as the maximum number of connections because it seems reasonable
that a node should not have to know about more than ten percent of the peers in the
network. In fact, it might be reasonable to set a small fixed number (say, 10) as the
maximum number of neighbors that a peer must have, even if the network grew beyond
100. This would allow nodes to participate in a large search network without needing to
maintain a large number of network connections.

We studied the effect of the second parameter, the average number of connections,
by varying the average between 1 and 10. The results are shown in Figure 10. For the

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

M
et

ric

Average search outdegree per node

Fault susceptibility
Network coverage

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

M
et

ric

Average search outdegree per node

Search latency

(a) (b)

Fig. 10. Pure search networks: (a) coverage and fault susceptibility, and (b) search latency.

graphs in this figure, the average number of connections is on the horizontal axis. First,
let us examine network coverage in Figure 10a. The network does not have full coverage
(e.g., the network coverage is less than one) unless there are at least four connections
on average per peer. (The data point for 3 connections is 0.998 coverage.) If there are
less than four connections, there simply is not enough connectivity to ensure that there
are no partitions. Next, consider the fault susceptibility metric (also Figure 10a), which
represents the decrease in coverage when one node fails. If the average connectivity is
at least 5, then fault susceptibility is only 0.01. In other words, when a node fails, that
node is no longer searchable, but all other nodes are. These results indicate that it is
reasonable to use 5 as the average connectivity, because it provides maximum coverage
and minimum fault susceptibility.

Finally, the search latency decreases as connectivity increases (at least once full
coverage is assured) as shown in Figure 10b. Intuitively, this makes sense; more connec-
tions means that there is more likelihood of a shorter path between nodes. Certainly, we
could increase connectivity until search latency was one, and at this point every node
would have an FSL directly to every other node. However, such a network would be
hard to maintain, and as argued above, it is better if each node only has to know about a
few neighbors. A pure search network could certainly achieve less latency by increasing

22

connectivity without going to extreme of having every node connected to every other.
Nonetheless, it is reasonable for our purposes to use 5 as the average connectivity, since
search latency is not too bad (4.8 hops on average).

6.2 “Good” supernode and parallel search cluster networks

Next, we constructed supernode and parallel cluster networks so that we could measure
the network load for each topology. We examine each topology individually, to determine
the effect of the construction parameter (number of clusters or number of supernodes)
on load.

Supernode networks We constructed supernode networks where the number of supern-
odes varied between 1 and 100. If there is one supernode, the network resembles a
Napster network, where there is a centralized server that handles all of the indexing and
searching. At the other extreme, 100 supernodes, the network is a pure search network,
with no index links.

We examine the situation where the average search load SL was ten times the
average update load UL, equal to the average UL, and one tenth of the average UL.
The results for UL = SL are shown in Figure 11a. This graph shows two metrics, the

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 10 20 30 40 50 60 70 80 90 100

Lo
ad

Number of supernodes

Average load
Maximum load

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 10 20 30 40 50 60 70 80 90 100

Lo
ad

Number of supernodes

Average load
Maximum load

(a) (b)

Fig. 11. Load versus number of supernodes: (a) UL = SL, (b) UL >> SL.

average load over all peers, and the maximum load on any one peer, versus the number
of supernodes. As the figure shows, there can be a large discrepancy between the average
and the maximum. Normal nodes only handle the load that they themselves generate.
In contrast, a supernode handles all of the updates for its assigned normal nodes, as
well as all of the search messages generated by any node in the network. The result is
that supernodes can become heavily loaded. Note also that increasing the number of
supernodes lightens the maximum load (e.g., the load on supernodes) but after about
20 supernodes adding another supernode does not significantly decrease the maximum
load. This is because adding a supernode decreases the update load on other supernodes
(by reassigning some normal nodes and their updates to the new supernode) but does

23

not decrease search load at all. After 20 supernodes, the decrease in maximum update
load from adding another peer is negligible.

For the situation where UL >> SL, adding a supernode is much more beneficial
because the update load is the main load in the system and extra supernodes can share
that update load. This effect is illustrated in Figure 11b. Nonetheless, even in this case
adding more than 20 supernodes offers diminishing returns. Finally, in the case where
UL << SL (not shown), the benefit of adding supernodes beyond five is slight, and
even going from one to five supernodes only decreases the maximum load slightly (from
10,022 load units to 9,260 load units).

We can conclude that the load on supernodes can be very high, much higher than
that on normal nodes in some cases. It does not make sense to have a large number
of supernodes, since that unnecessarily increases the chance that a node will have to
serve as a supernode and bear the high load. It is best to find the “knee” in the load
versus supernode count curve, and use that in determining the number of supernodes.
Our experiments (including those shown above and others not shown) indicate that if
the average SL is five or more times the average UL, then the curve flattens at about 5
supernodes, and for SL less than five times the average UL the curve flattens at about
20 supernodes.

