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Abstract

This work proposes a novel symptom checker: an ensemble neural network model
that learns to inquire symptoms and diagnose diseases. The ensemble model
consists of several small anatomical models that are responsible for different
anatomical parts. Compared to the traditional single monolithic model approach,
our ensemble approach obtains markedly higher disease-prediction accuracy.

1 Introduction

In healthcare systems, three critical issues that must be addressed are access, quality, and cost. These
three issues, unfortunately, often compete with each other, i.e., improving one issue worsens the
others. This dilemma is called the iron triangle of healthcare. In order to improve accessibility and
quality, and at the same time reduce cost, disruptive technologies such as mobile Internet and big
data analytics are promising remedies. For instance, the survey in [6] reveals that in 2012, 35% of
U.S. adults had ever gone online to conduct self-diagnosis for their ailments. Self-diagnosis usually
begins with online search engines. Search-based self-diagnosis often leads to low quality results and
sometimes unsubstantiated information.

In order to facilitate self-diagnosis (to improve accessibility) while maintaining reasonable quality,
the concept of symptom checking has been proposed recently. Symptom checking first inquires a
patient with a series of questions about their symptoms, and then attempts to diagnose some potential
diseases. As outlined by Ledley and Lusted in 4], Figure[T|shows the logical components of a typical
symptom checker, which is composed of two components: a database of medical knowledge and an
inference engine. The database mainly captures the relationships between symptoms and diseases.
The engine infers potential diseases based on a series of interactions with individuals.

Of the two primary design goals of a symptom checker, attaining high disease-prediction accuracy
is certainly one. The other goal is offering good user experience, which requires a user-friendly
symptom inquiry process. Such a process consists of two requirements. First, the interactions
between the symptom checker and patients must be intuitive. Second, the number of inquires should
be minimal. As indicated by [6]], because of scarcity of information can be obtained from a user,
accuracy achieved by existing symptom checkers is not high. Besides the possibilities that a typical
user would be too impatient to answer too many questions, some crucial lab results such as vital signs
and blood work required for accurate disease prediction are absent. Thus, it is more realistic that a
symptom checker would suggest a small number of possible diseases and then refer the patient to see
relevant doctors to order lab tests and to follow up.

With limited information to achieve reasonable prediction accuracy, Bayesian inference and decision
trees have been proposed [3]]. Previous works [} 2] utilize entropy or impurity functions to select
symptoms based on the theory of information gain. However, these works generally adopt certain
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Figure 1: The logic components of symptom checking.

greedy or approximation schemes since computing the global maximum of information gain is
intractable, and hence their compromise in accuracy is inevitable.

In this paper, we propose neural symptom checking, which learns to inquire and diagnose based on
limited patient data. Unlike previous works which use approximation schemes to select symptoms,
we adopt a reinforcement learning (RL) framework and formulate inquiry and diagnosis policies as
Markov decision processes. The optimization objective directly optimizes a policy function that can
be used to select symptoms to inquire patients. Moreover, to mimic real doctors in different hospital
departments, we train a model for each anatomical part. These models are then combined to form
an ensemble model. At the start, our symptom checker instructs a user to select an anatomical part
of interest (e.g., selecting abdomen for abdominal pain or head for headache) so that the model in
charge of that part can proceed. The benefits of this approach are that not only does it improve model
accuracy, but it also provides better user experience. Indeed, compared to related work, our disease
prediction accuracy enjoys marked improvement over existing schemes.

In summary, the contributions of this paper are twofold: 1) We formulate the symptom checking
as a sequential decision problem and apply deep reinforcement learning to solve this problem. 2)
We propose an ensemble neural network model that is capable of adaptively selecting a sequence of
symptoms with which to inquire patients.

2 Preliminaries

In this section, we first establish some notations for symptom checking. Let Z, D and P denote the
sets of symptoms, diseases and anatomical parts, respectively. Table[T|shows the set P used in this
paper. Given a part p € P, we use D,, C D to denote the set of diseases that is contained by p. For
two parts p and ¢, the disease sets of these two parts may overlap, i.e., D, N D, # ¢. For example,
the disease food allergy can happen in parts neck, chest, abdomen, and so on. Also, we use Z,, C 7 to
denote the set of symptoms that is involved in p. Similarly, 7, N Z, # ¢ for two parts p and g.

