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ABSTRACT

This paper studies the archival problem: how a digital li-
brary can preserve e ectronic documents over long periods of
time. We analyze how an archival repository can fail and we
present different strategies that help solve the problem. We
introduce ArchSm, a simulation tool that for evaluating an
implementation of an archival repository system and compare
optionssuch as different disk reliabilities, error detection and
correction algorithms, preventive maintenance, etc. We use
ArchSim to analyze a case study of an Archival Repository
for Computer Science Technical Reports.

KEYWORDS: digital archiving, digital preservation, archival
repository, models for archival repositories, performance of
archival repositories, simulation of archival repositories.

1 Introduction

A continual threat todigital librariesistheloss of documents.
Digital information can belost not just through magnetic de-
cay in storage devices, but a so because of format and device
obsolescence. This problemwill only get worse as more and
more information is provided only in digital form. The so-
lution is an Archival Repository (AR), a system capable of
storing and preserving digital objects (e.g., movies, technical
reports) astechnol ogiesand organizationsevolve[3]. AnAR
must preserve not only the bits, but aso the “meaning” of
its documents [9]. For instance, to preserve a “postscript”
technical report, the AR needs to maintai n the postscript bits,
metadata indicating that this document is postscript, a pro-
gram that can interpret and render postscript, and an environ-
ment that can execute the rendering program.

One of the main chalenges in designing an archiva reposi-
tory is how to configure the repository to achieve some target
“preservation guaranteg” while minimizing the cost and ef-
fort involved in running the repository. For example, the AR
designer may have to decide how may sitesto use, what types
of disks or tape unitsto use, what and how many formats to
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store documents in, how frequently to check existing docu-
ments for errors, what strategy to use for error recovery, how
often to migrate documents to a more modern format, and
so on. Each AR configuration leads to different levels of
assurance, e.g., on the average adocument will not belost for
1000 years, or in 1000 years we expect to still have access to
99% of our documents. Each configuration has an associated
cost, eg., disk hardware involved, computer cycles used to
check for errors, or staff running each site.

The number of options and choices is daunting, and the AR
designer has few good tools to help. The traditiona fault
tolerance models and techniques, of the type used to eval-
uate hardware, are a helpful starting point, but they do not
capture the unique complexities of ARs. For example, tra-
ditional models may have difficulty capturing different doc-
ument 10ss scenarios (e.g., missing interpreter, missing bits,
missing metadata) and they frequently assume failure distri-
butions (e.g., exponentia) that are too ssimpligtic.

In this paper we present a powerful modeling and smulation
tool, ArchSm, for helpingin AR design. ArchSim can model
important details, such as multiple formats, preventive main-
tenance, and redlistic failuredistributionfunctions. ArchSim
is capable of evaluating alarge number of components over
very long time periods. ArchSim uses specialized techniques
in order to run comprehensive simulations in a time frame
that allows the exploration and testing of different policies.

Of course, no model can be absolutely complete: there is
an intrinsic tradeoff between how detailed the mode is and
the complexity (even feasibility) of its study. In our case, we
havechosentoignore(at leastinthisinitial study) information
loss due to format conversion (migration to a new format is
always successful and does not introduce any 1oss). We aso
do not model partial failures (afailure where we can salvage
part, but not al, of the information in a device). As we
will see, we also rely on an “expert” that can providefailure
distributionsfor the components of thesystems. For instance,
if format obsolescence is an issue, an expert needs to give us
the probabilities of different format lifetimes.

In summary, our contributionsare:

¢ A comprehensive model for an AR, including options for
themost common recovery and preventive mai ntenance tech-
niques (Sections 2, 3 and 4).



o A powerful simulation tool, ArchSim, for evaluating ARs
and for studying available archival strategies (Section 5).
o A detailed case study for a hypothetical Technical Report
repository operated between two universities. Through this
case study, we evaluate AR factors such as disk reliability,
handling of format failures, and preventive maintenance.

2 Archival Problems and Solutions

Asafirst stepinmodeling and eval uating archival repositories
(ARs), it isimportant to understand how information can be
lost, and what techniques can reduce the likelihood of |oss.
Because of space limitations, we limit ourselves to a brief
review of failure sources and avoidance techniques. The
expanded version of this paper [8] containsthe full review.

2.1 Sources of Failures

An AR failsto meet its guarantee when it loses information.
Such aloss may be caused by a variety of undesired events,
such asthefailureof adisk, onan operator error. A document
is logt if the bits that represent it are lost, and also if the
necessary components that give meaning to those bits are
lost. We define the components of a document to be dl the
resources that are needed to support access to the document,
e.g., the document hits, the disk that stores the bits, and the
viewer that interpretsthe bits.

An undesired event does not necessarily cause information
loss. For instance, if the AR keepstwo copies of adocument,
and thedi sk holding oneof the copiesfails, thenthe document
isnot lost. It would take a second undesired event affecting
the second copy to cause information loss. A document is
damaged if a copy or instance of one of its components is
corrupted or lost. Damaged documents should be repaired
by the system to protect them from further failures.

The most common undesired events that may lead to the
loss of a document can be broken down into the following
categories. (We do not consider transient failures, eg., a
power failure, that do not lead to a permanent 10ss.)

Media decay and failure: Example: disk magnetic decay; a
worn out tape bresks when it is being read.

Component Obsolescence: Example: we do not have a ma
chinethat can read atape, even if themediais still readable.

