
An Approximate L1-Difference Algorithm for Massive Data Streams∗

Joan Feigenbaum†

Computer Science
Yale University

New Haven, CT 06520-8285 USA
feigenbaum@cs.yale.edu

Sampath Kannan‡

Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104-6389 USA
kannan@cis.upenn.edu

Martin J. Strauss
AT&T Labs – Research

180 Park Avenue
Florham Park, NJ 07932 USA
mstrauss@research.att.com

Mahesh Viswanathan§

Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801 USA
vmahesh@cs.uiuc.edu

April 30, 2002

Abstract

Massive data sets are increasingly important in a wide range of applications, including obser-
vational sciences, product marketing, and monitoring and operations of large systems. In network
operations, raw data typically arrive in streams, and decisions must be made by algorithms that make
one pass over each stream, throw much of the raw data away, and produce “synopses” or “sketches”
for further processing. Moreover, network-generated massive data sets are often distributed: Several
different, physically separated network elements may receive or generate data streams that, together,
comprise one logical data set; to be of use in operations, the streams must be analyzed locally and
their synopses sent to a central operations facility. The enormous scale, distributed nature, and
one-pass processing requirement on the data sets of interest must be addressed with new algorithmic
techniques.

We present one fundamental new technique here: a space-efficient, one-pass algorithm for approx-
imating the L1-difference

∑
i |ai − bi| between two functions, when the function values ai and bi are

given as data streams, and their order is chosen by an adversary. Our main technical innovation,
which may be of interest outside the realm of massive data stream algorithmics, is a method of
constructing families {Vj(s)} of limited-independence random variables that are range-summable, by
which we mean that

∑c−1
j=0 Vj(s) is computable in time polylog(c), for all seeds s. Our L1-difference

algorithm can be viewed as a “sketching” algorithm, in the sense of [Broder, Charikar, Frieze, and
Mitzenmacher, J. Comput. and System Sci. 60:630–659, 2000], and our technique performs better
than that of Broder et al. when used to approximate the symmetric difference of two sets with small
symmetric difference.

∗Extended abstract appeared in Proceedings of the 1999 IEEE Symposium on Foundations of Computer Science.
†Most of this work was done while the author was a member of the Information Sciences Research Center of AT&T

Labs in Florham Park, NJ.
‡Part of this work was done while the author was visiting AT&T Labs in Florham Park, NJ. Supported by grants NSF

CCR98-20885 and ARO DAAG55-98-1-0393.
§Work done while the author was a PhD student at the University of Pennsylvania, supported by grant ONR N00014-

97-1-0505, MURI.

1

1 Introduction

Massive data sets are increasingly important in a wide range of applications, including observational
sciences, product marketing, and monitoring and operations of large systems. In network operations,
raw data typically arrive in streams, and decisions must be made by algorithms that make one pass
over each stream, throw much of the raw data away, and produce “synopses” or “sketches” for further
processing. Moreover, network-generated massive data sets are often distributed: Several different,
physically separated network elements may receive or generate data streams that, together, comprise
one logical data set; to be of use in operations, the streams must be analyzed locally and their synopses
sent to a central operations facility. The enormous scale, distributed nature, and one-pass processing
requirement on the data sets of interest must be addressed with new algorithmic techniques.

We present one fundamental new technique here: a space-efficient, one-pass algorithm for approxi-
mating the L1-difference

∑
i |ai−bi| between two functions, when the function values ai and bi are given

as data streams, and their order is chosen by an adversary. This algorithm fits naturally into a toolkit
for Internet-traffic monitoring. For example, Cisco routers can now be instrumented with the NetFlow
feature [CN98]. As packets travel through the router, the NetFlow software produces summary statistics
on each flow.

∗
Three of the fields in the flow records are source IP-address, destination IP-address, and

total number of bytes of data in the flow. At the end of a day (or a week, or an hour, depending on what
the appropriate monitoring interval is and how much local storage is available), the router (or, more
accurately, a computer that has been “hooked up” to the router for monitoring purposes) can assemble
a set of values (x, ft(x)), where x is a source-destination pair, and ft(x) is the total number of bytes
sent from the source to the destination during a time interval t. The L1-difference between two such
functions assembled during different intervals or at different routers is a good indication of the extent
to which traffic patterns differ.

Our algorithm allows the routers and a central control and storage facility to compute L1-differences
efficiently under a variety of constraints. First, a router may want the L1-difference between ft and
ft+1. The router can store a small “sketch” of ft, throw out all other information about ft, and still be
able to approximate ‖ft − ft+1‖1 from the sketch of ft and (a sketch of) ft+1.

The functions f
(i)
t assembled at each of several remote routers Ri at time t may be sent to a central

tape-storage facility C. As the data are written to tape, C may want to compute the L1-difference
between f

(1)
t and f

(2)
t , but this computation presents several challenges. First, each router Ri should

transmit its statistical data when Ri’s load is low and the Ri-C paths have extra capacity; therefore,
the data may arrive at C from the Ri’s in an arbitrarily interleaved manner. Also, typically the x’s for
which f(x) �= 0 constitute a small fraction of all x’s; thus, Ri should only transmit (x, f

(i)
t (x)) when

f
(i)
t (x) �= 0. The set of transmitted x’s is not predictable by C. Finally, because of the huge size of these

streams,
†

the central facility will not want to buffer them in the course of writing them to tape (and
cannot read from one part of the tape while writing to another), and telling Ri to pause is not always
possible. Nevertheless, our algorithm supports approximating the L1-difference between f

(1)
t and f

(2)
t

at C, because it requires little workspace, requires little time to process each incoming item, and can
process in one pass all the values of both functions {(x, f

(1)
t (x))} ∪ {(x, f

(2)
t (x))} in any permutation.

∗
Roughly speaking, a “flow” is a semantically coherent sequence of packets sent by the source and reassembled and

interpreted at the destination. Any precise definition of “flow” would have to depend on the application(s) that the source
and destination processes were using to produce and interpret the packets. From the router’s point of view, a flow is just
a set of packets with the same source and destination IP-addresses whose arrival times at the routers are close enough, for
a tunable definition of “close.”

†
In 1999, a WorldNet gateway router generated more that 10Gb of NetFlow data each day.

2

Our L1-difference algorithm achieves the following performance:

Consider two data streams of length at most n, each representing the non-zero points on
the graph of an integer-valued function on a domain of size n. Assume that the max-
imum value of either function on this domain is M . Then a one-pass streaming algo-
rithm can compute with probability 1 − δ an approximation A to the L1-difference B of
the two functions, such that |A − B| ≤ εB, using total space O(log(Mn) log(1/δ)/ε2) and
O(logO(1)(Mn) log(1/δ)/ε2) time to process each item. The data streams may be interleaved
in an arbitrary (adversarial) order. Here space usage is measured in number of bits and time
in number of bit operations.

The main technical innovation used in this algorithm is a limited-independence random-variable
construction that may prove useful in other contexts:

A family {Vj(s)} of uniform ±1-valued random variables is called range-summable if∑c−1
j=0 Vj(s) can be computed in time polylog(c), for all seeds s. We construct range-summable

families of random variables that are n2-bad 4-wise independent.
‡

The property of n2-bad 4-wise independence suffices for the time- and space-bounds on our algorithm.
One can construct a truly 4-wise (in fact, 7-wise) independent range-summable family of random vari-
ables based on Second-Order Reed-Muller Codes [RS99], but the efficiency of the range summation
seems to be significantly worse than it is in our construction.

The rest of this paper is organized as follows. In Section 2, we give precise statements of our
“streaming” model of computation and complexity measures for streaming and sketching algorithms.
In Section 3, we present our main technical results. Section 4 explains the relationship of our algorithm
to other recent work, including that of Broder et al. [BCFM00] on sketching and that of Alon et al.
[AMS99, AGMS99] on frequency moments.

