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Three Lectures

* Lecture #1: Scalable Big Data Algorithms
— Scalability issues
— Key algorithms with application examples

* Lecture #2: Intro to Deep Learning

— Autoencoder & Sparse Coding
— Graph models: CNN, MRF, & RBM

e Lecture #3: Analytics Platform [by Simon Wu]
— Intro to LAMA platform
— Code lab



Lecture #1 Outline

* Motivations — Why Big Data is not only desirable but
also necessary?

e Applications
— HTC XPRICE Tricorder
— Context-aware Computing

* Key Parallel Algorithms
— Frequent Itemset Mining [ACM RS 08]
— Latent Dirichlet Allocation [TIST 10]
— Support Vector Machines [MM 01] [MS 03][NIPS 07]
— Spectral Clustering [PAMI 10]
— Deep Learning [NIPS 12][ OSDI 14]

* Perspectives and Opportunities
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Open Source Links
Downloaded > 12,000 times

e PSVM,
e PLDA+,
 Parallel Spectral Clustering, and

 Parallel Frequent Pattern Mining
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Machine Learning

X: Data
— U: Unlabeled data
— L: Labeled data
®: Learning algorithm
— Implied hypothesis
f=0O(L+ U)

— Minimize some error function

— Regularize parameters to prevent over-fitting

y=f(u€l)

Ed Chang @ BigDat

2015
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Scalability Issue

 f=0 (L) — supervised learning
— Training data can be voluminous

— A few millions is already too many,
though not enough!

— Training data is scarce

Ed Chang @ BigDat
2015
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Gene Classification
D =4026 genes, L =3, N =59 cases
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Scalability Issues
* f=O(L)

— Training data is too many
— Training data is scarce
 f=O (L* + U) semi-supervised learning
— L* Collect most useful training data
— U Use unlabeled data
— L* + U is voluminous !
 f=O (U) unsupervised learning
— NN, CNN, RBM, Deep Learning

Ed Chang @ BigDat
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Challenges

* Volume, both too large and too small
— Amount of data A\
— Amount of labeled data W
— dimensionality of dataA

* Variety

* Velocity

— Addressed in Lecture #3 with online learning
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Why Big Data

* Simply too many data instances? Yes
e But also growing complexity, or dimensionality of data
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Why Big Data

* Every learning model is a variant of the nearest
neighbor model (distance computation, likelihood)

 An unseen instance needs to get the labels of its
neighbors to predict its label
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Why Big Data

- e f=.5,d=2,NN=25%
* Whendis large
® The volume of NN 2 0

f<1d>100,f!-> 0,
e Curse of dimensionality
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More Data vs. Better Algorithms

Banko & Brill, 2001

Test Accuracy
1.00

1 10 100 1000
Sze of Tranng Corpus (Vilions of Words)

Figure 2. Learning Curves for Confusable Disambiguation
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Applications & Algorithms

* Applications
— HTC XPRICE Tricorder
— Context-aware Computing
* Key Algorithms
— Frequent Itemset Mining [ACM RS 08]
— Latent Dirichlet Allocation [WWW 09, TIST 10]
— Support Vector Machines [MM 01, MS 03, NIPS 07, VLDB 14]
— Spectral Clustering [ECML 08, PAMI 10]
— Deep Learning [NIPS 12, OSDI 14]

* Perspectives and Opportunities
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XPRIZE Tricorder

Fostering disruptive innovation to bring affordable health care
to underprivileged

Portable device weight < 5 pounds
Exam 15+ diseases & monitor 5 vital signs
HTC was selected into ten finalists (from

Dynamical

- e 255) on 8/27/2014

Final round : May, 2015

nTC




Diagnosis: Collaborative Filtering

Activities, Food, Symptoms, Diseases, Drugs

Based on membership so far,
and memberships of others

|

Predict further membership

Individuals
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Collaborative Filtering

Activities, Food, Symptoms, Diseases, Drugs

Based on partially
observed matrix

|

Predict unobserved entries

Individuals
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FIM-based Prediction

To grow the base, we need association rules

@ An association rule: a,b,c — d

@ A Bayesian interpretation: P(d | a,b,c) = W

@ The key is to count the occurrences (support) of itemsets N{...)
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FIM-based Prediction

To grow the base, we need association rules

@ An association rule: a,b,c — d

N{a,b,c,d)

@ A Bayesian interpretation: P(d | a,b,c) = “N{ab.c]

@ The key is to count the occurrences (support) of itemsets N{...)
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FIM-based Prediction
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FIM Preliminaries

* Observation 1: If an item A is not frequent, any pattern contains
A won’t be frequent [R. Agrawal]

=>» use a threshold to eliminate infrequent items

jOb’§erva ion 2: Patterns containing A are subsets of (or found
from) transactions containing A [J. Han]

=» divide-and-conquer: select transactions containing A to form a
conditional database (CDB), and find patterns containing A from
that conditional database

{A, B}, {A, C},{A} > CDBA
{A, B}, {B, C} > CDB B
* Observation 3: Duplicates !
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Preprocessing

e According to

ii Observation 1, we
a: 3 count the support of
facdgimp b: 3 fcamp each item by
m: 3 scanning the
abcflmo p: 3 fcabm database, and
eliminate those
bfhjo fb infrequent items
from the
bcksp cbp transactions.
afcelpmn fcamp * According to

Observation 3, we
sort items in each
transaction by the
order of descending
support value.

