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ABSTRACT
The DeepQ tricorder device developed by HTC from 2013 to 2016
was entered in the Qualcomm Tricorder XPRIZE competition and
awarded the second prize inApril 2017. This paper presents DeepQ’s
three modules powered by artificial intelligence: symptom checker,
optical sense, and vital sense. We depict both their initial design
and ongoing enhancements.
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1 INTRODUCTION
In Q1 2013, the XPRIZE foundation announced the Tricorder com-
petition sponsored by Qualcomm [18]. The competition was to
develop a portable device weighing less than five pounds that is
able to accurately diagnose 12 common diseases1 and capture 5
real-time vital signs2. The device was to be operated by a home
user, independent of a health care worker or facility, and in a way
that provides a compelling consumer experience [18]. The aim of
this competition is to improve healthcare accessibility, especially
in under privileged regions of the world.

The competition received 312 pre-registered entries from 38
countries in August 2013. Twenty-nine teams submitted their pro-
posals by May 2014, and ten were selected in August 2014 to enter
the qualifying round. The ten teams submitted their Tricorder de-
vices for the first deadline in June 2015, and then for the final
deadline in September 2016. In October 2016, six finalists were an-
nounced at the XPRIZE annual meeting. The two final winners
were announced on April 12th , 2017 [19].

1The twelve required diseases are anemia, urinary tract infection,diabetes, atrial fib-
rillation, stroke, sleep apnea, tuberculosis, chronic obstructive pulmonary disease
(COPD), pneumonia, otitis media, leukocytosis, and hepatitis A.
2Five vital signs include blood pressure, Electrocardiography (heart rate/variability),
body temperature, respiratory rate, and oxygen saturation
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Dr. Chung-Kang Peng3 founded the Dynamic Biomarker Group
(DBG) in 2013 for the purpose of entering Qualcomm XPRIZE Tri-
corder competition. HTC Research & Healthcare was invited to be
a collaborator and sponsor because of HTC’s expertise in hardware
integration, industry design, user experience research, and artificial
intelligence [2]. In this article, we omit the first three elements
that made DeepQ meeting both the weight constraint and user-
experience requirements. We focus our presentation on the three
modules4 supported by artificial intelligence: symptom checker,
optical sense, and vital sense.

Figure 1: DeepQ Tricorder. DeepQ consists of four compart-
ments. On the top is an HTC mobile phone, which acts as a
data hub and also runs the symptom checker. The drawer on
the right-hand-side contains optical sense. The drawer on
the lower-front contains vital sense and breath sense. The
left-hand-side drawer contains blood/urine sense.

(1) Symptom checker. Working with Dr. Peng’s team at Harvard,
HTC and Dr. Andrew Ahn developed a symptom check-
ing module, which uses a Q&A session to recommend a
user to perform the most relevant self-tests using DeepQ
instruments. Symptom checker is designed to achieve good
user experience and high accuracy. The DeepQ team has
subsequently advanced symptom checker’s accuracy using
context-aware reinforcement learning, and expanded its dis-
ease coverage from 12 to all common diseases.

(2) Optical sense. Optical sense is composed of a wireless cam-
era base and two lenses for diagnosing otitis media and

3Dr. Peng, then was the founding Dean of College of Health Sciences and Technology
at National Central University, on leave from Harvard Medical School. (Peng left NCU
and returned to Harvard in August, 2014.)
4DeepQ consists of five modules, depicted in Figure 1. In additional to the three
presented in this article, the other two are blood/urine sense, and breath sense.
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melanoma (two of the 12 diseases required by XPRIZE), re-
spectively. The novel technology behind our diagnosis algo-
rithm is a combined scheme of deep learning and transfer
learning.

(3) Vital sense. XPRIZE requiresmonitoring five vital signs (heart
rate/variability, respiration rate, blood pressure, oxygen satu-
ration, and body temperature) continuously, and audits two
diseases (atrial fibrillation and sleep apnea). We have de-
veloped our vital sense module to meet these requirements
and derived heart rate variability, respiration rate, and blood
pressure conditions around the basis of the electrocardio-
gram (ECG). In this article, we focus our presentation on the
module that enables the atrial fibrillation detection, which
is a result from the joint effort of HTC Research and Dr.
Chung-Kang Peng [3]. To make further improvement in ac-
curacy and to support wearable ECG patches, we recently
completed a two year data annotation effort, which aims to
provide the public a dataset with scale, diversity, and quality
to facilitate artificial intelligence research on arrhythmia
detection.

