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Abstract— This paper addresses the challenges of small
training data in deep learning. We share our experiences in
the medical domain and present promises and limitations. In
particular, we show through experimental results that GANs
are ineffective in generating quality training data to improve
supervised learning. We suggest plausible research directions
to remedy the problems.

Index Terms— Deep learning, knowledge-adaptive GANs,
generative adversarial networks, transfer learning.

I. INTRODUCTION

Recent advancements in artificial intelligence (AI) have
allowed for novel methods in facilitating medical diagnoses
in the healthcare domain (e.g., [17], [26]). Medical diagnosis,
the process by which a disease or condition is linked to
a patient’s corresponding signs and symptoms, can prove
challenging because many signs and symptoms are non-
specific and occur similarly across multiple disorders. A
variety of procedures are therefore employed during the
diagnostic process, including pattern recognition, differential
diagnosis, medical algorithms, and clinical decision support
systems (CDSS), to narrow down the possibilities explaining
a patient’s condition [20], [35].

Deep learning has the potential to promote the procedure
of pattern recognition, further aiding medical diagnoses. Pat-
tern recognition is used to diagnose conditions in which the
disease is “obvious” because its correlating set of symptoms
is specific [20]. For example, although rashes are a common
symptom of many skin disorders, shingles rashes appear in
strips on strictly one side of the patient’s torso, stopping
abruptly at a line along the spine. As a result of the disease’s
unique pattern, dermatologists can quickly identify shingles
without much further testing and prescribe the anti-virals
needed to treat the condition. In the case of otitis media (OM)
(further discussed in Section II), an inflammatory disease
of the middle ear, distinctive visual changes in the eardrum
such as redness or calcification can be useful markers in
diagnosing OM. In the case of thoracic diseases (further
discussed in Section III), chest X-ray images may reveal
unique patterns of abnormality between the neck and the
abdomen. The specific pathological patterns of OM and
thoracic diseases allow for deep learning to learn their
features for use in effective diagnoses.

The aim of this paper is to evaluate the promises and lim-
itations of current AI exuberance for pattern-based disease
diagnosis. Numerous papers have been published since 2016
at major medical-imaging related conferences [37]. However,
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most works appear to lack sufficient training data in terms
of quantity and diversity, which we argue is required to
ensure that data-driven deep learning is effective, useful, and
deployable. We use OM and thoracic disease classifications
as examples while discussing small-data learning strategies
for cases where training data is insufficient.

A. Big Data Powering AI Resurgence

The history of the AI resurgence outside the healthcare
domain helps us understand how we may improve supervised
learning in the domain. The current level of “intelligence”
achieved by the recent wave of AI exuberance is arguably
similar to that of the last wave. The last wave of AI
exuberance was fueled by the success of IBM Deep Blue,
which defeated the reigning world chess champion Garry
Kasparov in 1997. The current AI exuberance started with the
success of AlexNet [19], but was largely perpetuated by the
superior performance of AlphaGo [33]. Both AlphaGo and
Deep Blue succeeded for the same key reason: the ability of
a computer to evaluate a large number of candidate positions
and make the subsequent best decision given the state of the
game board.

In Deep Blue and AlphaGo, the intelligence of the system
lies in generating virtually all possible “experiences” and
evaluating which are valuable to keep. Based on these two
well known systems, it appears that a major contributor to AI
exuberance is the ability of a system to ensure all possibilities
are covered by processing large scales of training data in
both volume and diversity. Indeed, when we examine the
success of AlexNet, even though both its employed CNN
model and SGD algorithm were developed in the 80s, its
success was only achieved after ImageNet [8] was available
in 2012, when the scale of training data allowed CNNs to
be effective.

B. Small Data in Real World

In most real-world scenarios, a large pool of labeled data
does not exist. For example in healthcare, although raw data
may be abundant, high-quality, high-volume labeled data
may not be available for most diseases [28].

