
DeepLinQ: Distributed Multi-Layer Ledgers for
Privacy-Preserving Data Sharing
Shih-Wei Liao∗, Edward Y. Chang†, Chun-Ting Liu†, Wei-Chen Lin∗

Pin-Wei Liao∗, Wei-Kang Fu∗, Chung-Huan Mei† and Emily J. Chang†
∗Department of Computer Science & Information Engineering

National Taiwan University
liao@csie.ntu.edu.tw

†Research & Healthcare, HTC DeepQ
edward chang@htc.com

Abstract—This paper presents requirements to DeepLinQ and
its architecture. DeepLinQ proposes a multi-layer blockchain
architecture to improve flexibility, accountability, and scalabil-
ity through on-demand queries, proxy appointment, subgroup
signatures, granular access control, and smart contracts in order
to support privacy-preserving distributed data sharing. In this
data-driven AI era where big data is the prerequisite for training
an effective deep learning model, DeepLinQ provides a trusted
infrastructure to enable training data collection in a privacy-
preserved way. This paper uses healthcare data sharing as an
application example to illustrate the key properties and design
of DeepLinQ.

I. INTRODUCTION

It has been widely discussed that artificial intelligence
can be applied to improving the quality of service in many
application domains [1]. However, privacy is a major concern
of an increasing number of users, which may discourage users
from sharing their personal data. Since all state-of-the-art AI
algorithms (e.g., deep learning and reinforcement learning)
demand big data to train an effective model [2], DeepLinQ
aims to support privacy-preserving data sharing through a
multi-layer blockchain (to be defined shortly).

This paper specifically uses healthcare data sharing as an
example to illustrate the requirements and our implementation
of DeepLinQ. To permit secure and convenient sharing of
Electronic Health Records (EHRs) in support of AI initiatives
such as disease diagnosis and precision medication [3, 4, 5],
DeepLinQ must support the following POET assurances:

• Privacy compliance. The distributed healthcare ledgers1

(DHLs) must comply with HIPAA privacy/security rules.
• Ownership and accessibility. Stakeholders such as pa-

tients, hospitals, insurance companies, and governments
can access DHLs only with proper permissions through
a revocable contractual agreement.

• Efficiency. Protocols related to security, storage, vali-
dation, and access must satisfy latency and throughput
requirements.

1Terms such as blockchain and distributed ledgers are used with different
definitions in different contexts [6]. We use the term distributed healthcare
ledgers to refer to the ledgers used in the healthcare domain.

• Transparency and accountability. All data and their ac-
cesses are logged and immutable so that compliance
audits can be performed.

DHL differs from blockchain, or more generally distributed
ledgers, in that DHL must safeguard privacy and inter-operate
with existing centralized databases managed by hospitals.
The debate between centralized versus decentralized databases
does not exist in the healthcare industry as EHRs have already
been centralized. As competitors, the “owners” of EHRs may
not trust one another. DeepLinQ intends to design a distributed
model with proper degrees of centralization (decentralized and
centralized layers can inter-operate in our multi-layer design)
and access control, with smart contracts [7] that suit all
stakeholders’ requirements.

One contentious debate is that the current bitcoin blockchain
is entirely decentralized, but DeepLinQ is constrained by
centralized databases. Another well known issue is that the
bitcoin blockchain suffers from low transactions per second
(tps) due to its computationally intensive proof-of-work pro-
tocol, whereas general applications demand much higher tps
in the order of thousands. The third issue is that the original
spirit of bitcoin is to keep users anonymous, but to improve
tps, DeepLinQ may want to introduce the concept of a jury
or validation committee to expedite new block creation and
validation. To address theses concerns, DeepLinQ employs a
two-layer (or multi-layer) blockchain architecture. DeepLinQ’s
base-layer blockchain may maintain the current properties of
bitcoin blockchain, whereas its branch layer (or branch layers)
employs designs and features that can meet the aforementioned
requirements.

DeepLinQ enables the POET properties with five design
considerations.

1) Shared ledgers among silo systems: Since all health-
care providers must be HIPAA-compliant [8], their
database systems will continue to be trusted silos.
DeepLinQ inter-operates with HIPAA-compliant silos
through smart contracts. Once a contract has been
validated, the contract is executed to fetch EHRs. A
limited number of trusted actors and validators would
jointly validate a given contract.