We consider the inquiry and diagnosis process as a sequential decision problem of an agent that
interacts with a patient. At each time step, the agent inquires a certain symptom ¢ € Z of the patient.
The patient then responds with true/false to the agent indicating whether the patient suffers from
symptom ¢. In the meantime, the agent can integrate user responses over time steps to propose
subsequent questions. At the end of the process, the agent receives a scalar reward if it can correctly
predict the disease with limited number of inquiries (every addition inquiry deduces a penalty from
the reward). The goal of the agent is to maximize the reward. In other words, the goal is to correctly
predict the patient disease d € D by the end of the diagnosis process with limited number of inquiries.

Formally, we can describe the above process using the RL terms [7]]. The agent receives a state s;
at time step ¢; then it chooses an action from a discrete action set .4 according to a policy 7. In our
formulation, A = Z U D. Based on the action a; € A chosen by the agent, it receives a reward r,
where r; = 1 if a; € D and a; predicts the correct disease, or r; = —1 if a; is repeated; otherwise
7 = 0. The agent attempts to maximize the discounted return R; = "5, 7" ~*ry, where v € [0, 1]
is a discount factor. The symptom checking process terminates when the action a; € D.

The state-action Q-value function [[7] is defined as Q™ (s, a) = E[R; | s; = s, a; = a, 7], referring to
the expected return of performing an action a in a state s, along with a policy 7. Since the Q-value
can be divided into a current reward and a next-step Q-value using dynamic programming, it can be
rewritten into the following recursive definition: Q™ (s, a) = Eg/ [r +VEq wr(sn[Q7 (8", a)] | 5,a,7].
The optimal Q-value is then defined as Q* (s, a) = max, Q™ (s, a). Also, it can be shown that the



Table 1: The set P of anatomical parts.

head neck arm
chest abdomen back
pelvis buttock leg
skin  general symptoms

optimal Q-value obeys the Bellman equation: Q*(s,a) = Ey [r + ymax, Q*(s',d’) | s,a]. Lastly,
the optimal deterministic policy can be defined by 7*(s) = arg max,c 4 Q*(s, a).

3 Proposed Architecture for Symptom Checking

Since the state and action spaces are typically high dimensional, the representation of the state-action
Q-value function encounters the state explosion problem. To address this problem, Mnih et al. [5]
proposed a deep Q-network (DQN) architecture as a function approximator for Q-functions. The
DQN is essentially a neural network representing Q(s, a; 6) with parameters 6. In this paper, we
use DQN as our model. We shall detail the use of DQN for symptom checking in the following
subsections.

3.1 Model

To mimic real doctors who have different expertise in hospitals, we devise our model to be an
ensemble model of different anatomical parts: M = {m,, | p € P}. There are 11 anatomical parts in
‘P as shown in Table Each model m,, is a DQN specialized for symptom checking. Table shows
the neural network architecture of one anatomical model m,,. It consists of four fully connected
layers, where each layer is equipped with a ReLLU activation function.

The model m,, accepts a state s that comprises symptom statuses inquired by our model. Formally,
we describe the state encoding scheme as follows: First, each symptom i € 7, can be one of the
following statuses: true, false, and unknown. We can use a three-element one-hot vector b; € B3
to encode the status of a symptom ¢. Second, the status of a symptom is determined based on the
following rule. If a user responded yes to a symptom inquired by our model, that symptom is marked
as true. On the other hand, if the user responded no, the symptom is marked as false. Symptoms not
inquired by our model are marked as unknown. Finally, a state s then concatenates all the symptom

statuses into a Boolean vector, i.e., s = [bY bl ..., b@ ‘]T.
P

Given a state s, our model m,, outputs the Q-value of each action a ¢ Ap. In our definition,
each action a has two types: an inquiry action (a¢ € Z,) or a diagnosis action (a € D). If the
maximum Q-value of the outputs corresponds to an inquiry action, then our model inquires the
corresponding symptom to a user, obtains a feedback, and proceeds to the next time step. The
feedback is incorporated into the next state sy according to our state encoding scheme. Otherwise,
the maximum Q-value corresponds to a diagnosis action. In the latter case, our model predicts the
maximum-Q-value disease and then terminates.