2 Models of Computation

Our model is closely related to that of Henzinger, Raghavan, and Rajagopalan [HRR98]. We also
describe a related sketch model that has been used, e.g., in [BCFM00].

2.1 The Streaming Model

As in [HRR98], a data stream is a sequence of data items σ1, σ2, . . . , σn such that, on each pass through
the stream, the items are read once in increasing order of their indices. We assume the items σi come
from a set of size M , so that each σi has size log M . In our computational model, we assume that the
input stream consists of one or more data streams. We focus on two resources—the workspace required
in bits and the time to process each item in the stream. An algorithm will typically also require pre- and
post-processing time, but usually applications can afford more time for these tasks. For the algorithms
in this paper, the pre- and post-processing time is comparable to the per-item time and is not considered
further.

Definition 1 The complexity class PASST(s(δ, ε, n,M), t(δ, ε, n,M)) (to be read as “probably approx-
imately correct streaming space complexity O(s(δ, ε, n,M)) and time complexity O(t(δ, ε, n,M))”) con-
tains those functions f on domain Xn, where |X| = M , for which one can output a random variable R

‡
The property of n2-bad 4-wise independence is defined precisely in Section 3 below.

3

such that |R − f | < εf with probability at least 1 − δ, and computation of R can be done by making a
single pass over an instance x ∈ Xn, presented in a stream, using total workspace O(s(δ, ε, n,M)) and
taking time O(t(δ, ε, n,M)) to process each item.

If s = t, we also write PASST(s) for PASST(s, t).

We will also abuse notation and write A ∈ PASST(s, t) to indicate that an algorithm A for f witnesses
that f ∈ PASST(s, t).

Thus f is a function of a single input that has n elements or components. We allow the input
elements of f to be presented in any order in the stream; thus, an input item will be of the form, “the
j’th input element value is aj .” For example, a fragment of the stream representing f might look like
· · · (5, 2)(3, 7)(7, 4)(2, 6) · · ·, and this is interpreted as f(5) = 2, f(3) = 7, etc. Note that the input to
f is considered to be static—in a properly formed input stream, at most one item specifies the value
of aj . Thus the length of the input stream is n (items) for our algorithms.

§
Other variants of input

streams are possible, in which input values may change (repeatedly) throughout the stream, or in which
the input comes in a non-arbitrary order (e.g., in sorted order or random order). We do not consider
these variations in this paper.

2.2 The Sketch Model

Sketches were used in [BCFM00] to check whether two documents are nearly duplicates. A sketch can
also be regarded as a synopsis data structure [GM99].

Definition 2 Let X be a set, containing at most M items. The complexity class PAS(s(δ, ε, n,M)) (to
be read as “probably approximately correct sketch complexity s(δ, ε, n,M)”) contains those functions
f : Xn×Xn → Z of two inputs for which there exists a set S of size 2O(s), a randomized sketch function
h : Xn → S, and a randomized reconstruction function ρ : S × S → Z such that, for all x1, x2 ∈ Xn,
with probability at least 1 − δ, |ρ(h(x1), h(x2)) − f(x1, x2)| < εf(x1, x2).

By “randomized function” of k inputs, we mean a function of k + 1 variables. The first input is
distinguished as the source of randomness. It is not necessary that, for all settings of the last k inputs,
for most settings of the first input, the function outputs the same value.

Note that we can also define the sketch complexity of a function f : X × Y → Z for X �= Y . There
may be two different sketch functions involved.

There are connections between the sketch model and the streaming model. Let XY denote the set
of concatenations of x ∈ X with y ∈ Y . It has been noted in [KN97] and elsewhere that a function
on XY with low streaming complexity also has low one-round communication complexity (regarded as
a function on X × Y), because it suffices to communicate the memory contents of the hypothesized
streaming algorithm after reading the X part of the input. Sometimes one can also produce a low-
sketch-complexity algorithm from an algorithm with low streaming complexity. Our main result is an
example.

Also, in practice, it may be useful for the sketch function h to have low streaming complexity. If the
set X is large enough to warrant sketching, then it may also warrant processing by an efficient streaming
algorithm.

Formally, we have:
§
It turns out, however, that our algorithms will work if, by convention, we define aj to be zero if no stream item specifies

the value of aj . Thus the length of the input stream may be considerably less than n. Our streaming algorithm for the
L1-distance between two vectors actually, at each point during the stream, can approximate the L1-distance between the
vectors seen thus far, regarding unseen inputs as zero.

4

Theorem 3 If f ∈ PAS(s(δ, ε, n,M)) via sketch function h ∈ PASST(s(δ, ε, n,M), t(δ, ε, n,M)), then
f ∈ PASST(2s(δ, ε, 2n,M), t(δ, ε, 2n,M)), where we identify f : Xn ×Xn → Z with f : X2n → Z in the
natural way.

We will state our time bounds in terms of field(D), the time necessary to perform a single arithmetic
operation in a field of size 2D. Näıve field-arithmetic algorithms guarantee that field(D) = O(D2).

3 The L1-Difference of Functions

3.1 Our Approach

We consider the following problem. The input stream is a sequence of tuples of the form (i, ai,+1) or
(i, bi,−1) such that, for each i in the universe [n], there is at most one tuple of the form (i, ai,+1) and
at most one tuple of the form (i, bi,−1), and ai and bi are non-negative integers. If there is no tuple
of the form (i, ai,+1), then define ai to be zero for our analysis, and similarly for bi. Also note that,
in general, a small-space streaming algorithm cannot know for which i’s the tuple (i, ai,+1) does not
appear. The goal is to approximate the value of F1 =

∑ |ai − bi| to within ±εF1, with probability at
least 1 − δ.

Let M be an upper bound on ai and bi. We assume that n and M are known in advance; in Section 3.7,
we discuss small modifications to make when either of these is not known in advance.

We first present an intuitive exposition of the algorithm. Suppose that, for each type i, we can define
a family of M ±1-valued random variables Ri,j , j = 0, 1, . . . , (M − 1) with independence properties to
be specified later. When we encounter a tuple of the form (i, ai,+1), we add

∑ai−1
j=0 Ri,j to a running

sum z, and, when we encounter a tuple of the form (i, bi,−1), we subtract
∑bi−1

j=0 Ri,j from z. The
overall effect on z is to cancel the first min(ai, bi) random variables leaving the sum of the remaining
|ai − bi| random variables. Finally, consider z2. There are exactly

∑n
i=1 |ai − bi| terms that are squares

of random variables, and these terms contribute exactly the desired quantity F1 to z2. If the cross terms
Ri,jRk,l with {i, j} �= {k, l} contribute very little, then z2 is a good approximation to F1.

Pairwise independence of the random variables in question will ensure that the expected contribution
from these cross terms is 0, and 4-wise independence will ensure that the variance is small, thus ensuring
that the cross terms contribute very little with high probability. Therefore, we would ideally like our
random variables to be 4-wise independent. In addition, as seen above, we want to be able to compute
sums of the form

∑c
j=0 Ri,j efficiently. In order to compute these sums very efficiently, our construction

produces random-variable families that deviate slightly from 4-wise independence.
We now develop a more formal treatment of the above. We start with the definition that captures the

properties desired of the family of random variables corresponding to one type i. We will show how to
construct random variables that satisfy this definition. Later, we extend this to show how to construct
random-variable families to handle more than one type.

3.2 Construction of Random Variable Families

Definition 4 A family {Vj(s)} of uniform ±1-valued random variables with seed s (chosen at random
from some set S of seeds) is called range-summable, n2-bad 4-wise independent if the following properties
are satisfied:

1. The family {Vj(s)} is 3-wise independent, i.e.,

∀ distinct j1, j2, j3,∀a, b, c ∈ {+1,−1} Pr
s

[Vj1(s) = a|Vj2(s) = b ∧ Vj3(s) = c] = Pr
s

[Vj1(s) = a]

5

.

