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Abstract—Soteria is a user right management system designed
to safeguard user-data privacy in a transparent and provable
manner in compliance to regulations such as GDPR and CCPA.
Soteria represents user data rights as formal executable sharing
agreements, which can automatically be translated into a human
readable form and enforced as data are queried. To support
revocation and to prove compliance, an indelible, audited trail of
the hash of data access and sharing agreements are stored on a
two-layer distributed ledger. The main chain ensures partition
tolerance and availability (PA) properties while side chains
ensure consistency and availability (CA), thus providing the three
properties of the CAP (consistency, availability, and partition
tolerance) theorem. Besides depicting the two-layer architecture
of Soteria, this paper evaluates representative consensus proto-
cols and recommends side-chain and inter-chain management
strategies for improving latency and throughput.

Index Terms—blockchain, privacy, ccpa, gdpr

I. INTRODUCTION

Artificial intelligence (AI) has the potential to improve the
quality of many application domains. In order to effectively
train Al models, an application typically requires large quan-
tities of personal information (PI) from users. To address data
privacy issues, regulations such as GDPR [1] and CCPA [4]
in the general domain and HIPAA [2] in the medical domain
need to be upheld. Businesses are required to comply with the
consumer rights in a provable way. The eight consumer rights
of GDPR and the six of CCPA can be summarized into three
categories: 1) right to consent, rectify, and delete; 2) right to
be informed; and 3) right to access and transfer.

« Consent: users must explicitly opt-in and always have the
ability to opt-out of PI collection.

o Informed: users have the right to know how their PI is
collected, used, and shared.

o Access: users have the right to access his/her own data,
transfer data to another person or entity, and erase data.

To protect privacy rights in a provable manner, we propose
Soteria, a user-right management system with a distributed
ledger platform. Soteria provides a formal end-to-end solution
that automatically maps user agreements to share data in
natural language into formal compliance code. Our executable
sharing agreements (ESA) are a formal representation of
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sharing agreements that can specify a superset of the rights
protected under GDPR and CCPA. These agreements are
translated into formal Satisfiability Modulo Theory (SMT)
formulas for enforcement. Agreements can be translated back
into natural language automatically so users can review and
audit. (Most users may not be able to understand an ESA
written in SMT formulas.) For provable compliance to pri-
vacy regulations, Soteria uses a distributed ledger to support
auditability and revocability. We create an indelible trail of
records by first logging every agreement signed and every
query made, and putting a hash of the log on a distributed
ledger. Soteria ensures all transactions (including permission,
revocation, data access, and deletion) on PI leave indelible and
consistent records for public audit. Provability is essential in
the court of law to resolve disputes.

Soteria’s ledger system employs a two-layer blockchain
architecture to allow all three CAP (consistency, availability,
and partition tolerance) properties [9] to be simultaneously
satisfied. The base-layer blockchain guarantees PA (partition
tolerance and availability) properties to ensure transparency,
whereas the side chains guarantee CA (consistency and
availability) properties to ensures provability. Soteria ensures
performance scalability in both latency and throughput. To
this end, Soteria uses permissioned side chains to achieve
low latency, and replicates side chains when necessary to
achieve high throughput. At the same time, the main chain
uses a decentralized and permissionless blockchain to ensure
transparency for public auditing. We detail our protocol selec-
tions for the base blockchain and side chains, and inter-chain
management policies in Section IIL

The rest of this paper is organized into four sections.
Section II depicts Soteria’s architecture and its user right man-
agement system. Section III presents and evaluates consensus
protocols for both the main chain and side chains qualitatively.
In Section IV, we report our quantitative performance evalua-
tion on readily deployable protocols and suggest main-chain,
side-chain, and inter-chain management strategies. We offer
our concluding remarks and discuss future work in Section V.

II. ARCHITECTURE OF SOTERIA

We use the terms user and consumer interchangeably to
refer to the owner of data. (Data consumer is the term defined



in CCPA to refer to an application user whose data the
regulation aims to protect.) We use business and company to
refer to the collector and custodian of user/consumer data. A
user, and a business with that user’s consent, can access the
data collected from the user stored at the business.

A. Components and Design Goals

Figure 1 presents the components of Soteria. Soteria con-
sists of three modules: in additional to its distributed ledger
(DLT) that employs a two-layer blockchain, URM is user-right
management for and ATS is for audit trail service .

o User right management (URM): URM stores descriptions
of user data and metadata that are collected and stored
by a company.

o Distributed ledger (DTL): DTL is our two-layer
blockchain that satisfies Soteria’s requirements including
privacy, throughput and latency.

o Audit trail service (ATS): ATS stores incurred transac-
tions on data items for transparent auditing.

