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Abstract

This paper introduces techniques for reducing data dissemination costs of query subscriptions in

a multicast environment. The reduction is achieved by merging queries with overlapping, but not

necessarily equal, answers. The paper formalizes the query-merging problem and introduces a general

framework and cost model for evaluating merging. We prove that the problem is NP-hard and propose

exhaustive algorithms and three heuristic algorithms: the Pair Merging Algorithm, the Directed Search

Algorithm and the Clustering Algorithm. We develop a simulator, which uses geographical queries as

a representative example, for evaluating the di�erent heuristics and show that the performance of our

heuristics is close to optimal.

KEYWORDS: Query Processing, Data Dissemination, Query Merging, Query Subscriptions, Multicast

of Query Results, Geographical Queries.

1 Introduction

With information dissemination (information push), data is delivered from a set of producers to a (typ-

ically) larger set of consumers. Examples of dissemination-based applications include information feeds

(e.g., stock and sports tickers of news wires), tra�c information systems, electronic newsletters, and en-

tertainment delivery [15]. We focus on a type of dissemination system where the consumers in advance

submit subscriptions de�ning their interests. Each subscription may include one or more queries over the

�A one-page extended abstract of this paper appeared in ICDE 2000.
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data that the producers hold or generate. The producers run the queries periodically, disseminating infor-

mation of speci�c interest to the consumers. Systems such as Pointcast [31], Marimba [29], Backweb [3],

and Airmedia [2] are examples of subscription-based dissemination.

Subscription-based dissemination services are well suited to users' needs, but can be very expensive.

As a real world example, a 1996 study that monitored Internet tra�c found that more than 17% of

the HTTP Internet tra�c involved PointCast [19]. Additionally, PointCast \pulls" saturated company

networks so much that large corporations have limited or even outlawed the use of PointCast on their

desktop PCs [30]. In this paper we study a novel technique that can signi�cantly reduce tra�c and server

loads. The overconsumption of resources in subscription-based dissemination services is the result of three

factors. First, the network is point-to-point (i.e., the answers to each query subscription are transmitted

separately to each consumer). Second, each query is processed independently. And third, previous work

do not make full use of the processing power of clients. Instead, clients are considered \dumb" processes

that are unable to perform any post-�ltering of data they receive.

The overhead of point-to-point dissemination can be reduced by using a multicast network. For example,

consider the case where n clients issued exactly the same query in their subscriptions. A subscription

service using a point-to-point network will process and transmit the answers to those queries n times,

while a multicast-based service will establish a \channel" for the answer and will transmit the answer only

once [19].

However, in many applications, it is unlikely that a large number of clients will issue exactly the same

query, preventing us from fully exploiting the advantages of a multicast network. In this paper, we present

algorithms for e�cient use of a multicast network for such applications. We achieve this by considering

merging not only identical queries but also queries with answers that overlap signi�cantly. By merging

these queries, the server has to process fewer queries and the amount of information sent may be reduced.

(As we will see later, in some cases, merging queries might increase the data sent.) On the negative side,

the merged answers may contain some data that is irrelevant to a client. As a result, a client needs to

make use of its processing power and apply a post-�ltering extraction query over the received data in order

to obtain the answer to its original query. For example, say we merge queries q1 : �2�A�40R(A) and

q2 : �3�A�41R(A) into q3 : �2�A�41R(A). The server can then process this single query and send the

result, ans(q3), to the clients that issued q1 and q2. The q1 client will need to extract the q1 answer from

ans(q3) by applying the extraction query q1 : �A�40(q3). Similarly, the q2 client applies its own extraction

query to eliminate all elements less than 3. By merging q1 and q2, we reduce both the amount of work

done by the server to process the query and the amount of information sent to the clients; however, this
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is at the expense of having to set up a multicast channel and having to post-process the messages at the

clients.

In this paper we address the query merging tradeo�s. We present a framework for studying query

merging (sometimes called logical-channel building) and its costs. We present a variety of algorithms

for merging, some optimal, and some heuristic. We study the complexity of the algorithms. We use a

simulation tool to evaluate their performance (i.e., time required for merging, and dissemination costs

saved).

We start by presenting a motivating example (Section 2). We then specify our problem more formally

(Section 3) and de�ne our cost model (Section 4). Next, a speci�c scenario using geographic queries is

considered (Section 5). The algorithms are presented in Sections 6 and 7 and their evaluation in Section 8.

2 Motivating Example

In this section, we motivate our techniques for reducing data dissemination cost by using the DARPA

Battle�eld Awareness and Data Dissemination initiative (BADD), which funded this work. The goal

of BADD is to develop an operational system that delivers to combat troops an accurate, timely, and

consistent picture of the battle�eld and provides access to key transmission mechanisms and worldwide

data repositories. Figure 1 outlines the relevant components of the BADD architecture.

Operation Units

Satellite

Database

System

Figure 1: The BADD Scenario

In BADD, a database receives new information (e.g., satellite images, intelligence reports) from a set

of information sources. The database also receives queries from operational units, answers the queries (on

an on-going basis), and disseminates the answers. The operational units are limited capacity computers

that can perform simple operations on the data received.

A common request in the BADD environment is information (troop presence, weather, topography, etc.)

about a geographical area. For these requests, sources typically associate a geographical location with each
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object. For example, if the data source is a relational database, it may have the schema R(longitude,

latitude, attributes), where the pair (longitude, latitude) identi�es the location, and attributes describes

the object. This database can be visualized as in Figure 2(a). The dots in the �gure represent the

objects that have a given longitude and latitude. As stated before, operational units will query this

database for objects inside a geographical area. For simplicity, we will assume that such area is a rect-

angle, de�ned by two coordinates (c1; c2) and (c3; c4). The queries over the database will have the form:

�(c1�latitude�c3)^(c2�longitude�c4)R. Figure 2(b) illustrates one of these queries. Although we will use this

simple scenario as a running example, we want to stress that our algorithms can handle more complicated

queries and database schemas.
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Figure 2: A Sample BADD Database and Queries

In Figure 2(c) we illustrate the merging of two BADD queries q1 and q2. Since these queries are very

similar, it may be advantageous to merge them into a single query mrg(fq1; q2g). Note that the answer to

the new query will contain objects that were not in the answer of q1, or in the answer of q2, or both. The

operational units that receive the answer of mrg(fq1; q2g) must be able to derive from it the answers to q1

and q2.

There are many other applications that can bene�t from query merging. For instance, a stock-market

information service can use our setup. Speci�cally, the system will receive information (e.g., stock prices,

news wires, press releases) from a set of information sources. Users can subscribed to the database according

to their interest (e.g., certain stocks or stocks with some level of capitalization). A broadcast system would

not be as e�ective since clients will receive much more information than they are interested in. On the

other hand, processing each query independently will consume signi�cant server and network resources.

The solution is to merge similar queries and disseminate their results to the appropriate clients.

In this paper we do not consider security issues when merging query answers. For example, a client
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may not have the right to access all the data in a merged query. There are many ways of dealing with this

problem. We may only merge queries from clients that are at the same security level. We can also encrypt

each content of each object, so only clients that have the key to the object can see it. (However, in that

case, we cannot use the encrypted attribute for the extraction procedure.)

3 Problem Speci�cation

In this section, we formalize the query merging problem by presenting a detailed conceptual model. The

objective of our approach is to reduce the cost of answering a set of query subscriptions made by clients

to a server. We attempt to reduce the cost by �nding a (possibly) di�erent set of queries, with lower

processing and transmission costs, from which the clients can derive the answers to their original queries.

3.1 Conceptual Model

The conceptual model for a query subscription service is shown in Figure 3. In this model, we have a set

of clients, C = fc1; :::; cng, that require information. The information need of ci is described by a set of

subscriptions. Each subscription consists of a query and its timing requirements (e.g., how often it should

be run). For simplicity, we assume that all subscriptions have identical timing requirements. Thus, we can

view the subscriptions of client ci simply as a set of queries Qi. We will assume that Qi is relatively small

but that its queries will be processed periodically (and answers sent to the client) over a long period of

time. We call Q the set of all queries received by the server.

.

.

.

Merge
Algorithm

Database
System .

.

.

Client1
Client2

.

.

.

Client1
Client2

Database

Extraction
Extraction

Extraction

Network

Subscriptions 1
Subscriptions 2

Client n Subscriptions n Client n

Figure 3: Subscription Service Conceptual Model

Clients send their sets of queries to a server. The server periodically processes the queries against a

database, and sends answers to the clients. Before processing queries, the server runs a merge algorithm

that combines \similar" queries. The output of the merge process is a collectionM = fMig where each Mi

contains the queries that are merged. The queries in each Mi are merged into a single query, mrg(Mi). We

use ans(q) to represent the answer to query q. Thus, the server generates ans(mrg(Mi)) for each Mi inM.

For completeness, we require that [iQi = [iMi. Similarly, we require that ans(q) � ans(mrg(Mi)) for
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every q 2Mi. We call the di�erence between the answer to the merged query sent to a client, ans(mrg(Mi)),

and the original query, ans(q), the irrelevant information for q sent to the client.