While DeepMind has successfully created algorithms to
win many games, real world applications are limited due
to challenges in synthesizing training data. Take symptom
checking or disease diagnosis as examples. The presentation
of [5] points out differences in three aspects between diag-
nosing diseases and playing Go.
• Input certainty: Go’s every move during a game pro-
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a patient’s symptoms can be difficult to explain and
quantify (e.g., severity of a headache), and values such
as the degree of a fever are real numbers.

• Output possibilities: While a game ends with a win or
loss, the possible diseases a patient may have can be n
(a typical n is one, but can be two, three, or more in
rare cases) out of the 800 possible diseases listed by the
CDC.

• Data availability: AlphaGo can self-play to explore
previously unknown moves and evaluate their effective-
ness. Medicine does not allow for many avenues of
exploration; any treatments not FDA certified cannot
be evaluated without an approved IRB1 that ensures
clinical safety.

The small data problem has been researched for many
decades. One intuition behind the requirement for a large
training dataset can be explained by linear algebra. If D
variables are to be solved, solving them requires N = D non-
colinear equations, where each equation (or image) is a linear
combination of variables (or features). When the number
of equations or training data is insufficient or D >> N,
dimension reduction attempts to reduce D to D′, where
D′ ≈ N.

Both linear and non-linear dimension reduction tech-
niques, such as PCA and manifold learning, have not shown
to be effective in real-world applications. PCA can embed
data in a lower dimensional space, but that space may not be
universally good for all target semantics. Manifold learning
can learn a sub-space for each target class, but it is difficult
to learn a low-dimensional manifold from a small amount of
data.

To remedy this dimensionality-curse problem, support
vector machines (SVMs) with kernel functions [7] have
filled in the gap since the early 90s. SVMs address the
D >> N problem by taking advantage of the duality in
quadratic optimization. Instead of dealing directly with D
features and variables, SVMs deal with N training instances.
Regardless how small N is, SVMs form a grand matrix of
N×N, which quantifies the pair-wise similarity between N
training instances. SVMs convincingly address the small data
problem by avoiding the dimensionality curse, and enjoy
the global optimal solution that quadratic optimization can
solve for when the grand matrix is positive semi-definite
(similarity between instances is a non-negative value). SVMs
can be considered as a compromise when training data is
insufficient.

AlexNet and subsequent CNN models [1], [6] demonstrate
that the power of CNNs lies outside of the classification
phase (in fact, the classification is merely a logistic regression
in its final stage). The key to the success of CNNs is
their ability to learn representations from data [4]. The
representations learned from big data (N >> D) have proven
to be able to achieve much higher classification accuracy in

1An IRB is an appropriately constituted group that has been formally
designated to review and monitor biomedical research involving human
subjects.

several vision tasks. Though a CNN model does not have the
explicit notion of dimensionality, one could consider D as the
number of weighting parameters that ought to be “learned”
from training data of large volume and adequate diversity.

In this article, we discuss two approaches to working with
deep learning to make N′ > D when the available training
instances N << D. We discuss related work and present
plausible research directions.

• Transferring knowledge from some source domains to
the target domain: Section II.

• Generating training data via generative adversarial net-
works (GANs): Section III.

• Fusing knowledge with GANs to expand diversity of
training data: Section IV.

II. TRANSFER LEARNING

Transfer learning transfers knowledge learned from some
source domains to a target domain. The knowledge learned
from the source domains is attained through supervised,
unsupervised, or other learning paradigms. The common
practice of transfer representation learning is to pre-train a
CNN on a very large dataset (called the source domain) and
then to use the pre-trained CNN either as an initialization
or a fixed feature extractor for the task of interest (called
the target domain) [9]. The work of [38] experimentally
quantifies transferability of neurons in each layer of a deep
CNN. Recently, [40] showed that by using the transfer
learning dependencies between various visual tasks in a
latent space, the spacial structure of various visual tasks can
be modeled.

We used otitis media (OM) diagnosis to perform a case
study [6] to understand the effectiveness and shortcomings
of transfer learning. We first show the results that have been
published in [31]. We then further use these prior results
to explain the effectiveness and ineffectiveness of using
generative adversarial networks (GANs) to generate training
data.