2) Storage: DeepLinQ does not physically store EHRs.
Each DeepLinQ ledger stores smart contracts to access
EHRs stored in hospitals.

3) Smart contracts: Interactions between stakeholders
would be coordinated by smart contracts (cryptocon-
tracts), which are computer programs controlling data
flow under certain conditions. For instance, a crypto-
contract written in code could enforce which EHRs can
be released to whom and under what permissions and
terms. Once a contractual term has expired, the access
to the document should be revoked. However, unlike
currencies, a document, once accessed, may be copied
or distributed and its integrity compromised. To avoid
this, DeepLinQ embeds the contract signature via digital
watermarking2 on the document. The structure of smart
contracts is discussed in Section III.

4) Data anonymity: Since an EHR may be unlawfully
copied and distributed, DeepLinQ must ensure that pro-
tected healthcare information (PHI) will not be released
even if a DHL is compromised. This is achieved by
preventing the association of any PHI with EHRs to be
written onto DHLs. Since each hospital must be HIPAA-
compliant, DeepLinQ can assume that no PHI would
be handed over from hospitals to write onto DHLsand
DeepLinQ itself does not write PHI onto DHLs.

5) Multi-layer Blockchain: Whereas a branch-layer
blockchain can implement specialized protocols to meet
specific requirements (e.g., a DeepLinQ branch can
implement features to meet the POET properties), the
base-layer blockchain serves all branches to validate
their tokens. Section II details this multi-layer design.

We enumerate some typical workflows that DeepLinQ sup-
ports, and use them to understand issues of being HIPAA
compliant and test the adequacy of the aforementioned design:

• Workflow #1: Patients’ distributed access to EHRs. Pa-
tients who visit different providers would like to access
their distributed EHRs. A contract between patient p and
hospital i, i = 1, . . . , n is written to a ledger. Once
the ledger has been verified and approved, patient p can
use the contract to access her EHRs. Later when the
patient visits hospital n + 1, a revised contract replaces
the previous contract.

– Privacy note: A smart contract must not be used to
infer the PHI of patient p.

– Ownership note: An EHR transfer between hospitals
must go through the patient. A direct EHR transfer
between hospitals is prohibited.

– Validation note: Validation can be done by majority
vote of a committee (i.e., via subgroup signatures)
to expedite the process [10].

– Fraud prevention: We were informed that EHRs
were modified by providers or patients to claim for

2Watermarks can be attacked [9]. Ensuring that a watermarking scheme is
robust in probability is beyond the scope of this paper.

higher insurance payments. DeepLinQ can detect any
unlawful changes to an EHR.

• Workflow #2: Urgent care access on behalf of a patient.
A hospital or relative may want to access a patient’s
full EHRs when the patient is incapacitated (e.g., due to
severe medical conditions). A power-of-attorney to grant
access can be written as a smart contract. Any proxy
on the power-of-attorney can use his/her private key to
access the patient’s EHRs.

– Security note: If such a contract has been executed,
DeepLinQ records an alert on a ledger and all parties
on the contract are notified.

• Workflow #3: Granular access. Research institutes may
want to collect medical images to conduct research. An
insurance company may want to validate a payment. Such
accesses can be enforced via a contract with granular
access control (GAC). DeepLinQ permits a GAC level to
be specified in a smart contract. GAC levels are carefully
reviewed and each maps to a protection mask (the same
as what [11] proposes) to perform access control.

• Workflow #4: Transaction fees and bidding. Unlike on
the base-layer blockchain, the validation performed on
DeepLinQ’s branch-layer blockchain employs a trust
committee. The trust committee can also include patients.
A patient can be given incentives to validate smart
contracts and/or share his/her EHRs at a proper GAC
level with a transaction fee. Such rewards can be written
into a smart contract so that actions such as bidding can
be supported.

The rest of this paper is organized into four sections. Section
II describes the architecture and key components of DeepLinQ.
Section III presents DeepLinQ’s smart contracts and examples.
Section IV discusses consensus protocols. Section V offers our
concluding remarks.