B T AT E®R o Qo
O TR e R N
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Parallel Projection

According to Observation 2, we construct CDB of item
A; then from this CDB, we find those patterns
containing A

How to construct the CDB of A?

— If a transaction contains A, this transaction should appear in
the CDB of A

— Given a transaction {B, A, C}, it should appear in the CDB of
A, the CDB of B, and the CDB of C

Dedup solution: using the order of items:
— sort {B,A,C} by the order of items =2 <A,B,C>
— Put <> into the CDB of A

— Put <A> into the CDB of B

— Put <A,B> into the CDB of C
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Example of Projection

fcamp p {fcam/fcam/cb}

fcabm : a/fcab}
fb
cb a: {fc/fc/fc}

fcamp c.: {f/f/f}

Example of Projection of a database into CDBs.
Left: sorted transactions in order of f, ¢, a, b, m, p
Right: conditional databases of frequent items

Ed Chang @ BigDat 2015



Example of Projection

fcamp p: {fcam/fcam/cb}
fcabmﬁ m:{fca/fca/fcab}
fb

cbp a. {fc/fc/fc}

fcamp c.: {f/f/1f}

Example of Projection of a database into CDBs.
Left: sorted transactions;
Right: conditional databases of frequent items
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Example of Projection

fcamp p: {fcam/fcam/cb}
fcabm m:{fca/fca/fcab}
fb,‘\\{‘fb:)jt;/c}

C bep— a. {fc/fc/fc}
fcamp c.: {f/f/1f}

Example of Projection of a database into CDBs.
Left: sorted transactions;
Right: conditional databases of frequent items
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Recursive Projections [H. Li, et al. ACM RS 08]

e Recursive projection form

MapReduce  MapReduce MapReduce
P P P a search tree

Iteration 1 Iteration2  Iteration 3 .
e Each nodeis a CDB

| | | |
b c e Using the order of items to
] Diab Dlabe prevent duplicated CDBs.

a_-Dla
b | D|ac e Each level of breath-first
C
search of the tree can be
D ¢ Dlbe done by a MapReduce
b | DIb iteration.

e Once a CDB is small
enough to fit in memory,

B Dlec we can invoke FP-growth

to mine this CDB, and no

more growth of the sub-
tree.
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Projection using MapReduce

Reduce inputs

(conditional databases)

key: value

Reduce outputs
(patterns and supports)
key: value

p:{fcam/fcam/cb} p:3, pc:3

m: {fca/fca/fcab}

mf:3
mc:3
ma:3
mfc:3
mfa:3
mca:3
mfca:3

b: {fca/f/c}

b:3

a. {fc/fc/fc}

a:3
af:3
ac:3
afc:3

Map inputs Sorted transactions Map outputs
(transactions) (with infrequent (conditional transactions)
key="": value items eliminated) key: value

facdgimp fcamp p: fcam

m: fca

a: fc

c. f
abcflmo fcabm m: fcab

b: fca

a: fc

c. f
bfhjo fb b: f
becksp cbp p: ¢b
afcelpmn fcamp b: ¢

p: fcam

m: fca

a: fc

c. f

1/26/2015

c. {f/f/f}

c:3
cf:3
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Collaborative Filtering
[Confucius or Google QA, VLDB 2010]

Users/Labels/Documents

Based on membership so far,

and memberships of others

|

Predict further membership

Documents
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Latent Semantic Analysis

( I :
e Search
— Construct a latent layer for better
for semantic matching i
e Example: @
— iPhone crack L C
. T
— Apple pie £
i >
N\ i (&)
i o
1 recipe pastry for a 9 inch ' O
Documents double crust How to install apps on E
9 apples, 2/1 cup, brown Apple mobile phones? E
sugar :

Topic E
Distribution .

Topic i
Distribution |
e iPhone crack Apple pie
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Users/Labels/Documents

? ? ? ? ? ? ? ?
? ? ? ? ?
? ? ? ? ?

e Collaborative Filtering Apps
— Recommend Users = Docs
— Recommend Labels = Docs
— Recommend Photos = Docs

e Predict the ? In the gray cells

—




The Problem

* Two problems that arise using the vector
space model:
— Synonymy: many ways to refer to the same

object, e.g. car and automobile
* |leads to poor recall

— Polysemy: most words have more than one
distinct meaning, e.g. model, python, chip

* |leads to poor precision



The Setting

e Corpus, a set of N documents
—D={d 1,..,d N}
* Vocabulary, a set of M words
— W={w_1, ... , w_M}
A matrix of size N * M to represent the occurrence of

words in documents
— Called the term-document matrix



Documents, Topics, Words

* A document consists of a number of topics
— A document is a probabilistic mixture of topics

* Each topic generates a number of words
— A topic is a distribution over words

— The probability of the it word in a document
T

P(w) = > P(wilz; = j)P(z; = j)
=1



Latent Dirichlet Allocation m. jordan 04]

a: uniform Dirichlet ¢ prior
for per document d topic
distribution (corpus level
parameter)

f: uniform Dirichlet ¢ prior
for per topic z word
distribution (corpus level
parameter)

6, is the topic distribution of
doc d (document level)

z4 the topic if the jt word in
d, wg the specific word (word
level)