The available training data is comprised of 1,195 OM im-
ages collected by seven otolaryngologists at Cathay General
Hospital2 [30]. The source domain from which representa-
tions are transferred to our target disease is ImageNet [8].
The transfer representation learning experiments consist of
the following five steps:

1) Unsupervised codebook construction: We learned a
codebook from ImageNet images, and this codebook
construction is “unsupervised” with respect to OM.

2) Encode OM images using the codebook: Each image
was encoded into a weighted combination of the pivots
in the codebook. The weighting vector is the feature
vector of the input image.

3) Supervised learning: Using the transfer-learned feature
vectors, we then employed supervised learning to learn
two classifiers from the 1,195 labeled OM instances.

2The dataset was used under a strict IRB process. The dataset was deleted
by April 2015 after our experiments were completed.



TABLE I
OM CLASSIFICATION EXPERIMENTAL RESULTS.

Method Accuracy(std) Sensitivity Specificity

Heuristic w/ seg 80.11%(18.8) 83.33% 75.66%
Heuristic w/o seg 76.19%(17.8) 79.38% 71.74%
Transfer w/ seg (pool5) 87.86%(3.62) 89.72% 86.26%
Transfer w/o seg (pool5) 88.37%(3.41) 89.16% 87.08%
Transfer w/ seg (fc6) 87.58%(3.45) 89.33% 85.04%
Transfer w/o seg (fc6) 88.50%(3.45) 89.63% 86.90%
Transfer w/ seg (fc7) 85.60%(3.45) 87.50% 82.70%
Transfer w/o seg (fc7) 86.90%(3.45) 88.50% 84.90%
Fine-tune 90.96%(0.65) 91.32% 90.20%

4) Feature fusion: We also combined some heuristic fea-
tures of OM (published in [30]) with features learned
via transfer learning.

5) Fine tuning: We further fine-tuned the weights of the
CNN using labeled data to improve classification accu-
racy.

A. Empirical Study

Please consult [31] for the detailed algorithm and exper-
imental settings. This section summarizes the results and
findings, which can help us compare transfer learning with
GANs, discussed in the next section.

Table I compares OM classification results for different
feature representations. All experiments were conducted us-
ing 10-fold cross validation. The measures of results reflect
the discrimination capability of the learned features.

The first two rows in Table I show the results of human-
heuristic features, followed by our proposed transfer-learned
approach. The eardrum segmentation, denoted as seg, iden-
tifies the eardrum by removing OM-irrelevant information
such as ear canal and earwax from the OM images [30]. The
best accuracy achieved by using human-heuristic methods is
80.11% with segmentation.

Rows three to eight show results of applying transfer
representation learning. All results outperform the results
shown in rows one and two, suggesting that the features
learned from transfer learning are superior to that of human-
crafted ones.

Interestingly, segmentation does not help improve accu-
racy for learning representation via transfer learning. This
indicates that the transfer-learned feature set is already
discriminative. Among three transfer-learning layer choices
(layer five (pool5), layer six (fc6) and layer seven (fc7)),
fc6 yields slightly better prediction accuracy for OM. We
believe that fc6 provides features that are more general or
fundamental to transfer to a novel domain than pool5 and fc7
do. (Section II-B presents qualitative evaluation and explains
why fc6 is ideal for OM.)

We also directly used the 1,195 OM images to train a
new AlexNet model. The resulting classification accuracy
was only 71.8%, much lower than that achieved by applying
transfer representation learning. This result confirms our
hypothesis that even though CNN is a good model, with

Fig. 1. The visualization of helpful features from different classes corre-
sponding to different OM symptoms (from left to right: Normal eardrum,
AOM, COM, and OME).

merely 1,195 OM images (without the ImageNet images
to facilitate feature learning) it cannot learn discriminative
features.

Finally, we used OM data to fine-tune the AlexNet model,
which achieves the highest accuracy. For fine-tuning, we
replaced the original fc6, fc7 and fc8 layers with the new
ones and used OM data to train the whole network without
freezing any parameters. In this way, the leaned features can
be refined and are thus more aligned to the targeted task.
This result attests that the ability to adapt representations
to data is a critical characteristic that makes deep learning
superior to other learning algorithms.