2. For all s,
∑c−1

j=0 Vj(s) can be computed in time polylogarithmic in c.

3. For all a < b,

E




b−1∑

j=a

Vj(s)




4

 = O((b − a)2).

In property 3 and in similar expressions throughout the rest of this paper, the expectation is computed
over s.

Note that, even for 4-wise independent random variables, the sum in property 3 is Θ((b− a)2) because
of terms of the form V 2

j (s)V 2
k (s). Thus, property 3 does not represent a significant weakening of 4-wise

independence. On the other hand, we do not know of a construction using 4-wise independent random
variables that matches ours in efficiency with regard to property 2.

We now describe our construction. This is the main technical innovation of our paper. It is also
a significant point of departure from the work on frequency moments by Alon et al. [AMS99]. The
relationship between our algorithm and the frequency-moment algorithms is explained in Section 4.

We will construct a single family of M random variables Vj(s), 0 ≤ j < M , such that, for all c ≤ M ,
one can compute

∑c−1
j=0 Vj(s) quickly. In the discussion that follows, ⊕ represents boolean exclusive-or,

and ∨ represents boolean or. Logarithms in this paper are always to the base 2.
Suppose, without much loss of generality, that M is a power of 2. Let H(log M) be the matrix with

M columns and log M rows such that the j’th column is the binary expansion of j. For example,

H(3) =


 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1


 .

Let Ĥ(log M) be formed from H(log M) by adding a row of 1’s at the top.

Ĥ(3) =




1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1


 .

We will index the log M + 1 rows of Ĥ starting with −1 for the row of all 1’s, then 0 for the row
consisting of the 20-bits of the binary expansions, and continue consecutively up to the (log(M) − 1)st

row. We will left multiply Ĥ by a seed s of length log M + 1 and use the same indexing scheme for bits
of s as for rows of Ĥ. We will also refer to the last bit of s and the last row of Ĥ, where “last” means
(log M − 1)st, as the “most significant.”

Given a seed s ∈ {0, 1}log M+1, let s · Ĥj denote the inner product over Z2 of s with the j’th column
of Ĥ. Let ik denote the coefficient of 2k in the binary expansion of i. Define f(i) by

f(i) = (i0 ∨ i1) ⊕ (i2 ∨ i3) ⊕ · · · ⊕ (ilog M−2 ∨ ilog M−1)
¶
. (1)

¶
Here and henceforth, we will actually assume that M is a power of 4 to simplify the exposition.

6

Thus, the sequence p of values f(i), i = 0, 1, 2, . . ., is:

0111 1000 1000 1000 1000 0111 0111 0111 1000 0111 0111 0111 1000 0111 0111 0111 . . . ,

and can be obtained as the string plog M by starting with p0 = 0 and putting pk+2 = pk pk pk pk, where
π denotes the bitwise negation of the pattern π. Finally, put Vj(s) = (−1)(s·Ĥj)+f(j).

Proposition 5 The quantity
∑c−1

j=0 Vj(s) can be computed in time O(log(c)).

Proof. First assume that c is a power of 4. If c < M , then the first c columns of Ĥlog M have the

form

(
Ĥlog c

0

)
, and we can reduce our problem to one in which we truncate s to include only the first

1 + log c bits. We may thus assume that c = M . Then Ĥ(log M) is given recursively by

Ĥ(log M) =




1 · · · 1 1 · · · 1 1 · · · 1 1 · · · 1
H(log M−2) H(log M−2) H(log M−2) H(log M−2)

0 · · · 0 1 · · · 1 0 · · · 0 1 · · · 1
0 · · · 0 0 · · · 0 1 · · · 1 1 · · · 1


 .

Also, note that the first M bits of p have the form plog M = plog M−2plog M−2plog M−2plog M−2. Let s′ be a
string of length log M − 2 that is equal to s without the −1’st bit and without the two most significant
bits, and let f ′ denote the fraction of 1’s in s′ · H(log M−2). Also, for bits b1, b2, let fb1b2 denote the

fraction of 1’s in s ·




1 · · · 1
H(log M−2)

b1 · · · b1

b2 · · · b2


 . Then fb1b2 = f ′ or fb1b2 = 1−f ′, depending on b1, b2, and the three

bits of s dropped from s′ (namely, −1, log M − 2, and log M − 1). Recursively compute f ′, and use
the value to compute all the fb1b2 ’s and, from that, the number of 1’s in

∑c−1
j=0 Vj(s). This procedure

requires recursive calls of depth that is logarithmic in c.
Similarly, one can compute

∑(q+1)4r−1
j=q4r Vj(s).

Finally, if c is not a power of 4, write the interval {0, . . . , (c − 1)} = [0, c) as the disjoint union of
at most O(log(c)) intervals, each of the form [q4r, (q + 1)4r). Use the above technique to compute the
fraction of V ’s equal to 1 over each subinterval, and then combine. If one is careful to perform the
procedure bottom up, the entire procedure requires just log(c) recursive calls, not log2(c) calls. For
example, suppose c = 22. Write [0, 22) as [0, 16) ∪ [16, 20) ∪ [20, 21) ∪ [21, 22). A näıve way to proceed
would be to perform recursive calls 3 deep to compute

∑15
j=0 Vj(s), then calls 2 deep for

∑19
j=16 Vj(s),

then 1 deep for each of V20(s) and V21(s). It is better to compute V20(s) directly (by taking the dot
product of the first O(log(c)) bits of s with the first O(log(c)) rows of column 20 in Ĥlog(M), then
adding f(20)), use this value to compute V21(s) and V16(s) (each of these computations requires looking
at just O(1) bits of s—in this case, V21(s) is the sum of V20(s) and the 20 bit of s, and V16(s) is the
sum of V20(s) and the 22 bit of s), then use V16(s) to compute

∑19
j=16 Vj(s), and finally use

∑19
j=16 Vj(s)

to compute
∑3

j=0 Vj(s) and, from that,
∑15

j=0 Vj(s). For j < c, computing the value of a single Vj(s)
takes time O(log(c)), and the overhead in each recursive call takes constant time. Thus, altogether,
computing a range sum of V ’s requires time O(log(c)).

We now show that this construction yields a family of random variables that is n2-bad 4-wise inde-
pendent. The fact that {Vj(s)} is three-wise independent is in [AS92].

7

Proposition 6 For all a < b, we have

E




b−1∑

j=a

Vj(s)




4

 ≤ 5(b − a)2.

Proof. First, note that, for some tuples (j1, j2, j3, j4), columns j1, j2, j3, and j4 of Ĥ are independent.
These tuples do not contribute to the expectation on the left of the inequality, because, for each desired
outcome (v1, v2, v3, v4), the sets

S(v1,v2,v3,v4) = {s : (Vj1(s), Vj2(s), Vj3(s), Vj4(s)) = (v1, v2, v3, v4)}

have the same size by linear algebra.
Second, observe that, because any three columns of Ĥ are independent, if the columns Ĥj1 , Ĥj2 , Ĥj3 ,

and Ĥj4 are dependent, then their mod 2 sum is zero. Thus a dependent tuple has one of 3 basic forms
— all four columns are identical, there are two pairs of distinct columns, or all four columns are distinct.
In the case of dependent tuples, the seed s is irrelevant to the product Vj1(s)Vj2(s)Vj3(s)Vj4(s) because

Vj1(s)Vj2(s)Vj3(s)Vj4(s) = (−1)(s·Ĥj1
)+f(j1) · (−1)(s·Ĥj2

)+f(j2) · (−1)(s·Ĥj3
)+f(j3) · (−1)(s·Ĥj4

)+f(j4)

= (−1)f(j1)+f(j2)+f(j3)+f(j4). (2)

Line (2) follows from the fact that the columns Ĥj1 , Ĥj2 , Ĥj3 , and Ĥj4 sum to zero. Thus it is sufficient
to show that

U(a, b) ∆=
∑

a≤j1,j2,j3,j4<b
j1⊕j2⊕j3⊕j4=0

(−1)f(j1)+f(j2)+f(j3)+f(j4) ≤ K(b − a)2,

for some constant K. From Theorem 9 below, we can see that K ≤ 5, and thus the proposition holds.

