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Abstract— This paper addresses the challenges of small
training data in deep learning. We share our experiences in
the medical domain and present promises and limitations. In
particular, we show through experimental results that GANs
are ineffective in generating quality training data to improve
supervised learning. We suggest plausible research directions
to remedy the problems.
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I. INTRODUCTION

Recent advancements in artificial intelligence (AI) have
allowed for novel methods in facilitating medical diagnoses
in the healthcare domain (e.g., [17], [26]). Medical diagnosis,
the process by which a disease or condition is linked to
a patient’s corresponding signs and symptoms, can prove
challenging because many signs and symptoms are non-
specific and occur similarly across multiple disorders. A
variety of procedures are therefore employed during the
diagnostic process, including pattern recognition, differential
diagnosis, medical algorithms, and clinical decision support
systems (CDSS), to narrow down the possibilities explaining
a patient’s condition [20], [35].

Deep learning has the potential to promote the procedure
of pattern recognition, further aiding medical diagnoses. Pat-
tern recognition is used to diagnose conditions in which the
disease is “obvious” because its correlating set of symptoms
is specific [20]. For example, although rashes are a common
symptom of many skin disorders, shingles rashes appear in
strips on strictly one side of the patient’s torso, stopping
abruptly at a line along the spine. As a result of the disease’s
unique pattern, dermatologists can quickly identify shingles
without much further testing and prescribe the anti-virals
needed to treat the condition. In the case of otitis media (OM)
(further discussed in Section II), an inflammatory disease
of the middle ear, distinctive visual changes in the eardrum
such as redness or calcification can be useful markers in
diagnosing OM. In the case of thoracic diseases (further
discussed in Section III), chest X-ray images may reveal
unique patterns of abnormality between the neck and the
abdomen. The specific pathological patterns of OM and
thoracic diseases allow for deep learning to learn their
features for use in effective diagnoses.

The aim of this paper is to evaluate the promises and lim-
itations of current AI exuberance for pattern-based disease
diagnosis. Numerous papers have been published since 2016
at major medical-imaging related conferences [37]. However,
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most works appear to lack sufficient training data in terms
of quantity and diversity, which we argue is required to
ensure that data-driven deep learning is effective, useful, and
deployable. We use OM and thoracic disease classifications
as examples while discussing small-data learning strategies
for cases where training data is insufficient.

A. Big Data Powering AI Resurgence

The history of the AI resurgence outside the healthcare
domain helps us understand how we may improve supervised
learning in the domain. The current level of “intelligence”
achieved by the recent wave of AI exuberance is arguably
similar to that of the last wave. The last wave of AI
exuberance was fueled by the success of IBM Deep Blue,
which defeated the reigning world chess champion Garry
Kasparov in 1997. The current AI exuberance started with the
success of AlexNet [19], but was largely perpetuated by the
superior performance of AlphaGo [33]. Both AlphaGo and
Deep Blue succeeded for the same key reason: the ability of
a computer to evaluate a large number of candidate positions
and make the subsequent best decision given the state of the
game board.

In Deep Blue and AlphaGo, the intelligence of the system
lies in generating virtually all possible “experiences” and
evaluating which are valuable to keep. Based on these two
well known systems, it appears that a major contributor to AI
exuberance is the ability of a system to ensure all possibilities
are covered by processing large scales of training data in
both volume and diversity. Indeed, when we examine the
success of AlexNet, even though both its employed CNN
model and SGD algorithm were developed in the 80s, its
success was only achieved after ImageNet [8] was available
in 2012, when the scale of training data allowed CNNs to
be effective.

B. Small Data in Real World

In most real-world scenarios, a large pool of labeled data
does not exist. For example in healthcare, although raw data
may be abundant, high-quality, high-volume labeled data
may not be available for most diseases [28].

While DeepMind has successfully created algorithms to
win many games, real world applications are limited due
to challenges in synthesizing training data. Take symptom
checking or disease diagnosis as examples. The presentation
of [5] points out differences in three aspects between diag-
nosing diseases and playing Go.
• Input certainty: Go’s every move during a game pro-
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a patient’s symptoms can be difficult to explain and
quantify (e.g., severity of a headache), and values such
as the degree of a fever are real numbers.

• Output possibilities: While a game ends with a win or
loss, the possible diseases a patient may have can be n
(a typical n is one, but can be two, three, or more in
rare cases) out of the 800 possible diseases listed by the
CDC.

