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Abstract

Relevancefeedbackisoften acritical componentwhen designingimage databases. With thesedatabasesit isdifficult
to specify queries directly and explicitly. Relevance feedback interactively determinines a user’s desired output or
query concept by asking the user whether certain proposed images are relevant or not. For a relevance feedback
algorithm to be effective, it must grasp a user’'s query concept accurately and quickly, while also asking the user to
label only asmall number of images. We propose the use of a support vector machine active learning (SVM active)
algorithm for conducting effective relevance feedback for image retrieval. To support efficient query-concept
learning and image retrieval, we also present our multi-resolution image-characterization and high-dimensional
indexing methods. We further show that SVMagiive Can be effectively seeded by MEGA, another active learning
algorighm that we developed, or by keyword searches. Experimental results show that our algorithm achieves
significantly higher search accuracy than traditional query refinement schemes after just three to four rounds of
relevance feedback.
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1 Introduction

Onekey design task, when constructing image databases, i sthe creation of an effective rel evancefeedback component.
While it is sometimes possible to arrange images within an image database by creating a hierarchy, or by hand-
labeling each image with descriptive words, these methods are time-consuming, costly, and subjective. Alternatively,
requiring an end-user to specify an image query in termsof low level features (such as color and spatial rel ationships)
is challenging to the end-user, because an image query is hard to articulate, and articul ation can vary from one user
to another.

Thus, we need away for auser to implicitly inform a database of hisor her desired output or query concept. To
address this requirement, relevance feedback can be used as a query refinement scheme to derive or learn a user’s
guery concept. To solicit feedback, the refinement scheme displays a few image instances and the user 1abels each
image as “relevant” or “not relevant.” Based on the responses, another set of images from the database is presented
to the user for labeling. After afew such querying rounds, the refinement scheme returns a number of items from
the database that seem to fit the needs of the user.

The construction of such a query refinement scheme (hereafter called aquery concept learner or learner) can be
regarded as a machine learning task. In particular, it can be seen as a case of pool-based active learning [39, 43].



In pool-based active learning the learner has access to a pool of unlabeled data and can request the user’slabel for a
certain number of instancesinthepool. Intheimageretrieval domain, the unlabel ed pool would betheentire database
of images. An instance would be an image, and the two possible labelings for each image would be “relevant” or
“not relevant.” The goa for the learner isto learn the user’s query concept — in other words, to label each image
within the database in such a manner that the learner’slabeling and the user’s labeling will agree.

The main issue with active learning is finding a method for choosing informative images within the pool to ask
the user to label. We call such arequest for the label of an image a pool-query. Most machine learning algorithms
are passive in the sense that they are generaly applied using a randomly selected training set. The key idea with
active learning isthat it should choose its next pool-query based upon the past answers to previous pool -queries.

In generd, and for the imageretrieval task in particular, such alearner must meet two critical design goas. First,
thelearner must learn target concepts accurately. Second, the learner must grasp a concept quickly, with only asmall
number of labeled instances, since most users do not wait around to provide a great deal of feedback. In this study,
we propose using a support vector machine active learner (SVMagive) t0 achieve these goas. SVM agive COMbines
active learning with support vector machines (SVMs). SVMs|[64, 6] have met with significant success in numerous
real-world learning tasks. Like most machine learning algorithms, they use arandomly selected training set, whichis
not very useful in the relevance feedback setting. Recently, genera purpose methods for active learning with SVMs
have been independently devel oped by a number of researchers [7, 55, 63]. We shall use the work and theoretical
motivation of [63] on active learning with SV Msto extend the use of support vector machinesto thetask of relevance
feedback for image databases.

Intuitively, SVM acive WOrks by combining the following three ideas:

1. SVMaqive regards the task of learning atarget concept as one of learning an SVM binary classifier. An SVM
captures the query concept by separating the relevant images from irrelevant ones with a hyperplane in a
projected space, usualy avery high-dimensional one. The projected points on one side of the hyperplane are
considered relevant to the query concept and the rest irrelevant.