We shall now provide upper bounds for the quantity U(a, b) defined in the proof of Proposition 6.
We will give two bounds for U(a, b)—a simply-derived though poor bound (Theorem 8) and a more-
tediously-obtained but much tighter bound (Theorem 9). Before presenting these bounds, we first prove
a lemma that is used later in the proofs.

Lemma 7 U(4a, 4b) ≤ 16U(a, b).

Proof. Let (j1, j2, j3, j4) be a dependent tuple in [4a, 4b)4. Consider the two least significant bits of the
j’s. We will say that the tuple is odd if no two of its members have the same pair of least significant bits;
otherwise, we will say that the tuple is even. There are 64 possibilities making the columns dependent,
because we can choose two bits from each of the first three columns arbitrarily, and this forces a unique
choice of the bits from the last column. Of these, 24 = 4! are odd and 40 are even. (The 40 even tuples
arise from 4 tuples in which all columns have identical bits and 36 tuples in which the 4 columns are
paired in one of 6 ways, and the two pairs are given two distinct values out of the 4 possible in one of
6 ways).

Note that a dependent tuple is odd if and only if there are an odd number of i’s for which (ji)0∨(ji)1 =
1. Thus, if (j1, j2, j3, j4) is an odd dependent tuple and (j′1, j′2, j′3, j′4) is an even dependent tuple where
j′i agrees with ji on all bits except possibly the two least significant, then the contributions of these two
tuples to the U(4a, 4b) cancel out. Therefore, given an odd tuple (j1, j2, j3, j4) pair it with (j′1, j′2, j′3, j′4)
as above. Because 4a and 4b are multiples of 4, (j′1, j′2, j′3, j′4) will be in the correct range. If (j1, j2, j3, j4)

8

is a tuple having one of the 16 other (even) configurations of the two least significant bits, attempt to
pair it inductively with (j′1, j′2, j′3, j′4) such that ji and j′i have the same two least significant bits. Thus
U(4a, 4b) ≤ 16U(a, b).

We now give a simple argument that U(a, b) ≤ 27(b − a)2.

Theorem 8 U(a, b) ≤ 27(b − a)2.

Proof. Given a and b, find r with a, b ≤ 4r. Let α be the smallest multiple of 4 that is at least a and β
be the largest multiple of 4 that is at most b. Then U(a, b) is at most U(α, β) plus the number of tuples
having at least one column in [a, α) ∪ [β, b). We will handle the first term inductively; we now count
the number of tuples having at least one column in [a, α) ∪ [β, b). First, there are 4 ways to choose one
of j1, j2, j3, and j4 to be in [a, α)∪ [β, b). (Having paid the factor 4, we now call this column j1.) There
are at most 6 ways to choose j1 ∈ [a, α)∪ [β, b). There are at most (b− a)2 ways to choose j2 and j3 in
[a, b). Finally, once j1, j2, and j3 are fixed, there is at most one way to choose j4 to make (j1, j2, j3, j4)
dependent. (Note that j2, j3, and j4 play symmetric roles.) This gives 24(b − a)2 tuples altogether.
Thus we conclude that

U(a, b) ≤ U(4 �a/4
 , 4 �b/4�) + 24(b − a)2

= 16U(�a/4
 , �b/4�) + 24(b − a)2

≤ 16U(4 ��a/4
 /4
 , 4 ��b/4� /4�) + 24(�b/4� − �a/4
)2 + 24(b − a)2

= 162U(��a/4
 /4
 , ��b/4� /4�) + 24(�b/4� − �a/4
)2 + 24(b − a)2

...
≤ 16�log4(b−a)� + 24(b − a)2

[
1 + 1/16 + 1/162 · · ·

]
≤ (b − a)2 + 24(b − a)2(16/15)
≤ 27(b − a)2.

We now give a more involved analysis that lets us improve the bound.

Theorem 9 U(a, b) ≤ 5(b − a)2.

Proof. Define A(a, b) ∆= U(a,b)
(b−a)2

. Note that it is sufficient to show that supa,b A(a, b) ≤ 5. We will give
a recurrence for A(a, b) and discuss a computer search over a, b with b − a small that yields a bound
better than immediately available from the recurrence.

We first assume that b − a ≥ 16. Let a′ be the smallest multiple of 4 that is at least a, and let b′

be the greatest multiple of 4 that is at most b. (Because b − a ≥ 16, it follows that a ≤ a′ < b′ ≤ b.)
The number of unpaired tuples in [a, b)4 is at most the number of unpaired tuples in [a′, b′)4 plus the
number of unpaired tuples having at least one column in [a, a′)∪ [b′, b). The number of unpaired tuples
in [a′, b′)4 is U(a′, b′) ≤ 16U(a′/4, b′/4) = A(a′/4, b′/4)(b′ − a′)2. We now count the number of unpaired
tuples having at least one column in [a, a′) ∪ [b′, b).

There are at most 36(b − a) tuples such that two of the columns are identical and in [a, a′) ∪ [b′, b),
and the two other columns are identical. (The four columns may or may not all be equal. Note that
a factor max(

(4
1

)
,
(4
2

)
) = 6 is needed to assign the four columns to the one or two values.) We now

count the tuples whose columns are all different. Pick an assignment of roles for the columns, which

9

contributes a factor 24. There are at most 6 ways to pick j1 in [a, a′)∪ [b′, b). Next we will consider the
choices of the pair j2 and j3, which in turn will determine j4 uniquely. We will argue that, for most pairs
(j2, j3), by making local changes to j2 and j3, we can produce another tuple of columns (j1, j

′
2, j

′
3, j4)

that cancels out with (j1, j2, j3, j4). The main difficulty will be to ensure that the columns j ′2 and j′3
are in the correct range.

The local change strategy is the following. Let k be the index of the least significant bit on which
j2 and j3 disagree. Let k′ be the index of the “mate” of k, i.e., the bit that is “or”ed with the k-th
bit in the computation of f(j2) or f(j3). The columns j′2 and j′3 will be obtained by toggling the k′-th
bit of j2 and j3 respectively. We have to check that the tuples (j1, j2, j3, j4) and (j1, j

′
2, j

′
3, j4) have

opposite parity. To see this, assume without loss of generality that the k-th bits of j2 and j3 are 0 and
1, respectively. Then the disjunction in expansion (1) corresponding to bits k and k′ for each of f(j′3)
and f(j3) is 1, because of the 1 in bit k, but the k-k′ disjunction for f(j′2) and f(j2) differ, because the
k-th bits are zero, but the k′-th bits differ. All the other disjunctions are the same in f(j2) as f(j′2)
and in f(j3) as f(j′3). Note also that (j1, j

′
2, j

′
3, j4) is a dependent tuple whenever (j1, j2, j3, j4) is a

dependent tuple.
Next we have to determine the conditions for j′2 and j′3 to be between a and b. We will consider the

situation in which one of these columns falls below the lower bound a and appeal to symmetry for the
situation in which one column is at least b.