Soteria is designed to address the following challenges:

1) Today users are asked to consent to long hard-to-read
agreements. How can we write agreements that can be
understandable to users?

2) How do we ensure that the agreements users sign
translate into a faithful implementation?

3) How can a company prove that it is compliant? In
particular, how do consumers ensure that no accesses
to revoked data are performed?

While Section III depicts the ledger design in DTL for
addressing the provability requirement, the remainder of this
section presents how URM complies with regulations of
consent, informed, and access described in Section 1.

B. ESA: Executable Sharing Agreement

In existing systems, users are required to agree to long
documents that are not understandable. Furthermore, because
these agreements are expressed in natural language, which can
be ambiguous, it is not clear what the effect of the agreements,
or whether a certain company is truly in compliance. Instead,
we propose executable sharing agreement (ESA), which have
a well-defined unambiguous semantics; that is, whether a
specific transaction complies with the agreement can be ver-
ified automatically. Furthermore, ESAs can automatically be
converted into natural language unambiguously. This ensures
that the contract is understandable to users and auditors.

Our ESA notation is inspired by the previously proposed
ThingTalk language [13], designed originally for personal data
sharing [15]. The syntax of an ESA is as follows:

Y, w(r,p): [fi,fo,...]1 of d,m(fi,fr,...)

This statement reads as follows: “for consumer 7, the fields
fi,f2,... from domain d can be shared with any requester
r for purpose p, provided that the predicates n(r,p) and
n(f1, f>,...) are satisfied.

So, for example, to express that they are willing to share
their abnormal PSA (a protein called prostate-specific antigen)

with Stanford Medical Center, including their age and ethnicity
but not their name, and only for research purposes, a patient
named “Bob” would issue an ESA agreement of the form:

Y= “Bob”, r = “Stanford Medical Center” A p = research :
[age, ethnicity, PSA] of EHR,PSA > 2

1) Translating to and from Natural Language: As con-
sumers are not expected to understand formal languages,
the ESA notation is designed to provide a natural language
interface. The sharing agreements can be translated from
formal to natural language using a rule-based translation. The
previous example can be expressed in natural language as:

“Stanford Medical Center can read the age, eth-

nicity and PSA of Bob’s EHR for research and if

the PSA is greater than or equal to 2.”
While the automatically generated sentences can be verbose
and clunky due to the rule-based translation, they are under-
standable, and they are guaranteed to correspond exactly to
the code of the agreement. Furthermore, the ESA notation
is designed so that a user can define their own sharing
agreement in natural language. Previous work [13] has shown
that it is possible to automatically translate natural language
access controls into attribute-based policies for personal data
sharing [14], [15], and the same semantic parsing technology
is used here.

C. ESA Enforcement

All writes to and reads from the database containing user
data must go through the Soteria interface to ensure com-
pliance to all the sharing agreements, which represent user
consent. Soteria automatically includes an owner field for each
row of the database. Every database access is rewritten to
include the sharing agreements constraints; it is timestamped
and logged for later auditing.

1) Verification of SQL Queries for Auditing: To prove
compliance to an external auditor, Soteria stores the requester,
the purpose and the final query, right before it is issued to
the database, including all the clauses related to the sharing
agreements. Using the set of the sharing agreements in force
at the time, the auditor can then formally verify that the query
was compliant. Given a query from requester r for purpose p
in the audit logs of the form:

SELECT f FROM t WHERE T
and sharing agreements of the form:

’ylanl(rap):[fhfzw"] of taﬂl(fl7f2a"')
727752(ryp)5[f1»f27-~~] of lan2(f17f2a"')

the query is compliant if and only if

T E(y=nAm(np) Am(fi,fr,-.)V
(y=pAm(nhp) Am(fi, fr--)) V...

where 7y is the consumer who owns a specific row in the
database. This logical formula can be verified efficiently using
a satisfiability modulo theory (SMT) solver [8].
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Fig. 1: Soteria Components: URM, DTL, and ATS.

2) Formally Verified SQL Query: To ensure that all queries
are compliant, Soteria uses the following algorithm to con-
struct a query that is guaranteed by construction to satisfy the
sharing agreements. Given a SQL query from requester r for
purpose p of the form:

SELECT f FROM t WHERE T

and sharing agreements of the form:

yl;nl(np):[fl?féa"'] of tanl(fhfz"")
7’27”2(r7p):[f17f27'”] of t7ﬂ2(f17f27"')

Soteria constructs a query of the form:

SELECT fN{fi1,f,...} FROMt WHERE 7 AND
(y=m AND m(r,p) AND 71(f1, f2,--.)) OR
(y =12 AND m(r, p) ANDM(f1, f2,--.)) OR...,

where 7 in the table contains the owner of that row.

