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Abstract

Relevance feedbackis often a critical componentwhen designing image databases. With these databases it is difficult
to specify queries directly and explicitly. Relevance feedback interactively determinines a user’s desired output or
query concept by asking the user whether certain proposed images are relevant or not. For a relevance feedback
algorithm to be effective, it must grasp a user’s query concept accurately and quickly, while also asking the user to
label only a small number of images. We propose the use of a support vector machine active learning (SVMActive)
algorithm for conducting effective relevance feedback for image retrieval. To support efficient query-concept
learning and image retrieval, we also present our multi-resolution image-characterization and high-dimensional
indexing methods. We further show that SVMActive can be effectively seeded by MEGA, another active learning
algorighm that we developed, or by keyword searches. Experimental results show that our algorithm achieves
significantly higher search accuracy than traditional query refinement schemes after just three to four rounds of
relevance feedback.

Keywords: active learning, image retrieval, query concept, relevance feedback, support vector machines.

1 Introduction

One key design task, when constructing image databases, is the creation of an effective relevance feedback component.

While it is sometimes possible to arrange images within an image database by creating a hierarchy, or by hand-

labeling each image with descriptive words, these methods are time-consuming, costly, and subjective. Alternatively,

requiring an end-user to specify an image query in terms of low level features (such as color and spatial relationships)

is challenging to the end-user, because an image query is hard to articulate, and articulation can vary from one user

to another.

Thus, we need a way for a user to implicitly inform a database of his or her desired output or query concept. To

address this requirement, relevance feedback can be used as a query refinement scheme to derive or learn a user’s

query concept. To solicit feedback, the refinement scheme displays a few image instances and the user labels each

image as “relevant” or “not relevant.” Based on the responses, another set of images from the database is presented

to the user for labeling. After a few such querying rounds, the refinement scheme returns a number of items from

the database that seem to fit the needs of the user.

The construction of such a query refinement scheme (hereafter called a query concept learner or learner) can be

regarded as a machine learning task. In particular, it can be seen as a case of pool-based active learning [39, 43].
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In pool-based active learning the learner has access to a pool of unlabeled data and can request the user’s label for a

certain number of instances in the pool. In the image retrieval domain, the unlabeled pool would be the entire database

of images. An instance would be an image, and the two possible labelings for each image would be “relevant” or

“not relevant.” The goal for the learner is to learn the user’s query concept — in other words, to label each image

within the database in such a manner that the learner’s labeling and the user’s labeling will agree.

The main issue with active learning is finding a method for choosing informative images within the pool to ask

the user to label. We call such a request for the label of an image a pool-query. Most machine learning algorithms

are passive in the sense that they are generally applied using a randomly selected training set. The key idea with

active learning is that it should choose its next pool-query based upon the past answers to previous pool-queries.

In general, and for the image retrieval task in particular, such a learner must meet two critical design goals. First,

the learner must learn target concepts accurately. Second, the learner must grasp a concept quickly, with only a small

number of labeled instances, since most users do not wait around to provide a great deal of feedback. In this study,

we propose using a support vector machine active learner (SVMActive) to achieve these goals. SVMActive combines

active learning with support vector machines (SVMs). SVMs [64, 6] have met with significant success in numerous

real-world learning tasks. Like most machine learning algorithms, they use a randomly selected training set, which is

not very useful in the relevance feedback setting. Recently, general purpose methods for active learning with SVMs

have been independently developed by a number of researchers [7, 55, 63]. We shall use the work and theoretical

motivation of [63] on active learning with SVMs to extend the use of support vector machines to the task of relevance

feedback for image databases.

Intuitively, SVMActive works by combining the following three ideas:

1. SVMActive regards the task of learning a target concept as one of learning an SVM binary classifier. An SVM

captures the query concept by separating the relevant images from irrelevant ones with a hyperplane in a

projected space, usually a very high-dimensional one. The projected points on one side of the hyperplane are

considered relevant to the query concept and the rest irrelevant.

2. SVMActive learns the classifier quickly via active learning. The active part of SVMActive selects the most

informative instances with which to train the SVM classifier. This step ensures fast convergence to the query

concept in a small number of feedback rounds.

3. Once the classifier is trained, SVMActive returns the top-k most relevant images. These are the k images farthest

from the hyperplane on the query concept side.

SVMActive needs at least one positive and one negative example to start its learning process. We propose

two seeding methods: by MEGA [11], and by keywords (Section 7). To make both concept-learning and image

retrieval efficient, we employ a multi-resolution image-feature extractor (Section 6.1), and a high-dimensional

indexer (Section 6.2). Through examples and empirical study, we show that combining SVMActive with these

other components produces a search engine particularly well suited to the query refinement task in image retrieval,

significantly outperforming traditional systems.

The rest of this paper is organized into seven sections. Section 2 surveys related work. Section 3 introduces

SVMs. Section 4 then introduces the notion of a version space which in Section 5 provides theoretical motivation for

a method of performing active learning with SVMs. Section 6 depicts our multi-resolutionimage characterization and

high-dimensional indexer. Section 7 presents two options of finding relevant images before switching to SVMActive.
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In Section 8, we report experimental results showing that our SVM active learner significantly outperforms traditional

methods. Finally, we offer our conclusions in Section 9.

2 Related Work

Machine learning and relevance feedback techniques have been proposed to learn and to refine query concepts. The

problem is that most traditional techniques require a large number of training instances [3, 37, 45, 73, 74], and they

require seeding a query with “good” examples [36, 51, 71, 49]. Unfortunately, in many practical scenarios, a learning

algorithm must work with a scarcity of training data and a limited amount of training time.