To illustrate these concepts, say client c1 submits queries Q1 = fx; yg, and c2 submits Q2 = fzg. The

server may merge them into M1 = fx; zg and M2 = fyg. Then the server runs mrg(M1) and mrg(M2)

against the database and generates A1 = ans(mrg(M1)) and A2 = ans(mrg(M2)). Note that A1 needs

to be sent to both c1 and c2 and that each must apply an extractor to obtain the desired answer. For

example, the extractor, e, that c1 applies to A1 should yield e(A1) = ans(x). Thus, when the server sends

A1 out, it must include a header containing the following information:

� A list of clients that should receive A1.

� For each such client c, one or more pairs, (e; q), where e is an extractor and q is a query identi�er.

The extractor e is what client c needs to apply to obtain the answer to its original query q.

Note that more than one (e; q) pair is needed if multiple c queries are involved in A1. If clients do not need

to know what queries generated answers, then the query identi�ers are not required. In our example, the

information sent with A1 would be c1 : (ex; x) and c2 : (ez ; z). Client c1 then applies ex(A1) to obtain its

answer to query x while c2 applies ez(A1) to obtain its answer.

There are many options for implementing extractors. For example, the server could tag each individual

answer object with the identi�er of the query that generates the object, or with the identi�er of the client

that should receive the object. Then each extractor only needs to look for the appropriate tags. In some

cases, the extractor for a query is the original query itself. In particular, this happens when queries only

have selections and projections. In any case, the extractor needs to be installed on the client machine.

Above, we assumed that extractors were generated by the server and sent with answers. However, if the

client can deduce its extractors (e.g., if the extractor is the original query itself), then the server need not

send them.

Note that our basic model does not specify what kind of network is used to send queries to the server

and answers to the clients. In the next section, when we discuss cost, we will introduce a multicast network

into the model. This model is extended in Section 7 to include multiple channels.

4 The Cost Model

As we saw in Section 2, merging queries may or may not improve the performance of the system. To decide

if merging is bene�cial, we need an accurate and precise cost model that allows us to compare the \cost" of

merging queries versus the cost of not merging those queries. In this section, we analyze the cost elements

involved in our model and we integrate them in a cost formula.
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As described in Section 3.1, the server receives a set of queries Q and outputs a set M where each of

its elements is a set of queries to be merged. The query merging problem is to �nd the set M with the

minimum cost. The input for the problem is a cost function cost(), a merge procedure mrg(), and a set of

queries Q. The output is a collection M such that the total cost, cost(M), is minimized.

The cost of processing the queries and sending the answers back is represented by the total resources

consumed. The total resources consumed are the sum of all the resources used by the server, the network,

and the clients. The costs involved in our model can be summarized as follows:

� Server cost to run the merging algorithm and to process the merged queries.

� Cost of transmitting the answers of the merged queries.

� Client cost of applying the extraction procedure.

In order to compute the resources used, we need to estimate the size of the query answers and the cost

for computing them. Such estimate can be obtained using well-known database system techniques [28]. We

use cost(q) to denote the estimated cost of retrieving q's answer. The estimated total cost of retrieving all

the answers (equal to cost(mrg(M1))+ cost(mrg(M2 ))+ :::+ cost(mrg(Mm))) will be denoted as cost(M).

We will denote the estimated size of q's answer as size(q). The total size of all the answers (equal to

size(mrg(M1)) + size(mrg(M2)) + :::+ size(mrg(Mm ))) will be denoted as size(M) (note that this is the

total amount of data that the server needs to transmit to the clients).

As stated before, clients extract the answers to each of their queries independently by applying an

extraction query to the messages they receive. The independence assumption means that a client may do

some redundant work. For instance, consider a client that submits two queries that are then merged by

the server. The client receives a single message containing both answers. It processes the message once to

extract the answers for the �rst query, and then again to get the second set of answer objects. In extracting

the �rst answer, the client will consider some objects as irrelevant, even though they will be later found

to be relevant for the second query. We believe this independent processing model is the most realistic

since clients are expected to be relatively simple and unable to process di�erent queries concurrently. We

will denote the size of the irrelevant information for query qi by ui = size(mrg(Mj ))� size(qi), provided

qi 2Mj . We will call U (Q;M) the sum of all ui (U (Q;M) =
P

qi2Q
(ui)).

The resources used by each component of the system can be computed as follows:

� Server cost: If the complexity of the merging algorithm is low, its cost will be insigni�cant in a

subscription service. Therefore we will ignore the cost of executing the merging algorithm.

The other component of the server cost is the time for computing and retrieving the answers from
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the database. The cost of computing the query answers will be denoted as KA � cost(M), where KA

is a proportionality constant.

Costserver = KA � cost(M)

� Network cost: Our network model assumes a multicast medium; namely, one where we can establish

channels that allow sending data from one server to many clients. (In Section 7 we consider a

multicast network with a �xed number of channels.) The network cost will be proportional to two

factors. First, the network resources consumed are proportional (by factor KT ) to size of the data

being transmitted (size(M)). Since we expect the size of the header and the size of the queries to

be very small compared to the size of the data, we will ignore these when computing the size of an

answer message. Second, in some cases we may need to establish network connections or \logical

channels" for each Mi set. Messages then just include a logical channel id, and clients can subscribe

to one or more channels. The cost of maintaining logical channels (e.g. table space in the routers,

or operating system connection overhead) is proportional (by a factor KM ) to the number of merged

queries transmitted. Thus,

Costnetwork = KT � jMj+KM � jMj.

� Client cost: As answers are multicast, clients need to spend resources receiving the information

they want plus the irrelevant information added by the merging algorithm. These resources are

proportional to the amount of data received. The total amount of relevant data received by the

clients is
P

qi2Q
size(qi), while the total amount of irrelevant data is U (Q;M). (Recall that queries

are processed independently at each client, as we discussed earlier.) Therefore, the cost at the clients

is equal to KU � (
P

qi2Q
size(qi)+U (Q;M)), where KU is a proportionality constant. Note that when

comparing merging alternatives, we can ignore the cost of listening to the relevant data since this

cost does not depend on the merging algorithm and it will cancel out in the comparison. (Of course,

when computing actual costs we need to consider both costs.) In the following expression we focus

only on the di�erential cost between merging strategies.

Costclients = KU �U (Q;M).

Using the three cost components, we can compute the total cost as:

Costtotal = Costserver + Costnetwork +Costclients

Costtotal = KA � cost(M) +KM � jMj+KT � size(M) +KU � U (Q;M).
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5 Geographic Queries

The framework and cost model presented so far is very general. The parameters in the cost model allow us

to handle a wide range of capabilities in the servers and in the clients. We can model scenarios with clients

ranging from very simple palm devices to sophisticated �eld computers. Similarly, we can handle servers

having the functionality of a simple �le system, to servers supported by a full 
edged database. However,

due to the limited space available in this paper, we will focus on a particular scenario. To illustrate how the

merge procedure may operate and how the cost model can be used, we will use geographic query example

presented in Section 2.

5.1 The Merging Procedure for Geographic Queries

As before, we consider the database to be a single relation R, that has position attributes (e.g., \latitude"

and \longitude"), as well as other attributes describing that position. A geographic query has the form

�(c1�latitude�c3)^(c2�longitude�c4)R.

In Figure 4 we illustrate three di�erent merge procedures that can be used in this geographic query

scenario. In the �gure, the solid lines represent the queries, and the dotted line represents the result of

the merge procedure. Figure 4(a) shows the bounding rectangle merging procedure, the merging procedure

introduced in Section 2. This procedure merges a set of 2-dimensional selection queries into a single 2-

dimensional selection query. We can visualize this merged query as the smallest rectangle that bounds the

original queries. The bounding rectangle merging procedure is very simple (and therefore fast to execute).

Additionally, it is easy to extract the answers to the original queries from the answers to the merged

query, as we just need to re-apply the original geographical query on the received answers. However, a

disadvantage is that the answer includes objects that will be irrelevant to some or all of the input queries.

There are other possible merge procedures for the geographic query scenario. Figure 4(b) shows the

bounding polygon merging procedure. This procedure also generates a single merged query, but, the query

may have disjunctions. Although, the merge query contains less irrelevant information than the bounding

rectangle merging procedure, irrelevant information is still present (the area of the polygon outside each

query is irrelevant to the query). We can again use the original query as the extraction function for this

merging procedure. Figure 4(c) shows a merge procedure that completely eliminates irrelevant information.

However, �ve \merged" queries are generated. A client implementing the extraction function for this

merging procedure needs to combine the answers to the �ve merged queries in order to �nd the answer to

the original query.
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Figure 4: Three Di�erent Merge Procedures

We close this section with a comment about our de�nition of \similar" queries. We are assuming that

similar queries produce similar answers. In general, this assumption may not be true. Queries that look

very similar may have di�erent answers. To illustrate, consider the queries in Figure 4. We may have

decided to merge the two queries because of the large overlap of the ranges of their selections. However,

it may happen that the actual result of the queries is completely disjoint. Nevertheless, we believe that

in practice queries with overlapping selection conditions will on the average have signi�cantly overlapping

results. It may also be possible to use data statistics and histograms to predict which queries will have more

overlapping results. In summary, there are many choices for merge procedures that trade o� complexity of

the merged query, complexity of the extractor and amount of irrelevant information added.