Note that to cope with different sizes of symptom space, we make the width of each hidden layer
adjustable. More specifically, the width is multiplied by a factor w. We shall describe the concrete
setting of w in Section ]

3.2 Training

Since each model m,, is independent, we can train eleven different models m,, simultaneously, each
is in charge of an anatomical part p. More specifically, we use the DQN training algorithm [3]]
proposed by Mnih et al. The loss function is defined as L;(0;) = Es 4. [(y; — Q(s, a; 0;)?], where
target y; = r+ymax, Q(s',a’;07) is evaluated by a separate target network [3] Q(s’,a’; 8~) with
parameters 6. The variable j is the index of training iteration. To improve training stability and
convergence, the target network is fixed for a number of training iterations. The parameters § can be
updated by the standard backward propagation algorithm.

After each anatomical model m,, is trained by the DQN algorithm, since each initial symptom given
by a user may map to several anatomical parts, we need a procedure to select a representative model
among them. The procedure is described in Algorithm[I] First, let C be a set of candidate parts of
a given initial symptom ¢. Initially, the candidate set is empty. Then for each anatomical part p,
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Table 2: The network architecture of our model m,.

Name Type InputSize Output Size
FCl  Linear |Z,| x3 1024 X w

ReLLU

FC2 Linear 1024 x w 1024 x w
RelLU

FC3 Linear 1024 x w 512 X w
RelLU

FC4  Linear 512xw |Z,]|+ |Dp|

we check whether p’s symptom set contains the symptom ¢ (line[6). If yes, p is included into the
candidate set. After the set C is formed, we test the training accuracy of each anatomical model m,,
that corresponds to a part in C (line[I2)). Then we choose the model with the highest accuracy as
a representative for the symptom ¢ (line [I8). When the algorithm finishes, it returns a set R that
contains all the mappings between initial symptoms and representative models.

After all these symptom-model mappings are assigned, when a patient provides an initial symptom %
to the system, we select the representative model m,..;,,» by looking up the set R. The actual inquiry
and diagnosis process is performed by the underlying 1,.¢,,. This concept is similar to the mixture
of experts, where we train several experts for different anatomical parts, and then these experts are
combined to perform useful inquiries and diagnoses.

Algorithm 1: SymptomModelMapping

Input :A set P of anatomical parts
A set Z of symptoms
A set T of training examples
A set M = {m,, | p € P} of anatomical models
Output : A set R of mappings between symptoms and representative models

begin
R+— ¢
foreach i € 7 do
C+— ¢
foreach p € P do
ifi € 7, then
C+— CU{p}
end
end
max <— 0
foreach p € C do
accuracy «— TestAccuracy(myp,i,T)
if accuracy > max then
max <— accuracy
repr <—p
end
end
R — RU{(t, Myepr)}
end
return R
end

4 Experiments

Due to privacy laws (e.g., the Health Insurance Portability and Accountability Act; HIPAA) and
concerns, real clinical data may not be publicly available, and even anonymized clinical data cannot
be shared among researchers. These policies can obstruct healthcare and machine learning research.



Table 3: Experimental results on anatomical and monolithic models.

Task Dy |U,Dpl w Anatomical Model Monolithic Model
Topl Top3 TopS5 #Steps | Topl Top3 Top5 #Steps

Task1 25 73 1 | 48.12 59.01 63.23 717 | 39.42  43.13 4497 1.64
Task2 50 136 2 | 3459 41.58 45.08 7.06 2749 29.16 30.28 1.48
Task3 75 196 3| 2546 29.63 31.82 5.98 2.08 2.81 4.19 3.42
Task4 100 255 4 | 21.24 2456 26.15 6.94 0.73 1.46 2.19 3.37

To bridge the gap between limited available data and data-driven methodologies, we propose an
approach to generate synthetic clinical data.