The remainder of this paper is organized as follows: Section 2
presents our reinforcement learning algorithm to predict potential
diseases with limited inquiries and on-going enhancements. Sec-
tion 3 depicts the transfer learning algorithm that supports otitis
media and melanoma diagnosis. Section 4 describes our data collec-
tion endeavor for improving heart disease diagnosis. We offer our
concluding remarks in Section 5.

2 CONTEXT-AWARE SYMPTOM CHECKER
To identify a patient’s disease or absence of disease, the DeepQ
kit uses a symptom checker to query a user and then recommend
appropriate tests. Symptom checking first inquires a patient with
a series of questions about their symptoms, and then attempts to
predict some potential diseases. Two design goals of a symptom
checker are high accuracy and good user experience. Good user
experience consists of two requirements. First, the interactions be-
tween the symptom checker and patients must be intuitive. Second,
the number of inquires should be minimal.

We have further enhanced the symptom checker module in the
DeepQ kit and proposed CASC, which stands for Context-Aware
Symptom Checker [24, 25]. CASC enhances the deployed symptom
checker on our XPRIZE DeepQ kit in two aspects. First, CASC
employs reinforcement learning (RL), a more effective algorithm
than traditional Bayesian inference and decision trees [11] to model
reward and penalty instead of using the theory of information
gain [9, 10]. CASC in particular addresses the large-disease class
challenge with RL when we expand the disease coverage from
12 (required by XPRIZE) to about 650 common diseases. Second,
CASC considers a patient’s contextual information including but
not limited to who, when and where aspects.

2.1 Scalable Reinforcement Learning
To expand disease coverage from 10 to all common diseases, CASC
faces two challenges. First, classification accuracy is expected to
drop because of higher probability of similar symptoms resulting
from different diseases. Second, the computation time to train a

Table 1: The set P of anatomical parts.

head neck arm
chest abdomen back
pelvis buttock leg
skin general symptoms

classifier increases. To tackle these challenges, we divide a body
into P parts, and request a user to indicate which parts of her/his
body exhibit what symptoms.

Let I, D and P denote the sets of symptoms, diseases and
anatomical parts, respectively. Table 1 shows the set P. Given a
part p ∈ P, we use Dp ⊆ D to denote the set of diseases that is
contained by p. For two parts p and q, the disease sets of these two
parts may overlap, i.e., Dp ∩Dq , ϕ. For example, the disease food
allergy can happen in parts neck, chest, abdomen, and so on. We
use Ip ⊆ I to denote the set of symptoms that is involved in p.
Similarly, Ip ∩ Iq , ϕ for two parts p and q.

A diagnosis process is a sequential decision problem of an agent
that interacts with a patient. At each time step, the agent inquires
about a certain symptom i ∈ I of the patient. The patient then
responds with true/false to the agent indicating whether the patient
suffers from symptom i . In the meantime, the agent can integrate
user responses over time steps to propose subsequent questions.
At the end of the process, the agent receives a scalar reward if it
can correctly predict the disease with a limited number of inquiries
(every addition inquiry deduces a penalty from the reward). The
goal of the agent is to maximize the reward. In other words, the goal
is to correctly predict the patient disease d ∈ D by the end of the
diagnosis process with limited number of inquiries. Reinforcement
learning [23] is most suitable to address this problem, since RL
can not only model the reward of accurate prediction, but also the
penalty of asking each additional question.

Formally, in RL terms [23], our CASC agent receives a state st
at time step t ; then it chooses an action from a discrete action
set A according to a policy π . In our formulation, A = I ∪ D.
Based on the action at ∈ A chosen by the agent, it receives a
reward rt , where rt = 1 if at ∈ D and at predicts the correct
disease, or rt = −1 if at is repeated; otherwise rt = 0. The agent
attempts to maximize the discounted return Rt =

∑∞
t ′=t γ

t ′−t rt ′ ,
whereγ ∈ [0, 1] is a discount factor. The symptom checking process
terminates when the action at ∈ D.

