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ABSTRACT
Network communities represent basic structures for understanding
the organization of real-world networks. A community (also re-
ferred to as a module or a cluster) is typically thought of as a group
of nodes with more connections amongst its members than between
its members and the remainder of the network. Communities in
networks also overlap as nodes belong to multiple clusters at once.
Due to the difficulties in evaluating the detected communities and
the lack of scalable algorithms, the task of overlapping community
detection in large networks largely remains an open problem.

In this paper we present BIGCLAM (Cluster Affiliation Model
for Big Networks), an overlapping community detection method
that scales to large networks of millions of nodes and edges. We
build on a novel observation that overlaps between communities
are densely connected. This is in sharp contrast with present com-
munity detection methods which implicitly assume that overlaps
between communities are sparsely connected and thus cannot prop-
erly extract overlapping communities in networks. In this paper,
we develop a model-based community detection algorithm that can
detect densely overlapping, hierarchically nested as well as non-
overlapping communities in massive networks. We evaluate our al-
gorithm on 6 large social, collaboration and information networks
with ground-truth community information. Experiments show state
of the art performance both in terms of the quality of detected com-
munities as well as in speed and scalability of our algorithm.
Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database Applications – Data mining
General Terms: Algorithms, theory, experimentation.
Keywords: Network communities, Overlapping community detec-
tion, Matrix factorization.

1. INTRODUCTION
A large body of work in computer science, statistics, applied

mathematics, and statistical physics has been devoted to identify-
ing community structure in complex networks (see [8, 28, 32] for
surveys of this area). A community (also referred to as a mod-
ule or a cluster) is intuitively thought of as a group of nodes with
more interactions amongst its members than between its members
and the remainder of the network [10]. Such groups of nodes (i.e.,
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Figure 1: Three views on the structure of network communi-
ties. Present view of (a) two non-overlapping and (b) two over-
lapping communities. Present methods assume that the nodes
in the overlap are less-well connected (b). We find densely con-
nected community overlaps (c). Left: Network; Right: Corre-
sponding adjacency matrix.

communities) are often interpreted as organizational units in social
networks [7, 29], functional units in biochemical networks [17],
ecological niches in food web networks [10], or scientific disci-
plines in citation and collaboration networks [3].

Even though methods for identifying overlapping as well as hierar-
chically-nested communities in networks have been considered in
the past [1, 2, 25, 32], identifying meaningful communities in large
networks has proven to be a challenging task [9, 20, 34]. Most
methods have trouble scaling to large networks, and the lack of
reliable “ground truth” makes evaluation of detected communities
surprisingly difficult. Thus, while networks have been extensively-
studied, and the existence and properties of communities in small
networks is by now well-understood [1, 2, 10, 25], it is still not clear
how to identify realistic overlapping communities in very large net-
works that are increasingly common.
Present work: Empirical observations. Our work starts with a
novel, and in retrospective very intuitive, observation that over-
laps of communities tend to be more densely connected than the
non-overlapping parts [33, 35]. In particular, we empirically ob-
serve that the more communities a pair of nodes shares the more
likely they are connected in the network. For example, people
sharing multiple hobbies (i.e., interest based communities) have
a higher chance of becoming friends [23], researchers with many
common interests (i.e., many common scientific communities) are
more likely to work and publish together [26].

Even though intuitive our observation is very subtle and repre-
sents a radical new view of networks communities and has impor-
tant consequences for network community detection [33, 35]. To
put our observation in the context, we first give a quick overview
of recent developments in the network community detection. Tra-
ditionally, the emergence of communities in networks has been un-
derstood through the strength-of-weak-ties theory [12]. This theory
led researchers to conceptualize networks as consisting of dense
clusters that are linked by a small number of weak ties (Figure
1(a)). Graph partitioning [28, 30], modularity optimization [24]



as well as betweenness centrality [10] based community detection
methods all assume such view of network communities and thus
aim to identify edges that can be cut in order to separate the net-
work into a set of non-overlapping clusters.

In social as well as other types of networks nodes can belong to
multiple communities simultaneously, which leads to overlapping
community structure [25]. However, we noticed that practically
all present overlapping community detection methods (for example
[1, 2, 25]) make a hidden (and so far undocumented) assumption
that community overlaps are less densely connected than the non-
overlapping parts of communities (Figure 1(b)) [33, 35]. This leads
to an unnatural modeling assumption that the more communities a
pair of nodes shares, the less likely it is they are connected. Fig-
ure 1(b) illustrates the unnatural structure of community overlaps
emerging under such assumption.

In contrast, we find an increasing relationship between the num-
ber of shared communities and the probability of nodes being con-
nected by an edge [33, 35]. A direct consequence of this observa-
tion is that parts of the network where communities overlap tend to
be more densely connected (Figure 1(c)) [35]. Even though very
natural, the observation stands in sharp contrast to present defini-
tions of network communities. More importantly, today’s commu-
nity detection methods (for example, [1, 2, 25]) cannot correctly
identify such dense community overlaps. Present methods either
mistakenly identify the overlap as a separate community or merge
two overlapping communities into a single one [35].
Present work: Large-scale community detection via matrix fac-
torization. Building on the above observation the goal of this work
is to detect communities in a given large unlabeled undirected net-
work. This means that, for every node in a given large undirected
network, we aim to discover the communities it belongs to. To
achieve this we develop a novel community detection method that
allows for discovering any combination of densely overlapping,
non-overlapping, as well as hierarchically nested communities.

We build on models of affiliation networks [5, 18] and develop
the BIGCLAM (Cluster Affiliation Model for Big Networks). In
BIGCLAM communities arise due to shared community affiliations
of nodes. We explicitly model the affiliation strength of each node
to each community. We assign each node-community pair a non-
negative latent factor which represents the degree of membership
of a node to the community. We then model the probability of an
edge between a pair of nodes in the network as a function of the
shared community affiliations.

We identify network communities by fitting the BIGCLAM model
to a given large undirected network. Our goal is to estimate non-
negative latent factors that model the membership strength of each
node to each community. By combining the state-of-the-art non-
negative matrix factorization methods [19] with block stochastic
gradient descent [21] we achieve gains both in the quality of de-
tected communities as well as in scalability of the method. We
improve by a factor of 10 the size of the largest networks that over-
lapping community detection methods could process in the past.