In this paper, we have assumed that jmrg(M )j = 1. However, our model can be extended to the case

when jmrg(M )j > 1 by taking the union of the answers in mrg(M ) to create a single answer.

5.2 Cost Model for Geographic Queries

In the geographic scenario, the queries are only selection and projection queries. In this case no intermediate

results are generated to compute the answers. Therefore, with the use of clustering indices, the cost of the

server is directly proportional to the number of messages and the size of the answers:

Costserver = k1 � jMj+ k2 � size(M)

By incorporating k1 and k2 into the values of KM and KT , we can simplify the cost model to:

Costtotal = KM � jMj+KT � size(M) +KU �U (Q;M). In Section 8 we illustrate how values for the model

parameters can be obtained in a particular scenario.
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5.3 The 2-Query Merging Problem for Geographic Queries

The 2-Query Merging Problem, is the special case of the query merging problem when jQj = 2. Our

geographic query example is convenient for illustrating why the 2 query merge problem is simple, but why

it is hard for more than 3 queries.

In the 2-Query Merging Problem we want to decide if it is worthwhile to merge two queries q1 and

q2 into a merged query q3. For compactness, in the following discussion, let us denote size(qi) as Si.

Therefore, the cost of processing and transmitting queries q1 and q2 separately will be KM +KT � S1 and

KM +KT � S2 respectively, for a total cost of 2KM +KT (S1 + S2). If we merge the queries into a single

query q3, the total cost will be KM + KT � S3 + KU � U (Q;M), where U (Q;M) = 2 � S3 � S1 � S2. We

derive the U (Q;M) term in the following way: if we send a message with only ans(q1), the client receives

an answer with size S1. If we send a message with ans(q3) instead, the client will receive an answer of size

S3. The di�erence (S3�S1) is the size of the irrelevant results received by the client. We can use a similar

derivation for the other client and conclude that the size of the irrelevant information for the other client

is (S3 � S2). Therefore the total size of irrelevant information is U (Q;M) = 2 � S3 � S1 � S2.

From these expressions, it is easy to derive a decision rule that tells us exactly when it is bene�cial

to merge two queries (this is, if the second cost we computed is less than the �rst cost). Therefore, it is

bene�cial to merge q1 and q2 if KM +KT � [S1 + S2 � S3] +KU � [S1 + S2 � 2 � S3] > 0.

Unfortunately, the general problem (jQj > 2) is signi�cantly harder, since there are many ways to

combine a set of queries into merged queries. For example, if we have three queries as input, it could be

the case that it is not worthwhile merging any pair of them, but it is worthwhile merging the three queries

into a single query. On the other hand, it could be the case that it is worthwhile merging one speci�c pair,

but not the other pair and not the three queries. In conclusion, we would have to consider all possible

ways to partition the input queries into subsets. For each possible partition we compute a cost, and then

we pick the partition with minimum cost. This approach leads to an exponential algorithm. In fact, in

Appendix I we show that the query merging problem is NP-hard.

Let us use our geographical database scenario to show a case when merging three queries is optimal,

although merging any pair is not. In Figure 5, we show three queries over our geographical database.

In the following discussion, we will assume that the answer of a query over each square unit in

the diagram has size S and that we are using the bounding rectangle merging procedure. Therefore,

size(q1) = size(q2) = 2S, size(q3) = S, and size(mrg(q1; q3)) = size(mrg(q2 ; q3)) = size(mrg(q1; q2)) =

size(mrg(q1 ; q2; q3)) = 4S. Since there are three queries, there are �ve ways to merge then: we can merge

2 of them (3 combinations), we can merge all of them, or we can keep them separately. By deriving the
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Figure 5: 3-Query Merging Example

costs of all the �ve possible ways of merging the queries, we conclude that merging all of the queries is

advantageous, although merging any pair is not, when all of the following equations are satis�ed:

S >
KM

4KU

and S >
KM

5KU +KT

and S <
2KM

7KU �KT

:

These equations are satis�able; for instance, if we pick S = 1, KM = 10, KT = 9, and KU = 4 all the

equations will be true.

6 Algorithms for the Query Merging Problem

In this section we introduce heuristic algorithms for the query merging problem. However, we �rst brie
y

summarize two exhaustive algorithms that serve as reference points. We will compare the performance of

all algorithms in Section 8.3.

6.1 Exhaustive Algorithm

An exhaustive algorithm for solving the query merging problem is presented in the �rst part of Appendix

II. Unfortunately, exhaustive approaches have a doubly exponential complexity on the number of queries.

This high complexity order makes exhaustive algorithms impractical for all but the smallest jQj.

There exists a better algorithm for exhaustively solving the query merging problem when the cost model

ensures the single-allocation property: each qi in the solution is in one and only one element of M. The

single-allocation property means that if we want to process a set of queries fq1; q2; q3; q4g, we do not need

to consider merged queries such as M = ffq1; q2; q3g; fq1; q4gg where a qi (in this case q1) is in more than
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one element of M. In the second part of Appendix II, we present the Partition Algorithm that exploits

this property and has a complexity of O(nn)

Although this may seem as a small improvement over the general exhaustive algorithm of the previous

section; it signi�cantly extends the values of jQj for which we can use an exhaustive algorithm. For example,

if we have a limit of 5 minutes, we could �nd the optimal solution for up to jQj = 12 using the Partition

Algorithm, but only up to jQj = 4 using the Exhaustive Algorithm.

6.2 Pair Merging Algorithm

The Pair Merging Algorithm takes a greedy approach to solve the query merging problem. The foundations

of this algorithm are two simplifying assumptions. First, we assume that the cost model has the single-

allocation property (as de�ned in Section 6.1). Second, and more important, we assume that pair-wise

decisions (i.e., deciding which pairs of queries to merge) will lead to the correct global solution. The

second assumption is in general incorrect (as shown in Section 5.3). However, the assumption allows us to

e�ciently obtain solutions that, in practice, are very close to the real \optimal" solution (see Section 8.3).

At the end of this section, we will show that the complexity of the algorithm is O(jQj2).

The Pair Merging Algorithm maintains a set of sets of queries. Initially, each set contains each single

query. Then for all pairs of sets, the algorithm computes the change in the total cost if each pair is merged.

The pair that produces the largest positive decrease in cost is chosen and the sets are replaced by their

union. The algorithm continues picking and merging sets until no merging of any pair decreases the total

cost.

We evaluate the cost achieved by merging sets using our cost model. For instance, for the geographic

cost model we are using as our running example (Section 5.2), we can use a generalization of the formula in

Section 5.3 for solving the 2-query merging problem. In particular, it can be shown that when merging two

sets, Ma and Mb, containing the queries fqa1 ; qa2; :::; qapg and fqb1; qb2; :::; qbrg respectively, the expression

for solving the 2-query merging problem is:

Costsep � Costmerge = KM +KT � (size(mrg(Ma )) + size(mrg(Mb)) � size(mrg(Ma [Mb))) +KU � fp �

size(mrg(Ma )) + r � size(mrg(Mb))� (p+ r)size(mrg(Ma [Mb))g.

Note, that we can obtain the expression for solving the 2-query merging problem given in Section 5.3

by making size(mrg(Ma )) = S1, size(mrg(Mb)) = S2, size(mrg(Ma [Mb))) = S3, and the number of

queries in each set equal to one (p = r = 1).

The Pair Merging Algorithm, as presented, needs to compute the cost of doing all possible merges in

every step. However, in each step, only two of the sets (the ones that we decide to merge) have changed. The
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other sets remain the same so we can use all the computation involving them in the next step. Speci�cally,

in step k of the algorithm, there are (jQj � k+ 1) � (jQj � k)=2 possible pairs; of those, only jQj � k� 1 are

new pairs. The rest were all candidate pairs that were considered in the previous iteration. Note, that the

fact that those candidates were not chosen in a previous iteration, does not preclude them to be chosen

later (as long as they have a positive bene�t). To avoid computing the costs again for those sets, in each

step, we save all computed costs in a pro�t table. Before computing the cost of merging a set, we check in

the pro�t table to see if the cost was already computed; if it was, we take it from the table; otherwise, we

compute it and add it to the table. After selecting the pair of sets to be merged, we remove all entries of the

pro�t table that are related with those sets. Using the pro�t table, the number of cost model evaluations

is jQj2 +
PjQj�1

i=1 i � 1. Therefore, the complexity of the algorithm is O(jQj2).