II. DEEPLINQ ARCHITECTURE & COMPONENTS

DeepLinQ employs a multi-layer blockchain3 The CAP
theorem [13] motivates the need for multiple layers. Based
on CAP, a distributed system can achieve at most two out
of the three properties: consistency, availability, and partition
tolerance. The design of a decentralized blockchain can be
either AP (availability and partition tolerance) or CP (con-
sistency and partition tolerance), given that decentralization
requires being partition tolerant. Bitcoin prioritizes CP over
availability. (Note that an AP blockchain may still guarantee
eventual consistency.) A transaction is validated and some
bitcoins become available only after a consensus has been
reached. As such, a client is advised to wait for six more blocks
to be created before considering the transaction valid. This CP
protocol is the reason for unavailability or long latency.

In the healthcare domain, since centralized databases can be
partition intolerant (i.e., the access to the databases is denied
when a partition takes place) both consistency and availability

3The Multi-layer Blockchain Architecture (MOAC) [12] was proposed at
about the same time as this work started.



can be simultaneously ensured. Therefore, the validation or
consensus protocol can be light weight to support high trans-
action throughput, measured in the number of transactions per
second (tps).

The current DeepLinQ prototype employs two blockchain
layers, where the base layer preserves CP and the branch layer
ensures AP or AC. The base layer serves as the validator of
the branch-layers’ ledgers, whereas a branch layer implements
the features to support the POET properties (note that a
base layer can serve multiple branch layers with different
implementations).

The base layer that we currently use is Ethereum (please
refer to the Bitcoin and Ethereum white papers [7, 14] for
details). DeepLinQ’s branch layer consists of a ledger with
some special design considerations.

A. Branch Layer Design

For the privacy requirement, DeepLinQ’s branch layer
blockchain dials back the full transparency4 of bitcoin and
instead has the following three choices in DHLs: adding
trusted senior validators, using subgroup signatures, creating
trusted branches, and employing efficient consensus protocols.

• Adding trusted senior validators. A group of trusted
users establish a committee to grant permissions. Only a
limited number of trusted users operate by the principle
of universal data diffusion. If the number can be kept
small (on the order of hundreds), data is replicated fewer
times and scalability is improved.

• Using subgroup signatures. The trusted committee can act
to permit data access to EHRs via multi-signature as long
as a subset of the committee can validate a transaction
and grant access.

• Creating trusted branches. To mitigate the problem that
everyone has to process everything, branches can be cre-
ated for specialized purposes. Since most EHR accesses
may only involve some regional hospitals, each hospital
group (e.g., a hospital and its affiliates) may be able
to handle its channels and branch ledgers. When a set
of transactions involve some fixed set of actors, using
branch ledgers improves both privacy and scalability [16].
A branch ledger can limit who receives a transaction into
that particular branch ledger. Thus, it requires consensus
(discussed next) only on the state of that branch ledger
to the parties within a branch.

• Employing efficient consensus protocols. Table I lists con-
sensus mechanisms. To fulfill our performance objectives
of high throughput and low latency, we will experiment
with both FBA [17] and hashgraph [18]. (Our preliminary
implementation of hashgraph has achieved more than
3, 000 tps.)

B. Transactions

DeepLinQ defines a transaction to be an authorized attempt.
A transaction consists of three fields:

4Anyone with access to the Internet has access to every transaction that
has ever taken place. [15] calls this model universal data diffusion.

TABLE I
CONSENSUS MECHANISMS.

Mechanisms Decentralized Hi TPS Trust Security
Proof of Work X X
Proof of Stake X maybe maybe
Byzantine FT X X X
FBA X X X X
Hashgraph X X X X

• Initiators. The parties involve in the transaction. Initiators
are identified by their public keys.

• Actions. A cryptographically signed smart contract,
which is a piece of code to carry out actions.

• Incentives. DeepLinQ is flexible and can incorporate
various incentive models.

Section I presents some representative workflows. Their
involved initiators and actions (verbs) are as follows:

• Data owners (patients and hospitals). Data owners know
when and what data are being collected and used. Owners
have granular control over how their data can be accessed.
Using the notation by [11], data owners can assign access
privileges on a piece of data via Taccess transaction.