An additional contribution of our work is improved evaluation.
So far community detection methods have mostly been evaluated
anecdotally on small networks. In contrast, we identify social,
collaboration, information and biological networks with explicitly
labeled ground-truth communities [34]. This allows for quantita-
tive evaluating by assessing how well detected communities corre-
spond to the ground-truth communities [34]. Experiments reveal
that BIGCLAM discovers overlapping as well as non-overlapping
community structure more accurately than present state-of-the-art
methods [1, 2, 25, 27]. Moreover, BIGCLAM scales well beyond
the current overlapping community detection methods. Experi-

ments show that BIGCLAM achieves near linear running time while
other methods exhibit quadratic or exponential running time. We
process networks of more than 35 million edges which improves
by a factor of 10 the size of the largest networks that overlapping
community detection methods could process in the past. BIGCLAM
improves over the current state of the art in both the scalability as
well as the quality of detected communities. Code as well as all the
data are available at http://snap.stanford.edu.

2. RELATED WORK
Our BIGCLAM is an example of a bipartite affiliation network

model [5, 18, 36]. Affiliation networks have been extensively stud-
ied in sociology [5] as a metaphor of classical social theory con-
cerning the intersection of persons with groups, where it has been
recognized that communities arise due to shared group affiliations [5,
29]. In affiliation network models, nodes of the social network are
affiliated with communities they belong to and the links of the un-
derlying social network are then derived based on the node com-
munity affiliations. Whereas classical models assume binary node-
community affiliations, in our model we also consider the strength
of an affiliation which provides additional modeling flexibility.

BIGCLAM formulates community detection as a variant of non-
negative matrix factorization (NMF) [15, 19, 21]. Similar to NMF,
we aim to learn factors that can recover the adjacency matrix of a
given network. However, BIGCLAM has two important improve-
ments. First, most of NMF research pays relatively little atten-
tion to interpreting the latent factors. The primary goal there is to
estimate the missing entries of the matrix (e.g., as in the Netflix
competition). On the other hand, BIGCLAM aims to learn latent
factors which represent community affiliations of nodes. Second,
instead of using a Gaussian distribution [15, 19] or logistic link
function [14], we optimize the model likelihood of explaining the
links of the observed network. Our formulation of likelihood al-
lows us to compute a gradient of the factor matrix in near-constant
time, which is significant improvement over existing NMF meth-
ods where the complexity of computing such gradient is linear in
the number of rows of the matrix (i.e., nodes of the network). In
practice, computing the gradient in near-constant time makes our
algorithm about 1,000 times faster.

In terms of scalability most overlapping community detection
methods scale to networks with at most thousands of nodes [2, 22,
25]. The largest network processed with overlapping community
detection methods is a mobile phone network of 800,000 nodes
and 2.8 million edges [1]. Non-overlapping community detection
algorithms, which solve a simpler problem, have been applied to
networks with millions of nodes [6, 16]. Our methods presented
here can process networks with tens of millions of edges while also
obtaining state of the art quality of detected communities.

3. EMPIRICAL OBSERVATION
We motivate the development of our model by empirically study-

ing the structure of communities and community overlaps in net-
works. We fist describe the network datasets with explicit ground-
truth communities and then present our empirical findings.
Networks with ground-truth communities. To study the connec-
tivity structure of community overlaps, we now describe networks
with explicitly labeled ground-truth communities. To define such
ground-truth, we collected 6 large social, information and collabo-
ration networks where nodes explicitly state their community mem-
berships [34]. Defining ground-truth communities will also help us
later in evaluating the performance various methods (Section 6).



Dataset N E C S A

LiveJournal 4.0 M 34.9 M 310 k 40.06 3.09
Friendster 120 M 2,600 M 1.5 M 26.72 0.33
Orkut 3.1 M 120 M 8.5 M 34.86 95.93
Youtube 1.1 M 3.0 M 30 k 9.75 0.26
DBLP 0.43 M 1.3 M 2.5 k 429.79 2.57
Amazon 0.34 M 0.93 M 49 k 99.86 14.83

Table 1: Dataset statistics. N : number of nodes, E: number of
edges, C: number of communities, S: average community size,
A: community memberships per node. M denotes a million
and k denotes one thousand. On average 95% of all communi-
ties overlap with at least one other community.

First, we briefly describe the 6 networks [34]1. The first 4 net-
works are online social networks: the LiveJournal blogging com-
munity, the Friendster online network, the Orkut social network,
and the Youtube social network. Users in these networks create
groups which other users then join. Such groups are formed over
specific interests, hobbies, affiliations, and geographical regions.
For instance, LiveJournal categorizes communities into the follow-
ing types: culture, entertainment, expression, fandom, life/style,
life/ support, gaming, sports, student life and technology. There are
over 100 communities with ‘Stanford’ in their name, and they range
from communities based around different classes, student ethnic
communities, departments, activity and interest based groups, var-
sity teams, etc. We use such user-defined groups as ground-truth
communities. A user can belong to zero, one or more ground-
truth communities and thus ground-truth communities can overlap.
The largest network among these online social networks is Friend-
ster, which has 120 million nodes, 2.6 billion edges and 1.5 million
ground-truth communities.

We also consider the Amazon product co-purchasing network
where the nodes represent products and edges connect commonly
co-purchased products. Each product (i.e., node) belongs to one or
more hierarchically nested product categories. We use each product
category to define a ground-truth community. Members of the same
community share a common function or a role. Ground-truth com-
munities in the Amazon network can be overlapping or hierarchi-
cally nested. Last we also use the collaboration network of DBLP
where nodes represent authors/actors and edges connect nodes that
have co-authored a paper. Since research communities stem around
conferences or journals, we use publication venues as ground-truth
communities in DBLP.

The networks we consider show a nice range of scale in all mea-
sures (Table 1): The size of networks ranges from hundreds of thou-
sands to hundreds of millions of nodes and edges and the number of
ground-truth communities varies from hundreds to millions. Last,
the networks represent a wide range of edge densities, numbers of
explicit communities, as well as amounts of community overlap.