6.3 Directed Search Algorithm

The Pair Merging Algorithm works in only one direction, that is, it starts with a set M where all the

queries are single elements, and tries to merge those sets as much as possible. A potential weakness of this

approach is that the Pair Merging Algorithm can be trapped into a local minimumof the cost function and

miss the global minimum. This weakness is not unique of the Pair Merging Algorithm. Under a general

cost function there are no polynomial algorithms that can avoid this weakness. However, in this section,

we introduce the Directed Search Algorithm, a variation of the Pair Merging Algorithm that attempts to

ameliorate this weakness.

The Directed Search Algorithm is based on two changes to the Pair Merging Algorithm. First, in

addition to merging sets in M, the Directed Search Algorithm may split one set in M into two sets, one

containing only one element and another with the remaining elements. The rationale behind this change

is that splitting sets, allows the algorithm to \undo" a bad decision made earlier. We limit one of the sets

to have only one element to reduce complexity. If we allow a more general splitting function, the splitting

step of the algorithm becomes exponential. The second change is to use multiple initial states and choose

the one that leads to the minimum cost. In this way, if one initial state leads to a local minimum from

which we cannot escape, there is a good chance that a di�erent initial state will avoid that minimum.

Choosing the set of initial states, T, is critical for the performance of the algorithm. The best set of

initial states would be one that allows the algorithm to explore as much as possible of the search space. In

our experiments, we included the initial states where all the queries are separate (jMj = jQj), the initial

state where all queries are merged (jMj = 1), as well as random partitions of Q. The algorithm is presented

in Figure 6.
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Input : Q = fq1; q2; :::; qmg.
Output : Solution for the query merging problem.
Create set T of initial states.
For each initial state S in T:

M = S

Repeat:
For each pair of sets Mi, Mj in M:

Compute the cost of (M�Mi �Mj) [ (fMi [Mjg).
For each query q of each set S in M:

Compute the cost of (M� S) [ fS � fqg)g [ ffqgg.
Perform the operation that reduces the total cost the most.

Until no bene�cial operation is possible.

Figure 6: Directed Search Algorithm

The worst case complexity of the algorithm is O(jTjjQjjQj). This is because it is possible for the

algorithm to explore the entire search space. Nevertheless, the algorithm is guaranteed to �nish, as it

only advances when there is a lower cost option. Although, the worst case performance is exponential, in

our experiments this bound was never reached. Furthermore, in the experiments the algorithm showed a

polynomial average running time.

6.4 Clustering Algorithm

The Clustering Algorithm takes a \divide and conquer" approach to the query merging problem. The

foundation of the algorithm is the de�nition of a \distance" metric between queries. Basically, if the

distance between two queries is \far enough," we can ignore all combinations of merged queries that

contain those queries. In this section, we will describe the algorithm, independently of the distance metric.

In the following section, we will de�ne the distance metric and introduce concrete examples.

A graphical intuition of the Clustering Algorithm is presented in Figure 7. In the �gure there are �ve

queries, q1 to q5. Queries q1, q3, and q5 are very close together, and therefore are good candidates for

merging among themselves. However, queries q2 and q4 are far and it may not make sense to even consider

merging with them. Speci�cally, the Clustering Algorithm works by computing the \distance" between

each pair of queries and if this distance is below a certain threshold, it puts the two queries in the same

cluster. In the �gure, the algorithm may start by �nding that the distance between the q2 and q4 is below

the threshold and therefore should be in the same cluster (drawn as a dotted line). Then, the algorithm

may �nd that q1 and q3 are also below the threshold and will put them in the same cluster. Then, the
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algorithm may �nd that the distance between q5 and q3 is also below the threshold, but because q3 already

belongs to a cluster, the algorithm adds q5 to that cluster, instead of creating a new one. If q5 were close

to several clusters (that is, q5 is close to at least a member of each of those clusters), a single cluster would

be formed containing q5 and all of those clusters.

After this, the algorithm cannot �nd more pair of queries with distances belong the threshold and the

clustering phase ends. In the following phase, we need to apply within each cluster any of the algorithms

previously studied to merge its queries.

q
4

q
5

q3

far

q

q
2

1

Figure 7: Clustering Algorithm Scenario

As the Clustering Algorithm considers pairs of queries, its performance is the greater of O(jQj2) and

O(mrgalg(jQ0j)), where mrgalg is the performance of the merging algorithm used in the second phase and

Q0 is the cluster with the maximum number of queries. Obviously, the clustering algorithm works well

only if there are clusters in the data. There are two cases for non-clustered data: queries will either be

very close together or they will be very far apart. In the �rst case, the algorithm will identify just a single

cluster that contains all the queries (and therefore will not improve the running time of the second phase).

In the second case, the algorithm will indicate that the are are not opportunities for merging queries, and

the second phase need not be run.

In the next section, we will de�ne the distance metric. Depending on this metric, the Clustering

Algorithm behaves as an exact or as a heuristic algorithm. Due to limited space, we will only present a

heuristic distance metric. In Appendix III, an exact metric is presented.

6.4.1 A Heuristic Distance Metric

Given queries q1 and q2, we want to determine if it will ever be advantageous to place them in the same

partition, even if q1 or q2 have already been merged with other queries. To check, we can compute the

maximum bene�t that may be obtained by combining q1 (or a merged query containing it) and q2 (or a

merged query containing it). In doing so, we will assume that costs not directly related to q1 and q2 are
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not a�ected by the decision (this may be false). If the maximum bene�t is non-negative, we place q1 and

q2 in the same cluster; otherwise, we leave them separate (though they may be eventually be combined due

to another query that is close to both). This gives us a heuristic rule, but as we will see, our experimental

results show it performs very well.

To illustrate, consider the cost model for geographic queries. To obtain the maximum possible bene�t,

we consider three components:

� KM � jMj: By merging two queries together, we reduce the size of jMj by one. Note that we are

ignoring the possible e�ects on M after merging the two queries (which may reduce jMj even more).

� KT � size(M): In the best case (this is when the result of q1 is contained in the result q2), the bene�t

size(M) will be at most min(sizefq1g; sizefq2g).

� KU � U (Q;M): In the best case, U (Q;M), the bene�t will be reduced by 2 � size(mrg(fq1; q2g)) �

size(fq1g)� size(fq2g).

Therefore, we should leave queries in separate clusters when:

KM +KT �min(sizefq1g; sizefq2g)�KU � 2 � size(mrg(fq1; q2g))� size(fq1g)� size(fq2g) < 0.

7 Query Merging in a Multicast Network With a Fixed Number

of Channels

In Section 4 we assumed a multicast network with an unlimited number of channels. However, in some

cases, there may be a limit in the number of channels. This limitation may be the result of the physical

properties of the transmission mechanism (e.g., a satellite network like the one described in the BADD

scenario) or the result of network management decisions (e.g., we are only allowed to use certain number

of channels). In this section, we extend our network model to one that disseminates data through a �xed

number of multicast channels.

7.1 Problem Description

As described in Section 3.1, the server receives a set of queries Q and outputs a set M where each of its

elements is a set of queries to be merged. The answers for each merged query, ans(mrg(Mi)), is then

allocated to a multicast channel where the interested client would read it. However, we have now a limited

number of channels available, C = fCh1; Ch2; :::; Chzg, to disseminate answers. If jMj � jCj then we

proceed as before. Otherwise, we need to assign more than one merged query answer to each channel.

When listening to a channel, a client needs to check all the transmitted data to identify the merged query
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answers of interest. Discarding merged queries that were intended for other clients increases signi�cantly

the overhead of listening to a channel, so we will only require a client to listen to one channel. We call the

problem of assigning channels to merged query answers the channel allocation problem.

A �rst approach to improve query subscription processing in this environment would be to solve the

Query Merging Problem �rst and then the channel allocation problem. However, as we will see in the next

example, this approach does not lead to an optimal solution.

Let us suppose that we have three clients c1, c2, and c3 that have subscribed to query sets fq1; q2g,

fq3; q4g, and fq5g respectively. Suppose that after running the merging algorithm, we obtained the set

M = fM1;M2;M3g where M1 =fq1; q5g, M2 =fq2; q3g, and M3 =fq4g. Let us consider a system with two

channels, C = fCh1; Ch2g. We will describe in detail the cost model for channel allocation, but for now,

let us assume that we want to send the minimum number of query answers through each channel. Under

this criteria, an optimal allocation would be to send ans(mrg(M1)) and ans(mrg(M2)) through Ch1, and

ans(mrg(M2)) and ans(mrg(M3)) through Ch2. Note that this solution requires each client to listen to

only one channel (c1 needs to listen only to Ch1, c2 only to Ch2, and c3 only to Ch1).

Although this solution meets all our criteria, there is a better solution if we do not start with the

merged queries. In fact, note that the answers of q3 in ans(mrg(M2)) are not required by any client on

Ch1. Similarly, the answers to q2 in ans(mrg(M2)) are not required by any client on Ch2. Thus, we could

reduce the number of query answers transmitted by not merging q2 and q3 and simply transmitting ans(q2)

in Ch1 and ans(q3) in Ch2.

In conclusion, we cannot consider the query merging problem and the allocation problem in isolation.