B. Qualitative Evaluation - Visualization

In order to investigate what kinds of features are trans-
ferred or borrowed from the ImageNet dataset, we uti-
lized a visualization tool to perform qualitative evaluation.
Specifically, we used an attribute selection method, SVMAt-
tributeEval [13] with Ranker search, to identify the most
important features for recognizing OM. We then mapped
these important features back to their respective codebook
and used the visualization tool from [39] to find the top
ImageNet classes causing the high value of these features.
By observing the common visual appearances shared by the
images of the disease classes and the retrieved top ImageNet
classes, we were able to infer the transferred features.

Fig. 1 depicts the qualitative analyses of four different
cases: the normal eardrum, Acute Otitis Media (AOM),
Chronic Otitis Media (COM) and Otitis Media with Effusion
(OME), which we will now proceed to explain in turn:

1) Normal eardrum: Nematodes and ticks are all similarly
almost gray in color with a certain degree of trans-
parency.

2) AOM: Purple-red cloths and red wine have deep red
colors, which are an obvious common attribute in ears
affected by AOM.

3) COM: Seashells have a similar visual texture and color
to a calcified eardrum, a prominent symptom of COM.

4) OME: Oranges and lattes possess colors very similar to
those of an eardrum affected by OME.



Fig. 2. The Vanilla GANS by [12]; figure credit: Hunter Heidenreich [14].

Many of the visual features of OM are difficult to capture
with only hand-crafted methods. Here, transfer learning
works to recognize OM in a fashion analogous to how
explicit similes are used in language to clarify meaning. The
purpose of a simile is to provide information about an object
by comparing it to another object with which one is more
familiar. For instance, if a doctor says that OM displays
redness and certain textures, a patient may not be able to
comprehend the doctor’s description exactly. However, if the
doctor explains that OM presents with an appearance similar
to that of a seashell, or with colors similar to that of red wine,
oranges, or lattes, the patient is conceivably able to envision
the appearance of OM at a much more precise level. At
level fc6, transfer representation learning works like finding
similes that can help explain OM using the representations
learned in the source domain (ImageNet).

In summary, transfer representation learning can poten-
tially remedy two major challenges of medical image anal-
ysis: labeled data scarcity and medical domain knowledge
shortage. Representations of OM images can be effectively
learned via transfer learning.

III. GENERATIVE ADVERSARIAL NETWORKS (GANS)

Generative adversarial networks (GANs) [12] are a special
type of neural network model where two networks are trained
simultaneously. Figure 2 depicts that the generator (denoted
as G) focuses on producing fake images and the discriminator
(denoted as D) centers on discriminating fake from real.
The goal is for the generator to produce fake images that
can fool the discriminator to believe they are real. If an
attempt fails, GANs use backpropagation to adjust network
parameters. Since the introduction of the initial GAN model
[12], there have been several variants depending on how the
input, output, and error functions are modeled. GANs can be
primarily divided into four representative categories based
on the input and output (the error function is discussed in
Section III-A), and their applications are as follows:
• Conditional GAN (CGAN) [22]: CGAN adds to GAN

an additional input, y, on which the models can be
conditioned. Input y can be of any type, e.g., class
labels. Conditioning can be achieved by feeding y to
both the generator G(z|y) and the discriminator D(x|y),
where x is a training instance and z is random noise in
latent space. The benefit of conditioning on class labels

is that it allows the generator to generate images of a
particular class. (Application: text to image.)

• Pixel-to-Pixel GAN (Pix2Pix) [16]: Pix2Pix GAN is
similar to CGAN. However, conditions are placed upon
an image instead of a label. The effect of such condi-
tioning is that it allows the generator to map images of
one style to another, e.g. mapping a photo to the painting
style of an artist or mapping a sketch to a colored image.
(Application: image to image translation, supervised.)

• Progressive-Growing GAN (PGGAN) [18]: PGGAN
grows both the generator and discriminator progres-
sively; starting from low resolution, it adds new layers
that model increasingly fine details as training pro-
gresses. PGGAN can generate high-resolution images
through progressive refinement. (Application: high-
resolution image generation.)