2. SVMacive learns the classifier quickly via active learning. The active part of SVMagive Selects the most
informative instances with which to train the SVM classifier. This step ensures fast convergence to the query
concept inasmall number of feedback rounds.

3. Oncetheclassifier istrained, SVM agive returnsthetop-£ most relevant images. These arethe k imagesfarthest
from the hyperplane on the query concept side.

SVMacive Needs at least one positive and one negative example to start its learning process. We propose
two seeding methods. by MEGA [11], and by keywords (Section 7). To make both concept-learning and image
retrieval efficient, we employ a multi-resolution image-feature extractor (Section 6.1), and a high-dimensiona
indexer (Section 6.2). Through examples and empirical study, we show that combining SVMagive With these
other components produces a search engine particularly well suited to the query refinement task in image retrieval,
significantly outperforming traditiona systems.

The rest of this paper is organized into seven sections. Section 2 surveys related work. Section 3 introduces
SVMs. Section 4 then introducesthe notion of a version space which in Section 5 providestheoretical motivationfor
amethod of performing activelearning with SVMs. Section 6 depictsour multi-resol utionimage characterization and
high-dimensional indexer. Section 7 presents two options of finding relevant images before switching to SV M agtive-



In Section 8, wereport experimental results showing that our SVM active learner significantly outperformstraditional
methods. Finally, we offer our conclusionsin Section 9.

2 Related Work

Machine learning and relevance feedback techniques have been proposed to learn and to refine query concepts. The
problem isthat most traditional techniques require alarge number of training instances [3, 37, 45, 73, 74], and they
require seeding aquery with“good” examples[36, 51, 71, 49]. Unfortunately, inmany practical scenarios, alearning
algorithm must work with a scarcity of training dataand alimited amount of training time.

2.1 MachineLearning

Of late, ensemble techniques such as bagging [4], arcing [5], and boosting [28, 54, 70] have been proposed to
improve learning accuracy for decision trees and neural networks. These ensemble schemes enjoy success in
improving classification accuracy through bias or variance reduction, but they do not help reduce the number of
samples and time required to learn a query concept. In fact, most ensemble schemes actually increase learning time
because they introduce learning redundancy in order to improve prediction accuracy [20, 28, 34, 46].

To reduce the number of required samples, researchers have conducted several studies of active learning [14, 8,
33, 62, 72] for classification. Active learning can be modeled formally as follows: Given a dataset S consisting of
an unlabeled subset U and alabeled subset X, an active learner L. has two components: f and s. The f component
isaclassifier that is trained on the current set of labeled data X'. The second component s is the sampling function
that, given acurrent labeled set X, decides which subset « in U to select to query the user. The active learner returns
anew f after each round of relevance feedback. The sampling techniques employed by the active learner determine
the selection of the next batch of unlabeled instances to be labeled by the user.

The query by committee (QBC) agorithm [23, 56] is a representative active learning scheme. QBC uses a
distribution over al possible classifiers and attempts greedily to reduce the entropy of thisdistribution. This general
purpose algorithm has been applied in a number of domains (although, to our knowledge, not to the image retrieval
domain) using classifiers (such as Naive Bayes classifiers [19, 43]) for which specifying and sampling classifiers
fromadistributionisnatural. Probabilisticmodelssuch astheNaive Bayesclassifier provideinterpretableresultsand
principled ways to incorporate prior knowledge. However, they typically do not perform as well as discriminative
methodssuch as SVMs[ 35, 21], especialy when theamount of trainingdatais scarce. (See our SVM-based approach
in Section 3.) For image retrieval where a query concept istypical non-lineart, our MEGA and SVM agive With kernel
mapping provide more flexible and accurate concept modeling.