2.1 Machine Learning

Of late, ensemble techniques such as bagging [4], arcing [5], and boosting [28, 54, 70] have been proposed to

improve learning accuracy for decision trees and neural networks. These ensemble schemes enjoy success in

improving classification accuracy through bias or variance reduction, but they do not help reduce the number of

samples and time required to learn a query concept. In fact, most ensemble schemes actually increase learning time

because they introduce learning redundancy in order to improve prediction accuracy [20, 28, 34, 46].

To reduce the number of required samples, researchers have conducted several studies of active learning [14, 8,

33, 62, 72] for classification. Active learning can be modeled formally as follows: Given a dataset S consisting of

an unlabeled subset U and a labeled subset X, an active learner L has two components: f and s. The f component

is a classifier that is trained on the current set of labeled data X. The second component s is the sampling function

that, given a current labeled set X, decides which subset u in U to select to query the user. The active learner returns

a new f after each round of relevance feedback. The sampling techniques employed by the active learner determine

the selection of the next batch of unlabeled instances to be labeled by the user.

The query by committee (QBC) algorithm [23, 56] is a representative active learning scheme. QBC uses a

distribution over all possible classifiers and attempts greedily to reduce the entropy of this distribution. This general

purpose algorithm has been applied in a number of domains (although, to our knowledge, not to the image retrieval

domain) using classifiers (such as Naive Bayes classifiers [19, 43]) for which specifying and sampling classifiers

from a distributionis natural. Probabilistic models such as the Naive Bayes classifier provide interpretable results and

principled ways to incorporate prior knowledge. However, they typically do not perform as well as discriminative

methods such as SVMs [35, 21], especially when the amount of trainingdata is scarce. (See our SVM-based approach

in Section 3.) For image retrieval where a query concept is typical non-linear1, ourMEGA and SVMActive with kernel

mapping provide more flexible and accurate concept modeling.

Specifically for image retrieval, the PicHunter system [17, 16, 15, 18] uses Bayesian prediction to infer the goal

image, based upon users’ input. Mathematically, the goal of PicHunter is to find a single goal point in the feature

space (e.g., a particular flower image), whereas our goal is to hunt down all points that match a query concept (e.g.,

the entire flower category, which consists of flowers of different colors, shapes, and textures, and against different

backgrounds). Note that the points matching a target concept can be scattered all over the feature space. To find

these points quickly with few hints, our learning algorithms must deal with many daunting challenges.

1A query such as “animals”, “women”, and “european architecture” does not reside contiguously in the space formed by the image features.
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2.2 Relevance Feedback

The study of [52] puts relevance feedback techniques proposed by the Information Retrieval (IR) into three categories:

query reweighting, query point movement and query expansion.

�Query reweighting and query point movement [32, 48, 47, 51, 53]. Both query reweighting and query point

movement use nearest-neighbor sampling: They return top ranked objects to be examined by the user and then

refine the query based on the user’s feedback. If the initial query example is good and the query concept is convex

in the feature space [32, 71], this nearest-neighbor sampling approach works fine. Unfortunately, most users do not

have a good example to start a query, and most image-query concepts are non-convex.

�Query expansion [52, 71]. The query expansion approach can be regarded as a multiple-instances sampling

approach. The samples of a subsequent round are selected from the neighborhood (not necessarily the nearest ones)

of the positive-labeled instances of the previous round. The study of [52] shows that query expansion achieves only

a slim margin of improvement (about 10% in precision/recall) over query point movement.

Almost all traditional relevance feedback methods require seeding the methods with “good” positive examples

[22, 29, 31, 42, 59, 60, 67], and most methods do not use negative-labeled instances effectively. For instance,

sunset images must be supplied as examples in order to search for sunset pictures. However, finding good examples

should be the job of a search engine itself. Our methods (SVMActive and MEGA) effectively use negative-labeled

instances to induce more negative instances, and thereby improve the probability of finding positive instances. At the

same time, our active-learning approach selects the most informative unlabeled instances to query the user to gather

maximum amount of information to disambiguous the user’s query concept. Because of the effective use of negative

and unlabeled instances, our method can learn a query concept much faster and more accurately than the traditional

relevance-feedback methods.

3 Support Vector Machines

Support vector machines are a core machine learning technology. They have strong theoretical foundations and

excellent empirical successes. They have been applied to tasks such as handwritten digit recognition [65], object

recognition [50], and text classification [35].

We shall consider SVMs in the binary classification setting. We are given training data fx1 : : :xng that are

vectors in some space X � R
d. We are also given their labels fy1 : : : yng where yi 2 f�1; 1g. In their simplest

form, SVMs are hyperplanes that separate the training data by a maximal margin (see Fig. 1). All vectors lying on

one side of the hyperplane are labeled as �1, and all vectors lying on the other side are labeled as 1. The training

instances that lie closest to the hyperplane are called support vectors. More generally, SVMs allow us to project the

original training data in space X to a higher dimensional feature space F via a Mercer kernel operator K. In other

words, we consider the set of classifiers of the form: f(x) =
Pn

i=1 �iK(xi;x). When f(x) � 0 we classify x as

+1, otherwise we classify x as �1.

When K satisfies Mercer’s condition [6] we can write: K(u;v) = �(u) � �(v) where � : X ! F and “�”

denotes an inner product. We can then rewrite f as:

f(x) = w ��(x); where w =
nX
i=1

�i�(xi): (1)
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Figure 1: A simple linear Support Vector Machine

Thus, by using K we are implicitly projecting the training data into a different (often higher dimensional) feature

space F. The SVM then computes the �is that correspond to the maximal margin hyperplane in F. By choosing

different kernel functions we can implicitly project the training data from X into space F. (Hyperplanes in F

correspond to more complex decision boundaries in the original space X.)