• Cycle GAN [42]: Pix2Pix GAN requires paired training
data to train. Cycle GAN is an unsupervised approach
for learning to translate an image from a source domain
X to a target domain Y without training examples. The
goal is to learn two mappings from X to Y (i.e., G)
and from Y to X (i.e., F) such that the distributions
G(X) is indistinguishable from the distribution Y , and
the distributions F(Y ) is indistinguishable from the
distribution X , respectively. Cycle GAN introduces a
cycle consistency loss to approximate F(G(X)) to X
and also G(F(Y )) to Y. (Application: image to image
translation, unsupervised.)

A. Shortcomings of GANs

Though GANs have demonstrated interesting results, there
are both micro and macro research issues that need to be
addressed.

The micro issues are related to the formulation of the
model’s loss function to achieve good generalization. But this
generalization goal has been cast into doubt by the empirical
study of [3], which concludes that training of GANs may not
result in good generalization properties.

The GAN loss formulation is regarded as a saddle point
optimization problem and training of the GAN is often
accomplished by gradient-based methods [12]. G and D are
trained alternatively so that they evolve together. However,
there is no guarantee of balance between the training of
G and D with the KL divergence. As a consequence, one
network may inevitably be more powerful than the other,
which in most cases, is D. When D becomes too strong in
comparison to G, the generated samples become too easy
to differentiate from real ones. Another well known issue
is that the two distributions are in high probability located
in disjoint lower dimensional manifolds without overlaps.
The work of WGAN [2] addresses this issue by introducing
the Wasserstein distance. However, WGAN still suffers from
unstable training, slow convergence after weight clipping
(when the clipping window is too large), and vanishing gra-
dients (when the clipping window is too small). Whereas the
above micro issues have been studied by the community in
order to propose novel models and optimization techniques,



we are more concerned with the macro issue: can GANs
help generate large-volume and diversified training data to
improve validation and testing accuracy? As stated in the
introductory section, deep learning depends on the scale of
training data to succeed, but most applications do not have
ample training data.

Specifically in medical imaging, GANs have been mainly
used in five areas: image reconstruction, synthesis, segmenta-
tion, registration, and classification, with hundreds of papers
published since 2016 [37]. A recent report [28] summarizes
the state of applied AI in the field of radiology and conveys
that promising results have been demonstrated, but the key
challenge of data curation in collection, annotation, and
management remains. The work of [10] uses GANs to
generate additional samples for liver lesion classification and
claims that both the sensitivity and specificity are improved.
However, the total number of labeled images is merely
182, which is too small a dataset to draw any convincing
conclusions. The work [29] applies a similar idea to thoracic
disease classification and achieves better performance. The
work uses human experts to remove noisy data, but fails to
report how many noisy instances were removed and how
much of the accuracy improvement was attributed to human
intervention. The paper also claims that additional data
contributes in making training data of all classes balanced
to mitigate the imbalanced training data issue. Had the work
demonstrated that generating additional data using GANs
helps despite imbalanced distribution, the improved result
would have been more convincing.

Combining 3D model simulation with GANs seems to be
another plausible alternative to reaching the same goal of
increasing training instances. The work of [34] presents a
framework that can generate a large amount of labeled data
by combining a 3D model with GANs. Another work [32]
combines a 3D simulator (with labels) with unsupervised
learning to learn a GAN model that can improve the realism
of the simulating labeled data. However, this combining
scheme does not work for some tasks. For example, our
AR platform Aristo [41] experimented with these methods
and did not yield any accuracy improvements in its gesture
recognition task. Moreover, most medical conditions have
lacked exact 3D models so far, which makes the combining
scheme difficult to apply.

B. Empirical Study

This section reports our experiments in generating training
data using GANs to improve the accuracy of supervised
learning.