Specifically for image retrieval, the PicHunter system [17, 16, 15, 18] uses Bayesian prediction to infer the goa
image, based upon users' input. Mathematically, the goal of PicHunter isto find a single goa point in the feature
space (e.g., a particular flower image), whereas our goa isto hunt down al pointsthat match a query concept (e.g.,
the entire flower category, which consists of flowers of different colors, shapes, and textures, and against different
backgrounds). Note that the points matching a target concept can be scattered all over the feature space. To find
these points quickly with few hints, our learning algorithms must deal with many daunting challenges.

1A query such as*animals’, “women”, and “ european architecture” does not reside contiguously in the space formed by the image features.



2.2 Redevance Feedback

Thestudy of [52] putsrel evance feedback techni ques proposed by the Information Retrieva (IR) intothreecategories:
guery reweighting, query point movement and query expansion.

¢ Query reweighting and query point movement [32, 48, 47, 51, 53]. Both query reweighting and query point
movement use nearest-neighbor sampling: They return top ranked objects to be examined by the user and then
refine the query based on the user’s feedback. If theinitia query example is good and the query concept is convex
inthe feature space [32, 71], this nearest-neighbor sampling approach worksfine. Unfortunately, most users do not
have a good example to start a query, and most image-query concepts are non-convex.

¢ Query expansion [52, 71]. The query expansion approach can be regarded as a multiple-instances sampling
approach. The samples of asubseguent round are selected from the neighborhood (not necessarily the nearest ones)
of the positive-labeled instances of the previousround. The study of [52] showsthat query expansion achieves only
aslim margin of improvement (about 10% in precision/recall) over query point movement.

Almost al traditional relevance feedback methods require seeding the methods with “good” positive examples
[22, 29, 31, 42, 59, 60, 67], and most methods do not use negative-labeled instances effectively. For instance,
sunset images must be supplied as examples in order to search for sunset pictures. However, finding good examples
should be the job of a search engine itself. Our methods (SVMagive and MEGA) effectively use negative-labeled
instances to induce more negative instances, and thereby improve the probability of finding positiveinstances. At the
same time, our active-learning approach sdlects the most informative unlabeled instances to query the user to gather
maximum amount of information to disambiguousthe user’s query concept. Because of the effective use of negative
and unlabeled instances, our method can learn a query concept much faster and more accurately than the traditional
relevance-feedback methods.

3 Support Vector Machines

Support vector machines are a core machine learning technology. They have strong theoretical foundations and
excellent empirical successes. They have been applied to tasks such as handwritten digit recognition [65], object
recognition [50], and text classification [35].

We shdl consider SVMs in the binary classification setting. We are given training data {x; .. .x, } that are
vectors in some space X C RY. We are also given their labels {y1...yn} Wwherey; € {—1,1}. Intheir smplest
form, SVMs are hyperplanes that separate the training data by a maximal margin (see Fig. 1). All vectors lying on
one side of the hyperplane are labeled as —1, and all vectors lying on the other side are labeled as 1. The training
instances that lie closest to the hyperplane are called support vectors. More generally, SVMsalow usto project the
origina training data in space X to a higher dimensiona feature space F viaa Mercer kernel operator K. In other
words, we consider the set of classifiers of the form: f(x) = > ;- ; o;K(xi,x). When f(x) > 0 we classify x as
+1, otherwise we classify x as —1.

When K satisfies Mercer’s condition [6] we can write; K(u,v) = ®(u) - ®(v) where® : X — Fand “”

denotes an inner product. We can then rewrite f as.

f(x) =w - ®(x), wherew = Zai'@(xi). (1)

i=1



Figure1: A simplelinear Support Vector Machine

Thus, by using K we are implicitly projecting the training data into a different (often higher dimensional) feature
space F. The SVM then computes the «;s that correspond to the maximal margin hyperplanein F. By choosing
different kernel functions we can implicitly project the training data from X into space F. (Hyperplanesin F
correspond to more complex decision boundariesin the original space X.)