Two commonly used kernels are the polynomial kernel K(u;v) = (u � v + 1)p, which induces polynomial

boundaries of degree p in the original space X, and the radial basis function kernel K(u;v) = (e�
(u�v)�(u�v)),

which induces boundaries by placing weighted Gaussians upon key training instances. In the remainder of this paper

we will assume that the modulus of the training data feature vectors are constant, i.e., for all training instances xi,

k�(xi)k = � for some fixed �. The quantity k�(xi)k is always constant for radial basis function kernels, and so

the assumption has no effect for this kernel. For k�(xi)k to be constant with the polynomial kernels we require that

kxik be constant. It is possible to relax this constraint on �(xi). We shall discuss this option at the end of Section 5.

4 Version Space

Given a set of labeled training data and a Mercer kernel K, there is a set of hyperplanes that separate the data in the

induced feature space F. We call this set of consistent hyperplanes or hypotheses the version space [44]. In other

words, hypothesis f is in version space if for every training instance xi with label yi we have that f(xi) > 0 if

yi = 1 and f(xi) < 0 if yi = �1. More formally:

Definition 4.1 Our set of possible hypotheses is given as:

H =

�
f j f(x) =

w ��(x)

kwk
where w 2 W

�
;

where our parameter space W is simply equal to F. The Version space, V is then defined as:

V = ff 2 H j 8i 2 f1 : : :ng yif(xi) > 0g:
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(a) (b) (c)

Figure 2: (a) Version space duality. The surface of the hypersphere represents unit weight vectors. Each of the
two hyperplanes corresponds to a labeled training instance. Each hyperplane restricts the area on the hypersphere
in which consistent hypotheses can lie. Here version space is the surface segment of the hypersphere closest to the
camera. (b) An SVM classifier in version space. The dark embedded sphere is the largest radius sphere whose
center lies in version space and whose surface does not intersect with the hyperplanes. The center of the embedded
sphere corresponds to the SVM, its radius is the margin of the SVM in F, and the training points corresponding to
the hyperplanes that it touches are the support vectors. (c) Simple Margin Method.

Notice that since H is a set of hyperplanes, there is a bijection (an exact correspondence) between unit vectors w

and hypotheses f in H. Thus we will redefine V as:

V = fw 2 W j kwk = 1; yi(w ��(xi)) > 0; i = 1 : : :ng:

Note that a version space exists only if the training data are linearly separable in the feature space. Thus, we

require linear separability of the training data in the feature space. This restriction is much less harsh than it might at

first seem. First, the feature space often has a very high dimension and so in many cases it results in the data set being

linearly separable. Second, as noted by [57], it is possible to modify any kernel so that the data in the newly induced

feature space is linearly separable. This is done by redefining all training instances xi: K(xi;xi) K(xi;xi) + �

where � is a positive regularization constant. The effect of this modification is to permit linear non-separability of

the training data in the original feature space.

There exists a duality between the feature space F and the parameter space W [65, 30] which we shall take

advantage of in the next section: points in F correspond to hyperplanes in W and vice versa.

Clearly, by definition, points in W correspond to hyperplanes in F. The intuition behind the converse is that

observing a training instance xi in feature space restricts the set of separating hyperplanes to ones that classify xi
correctly. In fact, we can show that the set of allowable pointsw in W is restricted to lie on one side of a hyperplane

in W. More formally, to show that points in F correspond to hyperplanes in W, suppose we are given a new training

instance xi with label yi. Then any separating hyperplane must satisfy yi(w ��(xi)) > 0. Now, instead of viewing

w as the normal vector of a hyperplane in F, think of yi�(xi) as being the normal vector of a hyperplane in W. Thus

yi(w ��(xi)) = w � yi�(xi) > 0 defines a half-space in W. Furthermore w � yi�(xi) = 0 defines a hyperplane

in W that acts as one of the boundaries to version space V. Notice that version space is a connected region on the

surface of a hypersphere in parameter space. See Fig.2(a) for an example.

SVMs find the hyperplane that maximizes the margin in feature space F. One way to pose this is as follows:

maximizew2F minifyi(w ��(xi))g

subject to: kwk = 1
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yi(w ��(xi)) > 0 i = 1 : : :n:

By having the conditions kwk = 1 and yi(w ��(xi)) > 0 we cause the solution to lie in version space. Now, we

can view the above problem as finding the pointw in version space that maximizes the distance minifw �yi�(xi)g.

From the duality between feature and parameter space, and since k�(xi)k = 1, then each yi�(xi) is a unit normal

vector of a hyperplane in parameter space and each of these hyperplanes delimits the version space. Thus we want

to find the point in version space that maximizes the minimum distance to any of the delineating hyperplanes. That

is, SVMs find the center of the largest radius hypersphere whose center can be placed in version space and whose

surface does not intersect with the hyperplanes corresponding to the labeled instances, as in Figure 2(b). It can be

easily shown that the hyperplanes touched by the maximal radius hypersphere correspond to the support vectors and

that the radius of the hypersphere is the margin of the SVM.

5 Active Learning

In pool-based active learning we have a pool of unlabeled instances. It is assumed that the instances x are inde-

pendently and identically distributed according to some underlying distributionF (x), and the labels are distributed

according to some conditional distributionP (y j x).

Given an unlabeled pool U , an active learner ` has three components: (f; q;X). The first component is a

classifier, f : X! f�1; 1g, trained on the current set of labeled data X (and possibly unlabeled instances in U too).

The second component q(X) is the querying function that, given a current labeled set X, decides which instance in

U to query next. The active learner can return a classifier f after each pool-query (online learning) or after some

fixed number of pool-queries.

The main difference between an active learner and a regular passive learner is the querying component q. This

brings us to the issue of how to choose the next unlabeled instance in the pool to query. We use an approach that

queries such instances in order to reduce the size of the version space as much as possible. We need one more

definition before we can proceed:

Definition 5.1 Area(V) is the surface area that the version space V occupies on the hypersphere kwk = 1.