Section II shows that adding images unrelated to OM can
improve classification accuracy due to representation transfer
in the lower layers of the model and representation analogy in
the middle layers of the model. This leads us to the following
questions: Can GANs produce useful labeled data to improve
classification accuracy? If so, which CNN layers can GANs
strengthen to achieve the goal and how do GANs achieve
this classification accuracy improvement? Our experiments
were designed to answer these questions.

Fig. 3. Pre-Trained on generated images

1) Experiment Setup: We used the NIH Chest X-ray
14 [36] dataset to conduct our experiments. This dataset
consists of 112,120 labeled chest X-ray images, from over
30,000 unique patients corresponding to 14 common thoracic
disease types, including atelectasis, cardiomegaly, effusion,
infiltration, mass, nodule, pneumonia, pneumothorax, consol-
idation, edema, emphysema, fibrosis, pleural thickening, and
hernia. The dataset is divided into training, validation, and
testing sets, containing 78,468, 11,219. and 22,433 images,
respectively3. Our experiments were designed to examine
and compare four training methods:

1) Random initialization: Model parameters were ran-
domly initialized.

2) Pre-trained by using ImageNet: Similar to what we did
with transfer learning in Section II, the network was
pre-trained by using ImageNet.

3) Pre-trained with additional data generated by
unsupervised-GAN: The method is shown in Figure 3.
First, the GAN generated the same number of fake
images as we had real images. Second, the CNN
classifier was trained to differentiate between real and
fake images. Third, the weights were used to initialize
the subsequent classification task.

4) Trained with additional data generated by supervised-
GAN: By adding the generated images, the size of
the dataset was expanded to 2x and 5x (the size of
original dataset is x). In order to show whether GAN can
produce labeled data to directly improve classification
accuracy instead of indirectly, we changed the config-
uration of GAN in Method 3 so that it could generate
labeled images.

To establish a yardstick for these four methods, we first
measured the “golden” results that supervised learning can
attain using 100% training and validation data. We then
dialed back the size of the training and validation data
to be 50%, 20%, 10%, and then 5%. We used each of
the four methods to either increase training data or pre-
train the network. We used PGGAN4 as our GAN model
to generate images with 1024× 1024 pixel resolution. For

3We followed the dataset splits in https://github.com/
zoogzog/chexnet/tree/master/dataset

4We used a publicly available implementation of PGGAN via https:
//github.com/tkarras/progressive_growing_of_gans.
This implementation has an auxiliary classifier [24] and hence can generate
images conditionally (for Method 4) or unconditionally (for Method 3).



our CNN classifier, we employed DenseNet121 [15], and
used AUROC5 as our evaluation metric. Intuitively, our
conjectures before seeing the results were as follows:
• Method 1 will perform the worst, since it does not

receive any help to improve model parameters.
• Method 4 will perform the best, since it produces more

training instances for each target class.
• Method 3 will outperform 2 as the training data gen-

erated, though unlabeled, is more relevant to the target
disease images than ImageNet is.

2) Experiment Results: Table II presents our experimental
results. We report the AUROC of detecting 14 thoracic dis-
ease types using each of the four different training methods.
These results are inconsistent with our conjectures:
• Method 2, which is equivalent to transfer learning,

performs the best. No methods using GANs were able
to outperform this method.

• Method 4 performs the worst. In Method 4, additional
GAN-generated labeled images were used to perform
training. We believe that the labeled images generated
using GANs were too noisy. Therefore, when the gen-
erated images are increased (5x vs. 2x), the prediction
accuracy is not always increased and sometimes even
worse. This suggests that GANs do not produce helpful
training instances and may in fact be counter-productive.

• Method 3 does not outperform method 2, even though
ImageNet data used by method 2 is entirely irrelevant
to images of thoracic conditions. We believe that the
additional images generated by GANs used for initial-
izing network parameters are less useful because of
their low volume and diversity. After all, adding more
low-quality similar images to an unlabeled pool cannot
help the model learn novel features. Note that a recent
keynote of I. Goodfellow [11] points out that GANs
can successfully generate more unlabeled data (not
labeled data) to improve MNIST classification accuracy.
Table II reflects the same conclusion that method 3
outperforms method 1, which uses randomly-initialized
weights. However, using GANs to generate unlabeled
data may not be more productive than using ImageNet
to pre-train the network.