Two commonly used kernels are the polynomial kernel K(u,v) = (u - v + 1)P, which induces polynomial
boundaries of degree p in the original space X, and the radial basis function kernd K (u,v) = (e=Y(u=-v)(u=v)),
which induces boundaries by placing weighted Gaussians upon key training instances. Intheremainder of this paper
we will assume that the modulus of the training data feature vectors are constant, i.e., for al training instances x;,
[|®(x;)|| = A for some fixed A. The quantity ||®(x;)|| is aways constant for radial basis function kernels, and so
the assumption has no effect for thiskernel. For [|®(x;)|| to be constant with the polynomial kernels we require that
[|xi|| beconstant. It ispossibleto relax thisconstraint on ®(x;). We shall discussthisoption at the end of Section 5.

4 Version Space

Given a set of labeled training data and aMercer kernel K, thereisa set of hyperplanesthat separate the datain the
induced feature space F. We call this set of consistent hyperplanes or hypotheses the version space [44]. In other
words, hypothesis f isin version space if for every training instance x; with labd y; we have that f(x;) > 0 if
y; = land f(x;) < 0ify; = —1. Moreformdly:

Definition 4.1 Our set of possible hypothesesis given as:

H:{f|f(x):%ﬁx)wherewew},

where our parameter space W issimply equal to F. The Version space, V isthen defined as:

V={feH|Vie{l...n} yif(x;) > 0}.



Figure 2: (a) Version space duality. The surface of the hypersphere represents unit weight vectors. Each of the
two hyperplanes corresponds to a labeled training instance. Each hyperplane restricts the area on the hypersphere
in which consistent hypotheses can lie. Here version space is the surface segment of the hypersphere closest to the
camera. (b) An SVM classifier in version space. The dark embedded sphere is the largest radius sphere whose
center liesin version space and whose surface does not intersect with the hyperplanes. The center of the embedded
sphere corresponds to the SVM, its radius is the margin of the SVM in F, and the training points corresponding to
the hyperplanesthat it touches are the support vectors. (c) Simple Margin Method.

Notice that since H is a set of hyperplanes, there is a bijection (an exact correspondence) between unit vectors w
and hypotheses f in H. Thuswe will redefine V as:

V={weW||w|| =1, yilw-®(xi)) >0,i=1...n}.

Note that a version space exists only if the training data are linearly separable in the feature space. Thus, we
require linear separability of thetraining datain the feature space. Thisrestrictionis much lessharsh than it might at
first seem. First, the feature space often has avery high dimension and so in many casesit resultsin the dataset being
linearly separable. Second, as noted by [57], it is possibleto modify any kernel so that the datain the newly induced
feature space islinearly separable. Thisis done by redefining al training instances x;: K (x;, x;) — K(xi,xi) + v
where v is a positive regularization constant. The effect of this modification is to permit linear non-separability of
the training data in the original feature space.

There exists a duality between the feature space F and the parameter space W [65, 30] which we shall take
advantage of in the next section: pointsin F correspond to hyperplanesin W and vice versa.

Clearly, by definition, pointsin W correspond to hyperplanesin F. The intuition behind the converse is that
observing a training instance x; in feature space restricts the set of separating hyperplanes to ones that classify x;
correctly. Infact, we can show that the set of alowable pointsw in W isrestricted to lie on one side of a hyperplane
inW. Moreformaly, to show that pointsin F correspond to hyperplanesin W, suppose we are given anew training
instance x; with label ;. Then any separating hyperplane must satisfy y;(w - ®(x;)) > 0. Now, instead of viewing
w asthenormal vector of ahyperplaneinF, think of y; ®(x;) as being the normal vector of ahyperplanein W. Thus
yi(w - ®(x3)) = w - y;i®(x3) > 0 defines a half-spacein W. Furthermore w - y; ®(x;) = 0 defines a hyperplane
in W that acts as one of the boundaries to version space V. Notice that version space is a connected region on the
surface of a hyperspherein parameter space. See Fig.2(a) for an example.

SVMsfind the hyperplane that maximizes the margin in feature space F. One way to posethisisas follows:

Maximizey, ¢ min; {y;(w - ®(x3))}
subject to: lw||=1



yi(w - ®(x;))>0i=1...n.