In our previous work [33, 34, 35] we found the above definitions
of ground-truth to be reliable and robust. In particular, while the
networks we consider here come from a variety of domains, span a
wide range of network sizes and edge densities, we find our obser-
vations and results to be consistent and robust across all of them.
The consistency and robustness of results make us confident in our
methodology and empirical observations.

In order to express all networks in a consistent way we repre-
sent each network as an unweighted undirected static graph. Be-
cause members of the same group may be disconnected in the net-
work, we treat each connected component of the group as a sepa-
rate ground-truth community. We allow ground-truth communities
to overlap because a node can belong to multiple groups at once.

1Networks are available at http://snap.stanford.edu.
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Figure 2: (a) Normalized edge probability as a function of com-
mon memberships k. Probabilities are scaled so that maximum
value over k is one. (b) Edge probability in the Orkut network,
plotted as an absolute value. We conclude overlaps are more
densely connected than single communities.

Observation: Community overlaps are dense. Having defined
ground-truth communities, we now empirically study the structure
of ground-truth communities. We find that ground-truth communi-
ties heavily overlap. On average 95% of all communities overlap
with at least one other community and only 15% of community’s
members belong to only that community. We thus examine the
structure of community overlaps by measuring the probability of a
pair of nodes being connected given that they belong to k common
communities, i.e., the nodes reside in the overlap of same k com-
munities. Figure 2(a) plots this probability for all six datasets. For
visualization we scale each probability curve so that the maximum
value of each curve over k is 1. Under the current assumption that
overlaps are less dense than non-overlaps, the probability curves
would decrease as k increases. In contrast, we notice an increasing
relationship for all datasets, i.e., the more communities a pair of
nodes has in common, the higher the probability of an edge. This
means that nodes residing in overlaps are more densely connected
each other than the nodes in a single community [35].

To demonstrate how the edge probability changes as k increases,
we plot the edge probability (without scaling) measured in the Orkut
network as a function of the number of common communities k
in Figure 2(b). Similar to all large networks, Orkut is extremely
sparsely connected — the background probability of a random pair
of nodes being connected is ≈ 10−5 — the increase in edge prob-
ability is highly significant. For example, if a pair of nodes has 2
communities in common, the probability of an edge is nearly 0.20.
The edge probability increases by 104 times (from 10−5 to 10−1)
as soon as the pair share two communities.

Overall, in all the datasets we consistently observe similar and
robust behavior: The probability of a pair of nodes being con-
nected approaches 1 as the number of common communities in-
creases [35]. While in online social networks the edge probability
exhibits a diminishing-returns-like growth, in DBLP, it appears to
follow a threshold-like behavior.
Discussion. In retrospective, the above observation is very intu-
itive and thus so much more surprising. For pairs of nodes that
belong to multiple common communities, edges often exist due to
one dominant reason. Thus, nodes in the overlaps will have higher
chance of being connected because they belong to multiple com-
munities. Many examples to support this. For example, people
sharing multiple hobbies or belonging to several common institu-
tions have a higher chance of becoming friends [23], researchers
with many common interests are more likely to work together [26],
and proteins involved in multiple common functional modules are
more likely to interact [17].

The observation that the probability of an edge increases as a
function of the number of shared communities means that nodes
in the overlap of two (or more) communities are more likely to be
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Figure 3: (a) Bipartite community affiliation graph. Cir-
cles: Communities, Squares: Nodes of the underlying network.
Edges indicate node community memberships. Edges with zero
weight are not shown. (b) Each affiliation edge from node u to
community c has strength Fuc ≥ 0.

connected. Thus, our finding suggests communities overlap as il-
lustrated in Figure 1(c) where the overlap of the two communities is
more densely connected than each single community. However, we
note that our finding is in sharp contrast to the currently predom-
inant view of network communities which is based on two funda-
mental social network theories: triadic closure [31] and strength-
of-weak-ties [12]. This leads to the picture of network communi-
ties as illustrated in Figure 1(a) which suggests that homophily in
networks operates in small pockets where nodes gather in dense
non-overlapping clusters. Extending these two theories to the over-
lapping communities leads to the unnatural structure of community
overlaps as illustrated in Figure 1(b): Community overlaps are less
densely connected than the groups themselves. Our results show
the contrary. As a consequence this means that present overlapping
community detection methods [1, 2, 25] which rely on the assump-
tion of sparse overlaps fail to correctly identify dense community
overlaps. They would either merge two overlapping communities
into a single cluster or identify the overlap as a separate cluster [35].

Last, we also note that the observation that community overlaps
are denser than communities themselves nicely extends the notion
of homophily in networks [23]. The ‘strength of weak ties’ [12]
suggests that homophily in networks operates in small pockets where
inside the pocket nodes link strongly among themselves, and weakly
to other pockets. Our work extends the understanding of homophily.
We are discovering pluralistic homophily where the similarity of
one node to another is the number of shared affiliations, not just
their similarity along a single dimension. This view of tie forma-
tion is consistent with the works of Simmel [29] on the web of affil-
iations, and Feld [7] on focused organization of social ties. In both
of these views networks consist of overlapping “tiles” or “social
circles” that serve as organizing principles of nodes in networks.

4. CLUSTER AFFILIATION MODEL
Next we present the Cluster Affiliation Model for Big Networks

(BIGCLAM), a probabilistic generative model for graphs that re-
liably captures the organization of networks based on community
affiliations. Our model has three main ingredients:

The first ingredient is based on Breiger’s work [5] which recog-
nized that communities arise due to shared group affiliations [5, 7,
29]. We represent node community memberships with a bipartite
affiliation network that links nodes of the social network to com-
munities that they belong to (Figure 3(a)).

The second ingredient stems from the fact that people tend to be
involved in communities to various degrees. Therefore, we assume
that each affiliation edge in the bipartite affiliation network has a
nonnegative weight. The higher the node’s weight of the affiliation
to the community the more likely is the node to be connected to
other members in the community.

The last ingredient of our model is based on the fact that, when
people share multiple community affiliations (e.g., co-workers who
attended the same university), the links between them stem for one
dominant reason (i.e., shared community). This means that for each
community a pair of nodes shares we get an independent chance of
connecting the nodes. Thus, naturally, the more communities a pair
of nodes shares, the higher the probability of being connected.