• Data availability: AlphaGo can self-play to explore
previously unknown moves and evaluate their effective-
ness. Medicine does not allow for many avenues of
exploration; any treatments not FDA certified cannot
be evaluated without an approved IRB1 that ensures
clinical safety.

The small data problem has been researched for many
decades. One intuition behind the requirement for a large
training dataset can be explained by linear algebra. If D
variables are to be solved, solving them requires N = D non-
colinear equations, where each equation (or image) is a linear
combination of variables (or features). When the number
of equations or training data is insufficient or D >> N,
dimension reduction attempts to reduce D to D′, where
D′ ≈ N.

Both linear and non-linear dimension reduction tech-
niques, such as PCA and manifold learning, have not shown
to be effective in real-world applications. PCA can embed
data in a lower dimensional space, but that space may not be
universally good for all target semantics. Manifold learning
can learn a sub-space for each target class, but it is difficult
to learn a low-dimensional manifold from a small amount of
data.

To remedy this dimensionality-curse problem, support
vector machines (SVMs) with kernel functions [7] have
filled in the gap since the early 90s. SVMs address the
D >> N problem by taking advantage of the duality in
quadratic optimization. Instead of dealing directly with D
features and variables, SVMs deal with N training instances.
Regardless how small N is, SVMs form a grand matrix of
N×N, which quantifies the pair-wise similarity between N
training instances. SVMs convincingly address the small data
problem by avoiding the dimensionality curse, and enjoy
the global optimal solution that quadratic optimization can
solve for when the grand matrix is positive semi-definite
(similarity between instances is a non-negative value). SVMs
can be considered as a compromise when training data is
insufficient.

AlexNet and subsequent CNN models [1], [6] demonstrate
that the power of CNNs lies outside of the classification
phase (in fact, the classification is merely a logistic regression
in its final stage). The key to the success of CNNs is
their ability to learn representations from data [4]. The
representations learned from big data (N >> D) have proven
to be able to achieve much higher classification accuracy in

1An IRB is an appropriately constituted group that has been formally
designated to review and monitor biomedical research involving human
subjects.

several vision tasks. Though a CNN model does not have the
explicit notion of dimensionality, one could consider D as the
number of weighting parameters that ought to be “learned”
from training data of large volume and adequate diversity.

In this article, we discuss two approaches to working with
deep learning to make N′ > D when the available training
instances N << D. We discuss related work and present
plausible research directions.

• Transferring knowledge from some source domains to
the target domain: Section II.

• Generating training data via generative adversarial net-
works (GANs): Section III.

• Fusing knowledge with GANs to expand diversity of
training data: Section IV.

II. TRANSFER LEARNING

Transfer learning transfers knowledge learned from some
source domains to a target domain. The knowledge learned
from the source domains is attained through supervised,
unsupervised, or other learning paradigms. The common
practice of transfer representation learning is to pre-train a
CNN on a very large dataset (called the source domain) and
then to use the pre-trained CNN either as an initialization
or a fixed feature extractor for the task of interest (called
the target domain) [9]. The work of [38] experimentally
quantifies transferability of neurons in each layer of a deep
CNN. Recently, [40] showed that by using the transfer
learning dependencies between various visual tasks in a
latent space, the spacial structure of various visual tasks can
be modeled.

We used otitis media (OM) diagnosis to perform a case
study [6] to understand the effectiveness and shortcomings
of transfer learning. We first show the results that have been
published in [31]. We then further use these prior results
to explain the effectiveness and ineffectiveness of using
generative adversarial networks (GANs) to generate training
data.

The available training data is comprised of 1;195 OM im-
ages collected by seven otolaryngologists at Cathay General
Hospital2 [30]. The source domain from which representa-
tions are transferred to our target disease is ImageNet [8].
The transfer representation learning experiments consist of
the following five steps:

1) Unsupervised codebook construction: We learned a
codebook from ImageNet images, and this codebook
construction is “unsupervised” with respect to OM.

2) Encode OM images using the codebook: Each image
was encoded into a weighted combination of the pivots
in the codebook. The weighting vector is the feature
vector of the input image.

3) Supervised learning: Using the transfer-learned feature
vectors, we then employed supervised learning to learn
two classifiers from the 1;195 labeled OM instances.

2The dataset was used under a strict IRB process. The dataset was deleted
by April 2015 after our experiments were completed.