By having the conditions||w|| = 1 and y;(w - ®(x;)) > 0 we cause the solution to lie in version space. Now, we
can view the above problem as finding the point w in version space that maximizes the distance min; {w - y; ®(x;)}.
From the duality between feature and parameter space, and since ||®(x;)|| = 1, then each y; ®(x;) isaunit normal
vector of a hyperplane in parameter space and each of these hyperplanes delimits the version space. Thus we want
to find the point in version space that maximizes the minimum distance to any of the delineating hyperplanes. That
is, SVMs find the center of the largest radius hypersphere whose center can be placed in version space and whose
surface does not intersect with the hyperplanes corresponding to the labeled instances, as in Figure 2(b). It can be
easily shown that the hyperplanes touched by the maximal radius hypersphere correspond to the support vectors and
that the radius of the hypersphere isthe margin of the SVM.

5 ActivelLearning

In pool-based active learning we have a pool of unlabeled instances. It is assumed that the instances x are inde-
pendently and identically distributed according to some underlying distribution 7'(x), and the labels are distributed
according to some conditional distribution P(y | x).

Given an unlabeled pool U, an active learner ¢ has three components: (f, ¢, X). The first component is a
classifier, f : X — {—1, 1}, trained on the current set of labeled data X (and possibly unlabeled instancesin U too).
The second component ¢( X') isthe querying function that, given a current labeled set X, decides which instancein
U to query next. The active learner can return a classifier f after each pool-query (online learning) or after some
fixed number of pool-queries.

The main difference between an active learner and aregular passive learner is the querying component ¢. This
brings us to the issue of how to choose the next unlabeled instance in the pool to query. We use an approach that
gueries such instances in order to reduce the size of the version space as much as possible. We need one more
definition before we can proceed:

Definition 5.1 Area(V) isthe surface area that the version space V occupies on the hypersphere ||w|| = 1.

We wish to reduce the version space as fast as possible. Intuitively, one good way of doing thisisto choose a pool-
guery that halves the version space. More formally, we can use the following lemma to motivate which instances to
use as our pool-query:

Lemma5.2 (Tong & Kaoller, 2000) Suppose we have an input space X, finite dimensional feature space F (induced
viaakerne K), and parameter space W. Suppose active learner £* always queries instances whose corresponding
hyperplanes in parameter space W halves the area of the current version space. Let £ be any other active learner.
Denote the version spaces of ¢* and ¢ after : pool-queries as V" and V; respectively. Let P denote the set of all
conditional distributionsof y given x. Then,

Vi e Nt sup Ep[Area(V})] < sup Ep[Area(V;)],
PeP PeP

with strict inequality whenever there existsa pool-query j € {1...i} by ¢ that does not halve version space V; _;.



This lemma says that, for any given number of pool-queries, £* minimizes the maximum expected size of the
version space, where the maximum istaken over all conditional distributionsof y given x.

Now, suppose w* € W isthe unit parameter vector corresponding to the SVM that we would have obtained had
we known the actual labels of all of the datain the pool. We know that w* must lie in each of the version spaces
Vi DV, D V;. .., whereV; denotesthe version space after ¢ pool-queries. Thus, by shrinking the size of the version
space as much as possible with each pool-query we are reducing as fast as possible the space in which w* can lie.
Hence, the SVM that we learn from our limited number of pool-querieswill lie close to w*.