Figure 3 illustrates our model. We start with a bipartite graph
where the nodes at the bottom represent the nodes of the social
network G, the nodes on the top represent communities C, and
the edges M indicate node community affiliations. We denote the
bipartite affiliation network as B(V,C,M).

The flexibility of the affiliation network allows us to model a
wide range of network community structures. Figure 4 illustrates
the structure of the network as well as the corresponding node-
community affiliation network. Figure 4(a) shows an affiliation
graph of a network with two non-overlapping communities. The
affiliation graph in Figure 4(c) represents hierarchical community
structure where communitiesA andC are nested inside community
B. Finally, Figure 4(b) shows an example of overlapping commu-
nities. These three very different examples demonstrate that the
flexibility of the affiliation network structure allows BIGCLAM to
simultaneously model any combination of non-overlapping, hierar-
chically nested as well as overlapping communities in networks.
From node-community affiliations to the edges of the network.
To generate a network G(V,E) given a bipartite community affil-
iation B(V,C,M) we need to specify the process that generates
the edges E of G given the affiliation network B. We consider
a simple parameterization where we assign a nonnegative weight
Fuc between node u ∈ V and community c ∈ C. (Fuc = 0
means no affiliation.) Given F , we assume that each community c
connects its member nodes depending on the value of F . In par-
ticular, each community c connects its member nodes u, v with
probability 1− exp(−Fuc ·Fvc). Each community c creates edges
independently. However, if a pair of nodes gets connected multiple
times, the duplicate edges are not included in the graph G(V,E).
Since each community c connects u, v independently with proba-
bility 1− exp(−Fuc · Fvc), the edge probability between u and v
is 1 − exp(−

∑
c Fuc · Fvc) and thus increasing in the number of

shared communities.

DEFINITION 1. Let F be a nonnegative matrix where Fuc is a
weight between node u ∈ V and community c ∈ C. Given F ,
the BIGCLAM generates a graph G(V,E) by creating edge (u, v)
between a pair of nodes u, v ∈ V with probability p(u, v):

p(u, v) = 1− exp(−Fu · FT
v ), (1)

where Fu is a weight vector for node u (Fu = Fu·).

The process in Eq. 1 suggests the following probabilistic inter-
pretation. Assume an undirected weighted network where pairs of
nodes have a latent interaction of non-negative strengthXuv . How-
ever, we only observe an undirected unweighted version of network
G(V,E) where a pair of nodes u, v is connected if the correspond-
ingXuv > 0. Now consider that nodes u, v generate an interaction
of strength X(c)

uv within each community c using a Poisson distri-
bution with mean Fuc · Fvc. Then the total amount of interaction
Xuv between nodes u and v is the sum of X(c)

uv :

Xuv =
∑
c

X(c)
uv , X(c)

uv ∼ Pois(Fuc · Fvc).

Then, due to the additivity of the Poisson random variable, Xuv ∼
Pois(

∑
c Fuc ·Fvc), and the edge probability (P(Xuv > 0)) is the

same as p(u, v) in Eq. 1.



(a) Non-overlapping (b) Overlapping (c) Nested

Figure 4: BIGCLAM allows for rich modeling of network communities: (a) non-overlapping, (b) overlapping, (c) nested. In (a) we
assume that nodes in two communities connect with small prob. ε (refer to the discussion in the main text).

P (Xuv > 0) = 1− P (Xuv = 0) = 1− exp(−
∑
c

Fuc · Fvc)

Note that node u with higher Fuc is more likely to be connected to
other members of c as X(c)

uv will have a higher mean.
Note that this process naturally generates an increasing relation-

ship between edge probability and the number of shared commu-
nities. This is due to the fact that nodes that share multiple com-
munity memberships receive multiple chances to create a link. For
example, pairs of purple nodes in the overlap of communities A
and B in Figure 3(a) get two chances to create an edge. First they
create an edge with probability 1 − e−FuA·FvA (due to the mem-
bership to community A) and then also an edge with probability
1 − e−FuB ·FvB (due to membership to community B). The edge
probability between these nodes is 1 − e−(FuA·FvA+FuB ·FvB). If
they were to reside in the non-overlapping region of A, they would
be linked with probability 1 − e−FuA·FvA , which is smaller than
1− e−(FuA·FvA+FuB ·FvB).
ε-Community. In the formulation of Equation 1, BIGCLAM does
not allow for the edges between the nodes u and v that do not share
any common communities since for such nodes Fuc · Fvc = 0
for all c. To allow for edges between nodes that do not share
any community affiliations, we assume an additional community,
called the ε-community, which connects any pair of nodes with a
very small probability ε. We find that setting ε to be the back-
ground edge probability between a random pair of nodes (ε =
2|E|/|V |(|V |−1)) works well in practice. For all our experiments
we set ε ≈ 10−8.

5. COMMUNITY DETECTION
Now that we defined the BIGCLAM model, we explain how to

detect network communities using the model. Given an unlabeled
undirected network G(V,E), we aim to detect K communities by
fitting the BIGCLAM (i.e., finding the most likely affiliation factor
matrix F̂ ∈ RN×K ) to the underlying network G by maximizing
the likelihood l(F ) = logP (G|F ) of the underlying G:

F̂ = argmax
F≥0

l(F ), (2)

where

l(F ) =
∑

(u,v)∈E

log(1− exp(−FuF
T
v ))−

∑
(u,v)6∈E

FuF
T
v .

For now, we assume the number of communities K is given. We
will describe later how to automatically estimate K.

The optimization problem of Eq. 2 can be viewed as a variant of
nonnegative matrix factorization (NMF) [19] where we learn F ∈
RN×K that best approximates the adjacency matrix A of a given
network G. By representing a negative log-likelihood −l(F ) as a

loss function D and 1− exp(·) as a link function, we can represent
the problem as follows:

F̂ = argmin
F≥0

D(A, f(FFT ))

The benefit of using matrix factorization approach is increased scal-
ability. Overlapping community detection methods have been de-
veloped to analyze small networks [1, 2], and most methods rely
on combinatorial optimization which is hard to scale. On the other
hand, for nonnegative matrix factorization many efficient techniques
exist [15, 21].