The state-action Q-value function [23] is defined as Qπ (s,a) =
E[Rt | st = s,at = a,π ], referring to the expected return of per-
forming an action a in a state s , along with a policy π . Since the Q-
value can be divided into a current reward and a next-step Q-value
using dynamic programming, it can be rewritten into the follow-
ing recursive definition: Qπ (s,a) =Es ′[r + γEa′∼π (s ′)[Qπ (s ′,a′)]|
s,a,π ]. The optimal Q-value is defined as Q∗(s,a) =maxπQπ (s,a).
Also, it can be shown that the optimal Q-value obeys the Bellman
equation: Q∗(s,a) =Es ′[r + γ maxa′ Q∗(s ′,a′) | s,a]. Lastly, the
optimal deterministic policy can be defined by

π∗(s) = arg max
a∈A

Q∗(s,a).
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2.2 Modeling Context
The contextual information includes but is not limited to three
aspects about a patient: who, when, and where. The who aspect
includes a person’s demographic information (e.g., age and gender),
hereditary (characterized by genetic data), and medical history. The
when aspect can be characterized by a distribution of diseases in
the time of year (e.g., season or month). The where aspect can
be characterized by a distribution of diseases from coarse to fine
location granularities (e.g., by country, city, and/or neighborhood).
Any joint distributions of any combinations of the who, when and
where aspects can be formulated and quantified into a context-
aware model. This context-aware model is then utilized to perform
three tasks in a symptom-checking framework to improve diagnosis
accuracy:

(1) Initialization.
Supposing a patient does not provide any information, the
symptom checker can initialize a symptom-checking dialog
by inquiring about a symptom (or symptoms) that exhibits
the highest probability based on the contextual information
(joint context distribution).

(2) Inquiries. Once one or some symptoms have been collected
from the patient, the symptom-checking algorithm generates
next symptom inquiries based on contextual information in
additional to given answers to the previous inquiries.

(3) Predictions. At the end of each symptom checking iteration,
the symptom checker predicts potential diseases by jointly
considering both contextual information and answered symp-
toms.

To model context, we modify the deep Q-network (DQN) [15],
which is a function approximator of Q-functions. The DQN is es-
sentially a neural network representing Q(s,a;θ ) with parameters
θ . To mimic real doctors who may have different specializations, we
devise our model to be an ensemble model of different anatomical
parts: M = {mp | p ∈ P}. There are 11 anatomical parts in P as
shown in Table 1. Each modelmp is a DQN specialized for symptom
checking.

The modelmp accepts a state s = [bT , cT ]T , where b denotes the
symptom statuses inquired by our model and c denotes the contex-
tual information possessed by a patient. Formally, we describe the
encoding scheme of b as follows: First, each symptom i ∈ Ip can be
one of the following statuses: true, false, and unknown. We can use
a three-element one-hot vector bi ∈ B3 to encode the status of a
symptom i . Second, the status of a symptom is determined based on
the following rule. If a user responded yes to a symptom inquired
by our model, that symptom is marked as true. On the other hand, if
the user responded no, the symptom is marked as false. Symptoms
not inquired by our model are marked as unknown. Finally, the
vector b then concatenates all the symptom statuses into a Boolean
vector, i.e., b = [bT1 ,b

T
2 , . . . ,b

T
|Ip |]

T .
The other part of a state s is the contextual information c that

currently comprises the age, gender, and season information of a
patient. (Any other who, when, and where information can be easily
incorporated.) Here, we denote c = [caдe , cдender , cseason ]T . First,
the age information caдe ∈ N is useful because some diseases have
higher possibilities on babies whereas some have higher possibili-
ties on adults. For example, meningitis typically occurs on children,

and Alzheimer’s disease on the elderly. Second, the gender infor-
mation cдender ∈ B is important because some diseases strongly
correlate with gender. For example, females may have problems
in uterus, and males may have prostate cancer. Third, the season
information cseason ∈ B4 (a four-element one-hot vector) is also
helpful because some diseases are associated with seasons.

Given a state s = [bT , cT ]T , our modelmp outputs the Q-value
of each action a ∈ Ap . In our definition, each action a has two
types: an inquiry action (a ∈ Ip ) or a diagnosis action (a ∈ Dp ).
If the maximum Q-value of the outputs corresponds to an inquiry
action, then our model inquires the corresponding symptom to a
user, obtains a feedback, and proceeds to the next time step. The
feedback is incorporated into the next state st+1 = [bTt+1, c

T ]T
according to our symptom status encoding scheme. Otherwise, the
maximum Q-value corresponds to a diagnosis action. In the latter
case, our model predicts the maximum-Q-value disease and then
terminates.

Since each model mp is independent, we can train eleven dif-
ferent models mp simultaneously, with each is in charge of an
anatomical part p. More specifically, we use the DQN training
algorithm [15] proposed by Mnih et al. The loss function is de-
fined as Lj (θ j ) = Es,a,r,s ′[(yj − Q(s,a;θ j )2], where target yj =
r + γ maxa′ Q(s ′,a′;θ−) is evaluated by a separate target network
[15] Q(s ′,a′;θ−) with parameters θ−. The variable j is the index of
training iteration. To improve training stability and convergence,
the target network is fixed for a number of training iterations. The
parameters θ can be updated by the standard backward propagation
algorithm.