Human and Software Errors: Example: a person or a pro-
gram del etes adocument; a program improperly modifies the
files and data structures that represent the document. (Ref-
erence [13] suggests that humans and software are the most
serious sources of failuresin computer systems.)

External Events. Examples: fires, earthquakes and wars.
Such events may cause several AR componentsto fail simul-
taneously. For example, aflood can destroy a collection of
disks at one site. If a document was replicated using those
disks, all copieswill belost.

2.2 Component Failure Avoidance Techniques

There are two well-known ways to avoid an AR faillure: We
can either reduce the probability of component faults, or we
can design the AR so those faults do not result in document
loss. In this subsection, we review techniques in the first
category, while the next subsection will cover the second
category. We organize the presentation in this subsection
using the taxonomy of faults presented in Section 2.1.

Media decay and failure: To reduce the likelihood of media
failure, we can store our document on very reliable media
(e.0., use CDsinstead of tapes). We can aso ensure that the
media is maintained in the best conditions possible. For ex-
ample, by placing tapes in a low-temperature/low-humidity
environment, we may increase their life by an order of mag-
nitude[2].

Component Obsolescence: Reducing component obsoles-
cence is hard, as it requires an accurate prediction of what
operating systems, document formats, and devices will be
used in the future. Still, use of standards, self-contained
media (i.e, media that includes its own reader) [14], and
equipment preservation may help.

Human/SoftwareErrors. Good coding techniques can reduce
the likelihood of these failures, e.g. define interfaces that
mi nimizetheamount of damagethat can bedone. Inaddition,
program validation and operator training can help.

External Events: Damage from externa or environmental
eventscan bereduced by fire-proof walls, earthquakeresi stant
buildings, and so on.

2.3 System-Level Techniques

Migration: Migration involves replacing a document com-
ponent by a new, safer one. For example, suppose that
“Postscript” readers are becoming obsolete, being replaced
by new “Postscript I1” ones. Then we may decide to migrate
Postscript documents into the new format, before Postscript
readers become unavailable. Migrationis particularly effec-
tive for storage devices. However, migrating to new formats
is more chall enging because someinformationmay belostin
the transformation.

Replication: Replication makes copies or creates new in-
stances of needed components, to ensure the long term sur-
vival of thecomponent. Replicationisused by many archival
system including the Computing Research Repository [12],
the Archival Intermemory Project [10, 6], and the Stanford
Archival Vault [4].

Emulation: Emulation involves re-creating all the compo-
nents needed to access a document on a new platform [17].
Emulation can be done at several levels. hardware, the oper-
ating system, software, or format.

Fast Failure Detection and Repair: With most system fault
tolerance techniques, we need to check periodically for failed



documents. Fast failure detection and repair yieldsimproved
reliability. For example, if one of two component copieshave
failed, the sooner we detect the problem and generate a new
copy, the more protection we get against a second fault.

3 Architecture of an Archival Repository

Our god inthissectionistoidentify the elements of atypica
archival repository (AR), so we can model each element and
study how it impacts reliability. A typical AR stores docu-
ments in a data store that can fail. The AR can still achieve
long-term survivability by enhancing the data store with an
archival system (AS) that implements some of the techniques
of Section 2.3. We present our AR model in Figure 1. The
figure shows the AS modules (in solid-line boxes), the non-
fault-tolerant store (in a dashed-line box), and the archival
documents. The arrows represent the runtime interactions
between the el ements.
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Figure 1: Archival Repository Model

3.1 Archival Documents

In our architecture, an archival document embodiesinforma
tion. Anarchival document cannot be just abag of bits, but it
must aso include al the components necessary to transform
the bitsinto a human comprehensible form.

An archival document is an abstract entity. The connection
between document and access to it is achieved through mate-
rializations. A materializationistheset of all thecomponents
necessary to provide some sort of human access to a docu-
ment. For example, a materiadization may include the bits,
disks, and format interpretersnecessary to display atechnical
report. The same technical report may be accessible through
adifferent materialization, that may includeadifferent format
interpreter to print the technical report.

Weillustrate materializationsin Figure 2. In thefigure, there
are two archival documents. Each of those documents has
two different materializations. For example, Materialization
1 requires the following components to be available: File 1,
Site A, Disk 1, and a ASCI|I printer. Incidentally, notice that
File 1 is stored on Disk 1, which in turn is at Site A. Such
component interdependencies will be discussed later, when
we model materialization failures.

The AR is able to preserve documents by preserving the
materializationsand their components. In thispaper, wetreat
the documents as “black boxes” We do not attempt to take
advantage of document structure (e.g., chaptersin abook).

Site A Site B

Disk 1 Disk 2 Disk 3

File File File File
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Figure 2: Materializations

3.2 Architecture of the Non-Fault-Tolerance Store

The Store encompasses the set of components, such as sites,
disks, or format interpretersthat make materiaizations acces-
sible. Because the storeisnot fault tolerant, materializations
may be lost. A materialization is considered lost when any
of itscomponents has failed. If all of the materializations of
a document are lost, then the document is considered lost.

To creste a materidization, first we must ensure that the
necessary components exist in the store. Then we creste
a record that links together the components as a material-
ization. For example, say we want to creste a document
meaterialization that requires the bitsin file “doc.ps’, which
are located in disks in site; and requires the postscript in-
terpreter. Any componentsthat do not exist already (e.g., the
file doc.ps) are created. In some cases, “creating” a compo-
nent may require a physicd action, e.g., adding anew printer
or disk to the store. Once the components exist, a metadata
record containing references to the components is created
(eg., (site1, doc.ps, diska, postscript)). Thisrecord serves
astheidentifier for the materialization.