Parallel search cluster networks To study parallel search cluster topologies, we studied
networks where the number of clusters varied between 1 and 100. The extreme of one
cluster represents a pure search network, while the extreme of 100 clusters represents
a pure indexing network. Again, we examined cases where UL was much larger than,
equal to, and much smaller than SL.

The results for UL = SL are shown in Figure 12a. This figure shows both the

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80 90 100

Lo
ad

Number of clusters

Average load
Maximum load

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 10 20 30 40 50 60 70 80 90 100

Lo
ad

Number of clusters

Average load
Maximum load

(a) (b)

Fig. 12. Load versus number of clusters: (a) UL = SL, (b) UL << SL.

maximum load on any node and the average load over all nodes. As the figure indicates,
both the total and maximum load is high for one cluster, decreasing to a minimum
around 5 or 10 clusters, and then increasing again. The shape of this curve is due to
two competing effects: the increased update load on peers as the number of clusters

24

increases, and the decreased search load on peers as clusters become smaller. When
there is only one cluster, the search load dominates, since there are no updates but every
peer handles every search. Creating even a few clusters dramatically reduces the search
load, and the update load is not yet significantly expensive. Adding more clusters than
10 offers diminishing returns for decreasing search load, while the update load continues
to increase.

We can also conclude from these results that when there are 5 or 10 clusters, most
nodes share the load relatively evenly, since the gap between the average and maximum
load is small. However, as the number of clusters increases, the gap increases as well.
This is because with a larger number of clusters of normally distributed size, there is a
greater chance that some clusters will have only a few nodes. Each node in these small
clusters must take on a higher index update load, and these nodes carry the maximum
load in the system. The extreme of this effect is observed when there are more than 40
clusters, where there is a high probability that there is a cluster of only one node, and
that one node must handle updates from all of the other peers in the system.

For the case where UL = 10� SL (not shown), the shape of the graph is roughly
similar to Figure 12a, although the larger update rate means that there is a relatively
larger gap between the average and maximum traffic. However, a different result is
observed for UL = SL=10, as shown in Figure 12b. In this case, the minimum load
is observed when there are 100 clusters; in other words, when the network is a pure
index network. Because of the extremely high rate of searches, the search load always
dominates and increasing the number of clusters decreases both the search load and the
total load.

These results and experiments for other values of UL and SL suggest the following
conclusions:

– For the case where UL << SL, increasing the number of clusters decreases total
load, and a pure search network provides optimal load.

– For cases where UL is greater than, equal to or only somewhat smaller than SL,
the minimum load can be attained with a small number (about 5-20) clusters.

7 Related work

Several researchers have examined special algorithms for performing efficient search
in peer-to-peer search networks. For pure search networks, these techniques include
parallel random walk searches [14, 1], flow control and topology adaptation [15], and
iterative deepening search [23]. For networks with indexing, techniques include routing
indices [7] and local indices [23]. Each of these approaches is useful for “fixing-up”
an existing, inefficient network. Because these techniques can be used to improve the
efficiency of the networks described by the SIL model once the networks are built, they
are complementary to our own work. Moreover, while an operational model can describe
techniques such as random walk searches, the the space of broadcast-based techniques
in the architectural SIL model is rich enough to merit study. Some research has begun
into constructing efficient networks a priori; see for example [24, 17].

Others have suggested that the content can be placed in the network to ensure
efficiency [4, 15] or that the network topology be reorganized based on the location of

25

the content [8]. Content-based techniques are useful if the content in the network can
be appropriately analyzed. Our SIL model is content-agnostic, which is useful both in
the architectural model phase, and in general when the network content is not easily
analyzed. Moreover, proactive replication may require nodes to store content they are
not interested in. Our techniques do not require proactive replication in order for search
to be effective.

Some work has also focused on constructing P2P networks for end goals other
than efficiency. FreeHaven [9] is a peer-to-peer search network that seeks to provide
anonymity for content authors, while SOS constructs a P2P overlay to avoid denial-of-
service attacks [13].

Moreover, a large amount of attention recently has been given to distributed hash
tables (DHTs) such as CHORD [21] and CAN [18]. DHTs focus on efficient routing
of queries for objects whose names are known, but often rely on a separate mechanism
for information discovery (as pointed out in [18]). The emphasis on efficient routing of
a location query, as opposed to efficient broadcast of a content-discovery query, means
that a DHT necessarily has different requirements and topologies than the networks we
study here. Moreover, there are still interesting questions in broadcast-based networks,
and we feel that the full potential of such networks has yet to be realized. Finally, the
huge popularity, wide deployment and clear usefulness of broadcast networks mean
that optimizing such networks is an important research challenge. Although we could
conceivably extend our model to describe DHTs, the very simplicity of the current
model makes it powerful and useful for our needs.

Several researchers have proposed mechanisms for using peer-to-peer networks to
answer structured queries. Examples include DHT-based SQL queries [11], the Local
Relational Model [2], or distributedcaching for OLAP queries [12]. It may be interesting
to extend our model for more structured queries. However, there are many research issues
in content-based queries, and we have focused on those as a starting point.