2.3 Preliminary Experimental Results
We used 650 out of 801 SymCat’s symptom-disease database to
conduct experiments. Our preliminary experiments did not yet
consider contextual information. Whereas the details of data prepa-
ration and experiment setup are documented in [25], Table 2 shows
the experimental results. We compare our P-part model, which we
call the anatomical model, with the traditional monolithic model.
The first column shows the number of diseases we selected for
each anatomical part. The second column shows the total number
of diseases among 11 anatomical parts. The column in anatomical
model shows accuracies and average inquiry steps of our proposed
ensemble model. The column in monolithic model shows the same
statistics produced by a single model that supports the total number
of diseases. From the table, we can see that our ensemble model
achieves significantly higher accuracy than the traditional single
model approach.

3 OPTICAL SENSE
Otitis media (OM) and melanoma are image-based diagnoses. With
the success of deep learning, one may consider that the problem
can easily be solved by employing deep learning with abundant
training data. Unfortunately, in the domain of medicine, training
data can be scarce, and approaches such as data augmentation
are not applicable. In our case, the training data available to us
are 1) 1, 195 OM images collected by seven otolaryngologists at
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Table 2: Experimental results on anatomical and monolithic models.

Task |Dp | |⋃p Dp | ω Anatomical Model Monolithic Model
Top 1 Top 3 Top 5 #Steps Top 1 Top 3 Top 5 #Steps

Task1 25 73 1 48.12 59.01 63.23 7.17 39.42 43.13 44.97 1.64
Task2 50 136 2 34.59 41.58 45.08 7.06 27.49 29.16 30.28 1.48
Task3 75 196 3 25.46 29.63 31.82 5.98 2.08 2.81 4.19 3.42
Task4 100 255 4 21.24 24.56 26.15 6.94 0.73 1.46 2.19 3.37

Cathay General Hospital5, Taiwan [20] and 2) 200melanoma images
from the PH2 dataset [14]. Transfer representation learning is a
plausible alternative, which can remedy the insufficient training
data issue. The common practice of transfer representation learning
is to pre-train a convolutional neural network (CNN) on a very
large dataset (called source domain) and then to use the pre-trained
CNN either as an initialization or a fixed feature extractor for the
task of interest (called target domain). The source domain from
which representations are transfered to our two target diseases is
ImageNet [4].

What are symptoms or characteristics of OM and melanoma?
OM is any inflammation or infection of the middle ear, and treat-
ment consumes significant medical resources each year [17]. Sev-
eral symptoms such as redness, bulging, and tympanic membrane
perforation may suggest an OM condition. Color, geometric, and
texture descriptors may help in recognizing these symptoms. How-
ever, specifying these kinds of features involves a hand-crafted
process and therefore requires domain expertise. Often times, hu-
man heuristics obtained from domain experts may not be able to
capture the most discriminative characteristics, and hence the ex-
tracted features cannot achieve high detection accuracy. Similarly,
melanoma, a deadly skin cancer, is diagnosed based on the widely-
used dermoscopic “ABCD” rule [22], where A means asymmetry, B
means border, C color, and D different structures. The precise iden-
tification of such visual cues relies on experienced dermatologists
to articulate. Unfortunately, there are many congruent patterns
shared by melanoma and nevus, with skin, hair, and wrinkles often
preventing noise-free feature extraction.

3.1 Transfer Representation Learning
We started with unsupervised codebook construction. On the large
ImageNet dataset, we learned the representation of these images
using a variant of deep CNN, AlexNet [12], which contains eight
neural network layers. The first five layers are convolutional and the
remaining three are fully connected. Different hidden layers repre-
sent different levels of abstraction concepts. We utilized AlexNet in
Caffe [8] as our foundation to build our encoder to capture generic
visual features.

For each image input, we obtained a feature vector using the
codebook. The information of the image moves from the input layer
to the output layer through the inner hidden layers. Each layer is
a weighted combination of the previous layer and stands for a
feature representation of the input image. Since the computation
is hierarchical, higher layers intuitively represent higher concepts.

5The dataset was used under a strict IRB process. The dataset was deleted by April
2015 after our experiments had completed.

For images, the neurons from lower levels describe rudimentary
perceptual elements like edges and corners, whereas the neurons
from higher layers represent aspects of objects such as their parts
and categories. To capture high-level abstractions, we extracted
transfer-learned features of OM and melanoma images from the
fifth, sixth and seventh layers, denoted as pool5(P5), fc6 and fc7,
respectively.