It is possible to prove that the result set of this query is
consistent with the sharing agreement. Only the fields allowed
by the agreement are returned, and a row is included only if
the predicates in the sharing agreement in force for the row
owner are satisfied.

3) Enforcing Requester and Purpose: A data requester can
be an app user defined in CCPA or a company that stores user
data. The URM component of Soteria assumes that the identity
of the data requester has been verified by the data transport
protocol. Soteria does not mandate any specific transport
protocol; meaningful protocols could be REST, messaging-
based [15], or could even be through physical media.

Furthermore, Soteria does not verify the purpose of the data
access. The design assumes that at identification time, the
data transport protocol will also compute the allowed purpose
of data access. For example, using REST data transport, a
medical data requester could be issued two different access
tokens, one for clinical purposes and the other for research

purposes. The correct purpose can be established through an
existing business agreement between the data provider and
data requester. If the data requester then uses the data in a
manner inconsistent with the agreed purpose, the provider can
use Soteria to establish that the fault lies with the requester.

4) Enforcing Access on Write: To limit the data stored by
a business entity such as AWS, queries that manipulate data
(insert, update, delete) are also intercepted by Soteria, and
modified to match the ESA governing the storage of data.
Write queries not allowed by any ESA are not executed and
not logged.

To support permanent deletion of the data upon request by
the consumer, the data itself (included in the VALUES and
SET clauses of the insert and update queries) is masked in the
audit log, as the audit log is immutable and append-only. For
this reason, an ESA limiting writes that depend on the specific
values cannot be audited after the fact. Soteria disallows such
ESA: only the set of fields to write can be controlled.

Deletions are a special case of write, because they reduce
the data that is stored about a specific customer rather than
store new data. Hence, deletion is always allowed regardless
of the current ESA. All deletions are logged, to prove that
they were executed properly.

Additionally, upon revoking an ESA that limits the allowed
writes to the database, some columns that were previously
allowed might becomes disallowed. In that case, Soteria over-
writes the data to set those columns to NULL. In case all
columns are now disallowed, such as when all ESAs for a
customer are revoked, Soteria deletes the row entirely. Both
the database write (update or delete) and the ESA revocation
are logged for later auditing.

D. ESA Storage and Audit

To support long-term auditability, as well as revocation
of contracts, Soteria makes use of a distributed ledger
(blockchain) to track which sharing agreements are in force.
The use of the blockchain provides a global ordering of all



the events across all parties in the system; the events include
issuing a sharing agreement, accessing the data, and revoking
a sharing agreement. This global ordering ensures it is always
possible to verify whether a sharing agreement was in force
when a data transaction occurred, without disputes.

Sharing agreements can potentially be privacy-sensitive
themselves; for example, the sharing agreement in the previous
section can reveal that the patient is likely to be male.
For this reason, Soteria only stores the hash of the sharing
agreement code, and the hash of each transaction, in the
public blockchain. Upon request by a competent authority
(e.g. under subpoena in a civil dispute), a data provider using
Soteria can reveal the full audit logs, including the full code of
the sharing agreements, and the exact transactions performed.
These logs can then be matched to the hashes stored in the
public blockchain to verify that they were not tampered with.

Soteria includes three types of events in the blockchain:

1) Sharing Agreement Deployment (ESAD). An ESAD
event occurs when a new sharing agreement is created
between a user and a business. An ESAD transaction
on the blockchain (ESAD-TX) includes both user and
business addresses, the hash of the agreement code, ESA
deployment date, and ESA validity status (set to frue).

2) Data Transaction (DATA-TX). A data transaction indi-
cates the transfer of data between a data provider and
a data requester. DATA-TX records in the blockchain
include the address of the data provider, the address
of the data requester, and the hash of the exact query
executed against the database. Note that, as described
in the previous section, the exact query will include a
reference to the consumers and their sharing constraints.
Hence, given the raw audit logs, paired with the hash
in the blockchain, it is possible to verify that the query
was valid when executed.

3) Sharing Agreement Revocation (ESAR). A sharing
agreement can be revoked by a user, making it in-
valid. Since the ledger is append-only, a revocation
is implemented by creating a new sharing agreement
transaction with the validity status set to false. Note that
a rectification request issued by a user is executed in two
consecutive transactions, an ESAR to revoke an existing
consent and then an ESAD to create a new consent.