A document metadatarecord includestherecordsfor al avail-
able materializations. Note that a document is not accessible
if its metadata record is corrupted or lost. Therefore, the
record must be one of the required components for any ma-
teridization.

3.3 Architecture of the Archival System

The AS provides fault tolerance by managing multiple ma-
terializations for each document. The AS monitors these
materiaizations, and when a failure is detected, attempts to
repair them. The AS can improve fault tolerance further by
taking preventive actionsto avoid failures. The AS provides
the user the ability to create and retrieve archival documents.
It also provides miscellaneous services such as indexing, se-
curity, and document retirement, among others. When a user
requests a document, the AS uses its metadata to find al the
available materializations of that document, selects one and
returns it to the user. In this section, we describe the six
modulesthat make up at AS (see Figure 1).



The Archival Document Creation module (ADC) generates
new documents, implementing policies on the number and
types of materializations that are needed. For example, say
an administrator has decided that documents should be ma-
terialized asillustrated by Document 1 in Figure 2. Then, for
each new document, the ADC will create (on the data store)
the appropriate“File 1" and “File 2,” the document metadata
record, and will check that the other components exist. The
main objective of this paper isto provideaframework that al -
lowsasystem administrator to choosethebest materialization
policiesto achieve adesired leve of reliability.

The Archival Document Access module (ADA) services re-
quest for documents. Basicaly, the module trandates the
request for a document into a request for the appropriate
components of one of the document materializations.

The Failure detection module (FD) scans the store looking
for damaged or lost materializations. When adamaged mate-
rialization isfound, the failure detection moduleinformsthe
Damage Repair modul e (described bel ow) about the problem.

The DamageRepair module(DR) attemptsto repair damaged
documents. There are many strategies to repair a damaged
document, as discussed in Section 2.3. The input of the DR
moduleisasigna from the FD module.

The Failure Prevention module (FP) scans the store and takes
preventive measures so materializations are less likely to be
damaged. For example, the FP module may copy components
that are stored on adisk that iscloseto the end of itsexpected
life, into a newer disk.

Finally, the Other Services module (OS) provides miscel-
laneous services such as indexing, security, and document
retirement. Retiring a document involves removing from the
storeany componentsthat are nolonger needed, even by other
materializations.

4 Failure and Recovery Modeling

In this section, we will model the failure and recovery char-
acteristics of an AR, based on the architecture presented in
the previous section. First, we will explore how to model a
non-fault-tolerance store, and then the archival system (AS).
Later, we will combine these two models into an archival
document model.

4.1 Modeling a Non-Fault-Tolerance Store

Tomodel thefailure characteristicsof astore, we start withan
abstract representation of materializations and components.
We model a materidization as an n-tuple (mat;q, doc;q,
compy, ...compy, ); Wheremat,; 4 isthemateriaization identi-
fier, doc;4 isthedocument identifier, and comp; ...comp,, are
the componentsrequired to providetherequired document ac-
cess. Theidentifiersmat;q and doc; 4 together, formaunique
id for the materiadization. For example: (M1, TR1233,
doc.ps, sitey, disks, postseript) meansthat the materidiza
tion M1 contains the document identified by 7'R1233 that

needs the bitsin file doc.ps, disk, site; and the postscript
interpreter in order to be readable. A document can have
more than one materiaization. For example, Technica Re-
port 1233 can aso have the materialization (M2, T R1233,
doc.ps, sitey, disks, postscript), which would be acopy of
M but on adifferent disk (disks).

We model components by a tuple {component;q, type),
where component;q is a unique identifier for the compo-
nent instance and type istheclass (e.q., file, disk, interpreter)
to which the instance bel ongs.

To further model components, we need to describe:

+ How many component instancesand typesarepresentinthe
system: thisis, how many disks, formats, etc., are available.

o Failure distribution of each component type. Many com-
ponents have two different failure distributions, one during
archival and another during access. For example, atape is
more likely to fail when it is being manipulated and mounted
on areader thanwhenitisstored. Therefore, each component
will have two failure distributions: during archivadl (i.e., time
to next failure when the component is not used) and during
access. For some components, such as disks or sites, the ac-
cess and archival distributionswill be the same; but for other
components, such as tapes or diskettes, these distributions
can be very different.

o Timedistributionfor performing acomponent check. This
distribution describes how long it takes to discover afailure
(or to determine that a component is good), from thetime the
check process starts. For example, consider checking a tape.
This may involve getting the tape from the shelf, mounting
the tape, and scanning the tape for errors.

o Time distribution for repairing a component failure. This
distributiondescribeshow longit takesto repair acomponent.
This distribution may be deterministic (if the component can
be repaired in afixed amount of time). Repair time may be
“infinite” if the component cannot be fixed.

In addition, there is an important interdependency between
components. Specifically, the failure of one component may
cause the failure of another component. For example, if a
site fails (e.g., because it was destroyed by a fire), then al
the disks at the site will aso fail. As pointed out earlier,
we are only taking into account permanent failures; transient
failures (e.g., the site was temporarily disconnected from the
network) are ignored. This failure dependency is captured
by a directed graph. For example, an arrow between “Site
A” and “Disk 1" in the interdependency graph means that if
“Site A’ fails, then “Disk 1" will aso fail.