• Data guests (owners, government, insurance, and e.g.,
research institutes). All accesses (both read and write)
must be permitted and logged. A guest can issue a query
via Tdata transaction.

C. Off-ledger Storage

In the work of [11], an off-chain storage is used to store
data, and a pointer to the data is kept on the public ledger.
DeepLinQ can regard all hospital databases as off-chain stor-
age and use smart contracts to access the off-chain storage.
Once a contract has been executed and data has been fetched,
the data can be stored in a secured wallet.

D. Smart Contracts

In contrast to the stateless model of bitcoin, DeepLinQ’s
stateful model permits participants to create any functionality
directly on a DHL. We detail DeepLinQ’s smart contracts in
the next section.

III. SMART CONTRACTS

Smart contracts are programs that exist on the blockchain
network [7]. Once a contract has been deployed, it is given
an account (address) to record its binary code and cannot be
modified. An authorized user can invoke contracts with an
incentive (e.g., known as gas in Ethereum) for consuming the
computing power and storage of the network.

By interacting with smart contracts in DeepLinQ, patients
can prove the existence of their own EHRs and manage the
relationship with hospitals or third parties. The functionalities
are constructed by three types of smart contracts, entity con-
tracts (EC), relationship contracts (RLC), and data contracts
(DC). The concept of these contracts is motivated by MedRec
[19], but DeepLinQ makes the contract organization more



general—entity, relationship, and data—which can be used
beyond just supporting the healthcare domain.

• Entity Contract (EC). There are two types of EC con-
tracts, which are patient EC and hospital EC. A patient
EC records the patient’s encrypted data, which includes
a pre-processed ID (the hash value of the citizen ID and
patient name), the patient’s DeepLinQ address, and rele-
vant RLC addresses. A hospital EC records the hospital’s
name, its RLC address, and the relevant ID that is given
by the government institution for identifying that hospital.
Patients can check a hospital’s identity by calling an EC’s
smart contract methods, and vice versa. In order to guard
against malicious users, all participants are certificated by
the system administrator.

• Relationship Contract (RLC). There are two types of
RLC, patient and hospital RLCs. No Matter what type an
RLC is, it records medical data contract (MDC) addresses
that it owns. A hospital can send an MDC to a patient;
likewise, a patient can share their medical records with
selected hospitals.

• Data Contract (DC). A DC, or in the healthcare domain,
a medical data contract (MDC) represents data stored in
off-ledger storage. An MDC records metadata including
hospital ID, division, doctor name, time stamp, database
name (for binding and access), and the fingerprint of the
record. Authorized users of an MDC can access EHRs by
executing the database-access code written in the MDC.

A. Access Control

The most distinct feature that differentiates DeepLinQ from
MedRec is that we define two roles, patient and hospital, of
EC and RLC to achieve role-based access control such that
transactions are more efficient and patients are better able
to ensure ownership of data. We do not allow MDCs to be
sent directly between hospitals. Any such an exchange must
go through the data owner, the patient. This differentiator is
crucial not only because of efficiency (no need to deal with
the potentially complicated N ×N hospital relationships) but
also because the core of privacy lies on the fact that a patient
owns their EHRs.

B. Contract Architecture

To explain how smart contracts work together, our current
prototype has implemented three workflows, registration, EHR
creation, and EHR transfer. DeepLinQ is flexible in adding
new actors or entities and supports new relationships and
workflows. We present the three prototype workflows as
follows:

• Patient & hospital registration. All participants, including
patients and hospitals, have to apply for a key pair from
the administrator (CDC). The administrator is responsible
for logging the information on patient or hospital ECs
and generating relevant RLCs for the participants. When
an RLC is created between a patient and a hospital, the
access control on the EHR access contract is established.

• EHR creation. After a diagnosis session with a patient,
the doctor adds a new medical record with pertinent lab
tests, diagnoses, and prescriptions for the patient to the
hospital’s local database. When the hospital server is
notified with the new EHR, it creates an MDC and sends
the MDC to the patient-hospital RLC address, which can
be mapped by checking EC with the hash value of the
patient’s private data. Once the transaction is on chain,
the patient is notified.