Therefore, we need to develop new algorithms that are able to do channel allocation and query merging at

the same time. We also need a new cost model to be able to evaluate di�erent allocation alternatives and

to identify savings from merging queries.

We will call the combined allocation and query problem, the query merging and allocation problem

(QMA). Formally, the QMA problem is to �nd (i) channel allocation [C1; C2; :::; Cz] where Ci is the set of

clients that are allocated to channel Chi, and (ii) for each channel the set Mi = fM1;M2; :::g where each

Mi is the set of queries of clients in Chi that are merged, such that the cost of answering the queries of

each client is minimized.

7.2 Cost model for a Network with Limited Number of Multicast Channels

As a �rst step for solving the QMA problem, we need to de�ne precisely the cost model. As before, the

cost includes the server cost to run the merging algorithm and to process the merged queries, the cost of
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transmitting the answers of the merged queries, and the client cost of applying the extraction procedure.

But now, we also have to consider the client cost of going through the data sent on the channel to identify

the merged query answers of interest.

We will compute the total cost as the sum of the cost of each channel (this sum may be weighted if

channels have di�erent costs or properties). Given this way of computing the total cost, we can concentrate

on computing the cost of a single channel. Let us assume we have allocated clients Ci = fc1; c2; :::; cpg to

channel Chi. Let Qc denote the set of queries sent by client c and that a merging algorithm over the queries

of those clients resulted in the set Mi. Then, the cost of the channel will be the four factors discussed in

Section 4 (with weights KA, KM , KT and KU ) and a new factor (with weight KS ) representing the cost

of sharing the channel with multiple merged queries. We will model this sharing cost through the amount

of data contained in the queries in which each client is not interested. Speci�cally, the amount of data

contained in the merged answers that a client c receives through channel Chi is size(Mi). However, the

amount of data in the merged query answers that client c is interested is only
P

qj2Qc
size(qj ). Therefore,

we can compute the cost of sharing a channel as KS (size(Mi)�
P

qj2Qc
size(qj )).

As a result, the overall cost associated with channel Chi will be:

Costi = Costserver +Costnetwork +Costclients + Costsharing

Costi = KA �cost(Mi)+KM � jMij+KT �size(Mi)+KU �U (Q;Mi)+KS �
P
c2Ci

(size(Mi)�
P

qj2Qc

size(qj)).

And the total cost would simply be the sum over all the channels:

Costtotal =
P

1�i�ch Costi

7.3 Algorithms for Channel Allocation

In this section, we will introduce an exhaustive algorithm and a heuristic algorithm to solve the QMA

problem. As we saw in the previous subsection, we need to consider the allocation and merging problem

simultaneously. Therefore, the algorithms iterate between an allocation phase and a merging phase. During

the merging phase, we can use any of the algorithms of Section 6.

7.3.1 Exhaustive Algorithm for Channel Allocation

The exhaustive solution of the QMA problem is to evaluate all possible allocations of clients to channels

Given clients C = fc1; c2; :::; cpg, we generate all cases by building a search tree where the leaves represent

all possible allocations of clients to channels. Then, we compute the cost of each of those allocations and

choose the one with the lowest cost. The algorithm is presented in Figure 8.

In the algorithm, we associate with each node N of the search tree a list of sets of clients N:L =
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Input : C = fc1; c2; :::; cpg, ch, merging procedure.
Output : Optimal allocation of clients to channels.

Create root node N at level 1 with N:L = [fc1g].
For h = 1 to jCj � 1

For each node N at level h with N:L = [C1; C2; :::; CjN:Lj]
Create children N0, ..., NjN:Lj�1 of N with Ni:L = N:L
For each child Ni

Add ch+1 to the ith element of Ni:L
If jN:Lj � ch then

Create child NjN:Lj of N with NjN:Lj:L = N:L
Append fch+1g to NjN:Lj:L

For each leaf node N
Run merging procedure.
Evaluate the cost for the allocation N:L.

The leaf with the minimum cost is the optimal allocation.

Figure 8: The Exhaustive Algorithm for Channel Allocation

[C1; C2; :::; Cm] where Ci is the set of clients allocated to channel Chi. The sets of clients associated with

the nodes at level h contain all possible combinations for the clients c1, c2, ..., ch allocated to the channels.

We compute the cost of answering the queries sent by clients Ci through channel Chi by using our cost

model. The total cost at leaf N is computed by summing up each individual cost associated with the sets

of clients N:L. The leaf with the minimum cost gives the allocation that is the optimal solution.

If there are jCj clients, ch channels, and the complexity of the merging procedure is OM , the complexity

of this algorithm is O(chjCjOM) since each client can be allocated to ch channels and for each allocation

we run the merging algorithm once.

7.3.2 The Channel Merging Algorithm

The Channel Merging algorithm is a heuristic algorithm for solving the QMA problem. The algorithm

starts with an initial allocation of clients to channels. Then it reallocates the clients by moving them

between channels in the direction of decreasing total cost. The algorithm uses the hill climbing technique

in which we move through the search space in the direction that reduces the cost most. It may not �nd

the optimal solution since it can get trapped at a local minimum in the search space.

The algorithm is divided in two parts. First, we create an initial allocation where clients that have

more overlapping query answers are in the same channel. Second, we attempt to decrease the cost of that

allocation by moving clients to other channels.
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Input : C = fc1; c2; :::; cpg, ch
Output : Initial allocation of clients to channels.

L = fg
CCh = 0
For each pair ca and cb in C (ca 6= cb)

Calculate Cost� of ca and cb.
Store the triplet [ca; cb; Cost�] in L.

While L is not empty:
Pick triplet [ca; cb; Cost�] in L with maximum Cost�.
Allocate clients ca and cb to channel CCh+ 1.
Delete from L all triplets that have either ca or cb.
CCh = CCh+ 1(mod ch)

While there is a client ci that is not assigned to any channel:
Allocate ci to channel CCh+ 1.
CCh = CCh+ 1(mod ch).

Figure 9: The Algorithm for Producing the Initial Allocation

To �nd the initial allocation, we �rst compute the potential saving of allocating each pair of clients

to the same channel. The saving, Cost�, of allocating clients ca and cb to the same channel is Cost� =

Costfcag + Costfcbg � Costfca;cbg, where CostS is the cost when the clients in S are all allocated to a

single channel (ignoring all other clients that may be allocated to that channel). This cost is computed

with the formula described in Subsection 7.2. We choose the pair, say ca and cb, with the highest savings

and we allocate them to the �rst channel. Then, we remove from consideration all pairs that have ca

or cb as members, and, among the remaining pairs, we choose the one with the highest Cost� and we

assign that client pair to the second channel. We continue doing this iteratively, advancing one channel

at at time (and returning to channel 1 when no more channels are available), until we have considered

all clients. The algorithm to initialize the allocation is presented in Figure 9. After �nding the initial

allocation, we decrease the total cost further by iteratively making changes to that allocation with the

algorithm presented in Figure 10.

If there are jCj clients and the merge algorithm has a complexity of OM , then the �rst phase of the

algorithm (which computes the initial allocation) has a complexity of O(jCj2) as the algorithm considers

all pairs of clients. The worst case complexity of the second phase of the algorithm is O((OM jCj)
ch) as it

is possible for the algorithm to explore the entire search space. Nevertheless, the algorithm is guaranteed

to �nish, as it only advances when there is a lower cost option. Although, the worst case performance is

exponential, in our experiments this bound was never reached. Furthermore, we speed up the algorithm
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Input : C = fc1; c2; :::; cpg, ch, merging procedure
Output : Allocation of clients to channels.

Use algorithm in Figure 9 to obtain an initial allocation L = fL1; :::LjLjg,
where each Li is a set of clients allocated to channel Chi.

Repeat:
S = fg
For each client ci and channel Chj (ci 2 Lk, k 6= j):

Run a merging procedure among the queries from clients in Lk.
Run a merging procedure among the queries from clients in Lj.
OldCost = Cost of Lk + Cost of Lj
Run a merging procedure among the queries from clients in Lk � fcig.
Run a merging procedure among the queries from clients in Lj [ fcig.
NewCost = Cost of Lk � fcig + Cost of Lj [ fcig
Saving = NewCost�OldCost
Insert triplet [i; j;Saving] in S.

Find triplet in S with the highest positive Saving.
If there is such a triplet then move client ci to channel Chj.

Until there are no triplets in S with positive Saving.
Allocate clients in Li to channel Chi.

Figure 10: The Channel Merging Algorithm

signi�cantly by caching the cost of each channel allocation (without this optimization we need to merge

and evaluate each allocation 4jCjch times per iteration, but with the optimization we only need to do it

8jCj times per iteration).

8 Performance Evaluation

In this section, we test the e�ciency of the algorithms developed for the case of a single channel. (Due

to space limitations, we cannot present the performance evaluation of the multiple channel version of the

algorithms.) In order to test the e�ciency of the algorithms developed, a simulator has been implemented

for geographic queries. It simulates an environment in which the queries are given on a two-dimensional

database (see Figure 11). The database elements consist of two search attributes and the queries received by

the server are range queries. The simulator consists of three main modules. The �rst module provides input

to the simulator. The user speci�es certain parameters like the dimensions of region covered in database,

the size and number of queries, the cost parameters (KM , KT , KU ) and the merge algorithm used. Given

these parameters, this module generates a set of queries which is used as an input for the algorithms.