We wish to reduce the version space as fast as possible. Intuitively, one good way of doing this is to choose a pool-

query that halves the version space. More formally, we can use the following lemma to motivate which instances to

use as our pool-query:

Lemma 5.2 (Tong & Koller, 2000) Suppose we have an input space X, finite dimensional feature space F (induced

via a kernel K), and parameter space W. Suppose active learner `� always queries instances whose corresponding

hyperplanes in parameter space W halves the area of the current version space. Let ` be any other active learner.

Denote the version spaces of `� and ` after i pool-queries as V�
i

and Vi respectively. Let P denote the set of all

conditional distributions of y given x. Then,

8i 2 N+ sup
P2P

EP [Area(V�i )] � sup
P2P

EP[Area(Vi)];

with strict inequality whenever there exists a pool-query j 2 f1 : : : ig by ` that does not halve version space Vj�1.
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This lemma says that, for any given number of pool-queries, `� minimizes the maximum expected size of the

version space, where the maximum is taken over all conditional distributions of y given x.

Now, suppose w� 2W is the unit parameter vector corresponding to the SVM that we would have obtained had

we known the actual labels of all of the data in the pool. We know that w� must lie in each of the version spaces

V1 � V2 � V3 : : :, where Vi denotes the version space after i pool-queries. Thus, by shrinking the size of the version

space as much as possible with each pool-query we are reducing as fast as possible the space in which w� can lie.

Hence, the SVM that we learn from our limited number of pool-queries will lie close to w�.

This discussion provides motivation for an approach in which we query instances that split the current version

space into two equal parts insofar as possible. Given an unlabeled instance x from the pool, it is not practical to

explicitly compute the sizes of the new version spaces V� and V+ (i.e., the version spaces obtained when x is labeled

as �1 and +1 respectively). There is a way of approximating this procedure as noted by [63]:

Simple Method. Recall from Section 4 that, given data fx1 : : :xig and labels fy1 : : : yig, the SVM unit vector

wi obtained from this data is the center of the largest hypersphere that can fit inside the current version space

Vi. The position of wi in the version space Vi clearly depends on the shape of the region Vi; however, it is often

approximately in the center of the version space. Now, we can test each of the unlabeled instances x in the pool to

see how close their corresponding hyperplanes in W come to the centrally placed wi. The closer a hyperplane in

W is to the point wi, the more centrally it is placed in version space, and the more it bisects version space. Thus

we can pick the unlabeled instance in the pool whose hyperplane in W comes closest to the vector wi. For each

unlabeled instance x, the shortest distance between its hyperplane in W and the vector wi is simply the distance

between the feature vector �(x) and the hyperplane wi in F — which is easily computed by jwi � �(x)j. This

results in the natural Simple rule:

� Learn an SVM on the existing labeled data and choose as the next instance to query the pool instance that

comes closest to the hyperplane in F.

Figure 2(c) presents an illustration. In the stylized picture we have flattened out the surface of the unit weight

vector hypersphere that appears in Figure 2(a). The white area is version space Vi which is bounded by solid lines

corresponding to labeled instances. The five dotted lines represent unlabeled instances in the pool. The circle

represents the largest radius hypersphere that can fit in the version space. Note that the edges of the circle do not

touch the solid lines — just as the dark sphere in Figure2(b) does not meet the hyperplanes on the surface of the

larger hypersphere (they meet somewhere under the surface). The instance b is closest to the SVM wi and so we

will choose to query b.

As noted by [63] there exist more sophisticated approximations that we can perform. However, these methods are

significantly more computationally intensive. For the task of relevance feedback, a fast response time for determining

the next image to present to the user is so critically important that these other approximations are not practical.

Our SVMActive image retrieval system uses radial basis function kernels. As noted in Section 3, radial basis

function kernels have the property that k�(xi)k = �. The Simple querying method can still be used with other

kernels when the training data feature vectors do not have a constant modulus, but the motivating explanation no

longer holds since the SVM can no longer be viewed as the center of the largest allowable sphere. However,

alternative motivations have recently been proposed by Campbell, Cristianini and Smola (2000) that do not require

a constraint on the modulus.
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For the image retrieval domain, we also have a need for performing multiple pool-queries at the same time. It

is not practical to present one image at a time for the user to label, because he or she is likely to lose patience

after a few rounds. To prevent this from happening we present the user with multiple images (say, twenty) at each

round of pool-querying. Thus, for each round, the active learner has to choose not just one image to be labeled

but twenty. Theoretically it would be possible to consider the size of the resulting version spaces for each possible

labeling of each possible set of twenty pool-queries, but clearly this would be impractical. Thus instead, for matters

of computational efficiency, our SVMActive system takes the simple approach of choosing the pool-queries to be the

twenty images closest to its separating hyperplane. We discuss a couple of extensions in Section 9.

It has been noted [63] that the Simple querying algorithm used by SVMActive can be unstable during the first

round of querying. To address this issue, SVMActive always randomly chooses twenty images for the first relevance

feedback round. Then it uses the Simple active querying method on the second and subsequent rounds. We discuss

two other seeding methods, seeding SVMActive by MEGA and by keywords, in Section 7.

SVMActive Algorithm Summary

To summarize, our SVMActive system performs the following for each round of relevance feedback:

� Learn an SVM on the current labeled data

� If this is the first feedback round, ask the user to label twenty randomly selected images. Otherwise, ask the

user to label the twenty pool images closest to the SVM boundary.

After the relevance feedback rounds have been performed, SVMActive retrieves the top-k most relevant images:

� Learn a final SVM on the labeled data.

� The final SVM boundary separates “relevant” images from irrelevant ones. Display the k “relevant” images

that are farthest from the SVM boundary.

6 Indexing Image Features

We describe how our system characterizes images and how we index image features. Multi-resolution image

characterization makes learning effective and efficient. Our high-dimensional indexing scheme makes image retrieval

efficient.