BIGCLAM modifies the existing NMF methods [15, 19, 21] and
adapts them to large networks. While NMF methods use l2 norm
as an objective function, l2 norm is not suitable for modeling bi-
nary adjacency matrices [14]. Instead, BIGCLAM employs log-
likelihood as a loss function. Additional benefit is that for sparsely
connected networks (which real networks are) our formulation al-
lows for near-constant time gradient computation (l2 takes linear
time) which in practice speeds up our algorithm for a factor of 100.
Solving the optimization problem. To solve the problem in Eq. 2,
we adopt a block coordinate gradient ascent algorithm [15, 21]. In
particular, we update Fu for each u with the other Fv fixed, i.e., we
update the memberships of one node with fixing the membership
of all other nodes. The main reason is that if we fix all Fv , then the
problem of updating Fu becomes a convex optimization problem.
We solve the following subproblem for each u:

argmax
Fuc≥0

l(Fu), (3)

where

l(Fu) =
∑

v∈N (u)

log(1− exp(−FuF
T
v ))−

∑
v 6∈N (u)

FuF
T
v ,

where N (u) is a set of neighbors of u. To solve this convex prob-
lem, we use projected gradient ascent. The gradient can be com-
puted straightforwardly.

∇l(Fu) =
∑

v∈N (u)

Fv
exp(−FuF

T
v )

1− exp(−FuFT
v )
−

∑
v 6∈N (u)

Fv

We compute a step size using backtracking line search [4]. After
update, we project Fu into a space of nonnegative vectors by setting
Fuc = max(Fuc, 0).

For a large network with more than a million nodes, this coor-
dinate ascent is not very scalable as making a single step of coor-
dinate ascent (i.e., computing l(Fu) and∇l(Fu)) takes linear time
O(N). However, we reduce the complexity toO(|N (u)|) by com-
puting

∑
v 6∈N (u) Fv efficiently. In particular, we notice:∑

v 6∈N (u)

Fv = (
∑
v

Fv − Fu −
∑

v∈N (u)

Fv) (4)



By storing
∑

v Fv , we can compute
∑

v 6∈N (u) FuF
T
v in time

O(|N (u)|). Given that real-world networks are extremely sparse
(|N (u)| � N ), we can update Fu for a single node u in near-
constant time. We iteratively update Fu for each u and stop the iter-
ation if the likelihood does not increase (increase less than 0.001%)
after we update Fu for all u. In practice this speeds up our algo-
rithm for two orders of magnitude and makes it practical to run it
on networks with millions of nodes and edges.
Determining community affiliations. After we learn F̂ , we still
have to determine whether u belongs to community c or not from
the value of Fuc. To achieve this, we ignore the membership of
node u to community c ifFuc is below some threshold δ. Otherwise
(Fuc ≥ δ), we regard u as belonging to c. We set δ so that if two
nodes belong to community c, then their edge probability is higher
than the background edge probability ε (see Section 4).

ε ≤ 1− exp(−δ2)

Solving this inequality, we set the value of δ =
√
− log(1− ε).

Note we also experimented with other values of δ and found that
our choice for δ gives overall good performance.
Initialization. To initialize F , we use locally minimal neighbor-
hoods [11]. Neighborhoods N(u) of node u is a community of u
and its neighbors, and N(u) is locally minimal if N(u) has lower
conductance than all the N(v) for nodes v who are connected to
u. Recently, Gleich et al. [11] empirically showed that the locally
minimal neighborhoods are good seed sets for community detec-
tion algorithms. For a node u′ who belongs to a locally minimal
neighborhood k, we initialize Fu′k = 1, otherwise Fu′k = 0.
Choosing the number of communities. To find the number of
communities K, we adopt the approach used in [2]. We reserve
20% of node pairs as a hold out set. Varying K, we fit the BIG-
CLAM model with K communities on the 80% of node pairs and
then evaluate the likelihood of BIGCLAM on the hold out set. The
K with the maximum hold out likelihood will be chosen as the
number of communities. When the network is too small (e.g., has
less than 50 edges), we use K that achieves the smallest value of
the Bayes Information Criterion:

BIC(K) = −2l(F̂ ) +NK log |E|

Implementational details. Since the objective function of our
optimization problem is not the l2 norm, the methods for least
squares NMF such as multiplicative update [19] or alternating least
squares [15] are not applicable. We experimented with the cyclic
coordinate descent method (CCD) [15] which optimizes Fuc for
each u and each c by the Newton’s method, but the method con-
verged slower than our block coordinate ascent method. The main
reason for this is that the number of subproblems that we have to
solve in CCD grows linearly with K, the number of communities.
In matrix factorization, usuallyK (the rank ofF ) is assumed to be a
very small constant [15, 21]; however, in our problem K increases
as the size of the underlying network grows.
Connection to other affiliation network models. Last we also
briefly describe the connection between BIGCLAM and other affil-
iation network models. In particular, we consider the AGM [35,
33] which can also model densely overlapping network community
structure. Similarly to BIGCLAM, AGM generates G(V,E) given
a bipartite community affiliation B(V,C,M). In contrast to BIG-
CLAM, AGM assigns a single parameter pc to every community c.
Given B(V,C,M) and {pc}, AGM models the edge probability
p(u, v) as follows:

p(u, v) = 1−
∏

c∈Cuv

(1− pc).

where Cuv is a set of communities that u and v have in common.
One can also detect community structure by fitting AGM to a

given network G(V,E) (i.e., finding affiliation graph B and pa-
rameters {pc}) by maximizing the log-likelihood [33]:

argmax
P,{pc}

∑
(u,v)∈E

log p(u, v) +
∑

(u,v)6∈E

log(1− p(u, v)) (5)

This results in a combinatorial optimization problem that is very
hard to solve. Solving the problem requires a combinatorial search
over all possible affiliation graphs B. However, there is an expo-
nential number (2N·K ) of possible affiliation graphs B.