We first composed the disease set as follows: At the start, we chose SymCat’s symptom-disease
database as our target since it contains 801 diseases, and each disease is annotated with its symptom
distribution. Then we performed two preprocessing steps to rule out some diseases from the SymCat
database. First, we removed the diseases that are not contained in the Centers for Disease Control and
Prevention (CDC) database. Second, we observed that SymCat’s diseases contain several parent-child
relationships. We thus identified all these relationships by querying the UMLS medical database, and
removed all parent diseases to provide fine-grained disease predictions. For example, skin disorder,
atrophic skin condition, and psoriasis are contained in the SymCat database. Since skin disorder
is a collective name and more generic than the other two, we removed skin disorder. These two
preprocessing steps ruled out 151 diseases in total. The remaining 650 diseases form the disease set
in our synthetic dataset.

Next, we defined four experimental tasks and composed their corresponding task-specific disease sets.
These four experimental tasks were designed to include different number of diseases, from small to
large, to test the scalability of our ensemble model. In the first task, for each anatomical part, we
selected top 25 diseases of the part in terms of disease frequency in the CDC records. For the other
three tasks, we selected top 50, 75, and 100 diseases, respectively. As shown in TableE], this selection
criterion resulted in total 73, 136, 196, and 255 diseases for our four tasks. Note that since a disease
could cause symptoms on several anatomical parts, unioning 11 sets of diseases from 11 anatomical
parts yields substantially smaller number of diseases (e.g., 73 < 11 x 25).

During the training process for a task, we generated synthetic data as follows: First, we sampled
a disease uniformly from the task-specific disease set (e.g., for the first task, we sampled from its
73 disease set). Given a chosen disease, we sampled a set of symptoms from SymCat’s symptom
distribution, forming a synthetic patient record associated with that given disease. We sampled
128 such patient records to form a mini-batclﬂ For all tasks, we used ten million mini-batches for
training.

To test the disease-prediction accuracy, we separately produced a test data set using the above
procedure. For each disease in a task-specific disease set, we sampled 10,000 patient records
associated with the disease using SymCat’s distribution. Therefore, we have a test dataset of size
730, 000 for the first task. The test sets for the other tasks were similarly generated.

Table 3| shows the experimental results of our proposed model. The first column shows the number of
diseases we selected for each anatomical part. The second column shows the total number of diseases
among 11 anatomical parts. The column in Anatomical Model shows accuracies and average inquiry
steps of our proposed ensemble model. The column in Monolithic Model shows the same statistics
produced by a single model that supports the total number of diseases. From the table, we can see
that our ensemble model achieves significantly higher accuracy than the traditional single model
approach.

Note that as shown in Table 3] the average number of inquiries ranges from 5 to 7 in our anatomical
model. On the other hand, in the monolithic model, the average number of inquiries that can be
generated ranges only from 1 to 3. These short inquiry sequences indicate that the monolithic
model typically predicts diseases based on an initial symptom and then only very few additional
inquired symptoms to make disease predictions. We hypothesize that the monolithic model encounters
difficulties in learning useful candidate symptoms to inquire users due to the large space of symptoms,
leading to poor disease-prediction accuracy. We aim to investigate this curse of dimensionality
hypothesis further in the future.

'This number, 128, is chosen due to the balance between memory consumption and runtime.
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Figure 2: Top 5 accuracy comparison on different tasks.

Figure [2] shows the accuracy trend when the number of diseases for each anatomical part is increased.
We can see that the more diseases a part has, the lower disease-prediction accuracy the model achieves.
Our anatomical model enjoys much better scalability compared to the monolithic model. Although the
first task only considers the 73 diseases, the trained model of the first task is sufficient for diagnosing
common diseases since the 73 diseases cover almost a half of all CDC records. Note that all CDC
records are covered by the 651 diseases so the 73 diseases maximize the benefits of coverage.

4.1 Three Qualitative Scenarios

In addition to the quantitative analysis of our method, we also performed qualitative analysis on the
trained model as follows. For each training instance, we generated a sequence of query-response
pairs to check whether the queried symptoms make sense for the diseases predicted by our trained
model. After sampling one hundred sequences of query-response pairs, we summarize the behavior
of the trained model in three scenarios which are similar compared to human practice.