This discussion provides motivation for an approach in which we query instances that split the current version
space into two equa parts insofar as possible. Given an unlabeled instance x from the pool, it is not practical to
explicitly compute the sizes of the new version spaces V~ and V* (i.e., the version spaces obtained when x islabeled
as—1 and +1 respectively). Thereisaway of approximating this procedure as noted by [63]:

Simple Method. Recal from Section 4 that, given data {x; ... x; } and labels {y; ...y; }, the SVM unit vector
w; obtained from this data is the center of the largest hypersphere that can fit inside the current version space
V;. The position of w; in the version space V; clearly depends on the shape of the region V;; however, it is often
approximately in the center of the version space. Now, we can test each of the unlabeled instances x in the pool to
see how close their corresponding hyperplanesin W come to the centrally placed w;. The closer a hyperplanein
W isto the point w;, the more centrally it is placed in version space, and the more it bisects version space. Thus
we can pick the unlabeled instance in the pool whose hyperplanein W comes closest to the vector w;. For each
unlabeled instance x, the shortest distance between its hyperplane in W and the vector w; is simply the distance
between the feature vector ®(x) and the hyperplane w; in F — which is easily computed by |w; - ®(x)|. This
resultsin the natural Simple rule:

e Learn an SVM on the existing labeled data and choose as the next instance to query the pool instance that
comes closest to the hyperplanein F.

Figure 2(c) presents an illustration. In the stylized picture we have flattened out the surface of the unit weight
vector hypersphere that appears in Figure 2(a). The white area is version space V; which is bounded by solid lines
corresponding to labeled instances. The five dotted lines represent unlabeled instances in the pool. The circle
represents the largest radius hypersphere that can fit in the version space. Note that the edges of the circle do not
touch the solid lines — just as the dark sphere in Figure2(b) does not meet the hyperplanes on the surface of the
larger hypersphere (they meet somewhere under the surface). The instance b is closest to the SVM w; and so we
will choose to query b.

Asnoted by [63] there exist more sophi sticated approximationsthat we can perform. However, these methodsare
significantly more computationally intensive. For thetask of relevance feedback, afast responsetimefor determining
the next image to present to the user is so critically important that these other approximations are not practical.

Our SVM pgive image retrieval system uses radia basis function kerndls. As noted in Section 3, radia basis
function kernels have the property that ||®(x;)|| = A. The Simple querying method can still be used with other
kernels when the training data feature vectors do not have a constant modulus, but the motivating explanation no
longer holds since the SYM can no longer be viewed as the center of the largest dlowable sphere. However,
alternative motivations have recently been proposed by Campbell, Cristianini and Smola (2000) that do not require
aconstraint on the modulus.



For the image retrieval domain, we also have a need for performing multiple pool-queries at the same time. It
is not practical to present one image at a time for the user to label, because he or she is likely to lose patience
after afew rounds. To prevent this from happening we present the user with multiple images (say, twenty) at each
round of pool-querying. Thus, for each round, the active learner has to choose not just one image to be labeled
but twenty. Theoretically it would be possibleto consider the size of the resulting version spaces for each possible
labeling of each possible set of twenty pool-queries, but clearly thiswould be impractical. Thusinstead, for matters
of computational efficiency, our SVM agive System takes the simple approach of choosing the pool-queriesto be the
twenty images closest to its separating hyperplane. We discuss a couple of extensionsin Section 9.

It has been noted [63] that the Simple querying agorithm used by SVMagive Can be unstable during the first
round of querying. To address thisissue, SVMagive always randomly chooses twenty images for the first relevance
feedback round. Then it uses the Simple active querying method on the second and subsequent rounds. We discuss
two other seeding methods, seeding SVM acive by MEGA and by keywords, in Section 7.

SVM acive Algorithm Summary
To summarize, our SVM acive System performs the following for each round of relevance feedback:

e Learn an SVM on the current |abeled data

o If thisisthefirst feedback round, ask the user to label twenty randomly selected images. Otherwise, ask the
user to label the twenty pool images closest to the SVM boundary.

After the relevance feedback rounds have been performed, SV M agive retrieves the top-k most relevant images:

e Learn afind SVM on thelabeled data

e Thefinad SVM boundary separates “relevant” images from irrelevant ones. Display the k “relevant” images
that are farthest from the SYM boundary.

6 Indexing Image Features

We describe how our system characterizes images and how we index image features. Multi-resolution image
characterization makes|earning effective and efficient. Our high-dimensional indexing scheme makesimageretrieval
efficient.