III. DLT CONSENSUS PROTOCOLS

Soteria adopts blockchain technology to maintain its dis-
tributed ledger among several institutions and users. To achieve
high throughput and low latency, Soteria uses a two-layer
blockchain (we previously proposed in [26]). The base layer
is decentralized similar to Ethereum, and its side chains are
entrusted by a group of selected validators, known as ju-
ries. Soteria may spawn multiple independently operated side
chains for improving overall throughput. An ESA’a agreement,
access, and revocation are all logged on the same side chain
to ensure a local consistent order on that side chain.

Recall that the CAP theorem [9] states that a distributed
database system can only satisfy two of the three properties:

consistency, availability, and partition tolerance. While the
base-layer chain ensures availability and partition tolerance,
the side chains ensure consistency and availability. Using a
permissioned side chain with a jury pool, Soteria can improve
both throughput and latency by limiting the number of juries.
Note that public audit is performed on the permissionless
main chain. There is a delay between when a transaction is
committed on a side chain and when the hash of the side-chain
block containing the transaction is written onto the main chain.
A user can be informed that her ESA signed with the business
has been recorded on a side chain. However, only after the
main chain has been updated, the user (or through the user’s
agent) can verify that the contract has indeed been signed
and was not altered. (Inter-chain latency will be discussed in
greater details shortly.)

Soteria’s ledger requires a consensus protocol since it sup-
ports contract revocation. A consensus protocol ensures that all
validators agree on a unique order of transactions on the ledger.
Note that without this strict access permission and access
revocation order requirement, an append-only log suffices to
support the decentralized auditability requirement.

There are several types of consensus protocols, each of
which enjoys some pros and suffers some cons. An application
selects a particular consensus protocol for its desired perfor-
mance objectives (e.g., latency, throughput, and consistency).
For instance, a protocol that guarantees immediate consistency
may trade latency and throughput for achieving the consistency
objective. A protocol that requires just weak consistency or
eventual consistency can achieve shorter latency and higher
throughput!.

Specifically, the PoX (proof-of-something) family proto-
cols [3], [12], [22], [31] such as Proof-of-Work (PoW), Proof-
of-Stake (PoS), and Proof-of-Importance (Pol) offer timely
consistency with good network scalability but suffer from high
latency and low transaction throughput. On the contrary, the
BFT (Byzantine Fault Tolerance) family protocols offer good
performance with limited scalability with respect to the num-
ber of validators. PoX is thus more suitable for permissionless
blockchains (Soteria ’s main chain), whereas BFT is more
suitable for permissioned blockchains (side chains).

In the remainder of this section, we survey representative
BFT consensus protocols including Tendermint [11], Hash-
graph [7], HotStuff [36], and Stellar[28]. We summarize in
Section III-C a qualitative comparison before presenting our
empirical study in Section IV.

A. Blockchain Overview and Terminologies

A blockchain of height H is composed of a sequence of H
blocks. Each block i, where h=0,...,H — 1, in a blockchain

'All consensus protocols discussed in this paper, in either the family of
PoX or BFT/PBFT, observe properties including consistency, safety, liveness,
and fault tolerance to an extent. A protocol may prioritize e.g., liveness
over consistency (accepting eventual consistency instead of enforcing strong
consistency). Which properties enjoy higher priorities and the choice of a
protocol may boil down to performance and cost consideration. We assume
each protocol works correctly as it specifies and claims. Detailed discussion
on the properties observed by individual protocols is beyond the scope of this

paper.



Tendermint [

Stellar [

HotStuff [ Hashgraph |

Timing Model Partial Synchronous

Partial Synchronous

Partial Synchronous Asynchronous

Key Design Goals Single mode mechanism

Flexible trust

1. Linearity

2. Optimistic responsiveness High throughput

Fault Tolerance < % Voting Power

not available (na)

< % Voting Power < % Voting Power

Message Complexity 0 (N*) NA 0 (N°) na 0(N) NA 0 (N?) o (N%)
Scalability 100-1,000 na > 100 > 1,000
Validator Bound 64 43 128 128
Throughput (tx/s) 4k na 10k > 50k
Latency (s) 5 1.3 10 >10

AWS t2.medium

Hardware Config.

AWS c5d.9xlarge

AWS c5.4xlarge AWS m4 4xlarge

TABLE I: Consensus Protocols Comparative Analysis. Data Sources: [7], [10], [27], [36]. N denotes # of validators.

contains various numbers of transactions organized into a
Merkle tree. The Merkle tree root of the A" block, denoted as
Ry, summarizes the information in that block. The A" block,
where h € [1,...,H — 1] points to its previous block with
pointer Bj,. (The first block, or &2 = 0 is the genesis block.)
Byis the hash of three components: previous block hash Bj,_,
the Merkle tree root of current block Ry, and some information
from the h™" block 7j, such as timestamp.