For two columns x, y, let eq(x, y) = � if the most significant bit in which they differ has index �.
Because we have already paid a factor of 24 for the assignment of roles, choose roles such that

eq(a, j2) ≥ eq(a, j3). Suppose all columns are r bits long. There are at most 2r−� vectors j2 for which
eq(a, j2) is �. For each such vector j2, there are at most

⌈
(b − a)/2r−�−1

⌉
− 1 ≤ (b − a)/2r−�−1 vectors

j3 distinct from j2 that agree with j2 on the least significant r − � − 1 bits. (Such (j2, j3) pairs may
require a toggling of the first � bits that could cause j′2 or j′3 to drop below a.) Thus the total number of
problem pairs with respect to the lower bound is at most 2(b− a) for each choice of �. Over all choices
of � this number is at most 2(b− a) log(b− a). By symmetry, the number of problem pairs with respect
to b is also at most 2(b − a) log(b − a). Thus there are at most 4(b − a) log(b − a) ways to pick pairs j2
and j3 that do not cancel out. Combining with the 24 ways of assigning roles and the 6 ways of picking
j1 we find that there are at most 576(b− a) log(b− a) tuples that do not get canceled. Thus, including
the dependent tuples with repeated columns (at most 36(b − a)), we get

U(a, b) ≤ U(a′, b′) + 576(b − a) log(b − a) + 36(b − a)
≤ U(a′, b′) + 585(b − a) log(b − a)
≤ 16U(a′/4, b′/4) + 585(b − a) log(b − a)
= 16A(a′/4, b′/4)(b′/4 − a′/4)2 + 585(b − a) log(b − a)
= A(a′/4, b′/4)(b′ − a′)2 + 585(b − a) log(b − a)
≤ A(a′/4, b′/4)(b − a)2 + 585(b − a) log(b − a),

and so
A(a, b) ≤ A(�a/4
 , �b/4�) + 585

log(b − a)
(b − a)

.

Let
Di = sup

4i<(b−a)≤4i+1

A(a, b).

10

For each C ≥ 2, we have the recurrence

Di ≤
{

Di−1 + 585 · 2i
4i i ≥ C

MC i < C,
(3)

where MC = max(D0, . . . , DC−1) is a bound on A(a, b) over 4i < b−a ≤ 4i+1 for i < C, i.e., b−a ≤ 4C .
We want to find a minimal solution. We will discuss below how we establish MC precisely using an
exhaustive computer search.

Recurrence (3) has a solution

Di = MC + 585
i∑

j=C

2j

4j

≤ MC + 2 · 585
C + 1/3
3 · 4C−1

,

where the empty sum is taken to be zero. If we put C = 6, we get

Di ≤ M6 + 2.413,

whence, for all a, b, A(a, b) ≤ M6 + 2.413.
It remains to evaluate M6. We first show that it is sufficient to consider a finite number of pairs

{a, b} even though the definition of M6 requires it to be a supremum over an infinite number of pairs.
We then use a computer search to find M6.

Claim 10 The value MC = maxb−a≤4C=22C A(a, b) is at most

M ′
C = max

a≤22C−1

b≤a+22C

A(a, b).

Proof. Suppose (a, b) is a pair with b − a ≤ 22C but a > 22C−1. We produce a′, b′ with a′ < a and
b′ < b such that b′ − a′ = b − a and A(a′, b′) = A(a, b). The claim follows.

First, we show that, if a, b ≤ 2r, then U(a, b) = U(2r −b, 2r −a). Given a tuple (j1, j2, j3, j4) ∈ [a, b)4,
write each j with r bits, padding with leading zeros if necessary. Form j′i = 2r − 1 − ji, by negating
all the bits in ji. This procedure toggles the parity of the k-k′ disjunct in the expansion of f(j) when
the k-k′ bits are 00 or 11; for each k, in a dependent tuple, there are an even number of columns that
are 00 or 11 in bits k and k′ and an even number of columns that are 01 or 10 there. It follows that
(j1, j2, j3, j4) and (j′1, j′2, j′3, j′4) have the same parity. Note also that this mapping is a bijection from
[a, b) to [2r − b, 2r − a). From this we can conclude that U(a, b) = U(2r − b, 2r − a). Similarly, if
a, b ≤ 3 · 2r then U(a, b) = U(3 · 2r − b, 3 · 2r − a).

Finally:

• If 22C−1 < a ≤ 22C , then

– If 22C−1 < b ≤ 22C , then put (a′, b′) = (22C − b, 22C − a).

– If 22C < b ≤ 3 · 22C−1, then put (a′, b′) = (3 · 22C−1 − b, 3 · 22C−1 − a).

– If 3 · 22C−1 < b, then note that b < a + 22C ≤ 22C+1. Put (a′, b′) = (22C+1 − b, 22C+1 − a).

• If 22C < a, then find q > 2C with 2q < a ≤ 2q+1.

11

– If b ≤ 2q+1, then 2q < a < b ≤ 2q+1. Put (a′, b′) = (2q+1 − b, 2q+1 − a).

– Otherwise, 2q+1 < b ≤ a + 22C ≤ 2q+1 + 2q = 3 · 2q. Put (a′, b′) = (3 · 2q − b, 3 · 2q − a).

In all cases, a′ < a, b′ < b, and b′ − a′ = b − a. ♣
Thus, if we are interested in M6, i.e., (a, b) with b − a ≤ 4096, we need only consider a ≤ 2048. A

computer search was done for A(a, b) over a ≤ 2048 and b ≤ a + 4096, and the maximum is 2.55334.
Thus A(a, b) ≤ 2.56 + 2.413 < 5.

3.3 The Algorithm

Recall that, for the overall algorithm, we will need to generate a family of random variables for each of
the different types. It would be ideal to make these families n-wise independent, but that would require
storing a seed for each of the n types, which is infeasible. Therefore, we will use short master seeds
to generate n different seeds that are 4-wise independent and, from these, compute the n families of
random variables that we will use to get an estimate of F1. It will be necessary to repeat this process
to achieve the specified values of ε and δ.

For each k, 1 ≤ k ≤ 3 log(1/δ), and each �, 1 ≤ � ≤ 8A/ε2 (where A = 10 will be justified later),
choose a master seed Sk,� and use Sk,� to define a 4-wise independent family {si,k,�} of n seeds, each of
length log M + 1. Each seed si,k,� in turn defines a range-summable, n2-bad 4-wise independent family

{Vi,j,k,�} of M uniform ±1-valued random variables, where Vi,j,k,�
∆= Vj(si,k,�).

We can use any standard construction to define a family of seeds from a master seed. For example,
we can use the construction based on BCH codes in [AS92]. Another construction is one in which
the master seed is used to define the coefficients of a random degree-3 univariate polynomial over a
sufficiently large finite field. We will describe and use this more elementary construction.

Let D = max(log M + 1, log n). Choose F = GF2D as the finite field. Fix a representation for the
elements of F as bit strings of length D. Choose a master seed Sk,� of length 4D bits uniformly at
random, and view these bits as coefficients a3, a2, a1, a0 of a degree-3 polynomial a(x) ∈ F [x]. Now define
the ith seed, si,k,� = a(i). It is immediate from basic algebra that these seeds are 4-wise independent
and that the individual seeds can be computed in a constant number of field operations over the field
F .

A final point of concern is whether the use of a master seed to generate individual seeds impacts the
analysis of the last subsection. There we assumed that the seed for a single family of random variables
was chosen uniformly at random amongst strings of a fixed length. In our construction here, when
the master seed is chosen uniformly at random from strings of the correct length, each seed is also
distributed uniformly at random, and hence the analysis of the previous subsection still applies.

A more formal, high-level description of the algorithm is given in Figure 1.

3.4 Correctness

The proof in this section that the algorithm described in Figure 1 is correct closely follows the one given
in [AMS99] for the correctness of their algorithm (see Section 4.3).

Theorem 11 The algorithm described in Figure 1 outputs a random variable W = mediankavg�Z
2
k,�

such that |W − F1| < εF1 with probability at least 1 − δ.