• EHR transfer. If a patient wants to see a doctor at another
hospital (e.g., hospital B), she can share her EHRs in hos-
pital A with hospital B by adding hospital B to the viewer
list of the MDC. Subsequently, the contract will send
the MDC address to hospital B’s RLC address, which
can be obtained via the EC corresponding to the hospital
ID. Once the new medical record is added to hospital
B’s RLC, the hospital B’s server sends the request to
the user. The user then forwards the query to hospital
A to fetch her EHRs. After a series of verifications
performed by hospital A, the user receives her EHRs
and then forwards them to hospital B. DeepLinQ’s access
control scheme avoids the N×N deployment complexity
between hospitals and enforces the notion that patients
own and handle their EHRs.

IV. CONSENSUS PROTOCOLS

As we discussed in Section I, DeepLinQ designs a multi-
layer blockchain to achieve decentralization as well as high
throughput and low latency. The base-layer blockchain can be
bitcoin or Ethereum. We use the base layer to perform batch
transaction validation for the second layer(s). DeepLinQ’s
transactions in the second layer is organized into Merkle trees.
A Merkle tree is a structure that allows for efficient and secure
verification of content in a large body of data. DeepLinQ stores
only the root signature of a Merkle tree in the base layer. This



root signature ensures that the entire tree stored in the second
layer is immutable. If the tree has somehow been tampered,
the root signature stored in the base layer would not match the
tampered tree root, and therefore, validation fails. DeepLinQ’s
base layer design makes sure that the number of transactions
involved with either e.g., bitcoin or Ethereum is light-weight.
Thus, the latency/throughout issue of the base-layer blockchain
is a non-issue for the latency/throughput of the overall ledger
system.

In the branch layers, DeepLinQ currently considers using
either Federated Byzantine agreement (FBA) and hashgraph
to achieve high throughput and low latency. By no means
are these the only protocols that can help achieve the perfor-
mance objectives. DeepLinQ looks into FBA and hashgraph
because they are considered to be permissionless. This section
describes both protocols, and analyzes their pros and cons.

A. FBA

In a federated Byzantine agreement system (FBA) [17], each
full node maintains its own list of trust nodes, which is called
a quorum slice. Each trusted node further maintains its own
quorum slice. As stated in the white paper of Stellar [17], each
node waits for the vast majority of the other nodes to agree on
a transaction before considering the transaction settled. In turn,
important participants do not agree to the transaction until the
participants they consider important agree as well. Eventually,
enough participants of the network accept a transaction, and
that transaction becomes infeasible for an attacker to roll it
back. Only then do all participants consider the transaction
settled. Stellar claims that the FBA is permissionless. However,
joining a quorum slice is by invitation only and not free, as
[20] argues.

The FBAs consensus scheme can ensure the integrity of a
financial network. Its decentralized control can spur organic
growth. The FBA provides a flexible mechanism to let users
choose their trusted parties. In the FBA’s white paper [17],
the hierarchical structure demonstrates that different trust tiers
are played by different organizations. For example, the trusted
banks can be the first tier to provide the global ledger.

The federated voting algorithm consists of two voting steps.
First, each node sends a voting message to the others for
a statement at time t according to their inputs and ledgers.
Second, the quorum slices of node v will convince v to accept
the statement at time t, if v votes contradictory statement
against its quorum slices. Therefore, to guarantee liveness of
node v, it needs sufficiently overlap with the quorum slices
of other nodes [20]. (FBA can trade liveness for safety and
vice versa.) But the problem is that it is hard to maintain
v’s quorum slices since there may exist a different threshold
for each group that v connects to. According to [20], the FBA
avoids such problems by forming a hierarchy of quorum slices
and forcing each to overlap with slices at the top level as
originally proposed by [21].

B. Hashgraph

The rudimentary data element of hashgraph [22] is called
gossip event or event. An event is created and signed by a
node v and it contains a timestamp, transactions (zero, one or
multiple), and two hash pointers where one points to v’s last
event (self-parent), and the other points to the last event of
the node that v syncs with (other-parent). Hash pointers can
be compared to block hash in blockchain; thus, hashgraphs
can always grow in one direction with an immutable order.