Figure 4 samples real and GAN-generated images. The
first column presents real images, the second column GAN-
generated unsupervised, and the third GAN-generated super-
vised. The GAN-generated images may successfully fool our
colleagues with no medical knowledge. However, as reported
in [29], the GAN-generated labeled chest X-ray images must
be screened by a team of radiologists to remove erroneous
data (with respect to diagnosis knowledge). Without domain
knowledge, incorrectly labeled images may be introduced
by GANs into the training pool, which would degrade
classification accuracy.

5We used a publicly available implementation of ChexNet [27]
from https://github.com/zoogzog/chexnet, which contains a
DenseNet121 classifier, and used its evaluation metric. The metric is
deriving by first summing up all AUROCs from each of the 14 classes
and then dividing the summation by 14.

TABLE II
EXPERIMENTAL RESULTS

Scale of Dataset
5% 10% 20% 50% 100%

Methods AUROC (std)

Method 1 0.708
(0.020)

0.757
(0.003)

0.780
(0.004)

0.807
(0.002)

0.829
(0.000)

Method 2 0.756
(0.006)

0.790
(0.002)

0.807
(0.005)

0.832
(0.001)

0.843
(0.000)

Method 3 0.726
(0.002)

0.765
(0.004)

0.789
(0.001)

0.817
(0.002)

0.828
(0.000)

Method 4 (2x) 0.713
(0.003)

0.724
(0.004)

0.768
(0.004)

0.809
(0.001)

0.824
(0.000)

Method 4 (5x) 0.693
(0.005)

0.727
(0.002)

0.774
(0.005)

0.798
(0.005)

0.813
(0.000)

Real GAN unsupervised GAN supervised

Fig. 4. Real vs. GAN-generated Images.

In summary, the study of [21] shows that pre-training with
datasets that are multiple orders of magnitude larger than
ImageNet can achieve higher performance than pre-training
with only ImageNet on several image classification and
object detection tasks. This result further attests that volume
and diversity of data, even if unlabeled, helps improve
accuracy. GANs may indeed achieve volume, but certainly
cannot achieve diversity.

To explain why using ImageNet can achieve better pre-
training performance than that achieved when using GAN-
generated images, we perform layer visualizations using the
technique introduced in [25]. Figure 5 plots the output layer
of the first dense-block of DenseNet. Row one shows five
filters of untrained randomly initialized weights. Row three
shows five filters with more distinct features learned from the
ImageNet pre-trained model. The unsupervised-GAN method
(row two) produces filters of similar quality to that of row
one. Qualitatively, unsupervised-GAN learns similar features
akin to how the random-initialization method does, and does
not yield more promising classification accuracy.

IV. FUSING KNOWLEDGE WITH GANS

The desired outcome of GANs after training is that
samples formed by xg approximate the real data distribu-
tion pr(x). However, if the real data distribution is under-
represented by the training data, the generated samples
cannot “guess” beyond the training data. For instance, if
the otitis media (OM) training data shown in Section II
consists of only one type of OM, say AOM, GANs cannot
generate the other two types of OM, COM and OME. As



Fig. 5. CNN layer visualization of the first denseblock of DenseNet121.
The top row is random weight, the second row is pre-trained by
unsupervised-GAN method, and the third row is pre-trained by ImageNet.

another example, if a set of training data consists of a large
number of red roses, and the aim of GANs is to generate
entire categories of different colored roses, there would be
no knowledge or hint for G or D to respectively achieve and
tolerate diversity in color. On the contrary, the discriminator
D would reject any roses that are not red and G would not be
encouraged to expand beyond generating red colored roses.
The nature of GANs treats exploration beyond the paradigm
of the seen or known to be erroneous.

If we would like GANs to generate diversified samples to
improve supervised learning, the new approach must address
two issues:
• Guiding the generator to explore diversity productively.
• Allowing the discriminator to tolerate diversity reasonably.