B. Base Chain Protocols

Proof-of-something (PoX) protocols aim to support decen-
tralized permissionless blockchains. As mentioned in Sec-
tion I, Soteria uses a PoX blockchain as its base chain. The
choice of a PoX protocol depends on the factors of cost
and inter-chain consistency latency, which is defined as the
time between when a transaction commits on a side chain
and when the root of the transaction’s Merkle tree is hashed
onto the main chain. Inter-chain consistency is different from
transaction consistency. The former ensures a consistent public
view of transactions for the purpose of decentralized audits,
whereas the latter ensures the validity of individual transac-
tions. Transactions committed on a side chain guarantees a
consistent local order on that chain. The main chain, however,
does not guarantee total order on all the transactions across all
side chains. Once Soteria enforces that a contract revocation
must take place on the same side chain where the contract was
agreed upon and validated, side chain consistency guarantee
suffices.

Access revocation transactions take effect within seconds,
as a side chain of Soteria can ensure transaction-commit
latency to be within seconds. In other words, once a user
revokes a prior permission to access her data, her data will
be inaccessible within seconds. For the purpose of auditing,
Soteria can only guarantee inter-chain consistency within min-
utes (inter-chain latency), this suffices for the auditing purpose
required by regulations®. A PoS (proof-of-stake) protocol such
as Ethereum satisfies latency in minutes at a relatively low cost
(compared to e.g., Bitcoin). Therefore, Soteria uses Ethereum
as its main chain.

’E.g., the CCPA announced in January 2020 requires a data holder to
respond to an audit request in 45 days.

C. Side Chain Protocols

Byzantine Fault Tolerance (BFT) has a long history with
distributed systems [35]. In 1999, [16] implemented “practi-
cal” Byzantine Fault Tolerance (PBFT) protocol. PBFT can
work in an asynchronous environment, such as the Internet.

PBFT executes in two modes, normal mode and view-
change mode. In the normal mode, a leader proposes a
candidate value to the other replicas in the pre-prepare phase.
PBFT then goes through two successive voting phrases: pre-
pare and commit. If the candidate value is accepted by a
replica p;, as known as a validator, p; enters the prepare
phase and broadcasts a prepare message to others consisting
the candidate value. Once p; collects enough messages, i.e.,
2f 41 messages over 3f + 1 replicas (f denotes the number
of Byzantine nodes) and agree on the same value, it enters
into the commit phase. In the commit phase, replicas conduct
an election similar to the one in the prepare phase to agree
that more than 2f replicas will write the candidate value into
their respective databases. To prevent indefinitely waiting, p;
transitions to view-change if a timeout is triggered. In the
view-change mode, replicas start a new view to elect a new
leader by sending view-change messages.

The message complexity of BFT/PBFT protocols is between
o (Nz) and O (N3). Since N, the size of a jury is typically a
small set of trusted validators, latency can be managed® to be
under 10 seconds.

Of late, there are a large number of BFT/PBFT protocols
proposed for prioritizing various performance objectives, e.g.,
safety, fault tolerance, latency, and throughput (e.g., [5], [18],
[19], [21], [24], [25], [17], [30], [32], [34].) A comprehensive
survey is beyond the scope of this paper.

For the Soteria’ side-chain design, we prioritize reliability
under different attacks [29] and preservation of CA properties.
We select and evaluate four widely deployed and battle-tested
BFT protocols known for their reliability: Tendermint, Stellar,
HotStuff, and Hashgraph. Due to the page limit, we document
the specifications of these four protocols in the Appendix of
the extended version of this paper [20]. Table I presents a

3Unlike that a decentralized protocols must deal with a potentially massive
number of nodes, the administrator of a side chain can adjust N to cap its
latency.



qualitative comparison between these four protocols in eight
properties:

1) Timing model: timing assumptions of different models
including synchronous, asynchronous, and partial syn-
chronous.

2) Design goals: the primary performance goals that a con-
sensus algorithm was designed to achieve. This provides
the contextual information for evaluating a protocol.
(A protocol designed for achieving low latency should
not be derided for its weaknesses in other performance
metrics.)

3) Fault tolerance: the upper bound of faulty nodes (or
weighted votes) that can cause system failure.

4) Message complexity: the overall message complexity to
commit a block. N denotes the number of validators.

5) Scalability: the number of validators that the consensus
protocol claims to allow in the consensus process.

6) Validator bound: the largest number of validators that
can participate in a consensus protocol.

7) Throughput: the number of transactions per second that
can be committed by the majority of validators under
the largest number of validators.

8) Latency: the average delay before a transaction is com-
mitted under the largest number of validators.