The first scenario is that two patients suffering from two distinct diseases might report the same
symptom in the beginning. However, based on the responses to our queries, the trained model can
correctly diagnose the disease suffered by each patient. Table f] shows two pairs of such examples.
For example, in the first row of Table[] the target diseases of the two sampled patients whose initial
symptoms are headaches are epilepsy and migraine, respectively. The fourth column shows the top
five diseases predicted by our model. This scenario reveals that the responses to the queries do impact
on the final disease predictions. Please note that the trained model can still gain enough information
to infer the result for the migraine case even if all the responses to the queries are negative. Since this
situation happened in several sampled cases, we discuss its further details in the last scenario.

Secondly, two patients suffering from the same disease might report two distinct symptoms in the
beginning. One possible reason is that the severity of symptoms is perceived differently by different
patients. Although the initial symptoms are different, the trained model is capable of diagnosing the
same disease accurately by inquiring different sequences of symptoms for these two patients. Table 4]
shows two pairs of such examples. For instance, in the fourth row of Table 4] the initial symptoms of
the two sampled patients whose target diseases are herniated disks are lower body pain and hip pain,
respectively. The most likely diseases diagnosed by the trained model for the two sampled cases are
herniated disks shown in the fourth column. This scenario reflects that the trained model can accept
different initial conditions (different first symptoms) to reach the same prediction.

Finally, a patient might not have any other symptom except the initial symptom, i.e., a chief complaint.
In this scenario, the answer is always no when the doctor asks the patient about other symptoms. This
leads to that all the responses to the queries are negative in our context. Nevertheless, the trained
model can reinforce the correct disease after each negative response is obtained. Figure [3]illustrates
the phenomenon of two sampled cases. Take Figure [3a] as an example. Except lymphedema, the
sampled patient does not have any symptoms inquired by the trained model. But the Q-value of the
correct disease, coronary atherosclerosis, increases after each query. This scenario reveals that the
trained model can handle a patient with only one symptom.

4.2 Limitations

Although the trained model can handle some common scenarios of human practice, there is an
essential limitation of the trained model: it only considers symptoms. Some similar diseases require



Table 4: (Upper Two) Given the same initial symptoms, our symptom checker diagnosed different
correct diseases. (Lower Two) Given different initial symptoms, our symptom checker diagnosed the
same correct diseases.

Target Init Inquiry Top 5 Diagnoses Q
Epilepsy Headache Vomiting (N) Epilepsy 1.01
Pain during pregnancy (N) Migraine 0.55
Knee pain (N)  Problem during pregnancy 0.43
Seizures (Y) Urinary tract infection 0.33
Sprain or strain 0.28
Migraine Headache Vomiting (N) Migraine 0.74
Pain during pregnancy (N) Anxiety 0.35
Knee pain (N) Epilepsy 0.34
Seizures (N) ~ Problem during pregnancy 0.31
Depressive or psychotic symptoms (N) GERD 0.19
Muscle pain (N)
Eye burns or stings (N)
Ear wax impaction Cough Heartburn (N) Ear wax impaction 1.04
Ear pain (Y) Acute sinusitis 0.7
Frontal headache (N) Anxiety 0.5
Plugged feeling in ear (N) Conjunctivitis 0.48
Sore throat (N) Asthma 0.45
Diminished hearing (Y)
Asthma Cough Heartburn (N) Asthma 0.79
Ear pain (N) COPD 0.32
Wheezing (Y) GERD 0.3
Symptoms of prostate (N) Anxiety 0.28
Retention of urine (N) Ear wax impaction 0.27
Cataract Diminished vision Headache (N) Cataract 0.99
Symptoms of eye (N) Migraine 0.43
Abusing alcohol (N) Breast cancer 0.3
Urinary tract infection 0.23
GERD 0.21
Cataract Abnormal movement of eyelid Diminished vision (Y) Cataract 1.04
Symptoms of eye (N) Migraine 0.32
Urinary tract infection 0.25
Chronic back pain 0.24
Asthma 0.24
Herniated disk Lower body pain Pain of the anus (N) Herniated disk 0.76
Ache all over (N) Degenerative disc disease 0.52
Paresthesia (Y) Seborrheic keratosis 0.29
Anxiety 0.27
Chronic back pain 0.26
Herniated disk Hip pain Ache all over (N) Herniated disk 0.32
Knee pain (N) Lumbago 0.22
Skin growth (N) Spinal stenosis 0.18
Arm pain (N) Degenerative disc disease 0.16
Shoulder pain (Y) Seborrheic keratosis 0.09