1/26/2015
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Example

N
v
8 DOCUMENT 1: river? stream?
river? stream?
river? stream? river?
stream?
v
TOPIC1
—
v
— DOCUMENT 2: river? stream? bank? stream? bank?
& river? stream? bank? river? bank? stream? river?
Z bank? stream? bank? river? stream? bank? stream?
strea™ = bank? river?  stream? bank? river? bank?
NI stream? river? bank? stream? bank?
e
CI
v
TOPIC 2
Mixture Mixture Bayesian approach: use priors
topics weights Mixture weights ~ Dirichlet( ¢ )

Mixture topics ~ ~ Dirichlet( 8)
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1/26/2015

Inverting ( “fitting” ) the model

~
TOPIC1

T
—

v

v
TOPIC 2

Mixture
components

Mixture
weights

DOCUMENT 1: money’ bank’ bank’ loan’ river’ stream’ bank’
money’ river’ bank’ money’ bank’ loan’ money’ stream’ bank’
money’ bank’ bank’ loan’ river’ stream’ bank’ money’ river’ bank’
money’ bank’ loan’ bank’ money’ stream’

DOCUMENT 2: river’ stream’ bank’ stream’ bank’ money’ loan’
river’ stream’ loan’ bank’ river’ bank’ bank’  stream’ river’ loan’
bank’ stream’ bank’ money’ loan’ river’ stream’ bank’ stream’
bank’ money’ river’ stream’ loan’ bank’ river’ bank’ money’ bank’
stream’ river’ bank’ stream’ bank’ money’
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LDA Gibbs Sampling: Inputs And Outputs

Inputs:

1. Training data: documents as bags words topics

of words
2. Parameter: the number of topics docs —_— docs
Outputs:

1. A co-occurrence matrix of topics
topics [L T

and documents
words

2. A co-occurrence matrix of topics
and words
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Example Application
corpus data

TASA corpus: text from first grade to college
— representative sample of text

26,000+ word types (stop words removed)
37,000+ documents
6,000,000+ word tokens



Example Topics

e 37K docs, 26K words
e 1700 topics, e.g.:

PRINTING
PAPER
PRINT

PRINTED
TYPE
PROCESS
INK
PRESS
IMAGE
PRINTER
PRINTS
PRINTERS
COPY
COPIES
FORM
OFFSET
GRAPHIC
SURFACE
PRODUCED
CHARACTERS

PLAY
PLAYS
STAGE
AUDIENCE
THEATER
ACTORS
DRAMA
SHAKESPEARE
ACTOR
THEATRE
PLAYWRIGHT
PERFORMANCE
DRAMATIC
COSTUMES
COMEDY
TRAGEDY
CHARACTERS
SCENES
OPERA
PERFORMED

TEAM
GAME
BASKETBALL
PLAYERS
PLAYER
PLAY
PLAYING
SOCCER
PLAYED
BALL
TEAMS
BASKET
FOOTBALL
SCORE
COURT
GAMES
TRY
COACH
GYM
SHOT

JUDGE
TRIAL
COURT
CASE
JURY
ACCUSED
GUILTY
DEFENDANT
JUSTICE
EVIDENCE
WITNESSES
CRIME
LAWYER
WITNESS
ATTORNEY
HEARING
INNOCENT
DEFENSE
CHARGE
CRIMINAL

HYPOTHESIS
EXPERIMENT
SCIENTIFIC
OBSERVATIONS
SCIENTISTS
EXPERIMENTS
SCIENTIST
EXPERIMENTAL
TEST
METHOD
HYPOTHESES
TESTED
EVIDENCE
BASED
OBSERVATION
SCIENCE
FACTS
DATA
RESULTS
EXPLANATION

STUDY
TEST
STUDYING
HOMEWORK
NEED
CLASS
MATH
TRY
TEACHER
WRITE
PLAN
ARITHMETIC
ASSIGNMENT
PLACE
STUDIED
CAREFULLY
DECIDE
IMPORTANT
NOTEBOOK
REVIEW




PRINTING
PAPER
PRINT

PRINTED
TYPE
PROCESS
INK
PRESS
IMAGE
PRINTER
PRINTS
PRINTERS
COPY
COPIES
FORM
OFFSET
GRAPHIC
SURFACE
PRODUCED

PLAYS
STAGE
AUDIENCE
THEATER
ACTORS
DRAMA
SHAKESPEARE
ACTOR
THEATRE
PLAYWRIGHT
PERFORMANCE
DRAMATIC
COSTUMES
(6(@)\%1219)
TRAGEDY

SCENES
OPERA
PERFORMED

Polysemy

TEAM
GAME
BASKETBALL
PLAYERS
PLAYER

PLAYING
SOCCER
PLAYED

BALL
TEAMS
BASKET
FOOTBALL
SCORE

GAMES
TRY
COACH
GYM
SHOT

JUDGE
TRIAL

CASE
JURY
ACCUSED
GUILTY
DEFENDANT
JUSTICE

WITNESSES
CRIME
LAWYER
WITNESS
ATTORNEY
HEARING
INNOCENT
DEFENSE
CHARGE
CRIMINAL

HYPOTHESIS
EXPERIMENT
SCIENTIFIC
OBSERVATIONS
SCIENTISTS
EXPERIMENTS
SCIENTIST
EXPERIMENTAL

METHOD
HYPOTHESES
TESTED

BASED
OBSERVATION
SCIENCE
FACTS
DATA
RESULTS
EXPLANATION

STUDY

STUDYING
HOMEWORK
NEED
CLASS
MATH
TRY
TEACHER
WRITE
PLAN
ARITHMETIC
ASSIGNMENT
PLACE
STUDIED
CAREFULLY
DECIDE
IMPORTANT
NOTEBOOK
REVIEW