The second module runs one of the algorithms described previously (i.e., Pair Merging, Directed Search,
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or Clustering algorithms). Finally, the last module evaluates the savings of the heuristic algorithms and

quanti�es their deviation from the optimal solution.

Figure 11: Screen-shot of the Simulator

8.1 Generating Input

In most environments, it is quite likely that the input given by clients generates a pattern which creates

groups of queries that are located near each other. Some portions of the database are likely to be accessed

more frequently than others. For instance if the database speci�es atmospheric conditions, the portions

of the database denoting the regions with higher population are more likely to get queries. Similarly, in a

battle�eld situation, the number of queries in regions which have more combat troops will be much higher.

Therefore, rather than generating random input queries, a clustering e�ect has been added to the input

generating module, in which some queries tend to create small clusters.

Queries are generated in two ways; randomly and using clustering. The parameter cf is the ratio of the

number of queries generated using clustering to the number of total queries. So cf jQj gives the number

of queries generated using clustering and (1 � cf)jQj gives the number of queries generated randomly.

The parameter sf is the ratio of number of queries in a cluster to the number of queries generated using

clustering. We can compute the number of queries in a cluster and the number of clusters by sf �cf � jQj and

1=sf respectively. For each cluster, a cluster origin is generated randomly in the database. The distances

of the queries in a cluster to the origin is computed using a normal distribution N (0; df2) where df is the

density of the clusters. The direction of each query from the cluster origin is generated randomly (i.e., a

random value between 0� and 360�). Another input parameter gives the size of the queries. The minimum

and maximum ranges for both attributes are given. The size of each query is selected randomly in these

ranges.
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8.2 Cost Parameters

To select values for our cost parameters KM , KT and KU , we need to consider the speci�cs of the system

we are studying, e.g., how costly it is to transmit data, relative to the other costs. The parameters impact

not just the solution obtained, but how hard it is to �nd the optimal solution. For instance, there are some

values for which it is trivial to �nd the optimal solution (consider KM = 1, KT = 0, KU = 0). For other

values, algorithms such as Pair Merging may not �nd the optimal solution.

In this subsection we brie
y illustrate how these parameters can be estimated in a given scenario. Please

keep in mind that this is simply an illustration. We measure costs in dollars, since this makes it easier to

compare processing and network costs.

At the server, we can �rst estimate the dollar cost of one second of processing as follows. We estimate

that the server and its database system cost $100; 000, and this system will be amortized for 2 years, giving

a cost of $50; 000 per year. In addition, operating costs are $50; 000 per year, say. Thus, the cost per server

second is

CS = (50; 000[dollar=year] + 50; 000[dollar=year])=31; 536; 000[sec=year]

CS = 0:003171[dollar=sec]

(In this and the expressions that follow we show the units in square brackets.) We test the server with

queries that yield no answer (null queries), and discover that the server can process 1 query per second.

We then test queries with di�erent result sizes and discover that each additional answer object adds 1/100

second to the query time. Thus, we estimate the dollar cost at the server as

Costserver = CS [dollars=sec] � (1[sec=query] � jMj[query] + 0:01[sec=object] � size(M)[object])

For the network, we compute the dollar cost per megabyte transmitted using numbers for a DSL

service provided by Stanford. A DSL modem including installation cost is $1165, or $48:50 per month if

we amortize over 2 years. The monthly fee is $235, and the maximum bandwidth is 1.1Mbs. This gives us

a dollar cost per MB of

CN = (48:50[dollar=month] + 235[dollar=month])=((1:1Mbs=8[b=B])� 2592000[sec=month])

CN = 0:0007956[dollar=MB]

Using the results of [8], we estimate that setting up the connection for each query answer consumes

100KB. We also estimate that each answer object is 1KB in size. Hence, the network cost is

Costnetwork = CN [dollar=MB] � (0:1[MB=query] � jMj[query] + 0:001[MB=object] � size(M)[object])

For computing client costs, we assume the client is a handheld device, and that the major cost is due to

battery use. Using the PalmPilot as an example, a daily usage of 30 minutes results in a battery lifetime

of 2 months. In other words, we get 1800 minutes of processing per battery change. We estimate the cost
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of batteries (including labor) at $5. Thus, the cost per second is

CC = 5[dollars=replacement]=(1800[min=replacement] � 60[sec=min])

CC = 0:0000463[dollar=sec]

By performing experiments, we estimate that processing each answer object, whether useful or not,

takes 0.1 second of processing on the client device. Thus, the client cost is

Costclient = CC [dollar=sec] � 0:1[sec=object] � (
P

qi2Q
size(qi)[object] + U (Q;M)[object])

Combining the constants we have estimated, we obtain the following values for the overall cost model:

KM = 0:003251, KT = 0:000032, KU = 0:00000463.

As we have stated, our main objective in this section has been to illustrate the process by which one

can estimate these constants. The performance experiments that must be performed to estimate costs,

and the actual values obtained, can of course vary, but in the end, one can obtain cost proportionality

constants that make it possible to compare the costs incurred at each stage of the multicast process.

8.3 Experiments

In this section we study the performance of the Pair Merging, Directed Search, and Clustering algorithms.

Sample geographical queries were generated and both the exhaustive and heuristic algorithms were used

to evaluate the results. Obviously the exhaustive algorithms give the optimal solution for a given set of

queries. In order to evaluate the e�ciency of our algorithms, we wish to address the following questions:

� What is the probability that the heuristic algorithms �nd the optimal solution?

� If the algorithms do not �nd the optimal solution, how far are the solutions to the optimal ones?

� In what scenarios does query merging pay o�, and what are the potential gains?

Since we want to focus on how well our algorithms perform, rather than on predicting performance of a

particular system, we select a scenario where it is particularly hard to �nd the optimal solution, and where

we will stress the algorithms. This scenario was obtained by running the simulator over many di�erent

sets of parameters, and selecting the values (for cf , sf , df , KM , KT , KU ) where the heuristic algorithms

found solutions further from the optimal. Thus, the results we will present here are pessimistic for the

heuristic algorithms. As we will see, the results are rather good for the high-stress scenario, so this means

the algorithms will perform even better in almost any other scenario.

The input parameters and their base values are given in Figure 12. The values used for KM , KT , KU

are close to those illustrated in Section 8.2, but adjusted slightly to stress the algorithmsmore. Incidentally,

note that only the ratio between KM , KT , KU matters when comparing algorithms. If we multiply each of
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Cost Parameters

Parameter value

�10�5

KM 365

KT 3.25

KU 0.16

Query Generating Parameters

Parameter value

cf 0.80

sf 0.30

df 100

jQj 100

Maximum Query size 40x40

Minimum Query size 20x20

Other Parameters

Parameter value

Database Size

jQj � 12 100x100

jQj > 12 400x400

Sample Size 10000

jTj 50

Figure 12: Base values

these values with a constant factor, the overall cost would change but the goodness of the solutions would

not change. In our experiments, we use two di�erent database sizes depending on the number of queries.

When having a small number of queries, we used a smaller database size, so queries were not so dispersed

that merging was never advantageous. The Sample Size speci�es the number of times the simulator was

run to generate the results shown in the graphs.

In Figure 13, we can see the sensitivity of the Pair Merging Algorithm to the cost parameters KM ,

KT and KU . The y-axis gives us the resulting number of merged queries (jMj). The parameter values on

the x-axis are normalized. For instance, in the central graph in Figure 13, the number 1.5 on the x-axis

indicates that KT was chosen to be 1:5 times the base value, i.e, 1:5 � 0:0000325 = 0:00004875. As we can

see from these graphs, the algorithm seems to be most sensitive to KM since the overall cost is directly

related to jMj. We can also observe that for high values of KT , a change in this parameter does not have

a great in
uence on the algorithm since the network cost dominates.
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Figure 13: Sensitivity Analysis

In Figure 14, the performance of the Pair Merging and the Directed Search algorithms are compared.

This graph gives the fraction of the runs where the Directed Search Algorithm performs better than the Pair

Merging Algorithm. The x-axis indicates the number of initial states for the Directed Search Algorithm.
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For instance, if we use 50 initial states, Directed Search �nds a better solution than Pair Merging in about

20% of the cases, and in the remaining 80% of the cases both �nd the same solution. Note that Pair

Merging never �nds a better solution since it considers a subset of the merge con�gurations considered by

Directed Search. Thus, the �gure quanti�es how much better Directed Search becomes as we increase the

number of initial states (jTj).
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Figure 14: Performance of Directed Search Algo-

rithm Compared to Pair Merging Algorithm
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Figure 15: Percentage of Cases Finding the Opti-

mal Solution

Figure 15 shows the fraction of runs where the Pair Merging and Directed Search algorithms �nd the

optimal solution (as found by the Partition Algorithm). We only consider 12 queries or less as the Partition

Algorithm must evaluate as many combinations as the jQjth Bell number. For jQj = 12, this is 4,213,597

combinations, and beyond that it grows to unmanageable sizes. We omitted the trivial case jQj = 2, as

both algorithms are guaranteed to �nd the best solution.