6.1 Image Characterization

We believe that image characterization should follow human perception [27]. In particular, our perception works in a

multi-resolution fashion. For some visual tasks, human eyes may select coarse filters to obtain coarse image features;

for others, they select finer features. Similarly, for some image applications (e.g., for detecting image replicas),

employing coarse features is sufficient; for other applications (e.g., for classifying images), employing finer features

may be essential. An image search engine thus must have the flexibility to model subjective perceptions and to satisfy

a variety of search tasks.
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Filter Name Resolution Representation

Masks Coarse Appearance of culture colors
Spread Coarse Spatial concentration of a color
Elongation Coarse Shape of a color
Histograms Medium Distribution of colors
Average Medium Similarity comparison within

the same culture color
Variance Fine Similarity comparison within

the same culture color

Table 1: Multi-resolution Color Features.

Our image retrieval system employs a multi-resolution image representation scheme [13]. In this scheme, we

characterize images by two main features: color and texture. We consider shape as an attribute of these main features.

6.1.1 Color

Although the wavelength of visible light ranges from 400 nanometers to 700 nanometers, research [27] shows that

the colors that can be named by all cultures are generally limited to eleven. In addition to black and white, the

discernible colors are red, yellow, green, blue, brown, purple, pink, orange and gray.

We first divide color into 12 color bins including 11 bins for culture colors and one bin for outliers [31]. At

the coarsest resolution, we characterize color using a color mask of 12 bits. To record color information at finer

resolutions, we record eight additional features for each color. These eight features are color histograms, color means

(in H, S and V channels), color variances (in H, S and V channel), and two shape characteristics: elongation and

spreadness. Color elongation characterizes the shape of a color, and spreadness characterizes how that color scatters

within the image [38]. Table 1 summarizes color features in coarse, medium and fine resolutions.

6.1.2 Texture

Texture is an important cue for image analysis. Studies [41, 58, 61, 40] have shown that characterizing texture

features in terms of structuredness, orientation, and scale (coarseness) fits well with models of human perception. A

wide variety of texture analysis methods have been proposed in the past. We choose a discrete wavelet transformation

(DWT) using quadrature mirror filters [58] because of its computational efficiency.
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Figure 3: Multi-resolution Texture Features.
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Each wavelet decomposition on a 2-D image yields four subimages: a 1
2 �

1
2 scaled-down image of the input

image and its wavelets in three orientations: horizontal, vertical and diagonal. Decomposing the scaled-down image

further, we obtain the tree-structured or wavelet packet decomposition. The wavelet image decomposition provides

a representation that is easy to interpret. Every subimage contains information of a specific scale and orientation

and also retains spatial information. We obtain nine texture combinations from subimages of three scales and

three orientations. Since each subimage retains the spatial information of texture, we also compute elongation and

spreadness for each texture channel. Figure 3 summarizes texture features.

Now, given an image, we can extract the above color and texture information to produce a 144 dimensional vector

of numbers. We use this vector to represent the image. Thus, the space X for our SVMs is a 144 dimensional space,

and each image in our database corresponds to a point in this space.

6.2 High-dimensional Indexer

An indexer is essential to make both query-concept learning and image retrieval efficient and scalable. Our indexing

method is a statistical approach that works in two steps. It first performs non-supervised clustering using Tree-

Structured Vector Quantization (TSVQ) [24] to group similar objects. To maximize IO efficiency, each cluster is

stored in a sequential file. We determine which cluster an image belongs to by treating the tasks as a classification

problem. Our hypothesis is that if a image’s cluster prediction yieldsC probable clusters, then the probability is high

that its nearest neighbors can be found in these C clusters. By searching for the most probable clusters into which

the query object might belong, we can obtain most of the similar objects. To achieve accurate cluster predictions, we

use classification error-reduction schemes including bagging and simulated annealing on similarity search results.

For details, please consult [25, 26].

The indexing structure is helpful for both selecting samples and retrieving images given the class boundary.

� Informative example. Each image cluster is represented by its centroid. Initially we use just the centroids as

unlabeled images in our pool. Since the number of cluster-centroids is substantially less than the number of

data objects2, they can be cached in main memory to avoid IOs. When SVMActive considers images from the

pool, it is simply accessing unlabeled centroids in main memory. The time required for selecting images can

thus be drastically reduced. After using just the centroids in the pool, SVMActive then adds the images in the

clusters close to the current decision boundary.

� Image retrieval. Given an SVM hyperplane, our search engine tests the centroids that fall on the relevant side

of the boundary. Each cluster is ranked by its centroid’s distance to the SVM hyperplane: the farther away a

cluster is from the hyperplane on the relevant side, the higher the priority. The search engine then reads the

“farthest” cluster into memory and performs a sequential scan on the cluster to find the top-k nearest neighbors.

If higher recall is desired, we read the next farthest cluster.

7 Seeding

SVMActive requires at least one relevant and one irrelevant example to start its learning. Though irrelevant examples

abound, relevant examples can be difficult to find. In particular, if the number of objects relevant to the query concept
2The ratio of the number of clusters over the total number of objects is data-set dependent and is adjustable. A typical ratio is less than 0:5%
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is substantially less than that of the irrelevant ones, we need an effective strategy to find relevant starting images.

We call the process of finding initial relevant images seeding, and we present three seeding options: seeding by

MEGA, seeding by keywords, and seeding by images. Although SVMActive can be seeded by any of these methods,

we believe that the first two options are more effective. The seeding-by-images paradigm, which relies upon users

to start a search with “good” images, may not be realistic. After all, if users can always find good images to seed

a search, why would they need an image search engine? In the remainder of this section, we first present our

seeding-by-MEGA method, which uses another learning algorithm MEGA [11] to find relevant images. We then

discuss a seeding-by-keywords alternative.