Once we had transfer-learned feature vectors of the 1, 195 col-
lected OM images and 200 melanoma images, we performed super-
vised learning by training a support vector machine (SVM) clas-
sifier [1]. We chose SVMs to be our model since it is an effective
classifier widely used by prior works. Using the same SVM algo-
rithm lets us perform comparisons with the other schemes solely
based on feature representation. As usual, we scaled features to the
same range and found parameters through cross validation. For fair
comparisons with previous OM works, we selected the radial basis
function (RBF) kernel.

To further improve classification accuracy, we experimented
with two feature fusion schemes, which combine OM features
hand-crafted by human heuristics (or model-centric) in [20] and
our melanoma heuristic features with features learned from our
codebook [21]. In the first scheme, we combined transfer-learned
and hand-crafted features to form fusion feature vectors. We then
deployed the supervised learning on the fused feature vectors to
train an SVM classifier. In the second scheme, we used the two-
layer classifier fusion structure proposed in [21]. In brief, in the
first layer we trained different classifiers based on different feature
sets separately. We then combined the outputs from the first layer
to train the classifier in the second layer.

3.2 Experimental Results
Two sets of experiments were conducted to validate our idea. In this
subsection, we first report OM classification performance by using
our proposed transfer representation learning approach, followed
by our melanoma classification performance. Then, we elaborate
the correlations between images of ImageNet classes and images of
disease classes by using a visualization tool to explain why transfer
representation learning works.

For fine-tuning experiments, we performed a 10-fold cross-validation
for OM and a 5-fold cross-validation for melanoma to train and test
our models, so the test data are separated from the training dataset.
We applied data augmentation, including random flip, mirroring,
and translation, to all the images.

For the setting of training hyperparameters and network archi-
tectures, we used mini-batch gradient descent with a batch size of
64 examples, learning rate of 0.001, momentum of 0.9 and weight
decay of 0.0005. To fine-tune the AlexNet model, we replaced the
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fc6, fc7 and fc8 layers with three new layers initialized by using a
Gaussian distribution with a mean of 0 and a std of 0.01. During
the training process, the learning rates of those new layers were
ten times greater than that of the other layers.

Our 1, 195 OM image dataset encompasses almost all OM diag-
nostic categories: normal; AOM: hyperemic stage, suppurative stage,
ear drum perforation, subacute/resolution stage, bullous myringitis,
barotrauma; OME: with effusion, resolution stage (retracted); COM:
simple perforation, active infection. Table 3 compares OM classifi-
cation results for different feature representations. All experiments
were conducted using 10-fold SVM classification. The measures of
results reflect the discrimination capability of the features.

The first two rows in Table 3 show the results of human-heuristic
methods (hand-crafted), followed by our proposed transfer-learned
approach. The eardrum segmentation, denoted as ‘seg’, identifies
the eardrum by removing OM-irrelevant information such as ear
canal and earwax from the OM images [20]. The best accuracy
achieved by using human-heuristic methods is around 80%. With
segmentation (the first row), the accuracy improves 3% over that
without segmentation (the second row).

Rows three to eight show results of applying transfer represen-
tation learning. All results outperform the results shown in rows
one and two, suggesting that the features learned from transfer
learning are superior to that of human-crafted ones.

Interestingly, segmentation does not help improve accuracy for
learning representation via transfer learning. This indicates that the
transfer-learned feature set is not only more discriminative but also
more robust. Among three transfer-learning layer choices (layer
five (pool5), layer six (fc6) and layer seven (fc7)), fc6 yields slightly
better prediction accuracy for OM. We believe that fc6 provides
features that are more general or fundamental to transfer to a novel
domain than pool5 and fc7 do. (Section 3.3 presents qualitative
evaluation and explains why for OM fc6 is ideal.)

We also directly used the 1, 195 OM images to train a new
AlexNet model. The resulting accuracy was only 71.8%, much lower
than applying transfer representation learning. This result confirms
our hypothesis that even though CNN is a good model, with merely
1, 195OM images (without the ImageNet images to facilitate feature
learning), it cannot learn discriminative features.

Two fusion methods, combining both hand-crafted and transfer
learning features, achieved a slightly higher OM-prediction F1-
score (0.9 over 0.895) than using transfer-learned features only.
This statistically insignificant improvement suggests that hand-
crafted features do not provide much help.