We close this subsection with two comments. First, wedo not
claim that the model presented for the store is complete. For
instance, we have not included policies for handling concur-
rent access. There is dways a tradeoff between complexity
of the model and our ability to analyze it. We believe that
our model strikesa good balancein thisrespect, and captures
the essential features of a store. Second, the religbility pre-



dictionswe make are only valid for the current configuration
of therepository. Over time, therepository will change (e.g.,
as new devices are introduced), so we may need to change
our repository model. Asthe modd changes, we may need
to revisit our predictions.

4.2 Modeling an Archival System

In this section, we describe how to model the behavior of the
modules of the archival system. We do not include failure
distributions for these modules as we are assuming that the
AS itself does not fail. We recognize that this is a strong
assumption, but in this paper, we have chosen to concentrate
on the failure of components, instead of on the failure of the
system that provides fault-tolerance. How to develop error-
tolerant robust software design have been study in [16].

Because of space constraints, we cannot describe each mod-
ule separately. In general, we model theinput of themodules
with probability distribution functions and their behavior by
algorithms. For example, consider the document crestion
(ADC) module. Itsinput distributionstell us how frequently
requestsfor document crestion arrive, how many materiaiza-
tions each new document will have, and which components
will be selected to participatein a given materidization. The
algorithms for the failure detection (FD) module spell out
what policies are implemented, eg., if al components are
checked on aregular basis or not.

The probability distributionsthat drive the model can be ob-
tained in different ways. If we have datafrom areal system,
we can use the data directly (trace driven), or we can define
anempirical distribution, or we can fit the dataonto atheoret-
ical distribution[1]. If we do not have red data, we need to
chooseatheoretical distributionthat matches our intuition. A
sensible distribution to choose (when requests are generated
independently) isa Poisson distributionfor event inter-arrival
times[5].

We summarize the model parameters in Figure 3. The figure
is divided in three parts. At the top are the parameters that
describe the AR: the number of components and their types,
and the failure dependency graph. Then, welist dl the dis-
tributionsneeded for the model with the units being modeled
in parenthesis. Finally, welist al the policies and a gorithms
that must be defined to model the archival system.

4.3 Modeling Archival Documents

In this section, we combine the models for the data store and
the AS, in order to describe the life of an archival document.
In Figure 4, we depict our model for the life of an archiva
document. The life of a document starts when its material-
izations are created by the ADC module and handed to the
store. The creation of a document may not be an instanta
neous process. For example, if long-termsurvival isachieved
by keeping multiple copies, the document is not considered
archived until al the copies are generated. Once the ADC
module has taken all the actions that ensures the long-term

e AR Description
— Number of components and types
— Failure dependency graph
e Digtributions
— For each component type:
+ Failure distribution during access (time)
+ Failure distribution during archiva (time)
+ Failure detection distribution (time)
+ Repair distribution (time)
— Document crestion distribution (time)
— Document access distribution (time)
— Access duration distribution (time)
— Document selection distribution (document)
e Policies
— Document Creation policy
Document to materializations policy
Failure detection agorithm
Damage Repair agorithm
Failure prevention agorithm

Figure 3: Archival Repository Model Parameters

surviva of the document, then the document has full protec-
tion, and we say that the document isin the Archived state.

Document
isLost
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Figure 4: Archival Document Model

When any of the document component fails (based on the
distributionsin Figure 3), the document is considered to be
in the Damaged state and becomes temporarily unprotected.
For example, if we keep two copies of a document and one
of the copiesislogt, then the document would be damaged.
As explained earlier, the AS will not know that a document
is damaged until the FD module detects the failure. When
the failure is detected, the document goes to the Damaged
Detected state.

When damage to a document is detected (by the policies
summarized in Figure 3), the AS starts actions to restore
the document and, hopefully, return it to the Archived state.
For example, if the document is damaged because one of its
copies was lost, the repository can just replace the damaged
copy by creating a fresh one from one of the good copies.
However, if the repair is not successful, then the document
may be Lost. Thislater state isthe one that we want to avoid
in an archival system.

We aso distinguish two additiona states: Accessible and
Retired. When adocument isinthe Accessible state, it can be



accessed (eg., read, printed) by users, which is not the case
for the Archived state. For example, if some the document’s
components are stored on atape which is kept in a safe, we
need to take the tape out and mount it in a reading device to
make it accessible. When the tapeis stored the document is
in the Archived state; when the tape is mounted, it isin the
Accessible state. As we discussed in the previous section,
when making the document accessible, in general, we are
increasing the chances of damaging the document; so the
probability of transition 7 is, in general, greater than the
probability of transition 5.

The Retired state allows users to mark the document that are
not needed anymore. In this case, the document is retired
from the archival system and the system does not provide
any survivability guarantees. It is important to note that
retiring a document may eventually result in removing all
meaterializations from the store. This action is different than
taking a document “out of circulation,” in which case the
document is not longer availableto regular users, but itisstill
preserved for historical reasons.

5 ArchSim: A Simulation Tool for Archival Repositories
To evaluate a possible AR configuration, we need to predict
how well it protects documents. This prediction can some-
times be done analyticaly, but asthe AR gets more complex,
an andytical solutionisimpractical (and sometimesimpossi-
ble). Instead, we rely on a specialized simulation engine for
archival repositories: ArchSim. We start this section by dis-
cussing the specific challenges confronted when simulating
an AR. Then we describe ArchSim and itslibraries.