Three documents with the word “play”

(numbers & colors = topic assignments)

A BB is written®®? to be performed®? on a stage®® before a
audience®? or before or ( for
later®* by audiences’®?). A [EMEN is written®?
because playwrights’®? have something

He was listening®’’ to music®”’ from a passing”® riverboat. The
music”’” had already captured®® his as well as his . It was
jazz"”’. Bix beiderbecke had already had music’’’ lessons®”’. He

to [EIEMEN the cornet. And he to IENEEiazz""

the . the for one. The

book?>* . Don'® into the . Don?®®

and read”” the book**. The boys’’ see a for
twias/Ihe two bOYS020 m the @mi @ sigoat 2015




LDA Gibbs Sampling: Inputs And Outputs

Inputs:

1. Training data: documents as bags words topics

of words
2. Parameter: the number of topics docs —_— docs
Outputs:

1. A co-occurrence matrix of topics
topics [L T

and documents
words

2. A co-occurrence matrix of topics
and words
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LDA Gibbs Sampling: Inputs And Outputs

Inputs:

1. Training data: documents as bags words
of words

2. Parameter: the number of topics docs

Outputs:

1. A co-occurrence matrix of topics
and documents

topics [I ]

2. A co-occurrence matrix of topics words

and words
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PLDA+ --- enhanced parallel LDA
[ACM TIST 2010]

 PLDA is restricted by memory: Topic-word matrix has
to fit into memory

WK matrix must be globally synchronized

e Restricted by Amdahl’s Law: communication costs
too high, e.g., 1/10 cost spent in 10s caps speedup to

|
|

W DIP || WiPw D/Pd
|

(A) PLDA (B) PLDA*
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Work Order Example

Words a, b,c,a,c,d, e, f,a,c b
Words a,a,a,b,b,c,c,c,d, e, f

Word sorting per node to improve locality

Word bundles to balance workload and
increase CPU computation unit to mask IO
time



PLDA+ --- enhanced parallel LDA

Take advantage of bag of words modeling: each Pw
machine processes vocabulary in a word order

Pipelining: fetching the updated topic distribution
matrix while doing Gibbs sampling

Ensure tf + tu < ts (4(A) is good, 4(B) suboptimal)

Time Tim
— —
| | | | |
[ | [
w F 3 1] w F S U
w | | w |
| | |
w F s U F s |u
: | | W2 |
Wi . F s u : W, : Fl s |u
w S F s u w | F s |u
I | 4 ‘ I |
(A) L | Lo (B) |

Fig. 4: Pipeline-based Gibbs Sampling in PLDA*. (A): ts > ty +tu. B):ts < tf+tu.



MapReduce VS. MPI?

MapReduce MPI
GFS/IO and task rescheduling overhead Yes No
between iterations +1
Flexibility of computation model AllReduce only Flexible
+0.5 +1
Efficient AllIReduce Yes Yes
+1 +1
Recover from faults between iterations Yes Apps
+1 +0.5
Recover from faults within each iteration Yes Apps
+1 +0.5
Final Score for scalable machine learning 3.5 5




Speedup
1,500x using 2,000 machines

Number of Processors
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Applications & Algorithms

* Applications
— HTC XPRICE Tricorder
— Context-aware Computing
* Key Algorithms
— Frequent Itemset Mining [ACM RS 08]
— Latent Dirichlet Allocation [WWW 09, TIST 10]
- Support Vector Machines [MM 01, MS 03, NIPS 07, VLDB 14]
— Spectral Clustering [ECML 08, PAMI 10]
— Deep Learning [NIPS 12, OSDI 14]

* Perspectives and Opportunities
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Melanoma vs. Nevus




Key Technical Challenges

Acquire labeled data (most data are unlabeled)
Formulate distance function
Train a classifier

Classify unlabeled data
— Fast
— Low power consumption



Models

* Generative Models * Discriminative Models
— Model distribution — Model class boundaries
— One each class — Ignore distribution
— Look for maximum — Support Vector
likelihood Machines (SVMs)

— Need a lot of training data
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IR = A Classification Problem

Use SVMActive to Acquire Training Data
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IR = A Classification Problem
Most Data are Unlabeled
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Step #1: Solicit Labels

Via Active Learning [MM 01]



2: Compute Boundary



. [dentify Useful Samples






4: Solicit Feedback
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Step #6: Identify Samples






Step #8: Refine Boundary



9: Classify Data



Observations

ldentify good samples
Collect diversified samples
Provide useful results much earlier

Eventually, if all data have been labeled,
classification accuracy converges

Next, how to quantify similarity?
— One way is to hand-craft a kernel matrix
— The other is to learn a good manifold



Similarity?
Distance Function Formulation

| —= =3 =

=5 &3 7
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Group by Proximity

L e 22 =

=5 &3 7
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x1

X2

X3

x4

X5

X6

X7

x8

Group by Proximity

x1 X2 X3 x4 x5 X6 X7 X8

1 7 4 3 Jl 6 2 1
1 4 3 .6 g 3 2
1 7 3 4 /7 .6

1 7 3 2
1 .6 4
1 7

Ed Chang @ BigDat 2015
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Group by Shape

| —= =3 =

=5 &3 7
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x1

X2

X3

x4

X5

X6

X7

x8

Group by Shape

x1 X2 X3 x4 x5 X6 X7 X8

1 7 4 4 2 2 2 2
1 4 7 2 2 2 2
1 7 2 2 2 2

1 VA A 4
1 g 7
1 v

Ed Chang @ BigDat 2015
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Group by Color

| —= =3 =

=5 &3 7
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x1

X2

X3

x4

X5

X6

X7

x8

Group by Color

x1 X2 X3 x4 x5 X6 X7 X8

1 7 3 3 3 2 2 7
1 3 3 3 NI A
1 7 7 7 3 3

1 7 3 3
1 3 3
1 7

Ed Chang @ BigDat 2015
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Similarity?
Distance Function Formulation

| —= =3 =

=5 &3 7

Ed Chang @ BigDat 2015 1/26/2015




“A" IS FOR ASYMMETRY

e |f you draw a line through the
middie of the mole, the halves of
a melanoma won't match in size,