Table I shows only the performance data under the largest
number of validators that a protocol can support given its own
hardware configuration and assumptions, documented in their
own white papers [7], [10], [27], [36]. In Section IV, we
presents our own experiments attempting to do a relatively
fair comparison.

Note that Stellar is absent in most of the fields in Table I
for two reasons. First, fault tolerance and message complexity
are highly correlated with the configuration of each validator
on the Stellar network. This flexible configuration makes
it difficult to analyze Stellar without knowing its network
structure. Second, the work of [27] focuses only on reducing
latency and assumes that throughput can be improved by
adding hardware. Also note that though Table I does not
provide an apple-to-apple comparison, it provides a birds-eye
view on representative protocols’ characteristics.

IV. EXPERIMENTS

Our experiments were designed to evaluate tradeoffs be-
tween latency and throughput under different hardware and
software configurations and then devise strategies to improve
performance. More specifically, we would like the following
questions to be answered:

1) Which protocol(s) can achieve the best performance?

2) What is a cost-effective configuration to support a target
throughput and latency performance?

3) Given a required latency, what is the maximum number
of validators allowed?

4) What are the side-chain and inter-chain parameters that
can be adjusted to achieve desired performance?

Since there is no stable implementation of Hashgraph or
Hotstuff* to date, we evaluated only the latest versions of Ten-
dermint and Stellar. Note that though we attempt to perform
“fair” evaluation on the protocols, it is impossible to achieve
absolute fairness due to the fact that engineering quality,
parameter settings, and network configurations all can affect
experiment results. Therefore, when evaluating the results,
we focus on observing trends and patterns to recommend
strategies to improve the target performance.

We adopted Tendermint v0.32.1 and Stellar v12.0.0 and
deployed them on Google Cloud Platform (GCP). For Tender-
mint and Stellar, respectively, we created up to 64 validators,
and assigned an 8-core Intel(R) Xeon(R) 2.20 GHz CPU with
7.2 GB memory to each validator. Validators were config-
ured into a fully connected topology. To measure realistic
network latency, we deployed validators on Google servers in
different geographical locations (Taiwan, Singapore, Belgium,
and Columbia). Validators were distributed equally to these
locations. For example, in the 64-validator implementation,
16 validators were allocated to each of the four geographic
locations.

A. Metrics

We define throughput and latency based on an end-user’s
perspective. Given a set of N validators V = {p1,p2,...,pn},
throughput denoted as TPS,y, is written as

=N TPS;
TPSan _ i=1 N awg7 (1)
where TPS;1Vg denotes the average throughput of validator p;,

who owns a sequence of blocks B = {b}),bi,...,b};}. In turn,
TPSZ (throughput of the h+ 1" block of validator p;) is the
average throughput of all transactions in that block, which is
obtained by the number of transactions in the block divided
by the commit interval between bﬁl_l and b;'l, which is denoted
as At} or

. xt TpSi T
TPS.,, = —=0—"" " where TPS) = ‘A:J.
h

The latency of a transaction is the time between when the
transaction is submitted by a client and when the transaction
is committed in a block on a side chain, running either
Tendermint or Stellar. Each transaction j may encounter dif-
ferent latency measures in V validators’ databases, Latency{ ,
Vp; € V. We thus denote LatencyfIlecl as the median latency
of transaction j among all V validators. The average latency
of all the T' transactions denoted as Latency,,, can then be
written as

T J
Y, Latency; 4

Latency,,, = T

2

4Hashgraph does not provide open-source release. Hotstuff’s open-source
code is not free of bugs as of Q4 2019 to put into production.
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Fig. 2: Performance of Tendermint and Stellar with 4 and 16 Nodes (Validators).

[ Max block size | Trans. size | Commit interval |
[ 3,000 transactions/ block | 212 bytes |

5 seconds ]

TABLE II: Parameter Settings for Tendermint and Stellar.

B. Parameter Settings

Several parameters affect the block commit time, including
maximum block size, transaction size, commit interval, trans-
action weight, and quorum-slice size [10], [36].

e Maximum block size. The maximum number of transac-
tions that can be included in a block.

o Transaction size. The capacity of a transaction in bytes.

e Minimal commit interval. The minimum time increment
between consecutive blocks. A minimum commit interval
may prolong block commit time if an implementation
intends to produce a block whose latency is smaller than
the commit interval. However, we assume that a block’s
latency, which will be no longer than the commit interval,
is an acceptable delay.

o Transaction weight. The probability of a transaction being
committed in a block. All transaction types are given the
same frequency in our experiments.

e Quorum slice. In Stellar, each validator has its quorum
slice [28]. To have a fully connected network for our
side-chain experiments, each validator’s quorum slice
is comprised of the rest of the validators so that all
validators join the quorum.