Other studies have performed measurements of deployed peer-to-peer systems. The
nature of Gnutella and Napster peers and the connections between them were character-
ized in [20], and the nature of the Gnutella topology was studied in [19]. In addition, a
large amount of work has been done to measure other network topologies, especially the
Internet topology as a whole. For example, Tangmunarunkit et al examined the structure
of the Internet and idealized topologies that accurately model this structure [22].

8 Conclusion

We have introduced a Search/Index Link model of P2P search networks that allows
us to study networks that reduce the load on peers while retaining effective searching
and other benefits of P2P architectures. With only four basic link types, our SIL model
can represent a wide range of search and indexing structures. This simple yet powerful
model also allows us to generate new and interesting variations. In particular, in addition
to the supernode and pure search topologies, our SIL model describes topologies such
as parallel search clusters and parallel index clusters. Analytical results, as well as
experimental results from our topology simulator, indicate that a parallel search cluster
network reduces overloading by allowing peers to fairly share the burden of answering

26

queries, rather than placing the burden entirely on supernodes. This topology makes
better use of the aggregate resource of the system, and is useful in situations where
placing an extremely high load on any one peer is infeasible. Moreover, our results
show that other considerations, such as fault susceptibility, may also point to parallel
search clusters as an attractive topology.

References

1. L. Adamic, R. Lukose, A. Puniyani, and B. Huberman. Search in power-law networks. Phys.
Rev. E, 64:46135–46143, 2001.

2. P.A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini, and I. Za-
ihrayeu. Data management for peer-to-peer computing: A vision. In Proc. Workshop on the
Web and Databases (WebDB), 2002.

3. G.E.P. Box and M.E. Muller. A note on the generation of random normal deviates. Annals
Math. Stat., 29:610–611, 1958.

4. E. Cohen and S. Shenker. Replication strategies in unstructured peer-to-peer networks. In
Proc. SIGCOMM, August 2002.

5. B. F. Cooper and H. Garcia-Molina. SIL: Modeling and measuring scalable peer-
to-peer search networks (extended version). http://www-db.stanford.edu/˜cooperb/pubs/-
searchnetsext.pdf, 2003.

6. B.F. Cooper and H. Garcia-Molina. Ad hoc, self-supervising peer-to-peer search networks.
Technical Report, Stanford University Database Group, 2003.

7. A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. In Proc. Int’l
Conf. on Distributed Computing Systems (ICDCS), July 2002.

8. A. Crespo and H. Garcia-Molina. Semantic overlay networks, 2002. Technical Report.
9. R. Dingledine, M.J. Freedman, and D. Molnar. The FreeHaven Project: Distributed anony-

mous storage service. In Proc. of the Workshop on Design Issues in Anonymity and Unob-
servability, July 2000.

10. M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet
topology. In Proc. SIGCOMM, 1999.

11. M. Harren, J.M. Hellerstein, R. Huebsch, B.T. Loo, S. Shenker, and I. Stoica. Complex
queries in DHT-based peer-to-peer networks. In Proc. 1st Int’l Workshop on Peer-to-Peer
Computing (IPTPS), 2002.

12. P. Kalnis, W.S. Ng, B.C. Ooi, D. Papadias, and K.L. Tan. An adaptive peer-to-peer network
for distributed caching of OLAP results. In Proc. SIGMOD, 2002.

13. A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure overlay services. In Proc. SIG-
COMM, Aug. 2002.

14. Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in unstructured peer-
to-peer networks. In Proc. of ACM International Conference on Supercomputing (ICS’02),
June 2002.

15. Q. Lv, S. Ratnasamy, and S. Shenker. Can heterogeneity make gnutella scalable? In Proc. of
the 1st Int’l Workshop on Peer to Peer Systems (IPTPS), March 2002.

16. C. Palmer and J. Steffan. Generating network topologies that obey power laws. In Proc. of
GLOBECOM 2000, Nov. 2000.

17. G. Pandurangan, P. Raghavan, and E. Upfal. Building low-diameter P2P networks. In Proc.
IEEE Symposium on Foundations of Computer Science, 2001.

18. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. In Proc. SIGCOMM, Aug. 2001.

27

19. M. Ripeanu and I. Foster. Mapping the gnutella network: Macroscopic properties of large-
scale peer-to-peer systems. In Proc. of the 1st Int’l Workshop on Peer to Peer Systems
(IPTPS), March 2002.

20. S. Saroiu, K. Gummadi, and S. Gribble. A measurement study of peer-to-peer file sharing
systems. In Proc. Multimedia Conferencing and Networking, Jan. 2002.

21. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. In Proc. SIGCOMM, Aug. 2001.

22. H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Willinger. Network topology
generators: Degree-based vs. structural. In Proc. SIGCOMM, Aug. 2002.

23. B. Yang and H. Garcia-Molina. Efficient search in peer-to-peer networks. In Proc. Int’l Conf.
on Distributed Computing Systems (ICDCS), July 2002.

24. B. Yang and H. Garcia-Molina. Desigining a super-peer network. In Proc. ICDE, 2003.

28