Finally, we used OM data to fine-tune the AlexNet model, which
achieves the highest accuracy. For fine-tuning, we replaced the
original fc6, fc7 and fc8 layers with the new ones and used OM
data to train the whole network without freezing any parameters.
In this way, the leaned features can be refined and are thus more
aligned to the targeted task. This result attests that the ability to
adapt representations to data is a critical characteristic that makes
deep learning superior to the other learning algorithms.

3.3 Qualitative Evaluation - Visualization
In order to investigate what kinds of features are transferred or bor-
rowed from the ImageNet dataset, we utilized a visualization tool to

Table 3: OM classification experimental results

Method Accuracy(std) F_1-Score

1 Heuristic w/ seg 80.11%(18.8) 0.822
2 Heuristic w/o seg 76.19%(17.8) 0.79
3 Transfer w/ seg (pool5) 87.86%(3.62) 0.89
4 Transfer w/o seg (pool5) 88.37%(3.41) 0.894
5 Transfer w/ seg (fc6) 87.58%(3.45) 0.887
6 Transfer w/o seg (fc6) 88.50%(3.45) 0.895
7 Transfer w/ seg (fc7) 85.60%(3.45) 0.869
8 Transfer w/o seg (fc7) 86.90%(3.45) 0.879
9 Feature fusion 89.22%(1.94) 0.90
10 Classifier fusion 89.87%(4.43) 0.898
11 Fine-tune 90.96%(0.65) 0.917

perform qualitative evaluation. Specifically, we used an attribute se-
lection method, SVMAttributeEval [7] with Ranker search, to iden-
tify the most important features for recognizing OM and melanoma.
Second, we mapped these important features back to their respec-
tive codebook and used the visualization tool from Yosinski et al.
[26] to find the top ImageNet classes causing the high value of these
features. By observing the common visual appearances shared by
the images of the disease classes and the retrieved top ImageNet
classes, we were able to infer the transferred features.

Fig. 2 demonstrates the qualitative analyses of four different
cases: the Normal eardrum, acute Otitis Media (AOM), Chronic
Otitis Media (COM) and Otitis Media with Effusion (OME), which
we will now proceed to explain in turn. First, the normal eardrum,
nematode and ticks are all similarly almost gray with a certain
degree of transparency, features that are hard to capture with only
hand-crafted methods. Second, AOM, purple-red cloth and red
wine have red colors as an obvious common attribute. Third, COM
and seashells are both commonly identified by a calcified eardrum.
Fourth, OME, oranges, and coffee all seem to share similar colors.
Here, transfer learning works to detect OM in an analogous fashion
to how explicit similes are used in language to clarify meaning. The
purpose of a simile is to provide information about one object by
comparing it to something with which one is more familiar. For
instance, if a doctor says that OM displays redness and certain
textures, a patient may not be able to comprehend the doctor’s de-
scription exactly. However, if the doctor explains that OM presents
with an appearance similar to that of a seashell, red wine, orange,
or coffee colors, the patient is conceivably able to envision the ap-
pearance of OM at a much more precise level. At level fc6, transfer
representation learning works like finding similes that can help
explain OM using the representations learned in the source domain
(ImageNet).

Our transfer representation learning experiments consist of the
following five steps:

(1) Unsupervised codebook construction: We learned a code-
book from ImageNet images, and this codebook construction
is “unsupervised” with respect to OM and melanoma.
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Figure 2: The visualization of helpful features from different classes corresponding to different OM symptoms(from left to
right: Normal eardrum, AOM, COM, OME)

(2) Encode OM and melanoma images using the codebook: Each
image was encoded into a weighted combination of the piv-
ots in the codebook. The weighting vector is the feature
vector of the input image.

(3) Supervised learning: Using the transfer-learned feature vec-
tors, we then employed supervised learning to learn two
classifiers from the 1, 195 labeled OM instances or 200 la-
beled melanoma instances.

(4) Feature fusion: We also combined some heuristic features
of OM (published in [21]) and ABCD features of melanoma
with features learned via transfer learning.

(5) Fine tuning: We further fine-tuned the weights of the CNN
using labeled data to improve classification accuracy.

As we will show in the remainder of this section, step four does
not yield benefit, whereas the other steps are effective in improving
diagnosis accuracy. In other words, these two disease examples
demonstrate that features modeled by domain experts or physi-
cians (the model-centric approach) are ineffective. The data-driven
approach of big data representation learning combined with small
data adaptation is convincingly promising.