Hand or finger pain (N)
Low back pain (Y)
Headache (N)

differential diagnosis taking the results of physical or laboratory examinations into consideration to
distinguish them. Table[3]shows two examples which the trained model failed to predict correctly.
For example, in the first row of Table 5] the patients suffering from chronic back pain, lumbago,
herniated disk, spinal stenosis, sprain or strain, or pain disorder affecting the neck always have pains
in their backs, necks, and low backs. In the second row of TableEL it seems like that kidney stone
is far away from the target disease and the other top four diagnoses. However, in fact, the patients
suffering from kidney stone can sometimes experience pains in their low backs.

5 Conclusions

We have shown that the proposed neural symptom checker can imitate the behavior of inquiry and
diagnosis process performed by doctors. One direction of our future work is to develop methods
that can recommend more complex diagnosis tasks including physical and laboratory examinations.
Another direction is to cover more diseases (addressing the issue of scalability) without degrading the
diagnosis accuracy.
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Figure 3: The Q-values after each inquiry.

Table 5: Two cases our symptom checker failed to predict correctly.

Target Init Inquiry

Top 5 Diagnoses

Frequent urination (N)
Melena (N)

Skin on leg or foot looks infected (N)
Difficulty speaking (N)
Foot or toe lump or mass (N)
Blood in urine (N)
Involuntary urination (N)
Side pain (N)
Lymphedema (N)
Suprapubic pain (N)
Cough (N)

Skin moles (N)

Neck pain (Y)

Headache (N)

Ankle pain (N)

Loss of sensation (N)
Arm pain (N)

Hip pain (N)

Skin rash (N)

Knee pain (N)

Low back pain (Y)

Chronic back pain Back pain

Lumbago
Herniated disk
Spinal stenosis
Sprain or strain
Pain disorder affecting the neck

0.21
0.18
0.17
0.12
0.05

Frequent urination (N)
Melena (N)

Difficulty speaking (N)

Skin on leg or foot looks infected (N)
Foot or toe lump or mass (N)
Blood in urine (N)

Side pain (N)

Loss of sensation (Y)
Headache (N)

Neck pain (N)

Knee pain (N)

Arm pain (Y)

Degenerative disc disease ~ Low back pain

Herniated disk
Peripheral nerve disorder
Spinal stenosis
Sprain or strain
Kidney stone




Acknowledgments

We would like to thank Chun-Yen Chen, Ting-Wei Lin, Cheng-Lung Sung, Chia-Chin Tsao, Kuan-
Chieh Tung, Jui-Lin Wu, and Shang-Xuan Zou for their efforts in running the experiments of this
paper. We would also like to thank Ting-Jung Chang for his efforts in providing medical knowledge
for this paper.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

R. Kohavi. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, Oregon,
USA, pages 202-207, 1996.

I. Kononenko. Inductive and bayesian learning in medical diagnosis. Applied Artificial Intelligence,
7(4):317-337, 1993.

I. Kononenko. Machine learning for medical diagnosis: history, state of the art and perspective. Artificial
Intelligence in Medicine, 23(1):89-109, 2001.

R. Ledley and L. Lusted. Reasoning foundations of medical diagnosis symbolic logic, probability, and value
theory aid our understanding of how physicians reason. Science, 130(3366):9-21, 1959.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A. Riedmiller. Playing
atari with deep reinforcement learning. CoRR, abs/1312.5602, 2013.

H. L. Semigran, J. A. Linder, C. Gidengil, and A. Mehrotra. Evaluation of symptom checkers for self
diagnosis and triage: audit study. BMJ, 351, 2015.

R. Sutton and A. Barto. Reinforcement learning: An introduction, volume 116. Cambridge Univ Press,
1998.



	Introduction
	Preliminaries
	Proposed Architecture for Symptom Checking
	Model
	Training

	Experiments
	Three Qualitative Scenarios
	Limitations

	Conclusions