12

Figure 1: High level L1 algorithm

Algorithm L1(〈(i, ci, θi)〉)

Initialize:
For k = 1 to 3 log(1/δ) do

For � = 1 to (8 · A)/ε2 do
//For any A ≥ 10 —see (7) and the end of Section 3.2.
{ Zk,� = 0
pick a master seed Sk,� from the (k, �)’th sample space }
// This implicitly defines si,k,� for 0 ≤ i < n and
// in turn implicitly defines Vi,j,k,� for 0 ≤ i < n and 0 ≤ j < M .

For each tuple (i, ci, θi) in the input stream do
For k = 1 to 3 log(1/δ) do

For � = 1 to (8 · A)/ε2 do
Zk,� += θi

∑ci−1
j=0 Vi,j,k,�

Output mediankavg�Z
2
k,�.

Proof. Note that, for each j < min(ai, bi), both Vi,j,k,� and −Vi,j,k,� are added to Zk�, and, for j ≥
max(ai, bi), neither Vi,j,k,� nor −Vi,j,k,� is added. Thus

Zk� =
∑

i

∑
min(ai,bi)≤j<max(ai,bi)

±Vi,j,k,�.

We shall now compute E[Z2
k�] and E[Z4

k�], for each k, �. We shall use the convention that
∑

a≤i<b =
−∑b≤i<a if b < a. For notational convenience, we let Vi,j denote Vi,j,k,� in the analysis below.

E[Z2
k,�] = E




∑

i

bi−1∑
j=ai

Vi,j




2



= E




 F1∑

m=1

±Vm




2

 (4)

=
F1∑

m=1

E[(±Vm)2] + 2
∑

1≤m<m′<F1

E[(±Vm)(±Vm′)]

=
F1∑

m=1

1 (5)

= F1,

13

where, in line (4), we have relabeled the indices of V , and, in line (5), we have used the pairwise
independence of Vm and Vm′ and the fact that the expectation of each of these random variables is 0.

Next, consider

E[Z4
k,�] = E




∑
0≤i1,i2,i3,i4<n

∑
ai1

≤j1<bi1

ai2
≤j2<bi2

ai3
≤j3<bi3

ai4
≤j4<bi4

Vi1,j1Vi2,j2Vi3,j3Vi4,j4




.

By 3-wise independence and the fact that E[V t] = 0 for odd t, the only terms with non-vanishing
expectation are of the form V 4

i,j (of which there are F1 terms), V 2
i,jV

2
i′,j′ for (i, j) �= (i′j′) (of which

there are
(4
2

)
F1(F1 − 1) terms), and Vi1,j1Vi2,j2Vi3,j3Vi4,j4 for (i1, j1), (i2, j2), (i3, j3), (i4, j4) all different.

Suppose, in the third case, that i1, i2, i3, i4 are not all the same. Let X =
∏

im=i1 Vim,jm and Y =∏
im �=i1 Vim,jm . Then E[X] = 0 by three-wise independence of the V ’s, and X and Y are independent

by four-wise independence of the seeds si,k,�. Therefore, if (i1, j1), (i2, j2), (i3, j3), (i4, j4) are all different
and i1, i2, i3, i4 are not all the same,

E[Vi1,j1Vi2,j2Vi3,j3Vi4,j4] = E[XY] = 0.

Thus we have

E[Z4
k,�] ≤ F1 + 6F1(F1 − 1) +

∑
i

E




bi−1∑

j=ai

Vi,j




4



≤ 6F 2
1 +

∑
i

5(bi − ai)2 (6)

≤ 11F 2
1 .

In line (6), we used Proposition 6, which shows that our construction of random variables is n2-bad
4-wise independent, with constant 5.

Thus
Var(Z2

k,�) = E[Z4
k,�] − E2[Z2

k,�] ≤ A · F 2
1 , (7)

for A = 10. Now, put Yk = ε2

8·A
∑

1≤�≤(8·A)/ε2 Z2
k,�. Then Var(Yk) ≤ ε2

8 F 2
1 . By Chebyshev’s inequality,

Pr(|Yk − F1| > εF1) ≤ Var(Yk)
ε2F 2

1

≤ 1/8.

Put W = mediankYk. Then |W −F1| > εF1 only if we have |Yk −F1| > εF1 for at least half of the k’s.
Let Ak = 1 if |Yk −F1| > εF1 and Ak = 0 otherwise; so, for all k, E[Ak] ≤ 1/8. Put m = 3 log(1/δ) and
A =

∑m
k=1 Ak; then E[A] ≤ m/8. By Chernoff’s inequality, the probability that A ≥ m/2 ≥ (1+3)E[A]

is at most [
e3

(1 + 3)(1+3)

]m/8

≈ 1.374−m

≤ 2−m/3

≤ δ.

14

The result follows.

3.5 Cost

Theorem 12 There is an implementation of algorithm L1 (in Figure 1) that is in

PASST
(
log(Mn) log(1/δ)/ε2, field(log(Mn)) log(1/δ)/ε2

)
.

Proof. The algorithm stores

• log(1/δ)/ε2 random variables Zk,� (called counters) whose values are at most Mn

• master seeds, specifying the seeds and, through the seeds, the values of the (±1)-valued random
variables Vi,j,k,�

The space to store the counters is O(log(Mn) log(1/δ)/ε2). By our construction, for each k, �, we
need O(max(log M, log n)) = O(D) bits of master seed, and so we would need O(D log(1/δ)/ε2) bits
of storage to store all the master seeds. This is asymptotically the same as the space requirement for
storing the counters.

We now consider the cost of processing a single item (i, ci,±1). First, one has to produce the seeds
si,k,� from the master seeds Sk,�. For each i, this involves computing a degree-3 polynomial over GF (2D),
which takes time O(field(D)). From si,k,�, we need to compute a range sum

∑b−1
j=0 Vj(si,k,�), which can be

computed in O(log M). Thus, the overall time complexity is O((field(D)+ log(M)) log(1/δ)/ε2). Under
the reasonable assumption that field arithmetic takes at least linear time, the first term dominates, and
the complexity is as claimed above.

3.6 Optimality

Our algorithm is quite efficient in the parameters n,M , and δ, but it requires space quadratic in 1/ε.
We now show that, for some non-trivial settings of M , for all large settings of n and all small settings of
δ, any sketching algorithm that approximates the L1-difference to within ε requires space close to 1/ε.
Thus, our algorithm uses space within a polynomial of optimal.

Theorem 13 Fix M = 2. For sufficiently small δ and, for any (large) α and any (small) β > 0, the
L1-difference problem is not in PAS(logα(n)/ε1−β).

A similar result holds in the streaming model.

Proof. We reduce the set-disjointness problem to the L1-difference problem.
Recall the SET-DISJOINTNESS problem of communication complexity [KN97]. Alice has a string

x, |x| = n, and Bob has a string y, |y| = n, and they want to determine whether there exists a position
i such that the i’th bit of x and the i’th bit of y are both 1. Any protocol for this problem, even a
randomized protocol, requires Ω(n) bits of communication, even under the restriction that there is at
most one bit i with xi = yi = 1. Finally, note that an efficient sketching or streaming algorithm directly
yields a protocol with low communication complexity.

Suppose L1 ∈ PAS(logα(n)/ε1−β). Put ε = 1/(3n). Let (a, b) be an instance of set disjointness; so,
for all i, ai, bi ≤ M = 2. Note that the symmetric difference of a and b as sets is the L1-difference of a
and b as functions. By hypothesis one can, with high probability, approximate the symmetric difference

15

|a∆b| to within ε|a∆b| < 1/2 (whence one can, with high probability, compute |a∆b| exactly) using
space at most

logα(n)/ε1−β = logα(n)(3n)1−β,

i.e., at most o(n). From the exact symmetric difference, one can compute the set intersection size as
(|a| + |b| − |a∆b|)/2 with high probability. This is a contradiction.