5.1 Challenges in Simulating an Archival Repository
ArchSim buildsupon existing simulation techniquesfor fault-
tolerant systems. However, the unique characteristics of
archival repositories make their simulation challenging:

e Time Span: The life of an archival system is measured in
hundreds, perhaps thousands of years. This means that Sim-
ulation runs will be extremely long, so specia precautions
must be taken to make the simulation very efficient. Fur-
thermore, given theselong periods, failuredistributionsmust
take into account component “wear-out.” (A component is
more likely to fail after 50 yearsthat it iswhen new.) Simple
failure distributions (e.g., exponentialy distributed time be-
tween failures) are frequently used in fault-tolerant studies,
but they cannot be used here since they do not capture wear
out.

e Repairs: Inanarchival systemwecannot in general assume
that damaged components can aways be replaced by new
identical components (another common assumption when
studying fault-tolerant systems). For example, after say 100
years, it may be impossible or undesirable to replace a disk
with one having the same failure characteristics.

e Component models: Component models are fairly rich,
compounding the number of states that must be considered.
For instance, as we have discussed, afileis not simply cor-

rect or corrupted. Instead, it can be corrupted but the error
undetected, it can be correct but not accessible for reads, and
so on. The failure models in each of these states may be
different, eg., afileismorelikely to belost when being read.
o Sources of failures: A document can be lost for many rea-
sons, eg., adisk fails or a format becomes obsolete. Each
of these failures has very different models and probability
distributions. The approach of finding the “weak link” and
assuming that al other factors can be ignored is not appro-
priate for ARs.

e Number of Components: An AR needsto deal withalarge
number of components and materializations. The chalenge
of simulating large number of objects has been studied ex-
tensively [11, 15] and ArchSim uses those results.

5.2 The Simulation Engine: ArchSim

ArchSim receives as input an AR modd, a stop condition
(stop when the first document islost or when al documents
are lost) and a simulation time unit (minutes, hours, days,
etc.). ArchSim outputs the mean time to failure (mean time
to stop condition), plus a confidence interval for this time.
We are currently considering other output metrics, e.g., the
fraction of the documentsthat are available after some fixed
amount of time. However, these other metrics are not used in
our case study (Section 6).

For defining the AR moddl, each distribution and policy is
implemented asaJavaobject, sothey can beasgeneral asnec-
essary. For example, for component repair, the corresponding
Java module can simply use a probability distribution (per-
hapsoneof thelibrary functionsdescribed below) to generate
the expected repair time. However, that module can easily
be replaced by one that first decides if the component can
be repaired (using one probability distribution), and then for
each cases generates a compl etion time (when the component
isrepaired or the repair is declared unsuccessful).

5.3 Library of Failure Distributions

ArchSim makes available alibrary of pre-defined failuredis-
tributions, that can be used to describe AR components. The
distributionsin the library are: bathtub, infant mortality, his-
torical survival, uniform, and deterministic. InFigure5(a)-(€)
we sketch generic versions of these probability distributions.
For instance, in the bathtub distribution in (a), the instanta-
neous probability of failureearly in the component’slife (eft
on the horizontal axis) and late in its life (to the right) are
higher than during the middle years. With the deterministic
distribution (€), the component fails at a fixed time, where a
spikeis shown. (The area under these curves, fromtime 0 to
t, represents the probability the component will fail by time
t.) Inthe extended version of thispaper [8], we giveaformal
definition of each distribution.

5.4 ArchSim’s Implementation

ArchSimfollowsthestructure of atraditional simulationtool.
Each module of the AR model can register futureeventsin a
timeline. For example, when adisk iscreated, the simulation
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Figure 5: Possible Failure Functions

usesthedisk failuredistribution to computewhenthedisk will
fal; then, it registers the future failure event in the timeline.
The simulation engine advances time by calling the module
that registered the first event. This module may change the
state of therepository and register moreeventsinthetimeline.
After the modul e returns, the simulation advances to the next
event, in chronologica order. The user can choose between
two end conditions for the simulation: the simulation can
stop after the first document islost or after al the documents
arelost.

ArchSim needs to be very flexible and efficient to meet the
challenges of simulating an archival repository. Flexibility
is needed to model very different archival conditions and
implementations. Speed is needed to cope with many ma-
terializations, components, and events. Additionally, each
simulation needs to be run many times in order to obtain
narrow confidence intervals.

In an AR simulation, many events are inconsequential. For
example, suppose that the detection module schedules peri-
odic detection events. If the detection event findsafault (i.e,
there was afailure event before the detection event), then the
module starts a component repair; if no failure is detected,
then the module does nothing. If a repair module checks a
component with mean time to failure (MTTF) of 20 years,
every 15 days, then, in average, 486 events (20 x 365/15)
will be fired and the repair module will just return without
doing anything; only in the event 487, when a failure of the
component has happened, will the repair module perform an
action. Given the large number of components and modules
that may be part of the model, thislarge number of inconse-
guentia events represents a significant overhead. To avoid
thisoverhead and to improve efficiency, modules are allowed
to register conditional events in the timeline. These events
will only happen if some other event happened before them.
By using conditional events, we can conditionthefiring of the
detection event only if afailure event on an specific compo-
nent happened beforeit. A conditional event isnot registered
directly in the timeline. Instead, it is registered in an index
that is part of itstriggering event. For example, if event B is
conditional to the occurrence of event A, wewill put B inthe
index of A. When anew event A isschedule in thetimeline,
we look in the index and find that B is conditional to it, so at

that point we a so schedule B.