As we can see, the chances of reaching the optimal solution decreases as the number of queries increase in

both algorithms. The Directed Search Algorithm is more likely to reach the optimal solution. Extrapolating

the curves, the results seem to imply that for large numbers of queries, it will be very unlikely that the

optimal solution is found with heuristic algorithms. This is bad news, except that our next graphs will

show that the deviation from optimal is very small.

To compute the deviation from optimum, let us say that the cost of disseminating a given set of

queries without any merging is Costinitial. Let Costoptimal be the optimal cost obtained by an exhaustive

algorithm, and let Costheuristic the cost reached by a heuristic algorithm. We measure the distance of the

heuristic solution to the optimal solution as follows:

Distance = 100 �
Costheuristic � Costoptimal

Costinitial � Costoptimal
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This formula gives the deviation from optimum, relative to the maximum costs that may be saved

through merging. For instance, a value of 0:0% indicates the solution is optimal, and a value of 100:0%

indicates the cost is the same as with no merging.

Figure 16 shows the distance of the solutions. As expected, the distance for Pair Merging and Directed

Search increase as we increase the number of queries. The Directed Search Algorithm has distances equal

to zero for jQj � 7 because it is acting almost as an exhaustive algorithm. Recall that, in our experiments,

we used 50 initial states for the Directed Search Algorithm. The total number of cases for jQj = 3 to 7

ranges between 5 and 877; thus, there is a high probability that Directed Search will be able to search the

whole space. As the number of queries increase, the Directed Search Algorithm is no longer able to do an

exhaustive search and its distance increases.
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Figure 16: Distance to Optimum of the Pair Merg-

ing and Directed Search Algorithms
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Figure 17: Distance of Suboptimal solutions to

Optimum

Although we would need more data points to con�rm this, we hypothesized that the the curves in

Figure 16 have a logarithmic growth. So we expect that the heuristic algorithms will continue to have

small distances even for relatively large number of queries. Furthermore, recall that we selected our base

parameters to stress our algorithm, so they are likely to perform much better in most other scenarios. Each

data point in Figure 16 gives the distance averaged over all 10,000 runs.

In Figure 17, on the other hand, we show the average distance for those runs where the optimal solution

was not found. (Note the change of scale.) The distance for Directed Search increases a bit around 9 queries,

but this is simply because at this point the algorithm stops being close to exhaustive. Beyond 9 queries,

the distance for Directed Search should start decreasing. To see this, recall that the distance of Directed

Search will always be lower or equal to that of Pair Merging. Since Pair Merging shows a clear decreasing

28



trend, Directed Search must also be decreasing. This is good news, for it predicts that distances (errors)

will be small for large numbers of queries. As we increase the number of queries, the search space becomes

huge, but the number of solutions that are very close to the optimal one also grows rapidly, so the heuristic

algorithms have an excellent chance of �nding a very good solution. Again, recall that our base scenario is

one where it is hard to �nd the optimal solution, so in many other cases, distances will be even smaller.

In Figure 18 we can see the total cost after merging obtained by the Pair Merging, Directed Search

and the Clustering with Heuristic Distance Metric algorithms. Since the costs given by the Pair Merging

and Directed Search algorithms are very close, we showed them as a single line. To compute the cost of

the Clustering Algorithm, the Pair Merging Algorithm was run on each of the clusters generated. The no

merge cost is the cost of processing the queries without any merging. If our cost parameters are based on

dollars (see Section 8.2), then the costs in Figure 18 are in dollars. The actual costs shown are small (a

few dollars), but keep in mind that this is for a small number of queries. As the number of queries grows,

so will the savings introduced by query merging. Furthermore, if the multicast is repeated say every hour,

then the savings will be multiplied by 24�365 in a year, and we can see that the savings can be signi�cant.
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Figure 18: Final Total Cost
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Figure 19: Running Time of Algorithms

The Clustering Algorithm does not yield better solutions, but we expect it have a smaller running time,

since the merging algorithm runs on clusters with smaller number of queries. This is quanti�ed in Figure 19,

which shows the running times of the algorithms, measured by the number of merge/split operations. For

reference, a merge/split operation took about 1msec using unoptimized code on a Pentium 200 computer.

Recall that the complexity of the exhaustive algorithm is O(jQjjQj), whereas the complexities of the Pair

Merging and Directed Search algorithms is O(jQj2). As we can see, the Clustering Algorithm is much

faster as the number of queries increases, while still �nding solutions that are close to those of the other
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algorithms. Thus, the Clustering Algorithm seems to be a good choice for scenarios with many queries.

In our �nal experiment we attempt to quantify when query merging pays o� and by how much. Clearly,

the most critical factor is the amount of overlap between submitted queries. If the queries are mostly

disjoint, there will be little advantage to merging; it there is signi�cant overlap, we expect signi�cant gains.

To get a sense for these gain, we can vary parameter cf , which controls the fraction of the queries that

exhibit clustering. When cf = 1 all queries are clustered, and when cf = 0, all queries are independent.

Figure 20 shows the total costs incurred in processing the queries when merging is used and when it is

not used, as a function of cf . Notice that even when queries are independent, merging introduces savings

because there is still some random overlap among queries. As cf increases, the overlap increases, and the

savings grow. Again, keep in mind that the savings of 1 to 2 dollars seen, will increase if there are more

queries (100 were used for this experiment), and the savings will occur every time results are multicast.
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Figure 20: Total Cost Before and After Pair Merging

9 Related Work

The Data Dissemination Problem has been studied by a number of projects [17, 6, 21, 12, 1, 16, 11, 5].

However, none of them attempt to reduce costs by automatically merging similar queries.

The Query Merging Problem is also related to Client-side caching in client/server con�gurations [22].

In this approach, data is loaded into each client cache as answers to other queries are broadcast by the

server. When a client is ready to make a query, it �rst checks in its own cache to see if the cache already

contains the answer. The di�erence with our work, is that in the client-caching approach, queries are not

known, so the server cannot optimize the global cost.
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Our research is also related with the Semantic Query Optimization problem [23]. The goal of the

Semantic Query Optimization problem is to use semantic knowledge (such as integrity constraints) for

transforming a query into a form that may be answered more e�ciently than the original version. The

main di�erence with our work is that in semantic query optimization only one query at a time is optimized.

This limits the opportunities for improvement versus our work, where we considered a sets of queries.

There are a number of data dissemination products and services in the market [7, 31, 3, 29]. However,

as far as we know they do not attempt to do any real query merging. Most of these products are very

simple, requiring clients to maintain their subscriptions and to \pull" from the server any new information.

Servers normally unicast the results to each client, making this approach non-scalable and resulting in a

very high cost.

The Cellular Telephony and Telecommunication research community has also consider the problem of

improving the bandwidth use on broadcast channels [20][9][25]. The di�erence between this e�ort and our

work is the level of abstraction. While the telephony community focus on random memory page requests

(and therefore, there is little information available to the optimizer), our work focus on queries and query

answers which allows us to have more sophisticated schemes.

The BADD problem [24, 13] has generated a wealth of research in the data dissemination arena.

References [4] and [27] have proposed multicast protocol, that can be used as a low level support to our

algorithms. Deployment of Internet services through a satellite broadcast channel has been studied in [26]

and \smart information push" by [14]. Reference [33] extends the client-side caching by considering caches

not only at the client, but also at intermediate locations \close" to the clients. Finally, in [34] the data

staging problem is described and heuristics to solve it are presented.

The query merging problem in a geographical database is closely related to the polygon covering problem

[10], and to the set covering problem [32]. However, the special characteristics of the Query Merging

Problem make it di�cult to directly use the well known solutions to those problems.

10 Conclusions

In this paper we have studied the Query Merging Problem. We presented a very general framework and

cost model for evaluating merging, and we presented a variety of merging algorithms. To illustrate and

experimentally evaluate performance, we considered geographic queries as a representative example. Our

results show that dissemination costs can be signi�cantly decreased by applying a merging algorithm, and

that heuristic algorithms work well.
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Choosing which algorithm to use depends on the number of query subscriptions, the time available,

and the precision required. If we have a small number of queries, we can use the Partition Algorithm (the

practical limit is twelve queries when running in a typical workstation). If the running time is critical

(e.g., in a scenario where queries and subscriptions change dynamically and hence the merge sets must

be recomputed on the 
y), then using the Clustering Algorithm before applying any merging algorithm

improves the running time signi�cantly. If �nding the best solution is important and the number of queries

is large, the Directed Search Algorithm should be used. When using the Directed Search Algorithm, the

number of initial states can be chosen according to the running time limitations.
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Appendix I: Complexity of the Query Merging Problem

In this section we will prove that the Query Merging Problem is NP-hard. We will prove it by showing

that an algorithm that solves the Query Merging Problem can also solve the Set Covering Problem, a well

known NP-complete problem.