7.1 Seeding by MEGA

We propose using MEGA to seed SVMActive. MEGA uses a boolean formula to describe query concepts. For the

task of searching for an initial relevant image, MEGA uses a k-DNF formula to bound the set of permitted formulae.

Thus, any image with features that satisfy the k-DNF is regarded as potentially relevant. MEGA attempts to choose

images that either will be relevant, or will make the k-DNF as specific as possible. The detailed MEGA algorithm is

documented in [11].

Seeding by MEGA Example

We present an example produced using a Corel image dataset to show the learning steps of SVMActive seeded byMEGA

for grasping a query concept “tigers.” Our prototype works directly with the low-level image features described in

Section 6.1. This interactive query session involves four screens that are illustrated in four figures.

Screen 1. Initial Screen. The system presents the initial screen to the user as depicted in Figure 4(a). The screen is

split into two frames vertically. On the left-hand side of the screen is the learner frame; on the right-hand side is the

retrieval frame. In the learner frame, the system displays informative images so as to learn what the user wants via

an active learning process. The retrieval frame displays images that the system believes are most relevant, i.e., the

images that the user wants. In this first screen, the system displays a random selection of images from the database.

Notice that there is no tiger image present, so we press the submit button without highlighting any images.

Screen 2. Since SVMActive did not receive a relevant image in the initial round of random images, it uses MEGA to

search for a single relevant seed image. Thus, MEGA now decides which images should be displayed for the user

to label next. It chooses images that are rather different from the initial random selection. Notice that it presents

a flower, clouds and tiger images. We are interested in tigers, so we highlight the tiger image as relevant, and the

rest of the unmarked images are considered irrelevant. We indicate our selection by clicking on the submit button

in the learner screen. This action brings up the next screen.

Screen 3. Sampling and relevance feedback continues. Now that MEGA has successfully found a relevant image,

SVMActive then learns an SVM using the one relevant image and 31 irrelevant images. SVMActive then displays

Figure 5(a). The right-hand frame displays images that the system expects will match the user’s query concept

at this time. As the figure indicates, with nine out of the top fifteen images already showing tigers, the system is

beginning to learn which types of images we are seeking. In the left-hand frame, the system displays the images

that it expects would be most informative for the user to label. The user can ask the system to further refine the

target concept by selecting relevant images in this learner frame. After the user clicks on the submit button in the
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Learner Screen Retrieval Screen Screen
(a) Screen #1

(b) Screen #2

Figure 4: Tiger Query Screens #1 and #2.
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(a) Screen #3

(b) Screen #4

Figure 5: Tiger Query Screens #3 and #4.

learner frame, the fourth screen is displayed.
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Screen 4. Sampling and relevance feedback ends. Figure 5(b) shows that all returned images in the similarity

search frame fit the query concept (tiger).

This example shows that by using SVMActive seeded with MEGA, a query concept can be learned in very few user

iterations from no initial starting knowledge. The learner is able to match high-level concepts to low-level features

directly through an active learning process.

Although much work is needed to improve our learning algorithms, this prototype demonstrates a potential to

facilitate information retrieval in three respects:

� Eliminating the seeding requirement. A user is not required to initiate a query with “good” seed images. He or she

does not need to provide an example image to start the search. Even if all initial examples presented are negative,

the negative-labeled instances can be used to shrink the pool of the next sampling round substantially. Therefore,

the probability that a relevant example will be presented in the next iteration will be substantially higher.

� Supporting flexible concept formulation. One can search for a general animal concept or a specific kind of animal.

In the above example, if we were to mark all wild animal images as relevant, the final result would show other

wild animals as well as tigers. Also note in the third screen that the system presents tigers of different kinds and

on different backgrounds, to ask for feedback. The system can intelligently explore more possibilities to refine the

query concept. (The readers are encouraged to experiment with our online demo [9].)

� Accomplishing the above tasks quickly and accurately. Our multi-resolution image-feature extractor and high-

dimensional indexer (presented in Section 6) make both query-concept learning and image retrieval efficient and

effective.

7.2 Seeding by Keyword

A text-based image retrieval engine finds images based on keywords. The keywords entered by users may have

multiple senses and hence may not precisely characterize the users’ query concept. There are a number of systems

that perform image retrieval by keyword. For example, Figure 6 shows the search results with the keyword “baby”

using the Google image search engine available at images.google.com. As observed, the returned images range from

baby photos to baby furniture, statues, and cartoons.

Although keyword searches may not achieve high precision, a low-accuracy keyword search can be used instead

of MEGA to seed SVMActive with a single relevant image. As pointed out by [1, 2, 10], automatic annotation may not

attain extremely high accuracy at the present state of computer vision and image processing. However, providing

images with some reliable semantical labels and then refining these unconfirmed labels via relevance feedback is

deemed an effective approach [68].

8 Experiments

For empirical evaluation of our learning methods, we used three real-world image datasets: a four-category, a ten-

category, and a fifteen-category image dataset, each category consisting of 100 to 150 images. These image datasets

were collected from Corel Image CDs and the Internet.
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Figure 6: Google Image Search Results with Keyword “baby”.

� Four-category set. The 602 images in this dataset belong to four categories — architecture, flowers, landscape,

and people.

� Ten-category set. The 1277 images in this dataset belong to ten categories — architecture, bears, clouds,

flowers, landscape, people, objectionable images, tigers, tools, and waves. In this set, a few categories were

added to increase learning difficulty. The tiger category contains images of tigers with landscape and water

backgrounds to complicate landscape category. The objectionable (pronographic) images can be confused

with people wearing little clothing (beach wear). Clouds and waves have substantial color similarity.

� Fifteen-category set. In addition to the ten categories in the above dataset, the total of 1920 images in this

dataset includes elephants, fabrics, fireworks, food, and texture. We added elephants with landscape and

water backgrounds to increase learning difficulty in distinguishing landscape, tigers and elephants. We added

colorful fabrics and food to interfere with flowers. Various texture images (e.g., skin, brick, grass, water, etc.)

were added to raise learning difficulty for all categories.