To reduce the number of events further, ArchSim also mod-
ifies failure distributions. For example, when modeling pre-
ventive maintenance, alarge number of “replace component”
events are generated. We can diminate all those events, by
modifying the failure distribution. Specifically, the original
failure distribution is used to generate the time of the next
failure of the component. If thistimeis higher than the pre-
scribed preventive maintenance period, we ignore this time,
and we generate a new failure time, gain using the origi-
nal distribution. We repest this process until a failure time
is lower than the preventive maintenance period. The new
distribution then returns the number of iterations minus one,
times the PM period, plusthe last failuretime.

Another chalenge for ArchSim is how to deal with alarge
number of materializations and components. Thisisdone by
scheduling only the next failurefor each component type and
associating a trigger with that event. When the failure event
happens, the trigger isactivated. The trigger computes when
the next failure of a member of that component type will
occur, and adds it to the timeline. Obvioudly, this approach
is only beneficia if we have many components of the same
type, which is a reasonable scenario for an AR. In the case
when we have N different distributionsfor N components,
this technique does not improve the simulation time, but it
does not increase it.

6 Case Study: MIT/Stanford TR Repository

In this section, we use ArchSim to answer some design
guestions for an hypothetical MI1T/Stanford Technica Re-
port Archival Repository. The AR followsloosely the Stan-
ford Archival Vault (SAV) design [ 7] and implementation [4].
(Weactually considered creating such arepository someyears
ago, when both institutionswere participatingin the DARPA
sponsored CSTR Project.) In this case study, MIT and Stan-
ford preserve their Computer Science Technica reports by
replicating the reports at both universities. In this case study
we will have to make many assumptions. Our goal here is
not make any specific predictions, but rather to illustrate the
types of evaluations that ArchSim can support, the types of
decisionsthat must be made to model an AR, and the types of
comparisons than can be made to support rationa decisions
among aternatives.

Wewill assumethat thecoll ection has 200,000 documentsand
that each document is stored in one or more of four available
formats. The repository will have two types of components:
storage devices (disks) and format interpreters. To ensure
preservation, the AR maintains four materializations of each
technical report; two materializations at Stanford and two at
MIT. Materidizations are created by choosing two formats
out of the four available formats. Two of the materializations
will bein oneof the chosen format, whilethe other twowill be
inthe other. Then, at each site, we place two materiaizations
that are in different formats in two different disks. Figure 6



illustrates the arrangement of the technical reports in this
system.
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Figure 6: MIT/Stanford CSTR Scenario

Disks, formats, and sites have uniform failure distributions
with parameters 1/¢.10, 1/¢ form, 1/ ¢site. ASour base val-
UES, We are assuming ¢, ¢ form, and ¢,;;., the mean time
to failure (MTTF) for disks, formats and sites, to be 3, 20,
and 45 years respectively.

These values are our best guess for atypical archival system.
We chose 3 years as the disk MTTF, as this is the normal
period under which ahard driveis under manufacturer guar-
antee. We chose 20 years for format MTTF as we theorize
that it will take that long for a well-known format to be re-
placed by anew format and for all displayersand transformers
for the old format to be lost. We chose 45 years for the site
MTTF as we assign a 50% probability to the event of loosing
the Stanford site dueto ahighintensity earthquake in the San
Francisco Bay Area (which is predicted to happen in a 45
year period).

The archival system checks for faults periodicaly. When
a fault is detected in one of the storage devices, the bad
device is retired, and a new device is set online. Then, the
system regenerates the bad device by making a copy of the
lost materializations from the other site.  Similarly, when
a format becomes obsolete, a new format is selected and a
new set of materializations (transformed from anon-obsol ete
format) is created in the new format. In addition, in case of
sitefailure, thesiteisrecreated from theother site. If al sites,
formats and devices that support all the materiaizations of a
technical report are lost, then the technical report is lost and
the simulation stops. Disks, formats, and sites are checked
and repaired (if needed) every p.io, prorm, and pge days.
As our base values, we are assuming psio, Pform, and pge
to be 60, 60, and 7 days.

To justify these va ues, we need to describe what is involved
inthedetection and repair of component failures. Detecting a
failurein adisk involves scanning the whol e disk and check-
ing for lost data. When we find lost data, we need to order a
new disk and then copy all the data that was in the damaged

Parameter Symbol | value
Number of disks Nsto 100 per site
Number of formats 7 form 4

Number of documents numgo. | 200,000
Mean Time to Disk Failure Gsto 3years
Mean Time to Format Failure O form 20 years
Mean Time to Site Failure Psite 45 years
Disk Failure Detection/Repair time Psto 60 days
Format Failure Detection/Repairtime || pform 60 days
Site Failure Detection/Repair time Psite 7 days

Figure 7: Base values

disk from other sourcesinto the new disk. Assuming that the
repair timeis 60 days means that we need to dedicate only
3% of the disk bandwidth to scan all materializationsin order
to detect failures. We did not chose a quicker repair because
the scanning overhead would be too high in our opinion. For
example, 25% of the disk bandwidth is required to detect
failuresin 7 days.

For formats, the detection/repair timesimply that we are able
to realize that a format is obsolete and that we can create a
new copy of the document from a non-obsol eteformat within
a 60 day period. Inthe case of sitefailures, we are assuming
that the detection/repair time for the site is much lower than
for formats and disk. The detection itself should be rather
fast inthiscase (the entiresiteisdown), and the 7 days could
be thetimeit takesto find abackup siteto take over.