The hashgraph consensus protocol consists of three steps:
syncing, voting, and time-stamping. At the syncing step, which
is called gossip about gossip [22], each node may randomly
choose a node to sync information with. A node and its chosen
node exchange events that are unknown to each other which
include the newest event created by the choosing node.

Each node records and validates the communication history
with the other nodes. In essence, hashgraph records the entire
communication history between the nodes. At a given time,
two nodes may contain different subsets. However, two nodes
enjoy consistency if their subsets both contain an event e
and all ancestors of e. In other words, as [22] states, ”as
the hashgraph grows upward, the different members may have
slightly different subsets of the new events near the top, but
they will quickly converge to having exactly the same events
lower down in the hashgraph.” In the syncing step, the number
of messages sent could be substantial (quadratic of the number
of nodes if every node sends to all the other nodes) but the
amount of data sent (the size of an event) can be quite small.

After a node has synced with the other nodes, it enters the
voting step. In the hashgraph consensus protocol, nodes do
not exchange messages. Instead, they decide which events are
going to be confirmed by conducting virtual voting.

Virtual voting can be divided into two steps described as
follows:

• Decision round. Each event is assigned a round number.
The first events by each node in each round are witnesses.
If an event e can strongly see more than 2/3 witnesses, its
round number is equal to r+1 where r is the maximum
of the round numbers of e’s self-parent and other-parent;
else its round number is equal to r. An event e can
strongly see a witness w if there exists a path or multiple
paths from e to w going through 2/3 of nodes.

• Decide famous witness. The witnesses in round r will
vote for each witness in r− 1 to decide whether each of
them is famous. A witness of node i in r−1 round, written
wi

r−1 ,will get a Yes vote if a witness in the next round
wj

r is a descendant of wi
r−1. Here, Yes means wj

r votes
wi

r−1 is famous. Each witness in round r+1, wk
r+1, will

collect ballots from witnesses in r that can be strongly
see by wk

r+1. If 2/3 nodes vote Yes for wi
r−1, wi

r−1 is
a famous witness in round r − 1. However, if less than
2/3 nodes vote for the same result, wk

r+1 will vote as
same as the majority and postpone the decision to round
r + 2 and so on. However, if the following witnesses
still hesitate, the decision process can fall into an infinite



loop. Therefore, in order to prevent this situation, every
10th round of voting, the witness votes pseudo-randomly
instead of voting the same as the majority.

If an event e is an ancestor of all of the famous witnesses
in round r − 1, we regard e as confirmed and will give e a
timestamp. To calculate e’s timestamp, we find a list l where
each element in l is the timestamp of e’s earliest descendant
by node i which i has a famous witness in round r − 1.
e’s timestamp is the median of l. Finally, through the three
aforementioned steps, every honest node can reach a consensus
in the total order of events through the aforementioned steps.

However, the hashgraph consensus algorithm still faces
limitations. First, although the voting step costs no network
resources, bandwidth is still a concern for the gossip about
gossip protocol. The priority of a transaction can be affected by
network bandwidth, i.e., the larger the bandwidth is, the faster
a transaction can be confirmed [22]. Second, the hashgraph
consensus algorithm is more suitable for operating on a private
or permissioned chain since the network needs full awareness
of all authoritative participants [23].

V. CONCLUSION

We propose DeepLinQ, a multi-layer blockchain for
privacy-preserving data sharing, which is essential to alleviate
privacy concerns of users to share their data. Though we use
healthcare to illustrate DeepLinQ’s design requirements and
implementation, DeepLinQ can be deployed in other applica-
tion domains with domain-specific branch layer implementa-
tion. We are currently working with partner universities and
hospitals to deploy DeepLinQ and to enhance its cryptography
modules to support flexible multi-signature and other schemes.

We believe DeepLinQ’s multiple layer design to be effective
in satisfying the POET properties. One challenge that we
found echos the findings of [20] that the claims made by some
white papers require rigorous verification. We are developing
a benchmark to evaluate the performance of and trade-offs
between protocols.