“B" IS FOR BORDER

e The edges of an early
melanoma tend to be uneven,
crusty or notched.

CANCEROUS

“C" IS FOR COLOR
e Healthy moles are uniform in
color. A vanety of colors, espe-
cially white and/or blue, is bad.

“D" IS FOR DIAMETER

e Melanomas are usually larger
in chameter than a pencil eraser,
although they can be smaller.

“E” IS FOR EVOLVING

¢ When a mole changes in size,
shape or color, or begins to bleed
or scab, this poifitste tanges




x1

X2

X3

x4

X5

X6

X7

x8

Group by Labels
Update the Kernel Matrix

x1 X2 X3 x4 x5 X6 X7 X8

1 7 3 3 3 2 2 7
1 4 3 3 3 2 T
1 7 7 7 3 3

1 7 3 3
1 3 3
1 7

Ed Chang @ BigDat 2015
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Similarity Theories

* Objects are similar in all respects
(Richardson 1928)

* Objects are similar in some respects
(Tversky 1977)

* Similarity is a process of determining
respects, rather than using predefined
respects (Goldstone 94)



Traditional Similarity Theories

Objects are similar in all or 010]00°

some respects _ _

: : : 0| O0| 0O |
Minkowski Function ool o -
—D=(Z_1 m(pi- qi)")/" ' 5 _
Weighted Minkowski [0] 0] 00 ]

Function

—D=(2_ LM, wi(pi - gi)")/n
Same w is imposed to app
pairs of objects p and g



DPF: Dynamic Partial Function

[B. Li, E. Chang, et al, MM Systems 2013]

* Similarity is a process of determining
respects, rather than using predefined
respects (Goldstone 94)

a, [0 ] ]0..0
a,[| | |00...0
a,[] 0] | 0...0

a [000 | |...0

]

a,[| | 1]00..0]
a,[0] | |0..0]
a,[00 ] | |..0]

2 [0000 [..0]



Lecture #2 Preview

* How can deep learning help learn features?
e Sparse coding confirms DPF on the right track

* For now, need to speed up the kernel method

— Suppose we have a kernel matrix representing
pairwise similarity of data instances

— How to speed up SVM learning w/ kernel?

1/26/2015 Ed Chang @ BigDat 2015



SVM Bottlenecks

Time consuming — 1M dataset, 8 days

By ...

Memory consuming — 1M dataset, 10G

1/26/2015 Ed Chang @ BigDat 2015



Matrix Factorization Alternatives

Factorization Cost

exact «

approximate
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PSVM [E. Chang, et al, NIPS 07]

* Column-based Incomplete Cholesky
Factorization (ICF)

— Slower than row-based on single machine
— Parallelizable on multiple machines
* Changing IPM computation order to achieve
parallelization
—D=(AxB)xC
—D=Ax(BxC)

1/26/2015 Ed Chang @ BigDat 2015



Parallelized and Incremental SVM

=
O Matrix Summation
=
—— Q
Raw Data  Kernel Matrix ICF  Matrix Multiplication 5 Cho eskyFac origion % 3
Q
2 ~u
S, 5

y = & =
Incremental

Linear System Solving

Incremental [Incremental  Incremental Incremental
Data Kernel Matrix ICF Matrix Multiplication
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Incomplete Cholesky Factorization (ICF)

N \\ \\ N
- - - S
nxn pXxn
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Parallelized and Incremental SVM

Matrix Summation

® ® ©)
Y
L

-f\\ —
oo 0 = X Q
Raw Data  Kernel Matrix ICF Matrix Multiplication 5 §
Q
% g
N

y = Ew

T
a0 1 22

 seneneeewmawww
B 2

Incremental [Incremental  Incremental Incremental a Tover
Data Kernel Matrix ICF Matrix Multiplication
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pXp

Matrix Product

Ed Chang @ BigDat 2015
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Speedup

Image (200k) CoverType (500k) RCV (800k)
Machines | Time (s) | Speedup Time (s) Speedup Time (s) Speedup
100 | 1,958 (9 0% | 16,818 (442) | 10° | 45,135 (1373) | 107
30 572 (8 342 | 5,501 (10 0.0 | 12,280 (98 36.7
[ 50 473 (14) | 414 | 3,598 (60 46.8 7,605 (92) 58.7
100 330 (47) [ 594 | 2,082 (29 80.8 4,992 (34) 90.4
150 214 (40) | TI4 | 1,865 (93 0021 | 3.313 (50) 136.3
200 04 (41) | 667 | 1416 (24) | 18T | 3,163 (69) 142.7
250 07T (78) | 494 | 1405 (115) | 1197 | 2,719 (203) | 166.0
500 814 (123) | 241 | 1,655 (34) | 10L6 | 2,671 (193) | 169.0
LIBSVM | 4,334 NA NA | 28,149 NA NA | 184,199 NA NA
1/26/2015 Ed Chang @ BigDat 2015