The adverbs productively reasonably, convey exploration
(beyond exploitation) with guidance and rules. In the case
of playing games, rules and rewards are clear. In the case
of generating roses beyond red colors or generating types
of flowers beyond roses, guidance and rules are difficult
to articulate. Supposing computer vision techniques can
precisely segment petals of roses in an image, what colors
can the generator use to replace red petals? For example,
black roses do not exist, so this color would be deemed
unreasonable and unproductive for generating realistic rose
images. Exploration beyond training distribution should be
permitted, but at the same time guided by knowledge. How
can knowledge be incorporated into training GANs? We
enumerate two schemes.

1) Incorporating a human in the loop: Placing a human in
the loop instead of letting function D make the decision
can ensure D is properly adjusted, due to human input.
The work of [29] discussed in Section III implements
a GAN to generate labeled chest X-ray images and
then asks a team of radiologists to remove mislabeled
images. We believe that merely removing “bad” images
without productively generating new images with novel
disease patterns may provide only limited help.

2) Encoding knowledge into GANs: We can convey to
GANs knowledge about the information to be mod-
eled via the knowledge layers/structures and/or via
the knowledge graph/dictionary using natural language
processing. We elaborate this scheme in the remainder
of this section.

A. Information from Knowledge Layers/Structures

Considering the structure of information may improve
the effectiveness of GANs. For instance, differentiating two
types of strokes, ischemic and hemorrhagic, in order to
provide proper treatment is critical for patient recovery.
Ischemic strokes occur as a result of an obstruction within
a blood vessel supplying blood to the brain. It accounts
for 87 percent of all stroke cases. Hemorrhagic strokes
occur when a weakened blood vessel ruptures inside or
on the surface of the brain. Two types of weakened blood
vessels usually cause hemorrhagic stroke: aneurysms and
arteriovenous malformations (AVMs).

Without the above knowledge, GANs could generate data
that flips the appearance of ischemic versus hemorrhagic
strokes, which would blur the critical ability to differentiate
between the two. Additionally, without knowledge of brain
anatomy, GANs could generate obstructions and ruptures
in clearly erroneous locations where no blood vessels are
present. With the knowledge that the symptoms largely
occur within and on blood vessels, multi-layer GANs may
be able to impose anatomical constrains through layering
information.

B. Information from Knowledge Graph/Dictionary

The possible colors of roses can be obtained from the
following Wikipedia text via natural language processing
(NLP) parsing:

“Rose flowers have always been available in a number of
colours and shades; they are also available in a number of
colour mixes in one flower. Breeders have been able to widen
this range through all the options available with the range of
pigments in the species. This gives us yellow, orange, pink,
red, white and many combinations of these colours. However,
they lack the blue pigment that would give a true purple or
blue colour and until the 21st century all true blue flowers
were created using some form of dye. Now, however, genetic
modification is introducing the blue pigment.”

Once possible colors and their combinations have been
extracted using NLP, we can enhance the idea of text-
adaptive GANs [23] to generate roses of these colors. The
current text-adaptive GANs may borrow colors from any
flower samples in the training pool, and this exhibits two
problems. The flower colors in the training pool may be a
superset or subset of rose colors. Text-adaptive GANs do not
support exploration with knowledge as guidance.

V. CONCLUSIONS

This paper presented the challenges in using GANs to
generate additional labeled data to improve the performance
of supervised learning. Based on prior work in GANs and
our case studies using transfer learning and GANs, we found
the additional data generated by GANs may be counter-
productive for improving supervised learning tasks. This
is partly because the GAN generator cannot generate data
of different patterns not seen in the training data, and
partly because the GAN discriminator cannot tolerate new
patterns not seen in the training data. We used OM and



thoracic disease type classifications as clinical examples, and
generated different types of roses from training data of a
single rose color as an additional example to illustrate and
validate the enumerated challenges in using GANs.

To properly allow GANs to explore beyond the known
and the seen conveyed via the training data, we propose
knowledge-adaptive GANs: incorporating GANs with infor-
mation layers/structures and knowledge graphs. Our ongoing
efforts are focused on conducting extensive empirical studies
to validate the effectiveness of these methods.
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