We now show that fitting BIGCLAM (Eq. 2) can also be derived
by relaxing the fitting problem of AGM (Eq. 5) into a continuous
optimization problem. We begin by stating Eq. 1 in a new form:

p(u, v) = 1−
∏

c∈Cuv

(1− pc) = 1−
∏
c

(1− pc)MucMvc ,

whereMuc is an indicator variable whether node u belongs to com-
munity c. By replacing 1 − pc = exp(−αc) with αc ≥ 0, we can
express the equation as a linear form of M and αc:

p(u, v) = 1− exp(−
∑
c

MucαcMvc).

We then further simplify the equation by letting M̃uc =
√
αcMuc.

p(u, v) = 1− exp(−M̃uM̃
T
v ).

Note that we did not use any approximation so far. So the maximum
likelihood estimation of the model is still a combinatorial optimiza-
tion problem (M̃uc ∈ {

√
αc, 0}). M̃uc ∈ {

√
αc, 0} means that if

node u belongs to c, it would be connected to other member nodes
in c with the factor

√
αc. Therefore, we can interpret M̃uc as the

level of participation of u in community c, which then determines
edge probability of u to other nodes in c. Basically, we can replace
M̃uc with a continuous membership Fuc which can be any nonneg-
ative number. This way we actually model a level of participation
of each node in a particular community as members with the higher
value of Fuc will be more likely to connect to other members of c.

p(u, v) = 1− exp(−FuF
T
v ).

Now, we transform the problem of Eq. 5 into a continuous opti-
mization problem:

F̂ = argmax
F≥0

∑
(u,v)∈E

log(1− exp(−FuF
T
v ))−

∑
(u,v)6∈E

FuF
T
v .

In other words, we can view the optimization problem of BIG-
CLAM as a continuous relaxation of the combinatorial optimization
problem of fitting AGM. BIGCLAM can be considered as a relaxed
version of AGM in the sense that it models community affiliation
as continuous variables. With BIGCLAM, finding the most proba-
ble community affiliation is equivalent to factorizing the adjacency
matrix of the underlying network with nonnegative factors.

6. EXPERIMENTS
We proceed by evaluating the performance of BIGCLAM and

comparing it to the state-of-the-art community detection methods
on a range of networks from a number of different domains and
research areas.



6.1 Experiments on synthetic networks
Using synthetic networks we investigate the scalability and con-

vergence of the BIGCLAM optimization problem.
Convergence of BIGCLAM. Non-negative matrix factorization is
non-convex which means that gradient based approaches do not
guarantee to find an optimal solution. To verify that our fitting
algorithm does not suffer too much from local optima, we conduct
the following experiment on synthetic networks. We generated 100
synthetic networks using the AGM model [35]. For each of these
networks, we then fit BIGCLAM using 10 different random starting
points and attempt to recover the true community affiliations.

In 98% of cases our fitting algorithm finds true communities
with reliable accuracy (F1-score of node community memberships
higher than 0.85), and in 27% of cases our algorithm discovers the
communities almost perfectly (F1-Score > 0.95). This result sug-
gests that the optimization space has several local optima which
almost equivalent to the global optimum.
Scalability of BIGCLAM. We also evaluate the scalability of BIG-
CLAM by measuring the running time on the networks of increas-
ing sizes.For comparison, we compare the runtime of the following
overlapping community detection methods:

• NMF: Least squares non-negative matrix factorization. We solve
the following problem: argmaxFuk≥0 ||A−F ·FT ||F whereA
is an adjacency matrix of a given network. We used a projected
gradient descent as we do with BIGCLAM.

• BIGCLAM(Naive): BIGCLAM without the optimization in Eq. 4.

• LC: Link Clustering method [1].

• CPM: Clique Percolation method [25].

• MMSB: Mixed-Membership Stochastic Blockmodel [2].

Link Clustering, Clique Percolation Method and Mixed Mem-
bership Stochastic Blockmodels are considered the state-of-the-art
overlapping community detection methods. We used the imple-
mentation of LC and CPM in the Stanford Network Analysis Plat-
form2. For MMSB we used publicly-available ‘LDA’ R package.
For CPM, we use the clique size k = 5 for CPM. For MMSB,
we set the number of communities to detect to K = 10. We also
consider NMF and BIGCLAM (Naive) so that we can compare the
performance gain due to the optimization described in Eq. 4.

Figure 5 shows the results. NMF, BIGCLAM(Naive) and MMSB
scale to networks of around 1,000. LC and CPM scale to networks
of about 10,000 and then their runtime becomes prohibitively large.
On the other hand BIGCLAM can process networks with hundreds
of thousands of nodes within 20 minutes. This means that BIG-
CLAM can easily process networks 10 to 100 times larger than
other approaches (and while also more accurately detecting com-
munities). Last, note that the optimization of BIGCLAM defined
in Eq. 4 speeds up the algorithm for around 100 times and is thus
essential for making BIGCLAM scale to large networks.

6.2 Experiments using real ground-truth
We also examine the performance of BIGCLAM using the 6 net-

works with ground-truth communities that we described in Sec-
tion 3. In these networks nodes explicitly state their ground-truth
community memberships which allows us to quantify the ‘accu-
racy’ of community detection methods by evaluating the level of
correspondence between detected and ground-truth communities.
Experimental setup. We are given an unlabeled undirected net-
workG (with known ground-truth communities C∗) we aim to dis-

2SNAP: http://snap.stanford.edu/snap
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Figure 5: Algorithm runtime comparison. BIGCLAM runs 10
to 100 faster than competing approaches.

Figure 6: Sampling subnetworks of G.

cover communities Ĉ such that discovered communities Ĉ closely
match the ground-truth communities C∗.

Even though our algorithm can process the networks described
in Table 1, all the baseline methods do not scale to networks of
such size. To allow for comparison between our and the baseline
methods we use the following evaluation scenario where the goal
is to obtain a large set of relatively small subnetworks with over-
lapping community structure. To obtain one such subnetwork we
pick a random node u in the given graph G that belongs to at least
two communities. We then take the subnetwork to be the induced
subgraph of G consisting of all the nodes that share at least one
ground-truth community membership with u. Figure 6 illustrates
how a subnetwork (right) is created from G(V,E) (left) based on
the red node u. Note that on average 95% of all ground-truth com-
munities overlap which means that this procedure does not bias
towards overlapping communities. In our experiments we created
500 different subnetworks for each of the six datasets.
Baselines for comparison. For baselines we choose three most
prominent overlapping community detection methods: Link clus-
tering (LC) [1], Clique Percolation Method (CPM) [25], and the
Mixed-Membership Stochastic Block Model (MMSB) [2].