3.7 Algorithm for Unknown Parameters

If M is not known in advance, we won’t know in advance how many random variables to construct (or,
equivalently, how many bits are needed for each seed). Note that, because of the recursive construction
of H and p, this is not a problem. If, at any point, we encounter a tuple (i0, c, θ) with c bigger than
the maximum C encountered before, we simply do the following. For each k, �, we pick (log c − log C)
new random bits, which we associate with the master seed Sk,�. Use the new random bits to extend
randomly (when needed) each of the n seeds si,k,� to length �log c
 + 1. We also virtually form larger
matrices Ĥ and pattern p without actually instantiating them.

It is also possible to run the algorithm with a constant factor space penalty if n is not known
in advance. Initialize n to 2. Pick a field size appropriate for this n and for the known (or so far
encountered) value of M . Let F1 be this field and f1 be its size. Start reading the stream, performing
calculation in F1. At an arbitrary point in the stream, suppose we are using a field Fc of size fc.

If we now read a tuple (i, ci, θ) where i is too big to handle in Fc, we compute the smallest q such
that a degree q extension of Fc is sufficient to handle i and for each k, �, we prepare a new master seed
in this extension which we denote by Fc+1. Note that fc+1 = f q

c . In other words, for each k, �, we
generate at random the coefficients of a degree-3 polynomial in Fc+1. The new master seeds and field
are to be used for all types which could not be handled in Fc but can be handled in Fc+1.

By keeping track of all field sizes we use and all master seeds for each of these field sizes, when we
encounter a new type we can easily figure out the field size needed to handle this type using the correct
seeds. The union of all seeds is still 4-wise independent. At the end, we will have a final value of n
(the maximum type), and, along the way, in the worst case, we will have constructed master seeds for
families of size ν, ν1/2, ν1/4, ν1/8, . . ., where ν1/2 < n ≤ ν. For each k, �, storing these master seeds
and successive fields requires storage space log(ν), 1

2 log(ν), 1
4 log(ν) . . ., and, thus, the storage for the

master seeds is O(max(log M, log ν)) = O(max(log M, log n)). The total space for all the master seeds
and fields is O((max(log M, log n)) log(1/δ)/ε2). The space required for storing the counters, remains
O(log(Mn) log(1/δ)/ε2) and so the overall is space O(log(Mn) log(1/δ)/ε2). The average processing
time per item increases by o(1) · field(log(Mn)), but preparing the last new collection of master seeds
takes time log(ν) log(1/δ)/ε2, and this time represents an (acceptable) additive increase in the maximum
per-item time. Note that the amortized per-item time is asymptotically the same as for the case when
n is known in advance.

4 Related Work

4.1 Relationship with Sketch Algorithms

In [BCFM00], the authors consider the problem of detecting near-duplicate web pages. For their and
our purposes, a web page is a subset of a large universe, and two web pages A and B are near-duplicates
if r(A,B) = |A∩B|

|A∪B| is large. They present an algorithm that computes a small fixed-size “sketch” of each
web page such that, with high probability, r(A,B) can be approximated to within additive error given

16

the two sketches. A central technique is based on the observation that, under a random injection h of
the universe into the integers, the probability that the minimal element of h(A ∪ B) is in h(A ∩ B) is
exactly r(A,B). (In practice, the injections come from a small sample space; for the purpose of our
comparsion, we can consider truly random injections.) Some of the relevant techniques in [BCFM00]
were used, earlier, in [C97, BGMZ97].

Our results on computing the L1-difference between two functions can be viewed as a sketch algorithm.
The sketch function h takes as input the graph of a single function and performs the algorithm of
Section 3, getting a set {Zk,�} of random variables. (Note that the same master seeds must be used for all
sketches.) To reconstruct the L1-difference from two sketches {Zk,�}, {Z ′

k,�}, compute ρ({Zk,�}, {Z ′
k,�}) =

mediankavg�(Zk,� − Z ′
k,�)

2.

Theorem 14 The L1-difference of two functions from {0, . . . , n − 1} to {0, . . . , M − 1} is in

PAS(log(Mn) log(1/δ)/ε2).

In particular, the L1-difference (or L2-difference) of two characteristic functions χA and χB is the
size of the symmetric difference |A∆B|; we’ve shown how to approximate it to within small relative
error with high probability. The size of the sketch is O(log(Mn) log(1/δ)/ε2), the space bound of the
streaming algorithm. Finally, note that computation of these sketches can be performed in the streaming
model, which is sometimes an advantage both theoretically and in practice.

Corollary 15 The symmetric difference of two sets from a universe of size n is in

PAS(log(n) log(1/δ)/ε2).

One can now ask which cells of the A-B Venn diagram can be approximated as functions of (A,B) in
the sketch model using our techniques and using the techniques of [BCFM00]. First note that |A|, |B|,
and |A|+ |B| are trivial in the sketch model. Next, an additive approximation of r = r(A,B) yields an
approximation of (1+r) and, thus, of 1/(1+r) with small relative error; thus, |A∪B| = (|A|+|B|)/(1+r)
can be approximated with small relative error using the techniques of [BCFM00] or with small relative
error as (|A| + |B| + |A∆B|)/2 using our techniques. In general, one cannot approximate |A ∩ B| with
small relative error, even using randomness [KN97], but, if |A ∩ B| is sufficiently large compared with
|A ∪ B|, the intersection can be approximated as |A ∩ B| = (|A| + |B|)r/(1 + r) by [BCFM00] and as
|A∩B| = (|A|+ |B|−|A∆B|)/2 by our methods. Finally, the techniques of [BCFM00] only approximate
1−r additively, and, if 1−r is smaller than the error ε of approximation (i.e., if |A∆B| < ε|A∪B|), then
the techniques of [BCFM00], which approximate |A∆B| as |A∆B| = (|A| + |B|) 1−r

1+r , do not perform

well,
‖

but our technique approximates |A∆B| with small relative error regardless of the size of |A∆B|.
This information is summarized in Table 1. Other cells in the Venn diagram reduce to these results,

e.g., by complementing A or B. (Note that A and A-complement may have different sizes.)
‖
The results of [BCFM00] are the best possible in their original context, which is somewhat different from our context.

17

Table 1: Relative-error approximability via sketches

|A|, |B| |A ∩ B| |A ∪ B| |A∆B|
Here trivial iff large yes yes
[BCFM00] trivial iff large yes iff large

4.2 Approximating Sizes of Supports and the Zeroth Frequency Moment

In this section, we briefly consider three variants.
Let

F �=
0 = |{i : ai �= bi}|

F �=0
0 = |{i : (ai = 0 ∧ bi �= 0) ∨ (ai �= 0 ∧ bi = 0)}|

F 20%
0 = |{i : (ai > 1.2bi) ∨ (bi > 1.2ai)}|

Note that these are all generalizations of F0 = |{i : ai �= 0}|, which was studied in [AMS99]. We will
show that F �=

0 and F �=0
0 can be approximated, but F 20%

0 cannot be approximated. We do this by using
reductions under which PASST(log(M) log(n) log(1/δ)/ε2) is closed.

To approximate F �=
0 , put

Ai,x =

{
1 ai = x
0 otherwise

and

Bi,x =

{
1 bi = x
0 otherwise

Then 1
2

∑
i,x |Ai,x−Bi,x| = F �=

0 , where the sum is over 0 ≤ i < n and 0 ≤ x < M . We can approximate
this L1-difference.

To approximate F �=0
0 , put

Ai =

{
1 ai > 0
0 otherwise

and

Bi =

{
1 bi > 0
0 otherwise

Then
∑

i |Ai − Bi| = F �=0
0 . This is used in Section 4.1.

Finally, consider F 20%
0 . We reduce the set-disjointness problem (restricted to inputs with intersection

size at most one) to that of approximating F 20%
0 .