To obtain an objective measure of performance, we assumed that a query concept was an image category. The

SVMActive learner has no prior knowledge about image categories3. It treats each image as a 144-dimension vector

described in Section 6.1. The goal of SVMActive is to learn a given concept through a relevance feedback process. In

this process, at each feedback round SVMActive selects twenty images to ask the user to label as “relevant” or “not

relevant” with respect to the query concept. It then uses the labeled instances to successively refine the concept

boundary. After finishing the relevance feedback rounds, SVMActive then retrieves the top-k most relevant images

3Unlike some recently developed systems [66] that contain a semantical layer between image features and queries to assist query refinement,
our system does not have an explicit semantical layer. We argue that having a hard-coded semantical layer can make a retrieval system restrictive.
Rather, dynamically learning the semantics of a query concept is more flexible and hence makes the system more useful.
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Figure 7: (a) Average top-k accuracy over the four-category dataset. (b) Average top-k accuracy over the ten-category
dataset. (c) Average top-k accuracy over the fifteen-category dataset. Standard error bars are smaller than the curves’
symbol size. Legend order reflects order of curves.

from the dataset, based on the final concept it has learned. Accuracy is then computed by looking at the fraction

of the k returned result that belongs to the target image category. We note that this computation is equivalent to

computing the precision on the top-k images. This measure of performance appears to be the most appropriate for

the image retrieval task — particularly since, in most cases, not all of the relevant images can be displayed to the

user on one screen. As in the case of web searching, we typically wish the first screen of returned images to contain

a high proportion of relevant images. We are less concerned that not every single instance that satisfies the query

concept is displayed. As with all SVM algorithms, SVMActive requires at least one relevant and one irrelevant image

to function. In practice a single relevant image could be seeded into SVMActive by a keyword search or by MEGA,

as we discussed in Section 7. In either case our experiments assume that we start off with one randomly selected

relevant image and one randomly selected irrelevant image.

8.1 SVMActive Experiments

Figures 7(a-c) show the average top-k accuracy for the three different sizes of data sets. We considered the

performance of SVMActive after each round of relevance feedback. The graphs indicate that performance clearly

increases after each round. Also, the SVMActive algorithm’s performance degrades gracefully when the size and

complexity of the database is increased – for example, after four rounds of relevance feedback, it achieves an average

of 100%, 95%, and 88% accuracy on the top-20 results for the three different sizes of data sets, respectively. It is

also interesting to note that SVMActive is not only good at retrieving just the top few images with high precision, but

it also manages to sustain fairly high accuracy even when asked to return larger numbers of images. For example,

after five rounds of querying it attains 99%, 84% and 76% accuracy on the top-70 results for the three different sizes

of data sets respectively. SVMActive uses the active querying method outlined in Section 5.

We examined the effect that the active querying method had on performance. Figures 8(a) and 8(b) compare the

active querying method with the regular passive method of sampling. The passive method chooses images randomly

from the pool to be labeled. This method is typically used with SVMs since it creates a randomly selected data set.

It is clear that the use of active learning is beneficial in the image retrieval domain. We gain a significant increase in

performance by using the active method. SVMActive displays 20 images per pool-querying round. There is a tradeoff

between the number of images to be displayed in one round, and the number of querying rounds. The fewer images

17



20

30

40

50

60

70

80

90

100

10 30 50 70 90 110 130 150

Num ber of Images Return ed

A
c

cu
ra

cy
 o

n
 R

e
tu

rn
e

d
 I

m
a

g
e

s
Active SVM

R egular SVM

20

30

40

50

60

70

80

90

100

10 30 50 70 90 110 130 150

N um ber o f Im ag es R etu rned

A
c

cu
ra

cy
 o

n
 R

e
tu

rn
e

d
 I

m
a

g
e

s

Active SVM

R egular SVM

0

10

20

30

40

50

60

70

80

90

100

10 30 50 70 90 110 130 150

Number of Im ages Returned (k )

A
c

cu
ra

cy
 o

n
 R

e
tu

rn
e

d
 I

m
a

g
e

s

20 random + 2 rounds of 20

20 random + 2 rounds of 10

20 random + 1 round of 20

(a) (b) (c)

Figure 8: (a) Active and regular passive learning on the fifteen-category dataset after three rounds of querying. (b)
Active and regular passive learning on the fifteen-category dataset after five rounds of querying. (c) Comparison
between asking ten images per pool-query round and twenty images per pool-querying round on the fifteen-category
dataset. Standard error bars are smaller than the curves’ symbol size. Legend order reflects order of curves.

displayed per round, the lower the performance. However, with fewer images per round we may be able to conduct

more rounds of querying and thus increase our performance. Figure 8(c) considers the effect of displaying only ten

images per round. In this experiment our first round consisted of displaying twenty random images and then, on the

second and subsequent rounds of querying, active learning with 10 or 20 images is invoked. We notice that there is

indeed a benefit to asking (20 random + two rounds of 10 images) over asking (20 random + one round of 20 images).

This is unsurprising since the active learner has more control and freedom to adapt when asking for two rounds of 10

images rather than one round of 20. What is interesting is that asking (20 random + two rounds of 20 images) is far,

far better than asking (20 random + two rounds of 10 images). The increase in the cost to users of asking 20 images

per round is generally negligible since users can pick out relevant images easily. Furthermore, there is virtually no

additional computational cost in calculating with the 20 images to query instead of the 10 images. Thus, for this

particular task, we think it worthwhile to display around 20 images per screen and limit the number of querying

rounds, rather than display fewer images per screen and require many more querying rounds.