Inthiscase study, we are assuming that failuresaretota. This
is, we cannot partially repair a component and salvage some
of the materializations. Thefailuredistributionduring access
will be assumed to be the same as the failure distribution
during archival. The simulation parameters are summarized
in Appendix | and the base values for our simulation are in
Figure7.

In our first experiment, we evaluate the effect of the fail-
ure MTTF and repair times of storage devices on the system
MTTF. In Figure 8, we show the system MTTF for different
disk MTTFs, given a detection/repair time of 60 days. To
single-out theinfluence of storage device failures, we are as-
suming in this experiment that formats and sites never fail.
The dotted lines in the figure represent the 99% confidence
interval for the simulation, whilethe solid lineis the average
of al the simulation runs. As expected, the system MTTF
increases when the disk MTTF increases (when the disk fail-
ure rate decreases). The exponentia shape of the curveisthe
result of the constant repair time. Aswe keep increasing the
disk MTTF, it is much more improbable that another device
will also fail before 60 days have passed. This graph alows
usto select agood storage devicefor atarget syssem MTTF. If
thelibrary targets a 10-year MTTF, then a disk with afailure
MTTF of 3yearswill suffice. However, if thelibrary requires
aMTTF of 100years, thenwewill need diskswithaM TTF of
about 6 years. Most manufacturers guarantee their disks for
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three years and very few guarantee them beyond five years.
Therefore, a 6-year disk MTTF requirement will be hard (or
very expensive) to meet. Nevertheless, we can still achieve
our target system MTTF by changing other parametersin our
system, as we will see in the next experiment.

We now evd uate the sensitivity of the system MTTF to the
repair time (ps:,). In Figure 9, we show the MTTF of the
AR for different disk MTTF (¢:,) values, and for different
expected detection/repair times. (Note that the graph has
a logarithmic scale. Confidence intervas are not shown to
avoid clutter.) First, let us concentratein the curvefor a ¢,
of 3 years. As expected, the MTTF of the system decreases
when the p,¢, of the storage devices increases. However, the
shape of the curveis more interesting. At low detection and
repair times, there is a high positive impact on the MTTF of
the system. However, as we increase the repair times, the
system MTTF drops sharply. Interestingly, for arepair times
greater than 120 days, about 1/9 of the MTTF of the storage
device, theeffect on the system MTTF of the detection/repair
module is small. Thus, the detection and repair times must
be much lower than the storage device failure MTTF to have
asignificant effect on the MTTF of the Archival System.

What is the optimal solution for a given MTTF with respect
to disk MTTF repair times? The answer depends on the cost
assigned to those two factors. By looking to all the curves of
Figure 9, we can observe that we can achieve similar MTTF
by using better media or by reducing the detection/repair
times. For instance, a system that uses a storage device with
®st0 Of 5 years (i.e, alow quality storage device) and has a
detection/repair time of 30 days, is as good as a system that
uses a high quality storage device with ¢, of 20 years, but
is only checked and repaired every 360 days. The decision
of which alternative to choose will depend on the cost of the
storage device versus the cost of more frequent detections.

We now expand our experiments by allowing formatsto fail.
In Figure 10 we show system MTTF as a function of ¢,
when formats can fail. We fix ps:, a 60 days, and now
formatscanfail with¢ ¢,,,, = 20 years. Toavoidintroducing
additiond factorsin theanaysis, we assume sitefailures till

Figure 9: System MTTF (loga-

Figure 10: MTTF ¢f,rm =20
years, Psto=Pform =60 days

cannot happen. Format failures are detected and repaired
with pyorm = 60 days. For comparison purposes, we have
included in Figure 10, the results presented in Figure 8. The
important conclusionthat we can derivefrom thefigureisthat
inanarchiva repository wecannot focuson singlecomponent
types. It issurprising that even though the format MTTF is
much larger than thedisk’sMTTF, the failure of formats till
has a significant impact. Thisis because a document is lost
if thereisadisk failure or aformat failure. The result isthat
we are taking the “worst” of thosetwo failures, resultingin a
systemwithalow MTTF. Theresult of thisexperiment shows
that we need acomprehensive model, likethe oneproposedin
this paper, to redlize theinteractions between the components
and their effects on syssem MTTF.

Our model can be used to explore other possibilities that
may improve reliability. For example, we now consider what
happensif we are ableto increase the number of copiesmain-
tainedinthesitesfromtwotothree. InFigure1l, wemaintain
the same parameters at the same base vaues, but now each
site has three copiesin three different formats. Inthefigure,
we can see that by increasing the number of copiesto three,
theMTTFincreasesfrom 34 yearsto 2101 when ¢, isequa
to 3 years. Althoughincreasing the number of copiesto three
will undoubtedly increase the cost (as we need an additional
33% disk space and the need to handle an extra format), we
have achieved an important improvement inthe MTTF of the
system.

As we stated earlier, a comprehensive model isimportant to
get an accurate picture of the reliability of the system. In the
next experiment, we use our system to explore a different,
more complex failure distribution for storage devices. In
this new distribution, we want to include the issue of “infant
mortality.”