3.4 Observations
Our experiments on transfer learning provided three important
insights on representation learning.

(1) Low-level representations can be shared. Low-level percep-
tual features such as edges, corners, colors, and textures can
be borrowed from some source domains where training data
are abundant. After all, low-level representations are similar
despite different high-level semantics.

(2) Middle-level representations could be correlated. Analogous
to explicit similes used in language, an object in the target
domain can be “represented” or “explained” by some source
domain features. In our OM visualization, we observed that

that a positive OM may display appearances similar to a
seashell or amoebawith colors of red wine, oranges, or coffee,
features learned and transferred from the ImageNet source
domain.

(3) Representations can adapt to a target domain. Even though
in the small data training situation the amount of data is
insufficient to learn effective representations by itself, given
representations learned from some big-data source domains,
the small data of the target domain can be used to align
(e.g., re-weight) the representations learned from the source
domains to adapt to the target domain.

4 VITAL SENSE
One of the 12 required diseases to be diagnosed by the XPRIZE
Tricorder competition is atrial fibrillation (AF). AF is one common
type of serious rhythmic arrhythmia, which results from a very
fast and irregular contraction of the atria. An arrhythmia condi-
tion is often preceded by the events of ectopic heartbeats and has
four main types: premature beats, supraventricular, ventricular and
bradyarrhythmias.

Interpreting electrocardiograms (ECGs) is an inexpensive and
noninvasive way for cardiologists to assess the cardiac conduction
system and diagnose arrhythmia. A physician can determine the
abnormal cardiac activities at each part of the heart by measuring
the time intervals between fiducial points on the ECG. Measuring
the amount of a wave that travels through the heart muscle can
help infer which part of the heart being hypertrophic, and precisely
which type of arrhythmia has occurred.

It is certainly desirable to be able to detect arrhythmia auto-
matically with non-invasive wearables and a continuously running
computer algorithm. However, two fundamental challenges prevent
the existing solutions [13] to be highly accurate. First, the variabil-
ity of a patient's underlying wave morphology, cardiac rhythms
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and artifacts conspire to make the analysis difficult. This difficulty
is further elevated by the inter-patient diversity. Second, we again
face the same small data problem that we come up against in de-
tecting OM and melanoma (Section 3). Most research groups that
developed and evaluated their automatic classification algorithms
based on the MIT-BIH Arrhythmia Database (MITDB), which is the
first generally freely available standard test material for arrhythmia
detection analysis [16]. Though the MITDB database is regarded
as the most representative and invaluable database for developing
automated arrhythmia detectors and is listed as one of the evalua-
tion standards by the Association for the Advancement of Medical
Instrumentation (AAMI), the database consists of merely 48 ECG
records from 47 subjects. Each record is slightly over 30 minutes in
length and contains two ECG leads.

While the MITDB database has been an invaluable benchmark,
the small number of unique individuals in this database character-
izes the limited variability and insufficiency for exhaustive studies.
Furthermore, the MITDB database has a significant limitation that
60% of its ECG recordings were obtained from inpatients. In other
representative and public arrhythmia datasets such as MIT-BIH
Supraventricular Arrhythmia Database (SVDB) [6] and St. Peters-
burg Institute of Cardiological Technics 12-lead Arrhythmia Data-
base (INCART) [5], the number of unique patients is also in the
two-digit scale size and disease annotations are not audited by
a cardiologist. Importantly, all aforementioned databases did not
consider outpatient ECG measures, which may contain countless
motion artifacts and data loss. The deterioration of signal quality
usually impose significant difficulty on reliable arrhythmia detec-
tion. Contemplating these weaknesses, we in 2015 began to con-
struct a new dataset that is about 10 folds the size of current MITDB
database to fit three main purposes:

(1) Scale: Large-scale data in terms of greater unique patient
numbers

(2) Diversity: Inpatient and outpatient ECG measures with de-
tailed beat-by-beat, rhythm and heartbeat fiducial points
annotations. We intentionally consider three different activi-
ties and motion intensities, namely lying down, sitting, and
walking. These modes can facilitate training a classifier for
wearable ECG patches.

(3) Quality: Complement the MITDB database in the exhaustive
development and evaluation of the arrhythmia detector

4.1 The DeepQ Arrhythmia Database
The DeepQ Arrhythmia Database (DeepQ) is being developed with
Taipei Veteran General Hospital, Taiwan. We attempt to include
a large variety of realistic arrhythmic ECG recordings that are
observed in clinical practice and outpatients. The entire data col-
lection process complies with the human participants guideline
and regulation of the Institutional Review Board (IRB)6. During a
clinical visit or cardiac examination, patients were asked if they
were willing to participate in the data collection. Participating pa-
tients were explained through the guidance and the IRB informed
consents were obtained before their ECG examinations. We used a
water-resistant, non-invasive single-lead ECG device adopted from
our Tricorder XPRIZE vital sense module for this data collection.
6IRB reference number: 2015-03-001A

Figure 3: From top to bottom: normal sinus rhythm, two
PVC beats, a PVC event during a walking session.