Texture Top-50
features Accuracy
None 80:6� 2:3

Fine 85:9� 1:7

Medium 84:7� 1:6

Coarse 85:8� 1:3

All 86:3� 1:8

Table 2: Average top-50 accuracy over the four-category data set using a regular SVM trained on 30 images. Texture
spatial features were omitted.

We also investigated how performance altered when various aspects of the algorithm were changed. Table 2

shows that all three of the texture resolutions are important. Also, the performance of the SVM appears to be greatest

Top-50 Top-100 Top-150
Degree 2 Polynomial 95:9� 0:4 86:1� 0:5 72:8� 0:4

Degree 4 Polynomial 92:7� 0:6 82:8� 0:6 69:0� 0:5

Radial Basis 96:8 � 0:3 89:1 � 0:4 76:0 � 0:4

Table 3: Accuracy on four-category data set after three querying rounds using various kernels. Bold type indicates
statistically significant results.
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Dataset Dataset round of 20 Computing Retrieving top
Size queries (secs) final SVM 150 images

4 Cat 602 0:34� 0:00 0:5� 0:01 0:43� 0:02

10 Cat 1277 0:71� 0:01 1:03� 0:03 0:93� 0:03

15 Cat 1920 1:09� 0:02 1:74� 0:05 1:37� 0:04

Table 4: Average run times in seconds
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Figure 9: (a) Average top-k accuracy over the ten-category dataset. (b) Average top-k accuracy over the fifteen-
category dataset.

when all of the texture resolutions are included (although in this case the difference is not statistically significant).

Table 3 indicates how other SVM kernel functions perform on the image retrieval task compared to the radial basis

function kernel. It appears that the radial basis function kernel is the most suitable for this feature space. One

other important aspect of any relevance feedback algorithm is the wall clock time that it takes to generate the next

pool-queries. Relevance feedback is an interactive task, and if the algorithm takes too long then the user is likely

to lose patience and be less satisfied with the experience. Table 4 shows that SVMActive averages about a second on

a Sun Workstation to determine the 20 most informative images for the users to label. Retrieval of the 150 most

relevant images takes a similar amount of time, and computing the final SVM model never exceeds two seconds.

8.2 Scheme Comparison

We also compared SVMActive with two traditional query refinement methods: query point movement (QPM) and query

expansion (QEX). In this experiment, each scheme returned the 20 most relevant images after up to five rounds of

relevance feedback. To ensure that the comparison to SVMActive was fair, we seeded both schemes with one randomly

selected relevant image to generate the first round of images. On the ten-category image dataset, Figure 9(a) shows

that SVMActive achieves nearly 90% accuracy on the top-20 results after three rounds of relevance feedback, whereas

the accuracies of both QPM and QEX never reach 80%. On the fifteen-image category dataset, Figure 9(b) shows

that SVMActive outperforms the others by even wider margins. SVMActive reaches 80% top-20 accuracy after three

rounds and 94% after five rounds, whereas QPM and QEX cannot achieve 65% accuracy.

These results hardly surprise us. Traditional information retrieval schemes require a large number of image

instances to achieve any substantial refinement. By just refining around current relevant instances, both QPM and

QEX tend to be fairly localized in their exploration of the image space and hence rather slow in exploring the entire

space. In contrast, during the relevance feedback phase SVMActive takes both the relevant and irrelevant images into

account when choosing the next pool-queries. Furthermore, it chooses to ask the user to label images that it regards
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Initializing Feedback Round 1

Feedback Round 2 Feedback Round 3

Figure 10: Searching for architecture images. SVMActive Feedback phase.

as most informative for learning the query concept, rather than those that have the most likelihood of being relevant.

Thus it tends to explore the feature space more aggressively.

Figures 10 and 11 show an experimental run of the SVMActive system. For this run, we are interested in obtaining

architecture images. In Figure 10 we initialize the search by giving SVMActive one relevant and one irrelevant image.

We then have three feedback rounds. The images that SVMActive asks us to label in these three feedback rounds are

images that SVMActive will judge to be most informative. For example, we see that it asks us to label a number of

landscape images and other images with a blue or gray background with something in the foreground. The feedback

rounds allow SVMActive to narrow down the range of images that we like. When it comes to the retrieval phase

(Figure 10) SVMActive returns, with high precision, a large variety of different architecture images, ranging from old

buildings to modern cityscapes.

9 Conclusions and Future Work

We have demonstrated that active learning with support vector machines can provide a powerful tool for searching

image databases, outperforming a number of traditional query refinement schemes. SVMActive not only achieves

consistently high accuracy on a wide variety of desired returned results, but also does it quickly and maintains high

precision when asked to deliver large quantities of images. Also, unlike recent systems such as SIMPLIcity [66],
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Figure 11: Searching for architecture images. SVMActive Retrieval phase.
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it does not require an explicit semantical layer to perform well. Our system takes advantage of the intuition that

there can be considerable differences between the set of images that we are already confident a user wishes to see,

and the set of images that would most informative for the user to label. By decoupling the notions of feedback and

retrieval, and by using a powerful classifier with active learning, we have demonstrated that SVMActive can provide

considerable gains over other systems.

We have also presented our image characterization and feature indexing methods, which make concept-learning

and image retrieval effective and efficient. We have built prototypes [9, 12], which use MEGA or keywords to seed

SVMActive by finding the first image(s) relevant to the query concept, and then switches to use SVMActive for the

subsequent rounds of feedback. We are currently investigating methods to improve SVMActive’s sample selection

method. More specifically, we observed that when the training instances of the target class (i.e., relevant images with

respect to the query concept) are heavily outnumbered by non-target training instances (irrelevant images), SVMs can

be ineffective in determining the class boundary. To remedy this problem, we have proposed an adaptive conformal

transformation (ACT) algorithm [69]. ACT considers feature-space distance and the class-imbalance ratio when it

performs conformal transformation on a kernel function. We will validate ACT’s effectiveness with SVMActive.
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