We used the parameter settings listed in Table II to evaluate
Tendermint and Stellar.

Both implementations were issued the same workload of
a large number of synthetic transactions. To simulate realistic
client behavior, we used a separate node to submit transactions
to validators continuously. This node sent transactions in

different input rates up to 1,200 transactions/s in a round-
robin fashion.

C. Side Chain Evaluation

Figure 2 presents the performance of both implementations
with 4 and 16 validators (or CPU nodes). (Later in the
scalability study, we present performance with a larger number
of nodes.) With 4 validators (or nodes), Tendermint and Stellar
have nearly the same performance when the input rate is under
300 transactions/s (tps). However, when input rates exceed 400
tps, Tendermint achieves higher throughput and lower latency.
The gap between the two protocols widens as the input rate
is further increased.

50 i ! i -
- & -Tendermint-4 1 Vo
~ = - Stellar-4 ‘\ “ L.
40 ||~ * - Tendermint-16 \ ey
Stellar-16 1 i
1 1y
\ t,
w30 \ i
: ' U
3} ' \
5 \ A
® 20 . Vi
\ W
\ \
V
10 e S
_&—_-:::i:::__.‘.f___“-ﬂﬁ;
0
0 100 200 300 400 500

Throughput (transactions/s)

Fig. 3: Throughput vs. latency of Tendermint and Stellar with
4 and 16 nodes. In each dashed line, the consecutive vertices
represent the input rate increases, starting from 100 tps and
increasing by 100 tps each time.

Furthermore, we examine peak performance, which is de-
fined as the highest throughput with the lowest latency. In
Figure 3, we plot throughput (x-axis) and latency (y-axis)
tradeoff for 4 and 16 validators of Tendermint and Stellar,
respectively. The nodes on each line represent the input rates
from 100 tps onward by increments of 100 tps. As an example,
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Fig. 4: Tendermint Performance with 4 to 64 Nodes.

for Stellar-4 (Stellar with 4 validators), its throughput initially
steadily increases from an input rate of 100 to 400 tps, but
then begins to degrade as the input rate increases beyond
400 tps. (Throughput starts to degrade when the curve(s)
in the figure bends leftward as the input rate continues to
increase.) Meanwhile, latency grows rapidly (beyond the upper
bound of the figure after input rate is larger than 600 tps)
when throughput starts to degrade due to saturation of system
resources.

Having confirmed the latency and throughput tradeoff, we
further stress Soteria with heavier workload and increase the
number of validators to investigate problems and devising
remedies. Figure 4 depicts Tendermint’s through and latency
at input rates increased from 200 to 1,200 tps. Stellar’s
performance exhibits the same patterns as Tendermint’s, and
we do not separately present its data. We report Tendermint
vs. Stellar comparison in Figure 5.

From Figure 4[a], we observe that the throughput of Ten-
dermint eventually saturates after the input rate has reached
the capacity of the system. Throughput degradation occurs at
a lower input rate when the number of validators are larger.

The degradation point of 16-node Tendermint is at input rate
450 tps, while the degradation point of 64-node configuration
starts at 250. Figure 4[b] depicts latency versus input rate.
At the same input rate when throughput starts to degrade, the
latency of Tendermint also increases drastically. For smaller
configurations from 4 to 16 nodes latency reaches 50 seconds
at input rate 1,200, whereas for larger configurations 32 and
64 latency reaches two minutes.

It is expected that system capacity eventually limits through-
put and latency. To improve overall Soteria throughout at a
guaranteed level of latency, we can configure an up to 32-node
side chain with an admission control that limits the input rate
to be under 450 tps. This configuration can support throughput
up to 450 tps with 10-second latency. As we mentioned in
Section III-C, Soteria can spawn multiple independent side-
chain instances to improve throughput, while maintaining the
same latency. When the overall throughput requirement is
higher than 450, Soteria can configure another 32-node side
chain to satisfy throughput scalability at the same latency.

Another avenue to simultaneously improve both latency and
throughput is to use a small set of validators. This small
jury approach is safe only if all validators are trusted and
their systems highly secured and independently operated (in
terms of system failure and security breach). One example
scenario is in patient-data sharing. If a jury pool consists of
the NIH, a small number of reputable hospitals and non-profit
organizations, the jury pool can be trusted though small.

D. Two-Layer End-to-End Evaluation

We have this far evaluated side-chain performance with
two consensus protocols. We next examine Soteria’s end-to-
end performance with the main chain running the Ethereum
protocol and one side chain running the Tendermint protocol.