ACKNOWLEDGEMENTS

We would like to thank Professors Monica Lam and David
Mazires at Stanford University for their helpful comments
toward our research. We would also like to thank Shan-Yi
Yu and Yi-Fan Chung at HTC DeepQ for their managerial
and engineering support.

REFERENCES

[1] UK Government Chief Scientific Advisor, “Distributed
ledger technology: Beyond block chain,” 2016.

[2] E. Y. Chang, Foundations of Large-Scale Multimedia
Information Management and Retrieval. Springer,
February 2011.

[3] H.-C. Kao, K.-F. Tang, and E. Y. Chang, “Context-
aware symptom checking for disease diagnosis using
hierarchical reinforcement learning,” AAAI, 2018.

[4] Y.-S. Peng, K.-F. Tang, H.-T. Lin, and E. Y. Chang,
“Refuel: Exploring sparse features in deep reinforcement
learning for fast disease diagnosis,” NIPS, 2018.

[5] E. Y. Chang, M.-H. Wu, K.-F. T. Tang, H.-C. Kao, and
C.-N. Chou, “Artificial intelligence in XPRIZE DeepQ
Tricorder,” Workshop on Multimedia for Personal Health
and Health Care, 2017.

[6] R. G. Brown, “On distributed databases and distributed
ledgers,” 2016.

[7] J. Ray, “A next-generation smart contract and decentral-
ized application platform,” Ethereum Wiki.

[8] U. D. of Health and H. Services, “Hipaa security
rule.” [Online]. Available: https://www.hhs.gov/ hipaa/
for-professionals/ security/ laws-regulations/ index.html

[9] S. Voloshynovskiy, S. Pereira, T. Pun, J. Eggers, and
J. K. Su, “Attacks on digital watermarks: classification,
estimation based attacks, and benchmarks,” IEEE Com-
munications Magazine, vol. 39, pp. 118–126, 2001.

[10] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “A
survey of two signature aggregation techniques,” Cryp-
toBytes, vol. 6, no. 2, 2003.

[11] G. Zyskind, O. Nathan, and A. Pentland, “Decentralizing
privacy: Using blockchain to protect personal data,” IEEE
Security and Privacy Workshops, pp. 180–184, 2015.

[12] MOAC, “Multi-layer blockchain architecture,” 2018.
[13] E. A. Brewer, “Towards robust distributed systems,”

PODC, 2010.
[14] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash

system,” 2008. [Online]. Available: https:// bitcoin.org/
bitcoin.pdf

[15] M. Rauchs, A. Glidden, B. Gordon, G. Pieters, M. Re-
canatini, F. Rostand, K. Vagneur, and B. Zhang, “Dis-
tributed ledger technology systems, a conceptual frame-
work,” University of Cambridge Judge Business School,
2018.

[16] A. Lewis, “A gentle introduction to blockchain technol-
ogy.”

[17] D. Mazires, “The stellar consensus protocol: A federated
model for internet-level consensus,” Stellar Development
Foundation, 2016.

[18] L. Baird, “The swirlds hashgraph consensus algorithm:
Fair, fast, byzantine fault tolerance,” Swirlds Tech Report
Swirlds-TR-2016-01, 2016.

[19] A. Ekblaw, A. Azaria, J. D. Halamka, and A. Lippman,
“Medrec prototype for electronic health records and
medical research data,” MIT Media Lab and Beth Israel
Deaconess Medical Center, 2016.

[20] C. Cachin and M. Vukolić, “Blockchain Consensus Pro-
tocols in the Wild,” ArXiv e-prints, Jul. 2017.

[21] D. Malkhi, M. K. Reiter, and A. Wool, “The load and
availability of byzantine quorum systems,” SIAM Journal
on Computing, vol. 29, no. 6, 2000.

[22] L. Baird, “The swirlds hashgraph consensus algorithm:
Fair, fast, byzantine fault tolerance,” 2016.

[23] S.-M. Choi, J. Park, Q. Nguyen, A. Cronje, K. Jang,
H. Cheon, Y.-S. Han, and B.-I. Ahn, “Opera: Reasoning
about continuous common knowledge in asynchronous
distributed systems,” ArXiv e-prints, October 2018.