De�nition of the Minimum Set Covering Problem (MSCP): Given a collection L of subsets of a �nite

set C, a set cover is a subcollection L0 � L such that the union of all subsets in L0 is equal to C and L0 has

minimum size. For example, given, L = ff1; 2g; f2;3g;f1gg and C = f1; 2; 3g, the solutions of the MSCP

are L0 = ff1g; f2; 3gg and L0 = ff1; 2g; f2; 3gg.

In order to solve an instance of the MSCP using the Query Merging Problem, we need to map the input

of the MSCP into the Query Merging Problem as follows:

� The set of queries Q will be equal to C

� The constants in the cost function, Costtotal = KM � jMj+KT � size(M) +KU � U (Q;M), will be

KM = 0, KU = 0, and KT = 1.

� We de�ne symbols �0; :::�n�1 representing each element of L, and the symbol �n representing any

set not in L. We de�ne the merge function as:

mrg(S) =

8><
>:

�i if S is the ith element of L

�n otherwise

Additionally, we will assume that the database manager will be able to process only the symbols

�0; :::�n�1. The function size(q) will be de�ned as 1 if the queries can be processed (q = �0; :::�n�1) or 1

(q = �n) if not.

Under this assumption is easy to see that cost(M) is transformed into:

cost(M) =

8><
>:

1 if 9M 2M such that M 62 L

jMj otherwise

With this input, an algorithm that solves the query merging problem, will �nd a collection M = fMig

such that the union of all Mis is C and cost(M) is minimized. Therefore, M is a solution of the MSCP as

minimizing cost(M) means that the size of M is minimum and all Mi 2 L.

This proves that the query merging algorithm is NP-hard with an arbitrary assignment of the KM , KT

and KU proportionality constants, as well as an arbitrary size() function. However, there be might be

values of the proportionality constants for which the problem is polynomial. Speci�cally, if KT = KU = 0,

then the problem has a trivial solution: merge all queries into a single one.
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Appendix II: Exhaustive Algorithms for the QM Problem

General Algorithm

A general exhaustive approach for solving the query merging problem is presented in Figure 21. First,

we form the superset of Q, S(Q), which contains all possible sets formed by combining elements of Q.

Note that S(Q) contains all potential merges of the queries in Q. Then, we generate the superset of S(Q),

S(S(Q)). The set S(S(Q)) is a superset of all the possible solutions to the query merging problem. An

element of S(S(Q)) is a solution only if it provides a total cover of Q. That is, the element includes all the

queries in Q. After eliminating all the elements that are not solutions, the �nal step of the algorithm is

to use the cost model to evaluate the remaining elements of S(S(Q)). The solution with the lowest cost is

the optimal solution. The Exhaustive Algorithm has a doubly exponential complexity on the number of

queries. Step 1 generates a set S(Q) with 2jQj elements. Then, step 2 generates a total of 22
jQj

elements.

Therefore the algorithm will have a cost of O(22
jQj

).

Input : Q = fq1; q2; :::; qmg

Output : Optimal solution for the query merging problem

Generate S(Q), the superset of the set Q.

Generate S(S(Q)), the superset of S(Q).

A = fx j x 2 S(S(Q)) and x is a total cover of Qg

Evaluate the cost of each element of A using the cost model.

The element of A with the minimum cost is the optimal solution.

Figure 21: The Exhaustive Algorithm

Partition Algorithm

The partition algorithm can be used when the cost model ensures the single-allocation property: each qi in

the solution is in one and only one element ofM. In fact, the cost model presented in this paper ensures the

single-allocation property. We can prove this by showing that given any candidate solution M that does

not follow the single-allocation property, we can always build a new setM0 that follows the single-allocation

property and has the same or lower cost. The candidate solution M0 is formed by eliminating all but one
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of the duplicate queries in M. Obviously, the new M
0 is a valid solution of the problem (if the original

solution was also valid); and, it has the same or lower cost because eliminating a duplicate qi, reduces or

keeps constant all costs in our model.

Basically, the Partition Algorithm generates each possible candidate solution. To ensure that each

candidate solution is generated only once, the algorithm uses a search tree as an auxiliary data structure.

In Figure 22, we present an example of the Partition Algorithm with input Q = fq1; q2; q3g. We build the

tree by considering one query at a time. At the end of each iteration, the leaves of the tree will contain all

possible partitions of the queries considered up to that point. In the �gure, in Step 0, the tree only has a

single node with an empty list. In Step 1, we consider all partitions that can be created with q1. In this

case, the only possible partition is fq1g. In Step 2, we consider adding q2 to the current partition. There

are only two partitions, one that has q1 and q2 as separate queries and another, that merges them together.

Similarly, in Step 3, we generate the partitions that include q3. After all partitions are generated, in Step

4, we compute the cost of each one, and select the minimum cost partition (which is the optimal solution).

Step 0 Step 2Step 1 Step 3

[{q1}]

[{q1,q2}]
[{q1,q2},{q3}]

[{q1},{q2},{q3}]

[{q1},{q2,q3}]

[{q1,q3},{q2}]

[{q1},{q2}]

Step 4

[ ]

Cost = 20

Cost = 30

Cost = 60

Cost = 10

Cost = 40

Optimal partition[{q1,q2,q3}]

Figure 22: An Example of the Partition Algorithm

Formally, the algorithm associates to each node N of the search tree a list of partition of the queries

N:L = [M1;M2; :::]. The lists of partitions associated to the nodes at level h contain all possible partitions

for the queries q1, q2, ..., qh. At each step of the algorithm, for each node, we create as many children as

elements are in the list of partitions plus one. Each of the children has the parent partition, but with the

new element considered in that step, added to one of its partitions. The additional child, adds the new

element as a separate partition. The algorithm is presented in Figure 23. The number of cases that the

Partition Algorithm needs to consider is equal to the Bell Number which for large values of n is O(nn) [18].
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Input : Q = fq1; q2; :::; qmg.
Output : Optimal solution for the query merging problem.

Create root node N at level 0 with N:L = [].
For h = 1 to jQj

For each node N at level h� 1 with N:L = [M1;M2; :::]
Create children N0, N1, ..., NjN:Lj with Ni:L = N:L
Append fqhg to N0:L
For each child Ni, i � 1

Add qh to the ith element of Ni:L
For each leaf node N evaluate the costs of N:L
The leaf with the minimum cost is the optimal solution.

Figure 23: Partition Algorithm

Appendix III: Exact Distance Metric for the Clustering Algorithm

Given a M, where two queries q1 and q2 are not in the same set, we want to obtain an exact distance

metric. We can �nd such an expression by computing the maximumpossible bene�t that we might obtain

if those two queries are merged. If that bene�t is negative, then we put the queries in di�erent clusters.

To �nd the maximum possible bene�t, we will analyze each component of the cost model in turn. The

factors multiplying the constants Km and Kt can be positive when merging queries, while Ku is always

negative (or zero). To �nd the maximum possible bene�t, we need to �nd the maximum possible bene�ts

for the factors of Km and Kt and the minimum cost for the factor of Ku.

� Factor Km: The best case is when the merging of two queries allows us to merge all queries. Therefore

the maximum possible bene�t is Km(jQj � 1)

� Factor Kt: The M set before merging q1 and q2 has the form ffq1; :::g; fq2; :::g; :::g. Unfortunately,

the maximum possible cost of this set is very high, as potentially, we could send all the database

to each client (and in that case the high bound will be jQj � size(database)). However, it is safe to

assume that even the most ine�cient algorithm, will only send the portion of the database in which

somebody is interested, reducing the maximumcost to jQj �size(mrg(fq1; q2; :::; qng)). Finally, as our

cost model has the single-allocation property, we know that we will not include qi in more than one

merged set, therefore, the maximumcost will be size(mrg(fq1; q3; :::; qng))+size(mrg(fq2 ; :::; qng))+

(jQj � 2) � size(mrg(fq3; :::; qng))

The M set after merging q1 and q2 will have the form ffq1; q2; :::g; :::g, this set has a minimum cost

of size(mrg(fq1; q2g)).
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Therefore, the maximumpossible bene�t would be: Kt�((size(mrg(fq1; q3; :::; qng))+size(mrg(fq2; :::; qng)))

+(jQj � 2) � size(mrg(fq3; :::; qng))+size(mrg(fq1; q2g))

� Factor Ku: The minimum possible cost is Ku � (2size(mrgq1; q2)� size(q1) � size(q2))

Therefore, merging 2 queries, q1 and q2, will only be bene�cial when:

Km �(jQj�1) +Kt �((size(mrg(fq1; q3; :::; qng)) +size(mrg(fq2; :::; qng))) +(jQj�2)�size(mrg(fq3; :::; qng))

�size(mrg(fq1 ; q2g))) �Ku � (2 � size(mrgfq1; q2g) �size(fq1g)� size(fq2g))> 0
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