Speadup
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Speadup
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Key Technical Challenges

* Classify unlabeled data
— Fast
— Low power consumption
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Context-Aware Computing
[Chang, et al. VLDB 2013, 2014]

55 minutes to work
g |
l
» J N/ 1 L
| I—
m
gw 8 O g
| 2
8
L
=
=
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Transportation-mode Detection

o B O

what where when

12642016 Ed Chang @ BigDat 2015



Transportation Mode Detection
[Chang, et al., VLDB 2013, 2014]

Gyro ﬂ
- Sensor Calibration _ﬂ’
Accelerometer - Sensor Processing Classification o0
- Sensor Fusion g

Magnetometer Q
<

Feature . . :
Input | Extraction [ | Classification—» | Correction
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“fitbit
l l DASHBOARD LOG PRODUCTS - COMMUNITY PREMIUM
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Sensor Hub Saving -

92 91.53 1200

90.66 90.72 90.73 S
2
90 1OOOE
88 800
1,137
> ’
§ 86.3 A
386 600
Q
<

(0]
D
N
o
o

(00]
ND
N
o
o
Estimated Hourly Power Consu

80 0
SVM (linear) SVM (d-2 | SVM (d-3 | SVM (d-4 SVM (d-5 SVM (RBF)
polynomial) | polynomial) | polynomial) polynomial)

1001/ ZR2digfary and Confidential Fe-clee @ BigDat 2015
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SVMs = Max Margin M

Min |w|?/2
— subject to yi(xw+b) =2 1
—-i=1,..,N

Lp = minw,b |W | 2/2 + 2;:1__|\| O(i[yi(XiW+b)-1]
W = 2i=1..N OLiYiXi

0= Zi=1..N QLY



Wolfe Dual

o Ld =2y O - 1/2 220 11 NOUOLYYXiX;
e Subject to

— ;20

— i [yi(xiw+b)-1] =0

— KKT conditions

* a;>0 yi(xw+b) =1 (Support Vectors)
* ;=0 yi(xw+b) >1



Class Prediction

®* Vg=WXg+b
¢ W =2y AYiXi

* Vg = sign(i1.n OLYi(Xi -Xq) + b)



Sensor Hub Saving 2

* Power Consumption by MCU/CPU
* Classifier: SVM (degree-3 polynomial)

388.5

177X power
reduction

0.5
mA

104HfZ6F3fikry and Confidential P h O n e Ed Chang @ BigDat ZOS e n S O r h u b



Applications & Algorithms

* Applications

— HTC XPRICE Tricorder

— Context-aware Computing
* Key Algorithms

— Frequent Itemset Mining [ACM RS 08]

— Latent Dirichlet Allocation [WWW 09, TIST 10]

— Support Vector Machines [MM 01, MS 03, NIPS 07, VLDB 14]
- Spectral Clustering [ECML 08, PAMI 10]

— Deep Learning [NIPS 12, OSDI 14]

* Perspectives and Opportunities

1/26/2015 Ed Chang @ BigDat 2015



Clustering
Most Widely Used Pattern Recognition Subroutine

* Microarray Data Analysis

e Ultrasound Image Segmentation
* Document Pattern Discovery

* High-dimensional Data Indexing

1/26/2015 Ed Chang @ BigDat 2015
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Spectral Clustering . e, m. sordan]

* Exploit pairwise similarity of data instances
* Key steps
— Construct pairwise similarity matrix
e e.g., using Geodisc distance
— Compute the Laplacian matrix
— Apply eigendecomposition
— Perform k-means et

1/26/2015 Ed Chang @ BigDat 2015



Scalability Problem

* Quadratic computation of nxn matrix
* Approximation methods

Dense Matrix

Sparsification Nystrom Others
t-NN  ¢-neighborhood ... random  greedy ....

1/26/2015 Ed Chang @ BigDat 2015



Sparsification vs. Sampling

e Construct the dense * Randomly sample /
similarity matrix S points, where [ << n

* Sparsify S e Construct dense

e Compute Laplacian similarity matrix [A B]
matrix L ) between [ and n points

e Normalize A and B to be
in Laplacian form
* Apply ARPACLK on L R=A+ABBTAY.

 Use k-means to cluster R=USUT
rows of V into k groups

L=I-D I/QSD l/‘?: Dzz-:ZSIJ
=1

e k-means

1/26/2015 Ed Chang @ BigDat 2015



E m p| r|Ca I StUdy [song, et al., ecml 08]

* Dataset: RCV1 (Reuters Corpus Volume I)

— A filtered collection of 193,944 documents in 103
categories

 Photo set: PicasaWeb
— 637,137 photos

* Experiments

— Clustering quality vs. computational time

* Measure the similarity between CAT and CLS
* Normalized Mutual Information (NMl)

]VA[I(CAT C'LS) — I(CAT;CLS)
’ | VH(CAT)H(CLS)

— Scalability

1/26/2015 Ed Chang @ BigDat 2015



NMI Comparison (on RCV1)

0.29F : ' B 0.29F ' ' ' ' .
0.28} - 0.281 -
0.27 - 0.27F 4
0.26 - 0.261

= =

= =
0.25} - 0.25¢ -
0.24} - 0.241 -
0.23} - 0.231 -
0.22 ' ' ' 0.22 ' ' ' :