Soteria collects on the side chain a number of blocks, each
consists of a number of executed transactions, and then writes
the fingerprint (or hash) of the blocks onto the main chain.
The question is how many blocks on the side chain should be
bundled to hash onto the main chain?

At first glance, higher frequency of inter-chain updates low-
ers the transaction latency. Our experiment, however, shows
otherwise, as the bottleneck is on the main chain, not side
chains. We will explain why the latency incurred on the main
chain does not practically affect the design goals of Soteria
after the experimental results are presented.

Figure 6 depicts that when the number of blocks per
fingerprint is small (on the x-axis) or the inter-chain update
rate is high, the end-to-end latency of Soteria can be as long
as two minutes. The figure shows that this long latency is
caused by the main chain, not by the side chains. The reason
is that a public chain such as Ethereum is shared by many
third parties, and the main chain’s policy cannot be adjusted
by Soteria. With high inter-chain update frequencies, Soteria
can overload the main chain and cause lengthened delay.

When we reduce the inter-chain update rate to be once every
10 blocks or more, the latency is much reduced and stable
(with a low variance). High update rates increase not only
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latency, but also cost, because the public main chain collects
fees based on the number of updates. Soteria thus should set
an update rate that can balance latency and cost.

E. Key Takeaways

From the results, we make the following observations:

o The Main chain must be decentralized for transparency
to satisfy the provability of compliance with privacy
regulations. Side chains can each independently run its
own selected BFT/PBFT protocol and inter-operate with
the main chain.

o The main chain’s latency could be a performance bot-
tleneck. Nevertheless, the purpose of the main chain is
for public auditing, and a latency of minutes and even
hours is acceptable by CCPA and GDPR user-privacy
regulations. Moreover, the ATS module of Soteria can
cache pending main-chain requests to perform first a fast
audit and then later a confirmation once the main chain
has hardened the side-chain’s block hash.

« Side chains are permissioned and private, they can deploy
BFT/PBFT protocols with a small jury pool to reduce
latency. Transaction latency on side chains can thus
be kept below ten seconds with an admission control.
Throughput can be improved by spawning additional side-
chain instances.

« Inter-chain update frequency can be dynamically adjusted
depending on the workloads on both the main chain and
side chains to balance between latency and cost.

V. CONCLUSION

This paper presented Soteria, consisting of a user right
management system (URM), a distributed ledger (DLT), and
a auditing service (ATS) to support provable, auditable and
scalable data governance. To protect consumer rights of pri-
vacy and to comply with data-privacy regulations, we design
Soteria to fulfill the functional requirements of consent, record
keeping, and transparency (for auditing). We presented the
architecture of Soteria, its functional specifications, and pro-
tocol choices for its base chain and side chains. On protocol
selection, we qualitatively evaluated four algorithms and ex-
perimented with two readily deployable protocols Tendermint
and Stellar. From studying the experimental results, we rec-
ommend side-chain and inter-chain configuration strategies to
improve both latency and throughput.

Soteria cannot prevent a business from unlawfully distribut-
ing user data to a third party. However, when suspicion arises,
Soteria can help validate data ownership, prove absence of user
consent, and provide a list of potential unlawful distributors
to facilitate an investigation. IP and data privacy protection
involves substantial legal knowledge. Soteria shows that it is
technically feasible to develop a scalable and public auditable
distributed ledger. For additional challenges in judicial proce-
dures to prove data rights please consult [23], [33].

Our future work will address various performance optimiza-
tion issues that will arise with URM and DLT. Three specific
topics are:



« SQL optimization. In Section II-C, we note that the SQL

query, while correct, might not be very efficient, as it
includes at least one clause for each owner of the data
in the database. In our experience, this is sufficient, as
in practice the same sharing agreement is used by many
different consumers, so clauses can be unified when the
query is constructed. As consumers’ preferences become
more fine-grained, this might not be the case. Future work
should investigate an optimization algorithm or an index
structure suitable to queries of this form, so that both
performance and formal correctness can be maintained.
Inter-chain protocol optimization. How often side chains
should hash a block onto the main chain affects Soteria’s
latency and throughput. While Soteria may have full
control on the parameters of its side chains, the main,
public chain (such as Ethereum classic) can be shared
with other applications. Soteria should look into dynamic
adjustment policies on its side-chain block size and hash
(to the main chain) frequency.

Interoperability with native access control policies. Most
companies have had their own access control policies
and/or tools. For instance, Zelkova [6] developed by AWS
is an SMT-based (Satisfiability Modulo Theories) reason-
ing tool for analyzing security/privacy policies and their
risks. We will investigate how Soteria can complement
existing tools.
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