These methods have a number of parameters that need to be set.
For CPM, we set the clique size k = 5 since the number of commu-
nities discovered by CPM with k = 5 best approximates the true
number of communities. For MMSB, we have to set the number of
communities K as an input parameter. We use the Bayes Informa-
tion Criterion to choose K. While we require “hard” community
memberships, MMSB returns stochastic node memberships to each
of the K communities. Thus, we assign a node to a community if
the corresponding stochastic membership is non-zero. We also con-
sidered Infomap [27], which is the-state-of-the-art non-overlapping
community detection method. We omit the results as the perfor-
mance of the method was not competitive.
Evaluation metrics. The availability of ground-truth communi-
ties allows us to quantitatively evalute the performance of commu-
nity detection algorithm. Without ground-truth such evaluation is
simply not possible. For evaluation we use metrics that quantify
the level of correspondence between the detected and the ground-
truth communities. Given a network G(V,E), we consider a set of



ground truth communities C∗ and a set of detected communities Ĉ
where each ground-truth community Ci ∈ C∗ and each detected
community Ĉi ∈ Ĉ is defined by a set of its member nodes. To
quantify the level of correspondence of Ĉ to C∗ we consider:

• Average F1 score. To compute the F1 score, we need to de-
termine which Ci ∈ C∗ corresponds to which Ĉi ∈ Ĉ. We
define F1 score to be the average of the F1-score of the best-
matching ground-truth community to each detected community,
and the F1-score of the best-matching detected community to
each ground-truth community:

1

2
(

1

|C∗|
∑

Ci∈C∗
F1(Ci, ˆCg(i)) +

1

|Ĉ|

∑
Ĉi∈Ĉ

F1(Cg′(i), Ĉi))

where the best matching g and g′ is defined as follows:

g(i) = argmax
j

F1(Ci, Ĉj), g′(i) = argmax
j

F1(Cj , Ĉi)

and F1(Ci, Ĉj) is the harmonic mean of Precision and Recall.

• Omega Index [13] is the accuracy on estimating the number of
communities that each pair of nodes shares:

1

|V |2
∑

u,v∈V

1{|Cuv| = |Ĉuv|}

where Cuv is the set of ground-truth communities that u and
v share and Ĉuv is the set of detected communities that they
share.

• Normalized Mutual Information adopts the criterion used in
information theory to compare the detected communities and
the ground-truth communities. Normalized Mutual Informa-
tion has been proposed as a performance metric for community
detection. Refer to [8] for details.

• Accuracy in the number of communities is the relative accu-
racy between the detected and the true number of communities,
1− ||C

∗|−|Ĉ||
2|C∗| .

For all metrics higher values mean more “accurately” detected
communities, i.e.detected node community memberships better cor-
respond to ground-truth node community memberships. Maximum
value of 1 is obtained when the detected communities perfectly cor-
respond to the ground-truth communities.
Results on ground-truth communities. For each community de-
tection method and each dataset we measure the average value of
the 4 evaluation metrics over the 500 subnetworks sampled using
the procedure described above. Then, for each evaluation metric
separately we scale the scores of the methods so that the best per-
forming community detection method achieves the score of 1. Fi-
nally, we compute the composite performance by summing up the
4 normalized scores. If a method outperforms all the other method
in all the scores, then its composite performance is 4.

Figure 7 displays the composite performance of the methods
over all six networks. On average, the composite performance of
BIGCLAM is 3.60, which is 79% higher than that of Link clustering
(2.01), 45% higher than that of CPM (2.47), and 15% higher than
that of MMSB (3.14). The absolute average value of Omega In-
dex of BIGCLAM over the 6 networks is 0.47, which is 24% higher
than Link clustering (0.38), 26% higher than CPM (0.37), and 30%
higher than MMSB (0.36). In terms of absolute values of scores,
BIGCLAM archives the average F1 score of 0.60, average Omega
index of 0.47, Mutual Information of 0.22 and accuracy of the num-
ber of communities of 0.43.

Overall, BIGCLAM gives superior overall performance. This
means that, while BIGCLAM is two orders of magnitude more scal-
able than competing approaches, it also achieves superior perfor-
mance in the quality of detected communities. On 4 out of 6 net-
works BIGCLAM performs best by a big margin. However, we note
that on DBLP and Amazon MMSB is the winning method mostly
due to BIGCLAM scoring very badly on a single individual met-
ric (Number of communities on DBLP, Ω-index on Amazon). This
occurs due to the fact that BIGCLAM uses a single parameter ε to
model the edge probability between all pairs of different commu-
nities (ε-Community in Section 4), while MMSB uses one param-
eter for each pair of communities. With more parameters, MMSB
can fit these networks better. Note that BIGCLAM could be easily
extended to include a distinct parameter for the edge probability
between each pair of communities.

6.3 Experiments on networks in Ahn et al. [1]
We further evaluate BIGCLAM using performance benchmarks

from Ahn et al. [1]. For this experiment we adopt exactly the same
data, evaluation metrics and experimental setup as in [1]. Note that
these networks do not contain information about ground-truth com-
munities. Rather, nodes in these communities contain attributes
and [1] used “purity” metrics as surrogates for the quality of de-
tected communities. The idea behind evaluation metrics here is that
good communities have low diversity of member nodes’ features.
Experimental setup. We use the same seven different networks as
in [1]: 5 biological networks, a network of Wikipedia pages and a
word association network For further details about these datasets,
refer to [1]. We also adopt the same data-driven measures defined in
[1]: Community Coverage, Overlap Coverage, Community Qual-
ity, Overlap Quality. All networks are small, so we apply the com-
munity detection methods to full networks. Moreover, the met-
rics are heavily biased towards methods that find a large number of
communities, so we fit BIGCLAM using the same number of com-
munities as detected by LC (i.e., the algorithm developed in [1]).
Results. Following [1] we compute the composite performance by
normalizing the scores the same way as we did in the experiments
with ground-truth communities. Figure 8 shows the composite per-
formance of the four methods. The BIGCLAM achieves best com-
posite performance in 4 networks, and the second best in three net-
works. In all these cases MMSB slightly outperforms BIGCLAM
due to BIGCLAM’s bad performance on the Overlap Coverage met-
ric.Overlap Coverage is defined as the average number of commu-
nities that a node belongs to [1]. This metric is extremely ill posed
since assigning nodes to more communities always improves the
score. Since any non-zero stochastic membership found by MMSB
is regarded as a valid community membership, the MMSB achieves
extremely high score on the Overlap Coverage metric. Neverthe-
less, on average, the BIGCLAM achieves a composite performance
score of 3.06, outperforming Link clustering (2.67) by 14%, Clique
percolation (1.50) by 102%, and MMSB (2.84) by 8%.