0 1000 2000 3000 0 50 100 150 200 250
Number of Samples Number of Nearest Neighbors
Nystrom method Sparse matrix approximation
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Speedup Test on 637,137 Photos

e K =1000 clusters

Eigensolver k-means

Machines|Time (sec.) Speedup|Time (sec.) Speedup
1 — _— _— —
2 8.074 x 10 2.00(3.609 x 10* 2.00
4 4.427 x 104 3.65(/1.806 x 104 4.00
8 2.184 x 10* 7.39|8.469 x 10° 8.52
LA Q RA7Z x 103 16 3714 820 % 103 15 62
I S 4.886 x 103 33.05(|2.021 x 103 3D0.72

64 T.067 < 10° 39.7I1.433 X 10° 50..
128 3.471 x 103 46.52|1.090 x 10° 66.22
256  |4.021 x 103 40.16|1.077 x 10 67.02

* Achiever linear speedup when using 32 machines, after that,
sub-linear speedup because of increasing communication and
sync time

1/26/2015 Ed Chang @ BigDat 2015



Sparsification vs. Sampling

Sparsification

Nystrom, random
sampling

Information Fulln x n None
similarity scores
Pre-processing O(n?) worst case; |O(nl), | << n

Complexity easily parallizable
(bottleneck)
Effectiveness Good Not bad (itendra M.,

PAMI)

1/26/2015

Ed Chang @ BigDat
2015




Applications & Algorithms

* Applications
— HTC XPRICE Tricorder
— Context-aware Computing
* Key Algorithms
— Frequent Itemset Mining [ACM RS 08]
— Latent Dirichlet Allocation [WWW 09, TIST 10]
— Support Vector Machines [MM 01, MS 03, NIPS 07, VLDB 14]
— Spectral Clustering [ECML 08, PAMI 10]
- Deep Learning [NIPS 12, OSDI 14]

* Perspectives and Opportunities

1/26/2015 Ed Chang @ BigDat 2015



Multiple-Layer Networks

Neuron Network (NN) Model

An elementary neuron with R inputs is shown below. Each input is
weighted with an appropriate w. The sum of the weighted inputs and the
bias forms the input to the transfer function f. Neurons can use any
differentiable transfer function f to generate their output.

INnput General Neuron

~

Where

R = number of
<> elements in

INput vector

1/26/2015 Ed Chang @ BigDat 2015



NN Model

Transfer Functions (Activition Function)

Multilayer networks often use the log-sigmoid transfer function logsig.
The function logsig generates outputs between 0 and 1 as the neuron's
net input goes from negative to positive infinity

ad
............ M+l
/ )
>
.............. e

a = logsig(n)
Log-Sigmoid Transfer Function

1/26/2015 Ed Chang @ BigDat 2015



NN Model

Feedforward Network

A single-layer network of S logsig neurons having R inputs is shown
below in full detail on the left and with a layer diagram on the right.

Layer of logsig

Input Neurons Input Layer of logsig Neurons
s \ N\ r NN
W " a
p - _’L_> Rlzl d _\
1 b SXR @_D’L
Sx1
P, n a, L= b %
' .L ’ R Sx1 S
p, b . \/
: ) a= logsig (Wp+b)
Py "s > a5 > Where R = number of
-L elements in
b Input vector
—/ N / S = number of

a= logsig(Wp+b) neurons in layer
1/26/2015 Ed Chang @ BigDat 2015



NN Model
Learning Algorithm

The following slides describes learning process of multi-layer neural network
employing backpropagation algorithm. To illustrate this process the three layer

neural network with two inputs and one output,which is shown in the picture
below, is used:

1/26/2015
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Learning Algorithm:
Backpropagation

Each neuron is composed of two units. First unit adds products of weights
coefficients and input signals. The second unit realizes a nonlinear function,
called neuron transfer (activation) function. Signal e is adder output signal,

and y = f(e) is output signal of nonlinear element. Signal y is also output signal of

‘ e=Xx.W.+X. W non-linear y=f(e)
summing 11 "2 2». element gy
> junction f(e)

1/26/2015 2 2 Ed Chang @ BigDat 2015



Feed Forward

Pictures below illustrate how signal is forward-feeding through the
network, Symbols w,, ., represent weights of connections between
network input x,, and neuron n in input layer. Symbols y, represents
output signal of neuron n.

/."1 = fl("'(xl)r"l + “'(xz)l-"z)

1/26/2015 Ed Chang @ BigDat 2015



Feed Forward

v, =1 2("'(x1)2-"1 + "'(x:e)z-"z)

219
(x2)Z




Feed Forward

V3 = fa(WyaXy + WeenaXa)




Feed Forward

Propagation of signals through the hidden layer. Symbols w,_  represent weights
of connections between output of neuron m and input of neuron n in the next
layer.

1/26/2015 Ed Chang @ BigDat 2015



Feed Forward




Learning Algorithm:
Forward Pass

Propagation of signals through the output layer.




Learning Algorithm:
Backpropagation

To teach the neural network we need training data set. The
training data set consists of input signals (x; and x, ) assigned
with corresponding target (desired output) z.

The network training is an iterative process. In each iteration
weights coefficients of nodes are modified using new data
from training data set. Modification is calculated using
algorithm described below:

Each teaching step starts with forcing both input signals from
training set. After this stage we can determine output signals
values for each neuron in each network layer.