DeepQ ECG patch was worn on the left chest in the Modified Lead-
II configuration. We also placed the Philip 1810 series holter on
the participant along with our DeepQ ECG recording device for
comparison throughout the collection process. All patients were
instructed to rest for at least five minutes during the initial setup
and between each activity session. Throughout the ECG measure-
ment, each patient was engaged in a sequence of three five-minute
activities, namely lying down, sitting, and walking and contributed
three recordings to the database. This protocol ensures a smooth
transition between different activity intensities. In the walking ses-
sion, participants were allowed to walk freely around the facility
to mimic the recordings in outpatient situations.

The same ECG module as we designed in the Qualcomm Tri-
corder XPRIZE competition was used for this data collection. The
ECG data was sampled at a frequency of 250 Hz with with 24-bit
resolution and wirelessly transferred via BLE to a remote smart-
phone receiver for temporary storage. The recorded ECG signals
were then uploaded to our private server and later compared with
Philips 1810-series holters for quality assurance by the certified
cardiographic technicians before any annotations. Figure 3 shows
three ECG excerpts from the DeepQ database. All records were an-
notated using a web interface tool designed for this task. Labeling
works were initially carried out by a group of certified cardiographic
technicians and then verified by a cardiologist. To ensure quality
and consistency, annotation rules were devised; the cardiographic
technicians were guided through the use of web tool and super-
vised by a senior technician. There are three label categories in
this database: beat-by-beat, rhythm episodes and heartbeat fiducial
points. The beat-by-beat annotation protocol is compatible with
the AAMI recommendations. Along with the beat-by-beat class
annotation, each heartbeat's P, QRS, and T fiducial points are also
marked, if present. A strip is marked for rhythm-level labels in
which the beginning and the end of the strip correspond to the
onset and offset of an abnormality segment.

Currently this database contains 897 annotated records from 299
unique patients. Each record is about five minutes in duration, from
one activity and includes a compact clinical summarywith technical
information about the recording. Comparing the DeepQ dataset
with the other three public databases (MITDB, SVDB, and INCART),
DeepQ's number of unique subjects and records outnumber them.
DeepQ not only has at least twice the amount of unique patients but
also hasmore heartbeats in the AAMI supraventricular ectopic beats
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Table 4: Database details

Database #Records #Subjects #SVEB
Records

#VEB
Records

#AF
Records

AAMI Heartbeat class Sample Rate
(Hz)

Duration
(min) #ChannelsN SVEB VEB

DeepQ 897 299 71 125 48 303233 4158 8616 250 15 1
MITDB 48 47 32 37 11 90125 2781 7009 360 30 2
SVDB 78 78 73 67 - 161902 12083 9897 128 30 2
INCART 75 32 18 69 3 153517 1958 19991 257 30 12

(SVEB) and ventricular ectopic beats (VEB) classes compared to the
MITDB database. Table 4 summarizes this comparison. In addition
to the beat-level classes, the rhythm-level arrhythmia collection
includes 48 unique atrial fibrillation (AF) or atrial flutter (AFL) cases,
four first degree atrioventricular block (1°AVB), three second degree
atrioventricular block (2°AVB), one paroxysmal supraventricular
tachycardia (PSVT), six supraventricular tachycardia (SVT), one
sinoatrial block (SAB), two ventricular tachycardia (VT), and one
junctional rhythm cases.

5 CONCLUDING REMARKS
DeepQ made the milestone set forth by the XPRIZE foundation
by putting together an integrated device that can drastically im-
prove healthcare accessibility. This article presented three modules:
symptom checker, optical sense, and vital sense that are powered by
the latest artificial intelligence techniques including deep learning,
transfer learning, and reinforcement learning. In particular, the
medical domain encounters the challenge of small data. Though
we showed that our active reinforcement learning and transfer
representation learning algorithm to be promising, much work re-
mains to further improve disease diagnosis accuracy. The DeepQ
arrhythmia database is a marked milestone achieved by our two
year annotation effort. We plan to make this DeepQ dataset pub-
licly available to advance medical research in developing outpatient,
mobile arrhythmia detectors.
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