When the failure distribution includes infant mortality, stor-
age devices have ahigher failurerate in the beginning of their
life (in our case, 30 days) than in therest of their lives. This
can beexpressed asadistributionthat hasalow MTTF within
the first 30 days and a higher MTTF after that. The MTTF
after the 30-day period will be 5 years. We will vary the
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early MTTF between 44 and 285 days. In this experiments
we will assume that formats cannot fail. All other assump-
tions and repair procedures of the previous experiments are
maintained (see Figure 7). In Figure 12 we show the system
MTTF at given percentages of storage devicesthat fail in the
first 30 days. For example, with an early MTTF of 285 days,
10% of the devices will fail within 30 days. WithaMTTF
of 135 days, 20% will fail. As expected, the higher the in-
fant mortality, the lower the MTTF of the system. At a 0%
infant mortality, the system MTTF was 65 years, dropping
to 48 years when the infant mortality is 10% and dropping
to only 11 years a 50% infant mortdity level. Given this,
when using components that suffer from infant mortality, a
way to increase the MTTF of the system is for the failure
detection modul eto check new components much more often
than older components.

We now explore the issue of aging of storage devices. With
aging, a storage devices will have alower MTTF at the end
of itslife. For example, a disk may have a5 year MTTF
duringitsinitia lifeandaMTTF of 2 yearswhenit reachesits
“aging” phase. Inthisexperiment wewill assumethat formats
cannot fail. All other assumptions and repair procedures
of the previous experiments are maintained (see Figure 7).
We evaluated the MTTF of the system for different points
when aging starts (no graph shown). As expected, the sooner
aging starts, the lower the MTTF of the system. If aging
never occurs, the MTTF of the system is 65 years. If aging
starts after 1 year, the system MTTF is 17 years, increasing
to 42 years when aging starts after 5 years. Given this,
when using components that suffer from aging, a way to
increase the MTTF of the system is for the failure detection
modul eto check old components much more often than newer
components. Moreover, we should consider replacing old
componentswith newer ones before the old components fail.

As afina experiment, we will evaluate the impact of Pre-
ventive Maintenance (PM) on a system with aging disks.
Specifically, we will replace old disks with new ones before
the old disks are expected to fail. Thisis done by copying
(instantaneously) all documents from the old disk into a new
disk, and then removing the old disk. In thisexperiment, we

Figure 12: MTTF with Infant
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Figure 13: System MTTF with
PM and Aging

are assuming that disks do not have infant mortality and that
diskshavea5year MTTF duringtheirinitia lifeandaMTTF
of 2 years when they reach their “aging” phase. Figure 13
showsfive PM schedulesfor disksthat age at different points.
From the figure we can see that the most efficient PM sched-
ule is one that matches the start of the aging period of the
disk. For example, when we use a 10-year PM plan asystem
with disks that age after 5 years, will have a MTTF of 42
years. When we never perform PM, the system MTTF does
not increase significantly. However, when we use a 5-year
PM plan, the MTTF of the system increases to 63 years. If
we keep increasing the frequency of the PM plan, the MTTF
does not improve much more.

7 Conclusions

In thispaper, we have studied thearchival problem. We stud-
ied the different options for recovery and preventive main-
tenance, devel oping a comprehensive model for an AR. We
described a powerful simulation tool, ArchSim, for evaluat-
ing ARs and the available archival strategies. We described
how ArchSim can efficiently perform large simulations many
components and very long durations. We demonstrated the
use of ArchSim with a case study for a hypothetical Tech-
nical Report repository operated between Stanford and MIT.
We considered options such as disks with different reliabil-
ity, number of copies, format failure handling, and preventive
maintenance. We believe ArchSim can help librarians and
computer scientists make rational decisions about preserva
tion, and help achieve better archival repositories.
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Appendix I: MIT/Stanford CSTR Scenario Parameters
¢ AR Description

— Initia collection: numg,. documents. Each document,
d, will have the following four materializations:

* (d, MIT, disk;, form;),

* (d, MIT,disky, formy),

* {d, Stanford, disky, form;),

* {d, Stanford, disk,, form).
Where M I'T and Stan ford arethetwo sites; disk;, disky,
disk,, and disk, aredifferent storagedevices; and, form;
and form; aretwo different formats.
— Number of components and types: n;;, storage devices,
N form TOrmMats, 2 sites.
— Failure dependency graph: site — disk, when the disk
isin the given site.
Distributions
Disk Failure distribution during access. U(1/¢s+0)
Format Failure distributionduring access: U(1/¢ form )
Site Failure distribution during access: U (1/ i)
Disk Failure distribution during archival: U(1/¢sz,)
Format Failuredistributionduringarchival: U(1/¢ ¢ orm)

Site Failure distributionduring archival: U(1/¢s;ze)
Disk Failure Detection distribution: instantaneous
Format Failure Detection distribution: instantaneous
Site Failure Detection distribution: instantaneous

Disk Repair distribution: instantaneous

Format Repair distribution: instantaneous

Site Repair distribution: instantaneous

Document creation: numg,. documents at startup, then
no documents are created.

— Document access rate: irrelevant as failure distribution
during access is the same as during archival.

— Access duration rate: irrelevant as failure distribution
during access is the same as during archival.

— Document selection: uniform over the numg,. docu-
ments.

Policies

— Document Crestion policy: for each document, four ma-
teridizations are created, 2 in each site. In each site, each
materiadization iscreated in adifferent disk and in adiffer-
ent format.

— Document to Materidization: read from any material-
ization.

— Failure detection algorithm: complete scan of al disk,
formats, and sites every 7,5, Tform, ad 7,44 days, respec-
tively.

— Damage Repair agorithm: discard bad component and
replace with new component taking é,0, 8 7orm, aNd dg;¢e
days, for disks, formats, and sites respectively.

— Failure prevention algorithm: none

e ArchSim Parameters

— Stop Condition: when losing the first document.
— Simulation time unit: days.