Learning Algorithm:
Backpropagation

In the next algorithm step the output signal of the network y is
compared with the desired output value (the target z), which is found in

training data set. The difference is called error signal 6 of output layer

neuron

Ed Chang @ BigDat 2015
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Learning Algorithm:
Backpropagation

The idea is to propagate error signal 6 (computed in single teaching step)
back to all neurons, which output signals were input for discussed
neuron.

1/26/2015 Ed Chang @ BigDat 2015



Learning Algorithm:
Backpropagation

The idea is to propagate error signal 6 (computed in single teaching step)
back to all neurons, which output signals were input for discussed

nelirnn

1/26/2015 Ed Chang @ BigDat 2015



Learning Algorithm:
Backpropagation

The weights' coefficients w,, used to propagate errors back are equal to
this used during computing output value. Only the direction of data flow
is changed (signals are propagated from output to inputs one after the
other). This technique is used for all network layers. If propagated errors
came from few neurons they are added. The illustration is below:

1/26/2015 Ed Chang @ BigDat 2015



Learning Algorithm:
Backpropagation

When the error signal for each neuron is computed, the weights
coefficients of each neuron input node may be modified. In formulas

below df(e)/de represents derivative of neuron activation function
(which weights are modified).

. df(e)
W = Wy + 0 =X
{ (x1)1 (xiy1 T 770, do ]
. df(e)
W o = Wy 17O X
. (x 2)1 (x1 T 170y do 2

1/26/2015 Ed Chang @ BigDat 2015



Learning Algorithm:
Backpropagation

When the error signal for each neuron is computed, the weights
coefficients of each neuron input node may be modified. In formulas

below df(e)/de represents derivative of neuron activation function
(which weights are modified).

_dfy(e)

Wirny2 = Wexnz T770;

X,
de

. df;(e)

Xy

de

w212
Z
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Learning Algorithm:
Backpropagation

When the error signal for each neuron is computed, the weights
coefficients of each neuron input node may be modified. In formulas

below df(e)/de represents derivative of neuron activation function
(which weights are modified).

df.(e)
N S aNT S
Wiy = Wy TT10——
de
.df.(e)
X Wisg=Wsg +1770 Jste Vs
1 de

1/26/2015 » Ed Chang @ BigDat 2015



http://mathworld.wolfram.com/SigmoidFunction.html

Sigmoid function f(e) and its derlvatlvef(e)

———————————— b-———————————-

f(e)= , B 1s the paramter for slope
l+e™” A
Hence 7 2
d( 1 ) - Sz T Tz '
Fley=9© _ 1+e™ ) df ()
de dd+e") de
f ( )_ /3 e—[)’e _ _ﬁ e ¢

A+e ™Y (I+e )

1 —Be”
(1+€ /36) (1+ —/J’e) _f(e)(l ﬁf(e))

For simplicity, paramter for the slope =1

fe)=fe)(1-f(e)

1/26/2015
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Machine |

Machine 3
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Model Parallelism
[J. Dean et al, NIPS 2012]
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Scalable Deep Learning Platform

Scalable training algorithm
— Asynchronous SDG (stochastic gradient descent)

* Scalable model partitioning
— Model parallelism

e Scalable model parameter store
— Data parallelism

Scalable data transformations

— Data preprocessing and augmentation

1/26/2015 Ed Chang @ BigDat 2015



Scalability of Backpropagation
Project Adam, OSDI 2014]

* Based on the Multi-Spert system and exploits

both model and data parallelism
Parameter Server W =w- Y Aw

OO0
server w / /Aw l
(IO

I
Data Model training Model DD DD
Server system Replicas [:]D D[:] D[:]

Data
Shards

[1}pFaerber, P., and Asanovic¢, K. 1997 Parallel:neural network training on Multi-Spert.



Model Training Optimizations (1/3)

 Multi-threaded training

— Multiple threads are sharing the same model weights

— NUMA-aware allocations to reduce cross-memory bus
traffic

* Fast weight updates
— Update the sharded model weights locally WITHOUT

using locks Single training machine
* Weight updates are O\ LA\ L\ £
commutative and associative by Bl el s
° I ENEIG
 Neural networks are resilient NN\
to the noise introduced o | || ™
T A U A S L A

1/26/2015 Ed Chang @ BigDat 2015 | W= Aw+Aw, +Awgt...



NUMA

* Non Uniform Memory Access

Intersocket
Node 0 connecﬁon Node 1

Remote access

Local
access

1/26/2015 Ed Chang @ BigDat 2015



Model Training Optimizations (2/3)

* Reducing memory copies

— Do not copy the parameters, pass a pointer
instead

* Memory system optimizations
— Fit the working sets in the L3 cache (e.g., 8M)
* Mitigating the impact of slow machines

— Threads to process multiple images in parallel

— Training epoch terminates when 75% of the
model replicas are done =2 20% speed up



Model Training Optimizations (3/3)

* Reduce the communication to the parameter
server

— Can also offload some computation work to the

parameter server

B iB] ] W] ] ] )

wis/ | N\
w3,/ D8 OG O
OO0 OO OO
= B

1/26/2015

Aw=a*d*a

OCOeeE®
wenfoe |\

8a B9 B8
- - -
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Concluding Remarks

More data is helpful, and hence big data

Computational time is reduced by using virtually
infinitely amount of resources

Once computation is fully parallelized, 10 cost can
be reduced via hardware solutions

Both algorithmic approach and system approach
are required to achieve good speedup

1/26/2015 Ed Chang @ BigDat 2015
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