6.4 Experiments on large networks
In addition to better accuracy, another strength of BIGCLAM is

its scalability. To test this, we apply BIGCLAM to large real-world
networks. We were able to run BIGCLAM on 4 (full) networks from
Table 1: LiveJournal, Youtube, Amazon, and DBLP.

To reduce the memory requirements of our method, we aim to
find sparse latent factors. We achieve this by adding l1 regulariza-
tion term to Eq. 2 and optimize:

argmax
Fuc≥0

l(F )− λ
∑
u,c

|Fuc|
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Figure 7: Performance of detecting ground-truth communities. While being 10 to 100 times faster than competing approaches
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PPI (LC) 1,213 2,556
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Metabolic 1,042 8,756
Philosophers 1,218 5,972
Word Association 5,018 55,232

Figure 8: Experiments on the data and evaluation metrics used in Ahn et al. [1]. N : Number of the nodes, E: Number of the edges.

Since l1 regularization introduces sparsity to matrix F , we only
need to keep track of latent factors with non-zero value, which de-
creases the memory requirements of our method. We use λ = 10
for Amazon, Youtube, and DBLP and λ = 5000 for LiveJournal.
We update Fu (Solving Eq. 3) for multiple nodes in parallel. With
20 threads, it takes about one day to fit BIGCLAM to the LiveJour-
nal network (4M nodes, 35M edges).

As our baselines from the previous experiments do not scale to
these networks, we consider two well-known graph partitioning
methods as baselines: Metis [16] and Graclus [6]. For Graclus
and Metis, we set the number of communities to detect K to be
the number of ground-truth communities and use the same K for
BIGCLAM as well.

Similarly to experiments in Figure 7, we measure the accuracy
of detected communities using F-1 score and Omega index (NMI
is omitted as all the methods perform the same). Moreover, notice
that grund-truth communities in our data are partially annotated as
some nodes might not indicate their memberships.This means it is
important to quantify the Recall of a given method. We define Re-
call as the average Recall of best-matching detected communities:

Recall(C∗, Ĉ) =
1

|C∗|
∑

Ci∈C∗
Rc(Ci, ˆCg(i))

where Rc(Ci, Ĉj) is the recall of Ĉj under the best matching g.
Since the two baselines (Graculus and Metis) perform very sim-

ilarly in all metrics, we take just the best value among the two in
each case rather than showing the result of baselines separately. For
each network and each score, we pick the best score x among the
two baselines and compute the relative improvement of BIGCLAM

over the x, i.e., Score(BIGCLAM)−x
x

. Table 2 shows the relative im-
provement of BIGCLAM over the baselines. For example, 0.21 for

Dataset Ω-Index F-1 Recall
LiveJournal 2.70 0.21 0.43
Youtube 1.60 0.39 0.82
Amazon 0.00 0.00 0.23
DBLP 0.10 0.03 0.29
Average 1.10 0.16 0.44

Table 2: Relative improvement of BIGCLAM over Metis and
Graclus in detecting communities in large scale networks. Pos-
itive value indicates that BIGCLAM outperforms the baselines.

F-1 in LiveJournal means that BIGCLAM achieves 21% higher F-1
score than the best baseline (Metis in this case).

Overall, BIGCLAM outperforms the baselines in nearly all cases.
On average, BIGCLAM achieves 110% higher Omega index, 16%
higher F-1 score, and 44% higher average Recall, which means that
BIGCLAM achieves 57% relative improvement on average among
the three scores. Furthermore, BIGCLAM outperforms the base-
lines in every measure and every network. The absolute value of
the scores of BIGCLAM is 0.11 (Omega index), 0.13 (F-1 score),
and 0.32 (Recall). Overall, the results emphasize the need for a
scalable and accurate overlapping community detection method as
graph partitioning methods fail to detect overlapping communities.
Results demonstrate that BIGCLAM could be the needed solution.

7. CONCLUSION
In this paper we developed a novel large scale community detec-

tion method that accurately discovers the overlapping community
structure of real-world networks. We identified a set of networks
where nodes explicitly state their ground-truth community mem-
bership and studied the connectivity of ground-truth communities
and their overlaps. We observed that the overlaps of communi-
ties are more densely connected than the non-overlapping parts of



communities, which is in sharp contrast to assumptions made by
present community detection models and methods. Based on this
observation, we then developed the Cluster Affiliation Model for
Big Networks (BIGCLAM), a conceptual model of network com-
munity structure, which naturally produces dense community over-
laps. We then presented an efficient algorithm to fit BIGCLAM to a
given network. Our fitting algorithm builds on the research of non-
negative matrix factorization and scalable to networks with million
nodes. Experiments show that the BIGCLAM outperforms the state-
of-the-art community detection methods in accurately discovering
network communities as well as the overlaps between communi-
ties. Furthermore, BIGCLAM can detect community structure in
the LiveJournal network which is more than 10 times bigger than
the previously largest network considered for overlapping commu-
nity detection.

Our work has several implications: First, our analysis sheds light
on the organization of complex networks and provides new direc-
tions for research on community detection. Second, ground-truth
communities offer a reliable way for evaluating community detec-
tion methods. Third, large scale overlapping community detection
by BIGCLAM can broaden our understanding of organizing prin-
ciples of large scale networks. And last, BIGCLAM opens up a
new possibility to combine the advances in community detection
and nonnegative matrix factorization. More generally, a shift in
perspective from sparse to dense community overlaps represents a
new way of studying networks and provides a unifying framework
for network community detection.
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