Let (x, y) be an instance of set disjointness, and put

ai =

{
11 xi = 1
13 otherwise

and

bi =

{
15 yi = 1
13 otherwise

18

Then ai and bi differ by at least 20% exactly in the 11-15 case, i.e., exactly when xi = yi = 1.
If we could output a number X such that |X − F 20%

0 | ≤ εF 20%
0 for ε < 1 with probability 1 − δ,

then we would be able to distinguish the situation F 20%
0 = 0 from F 20%

0 = 1 and in turn distinguish
|xi ∩ yi| = 0 from |xi ∩ yi| = 1, a contradiction.

Note that we cannot even output a random variable X satisfying the following apparently (but not
actually) weaker condition:

F 21%
0 (1 − ε) ≤ X ≤ F 20%

0 (1 + ε),

with F 21%
0 = |{i : (ai > 1.21bi) ∨ (bi > 1.21ai)}|, because, in fact,

{i : (ai > 1.21bi) ∨ (bi > 1.21ai)} = {i : (ai > 1.20bi) ∨ (bi > 1.20ai)},

so that F 21%
0 = F 20%

0 .
In summary, putting F τ

0 = |{i : (ai > (1 + τ)bi) ∨ (bi > (1 + τ)ai)}|,
Theorem 16 We have

1. F �=
0 ∈ PASST(log(Mn) log(1/δ)/ε2, field(log(Mn)) log(1/δ)/ε2).

2. F �=0
0 ∈ PASST(log(Mn) log(1/δ)/ε2, field(log(Mn)) log(1/δ)/ε2).

3. For all τ ∈ (0, 1), all fixed ε < 1, δ < 1/4, and M > 1/τ + 2, and, for any f = o(n),
F τ

0 �∈ PASST(f(n)).

Also,

1. F �=
0 ∈ PAS(log(Mn) log(1/δ)/ε2, field(log(Mn)) log(1/δ)/ε2).

2. F �=0
0 ∈ PAS(log(Mn) log(1/δ)/ε2, field(log(Mn)) log(1/δ)/ε2).

3. For all τ ∈ (0, 1), all fixed ε < 1, δ < 1/4, and M > 1/τ + 2, and, for any f = o(n),
F τ

0 �∈ PAS(f(n)).

4.3 Approximating the L2-Difference and the Second Frequency Moment

In [AMS99], the authors consider the following problem. The input is a sequence of elements from
[n] = {0, . . . , n − 1}. An element i ∈ [n] may occur many times. We let ai denote the number of times
i occurs. As above, assume that, for all i, |ai| ≤ M .

The k’th frequency moment Fk of the sequence is defined to be
∑

ak
i . Note that the first frequency

moment F1 =
∑

ai is just the length of the stream and is therefore trivial to compute, but other
frequency moments are non-trivial. Alon, Matias, and Szegedy [AMS99] give a variety of upper and
lower bounds for frequency moments. In particular, for F2 =

∑
a2

i , they show

Theorem 17 ([AMS99])

F2 ∈ PASST((log(Mn)) log(1/δ)/ε2, field(log(Mn)) log(1/δ)/ε2).

19

We sketch the algorithm, without proof, in order to illustrate the previous work that is our point of
departure. A full treatment of the correctness and workspace of the algorithm of Theorem 17 may be
found in [AMS99].
Proof. [sketch]

For each k, 1 ≤ k ≤ Θ(log(1/δ)) and for each �, 1 ≤ � ≤ Θ(1/ε2), let {vk�[i]}i be a set of 4-wise
independent ±1-valued random variables. Output mediankavg� (

∑
aivk�[i])

2.

Consider now a generalization of the input allowing signed examples, that were also considered by
Alon et.al. in [AGMS99]. That is, each item in the sequence consists of a type i ∈ [n] and a sign ±,
and there may be many items of type i of each sign. Denote by ai the number of positive occurrences
of i and by bi the number of negative occurrences of i, and let Lk denote

∑ |ai − bi|k.
The following corollary was obtained independently by Alon et al. [AGMS99].

Corollary 18 L2 ∈ PASST(log(Mn) log(1/δ)/ε2, field(log(Mn)) log(1/δ)/ε2).

Proof. [sketch] With k, �, and vk�[i] as above, output mediankavg� (
∑

(ai − bi)vk�[i])
2.

The algorithm of Corollary 18 can be used to approximate the L2-difference between the two functions
a and b.

Note that, for signed input examples, computing the frequency moment L1 is non-trivial, modulo the
special case of when ai ≥ bi, for all i.

For any p, the problem of computing the p’th frequency moment and that of computing the corre-
sponding Lp-difference of functions differs only in the representation of the input stream. Given an
Lp-instance stream 〈(i, ci, θi)〉, one can expand each item (i, ci, θi) into ci occurrences of (θ, i) to get a
frequency moment instance. Therefore a frequency moment algorithm for signed examples can be used
to compute the Lp-difference of functions, but note that, in general, one pays a high cost in processing
time, even just to read the input—the input has been expanded exponentially. The algorithm of Corol-
lary 18 avoids this cost, because it is efficient in both input representations. Thus, the L2-difference is
in

PASST((log(Mn)) log(1/δ)/ε2, field(log(Mn)) log(1/δ)/ε2).

4.4 Earlier work on probabilistic counting

In [FM83], the authors give a small-space randomized algorithm that approximates the number of
distinct elements in a stream. Their algorithm assumed the existence of certain ideal hash functions.
Later, [AMS99] improved this result by substituting a practically available family of hash functions.
[AMS99] also gives a variety of other results on approximating the frequency moments. Many results
of this kind, some old and some new, are described in [GM99].

Acknowledgements

We thank S. Muthukrishnan for helpful discussions. We also thank an anonymous referee for a very
careful reading of the paper.

References

[AMS99] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency
moments. J. Comput. System Sci., 58:137–147, 1999.

20

[AGMS99] N. Alon, P. Gibbons, Y. Matias, and M. Szegedy. Tracking Join and Self-Join Sizes in
Limited Storage. In Proc. of the 18’th Symp. on Principles of Database Systems, ACM
Press, New York, pages 10–20, 1999.

[AS92] N. Alon and J. Spencer. The Probabilistic Method. John Wiley and Sons, New York, 1992.

[BCFM00] A. Broder, M. Charikar, A. Frieze, and M. Mitzenmacher. Min-wise independent permuta-
tions. J. Comput. System Sci., 60:630–659, 2000.

[BGMZ97] A. Broder, S. Glassman, M. Manasse, and G. Zweig. Syntactic Clustering of the Web. In
Proc. Sixth Int’l. World Wide Web Conference, World Wide Web Consortium, Cambridge,
pages 391–404, 1997. Available as
http://decweb.ethz.ch/WWW6/Technical/Paper205/Paper205.html.

[CN98] Cisco NetFlow, 1998. http://www.cisco.com/warp/public/732/netflow/.

[C97] E. Cohen. Size-estimation framework with applications to transitive closure and reachability.
J. Comput. System Sci., 55:441–453, 1997.

[FM83] P. Flajolet and G. N. Martin. Probabilistic Counting. In Proc. 24’th Foundations of Com-
puter Science Conference, IEEE Computer Society, Los Alamitos, pages 76–82, 1983.

[GM99] P. Gibbons and Y. Matias. Synopsis Data Structures for Massive Data Sets. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science: Special Issue on External
Memory Algorithms and Visualization, vol. A, American Mathematical Society, Providence,
pages 39–70, 1999.

[HRR98] M. Rauch Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams. Tech-
nical Report 1998-011, Digital Equipment Corporation Systems Research Center, May 1998.

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press,
1997.

[MS77] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North
Holland Mathematical Library, Vol. 16, North Holland, New York, 1977.

[RS99] E. Rains and N. J. A. Sloane. Private communication. For details about second order
Reed-Muller codes, see [MS77].

21