6.1 Image Characterization

We believe that image characterization should follow human perception [27]. In particular, our perception worksina
multi-resolutionfashion. For some visual tasks, human eyes may select coarsefiltersto obtain coarse imagefeatures,
for others, they select finer features. Similarly, for some image applications (e.g., for detecting image replicas),
employing coarse featuresis sufficient; for other applications (e.g., for classifying images), employing finer features
may be essential. Animage search enginethusmust have theflexibility to model subjective perceptionsand to satisfy
avariety of search tasks.



Filter Name | Resolution [ Representation |

Masks Coarse Appearance of culture colors

Soread Coarse Spatial concentration of a color

Elongation Coarse Shape of acolor

Histograms | Medium Distribution of colors

Average Medium Similarity comparison within
the same culture color

Variance Fine Similarity comparison within
the same culture color

Table 1: Multi-resolution Color Features.

Our image retrieval system employs a multi-resolution image representation scheme [13]. In this scheme, we
characterize images by two main features: color and texture. We consider shape as an attribute of these main features.

6.1.1 Color

Although the wavelength of visible light ranges from 400 nanometers to 700 nanometers, research [27] shows that
the colors that can be named by all cultures are generaly limited to eleven. In addition to black and white, the
discernible colors are red, yellow, green, blue, brown, purple, pink, orange and gray.

We first divide color into 12 color binsincluding 11 bins for culture colors and one bin for outliers [31]. At
the coarsest resolution, we characterize color using a color mask of 12 bits. To record color information at finer
resol utions, we record el ght additional features for each color. These eight features are color histograms, color means
(inH, Sand V channels), color variances (in H, S and V channdl), and two shape characteristics: elongation and
spreadness. Color elongation characterizes the shape of a color, and spreadness characterizes how that color scatters
within theimage [38]. Table 1 summarizes color featuresin coarse, medium and fine resolutions.

6.1.2 Texture

Texture is an important cue for image analysis. Studies [41, 58, 61, 40] have shown that characterizing texture
featuresin terms of structuredness, orientation, and scal e (coarseness) fits well with models of human perception. A
widevariety of textureanalysis methods have been proposed in the past. We choose adiscrete wavel et transformation
(DWT) using quadrature mirror filters [58] because of its computational efficiency.
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Figure 3: Multi-resolution Texture Features.
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Each wavelet decomposition on a 2-D image yields four subimages. a % X % scaled-down image of the input
image and itswaveletsin three orientations: horizonta, vertical and diagonal. Decomposing the scaled-down image
further, we obtain the tree-structured or wavel et packet decomposition. The wavel et image decomposition provides
arepresentation that is easy to interpret. Every subimage contains information of a specific scale and orientation
and also retains spatia information. We obtain nine texture combinations from subimages of three scales and
three orientations. Since each subimage retains the spatial information of texture, we aso compute elongation and
spreadness for each texture channel. Figure 3 summarizes texture features.

Now, given an image, we can extract the above color and textureinformationto produce a 144 dimensional vector
of numbers. We use thisvector to represent theimage. Thus, the space X for our SVMsisa 144 dimensional space,
and each image in our database corresponds to a point in this space.

6.2 High-dimensional Indexer

Anindexer isessential to make both query-concept learning and image retrieval efficient and scalable. Our indexing
method is a statistical approach that works in two steps. It first performs non-supervised clustering using Tree-
Structured Vector Quantization (TSVQ) [24] to group similar objects. To maximize 10 efficiency, each cluster is
stored in a sequentia file. We determine which cluster an image belongsto by treating the tasks as a classification
problem. Our hypothesisisthat if aimage’s cluster predictionyields C' probable clusters, then the probability ishigh
that its nearest neighbors can be found in these C' clusters. By searching for the most probable clusters into which
the query object might bel ong, we can obtain most of the similar objects. To achieve accurate cluster predictions, we
use classification error-reduction schemes including bagging and simulated annealing on similarity search results.
For details, please consult [25, 26].

Theindexing structureis hel pful for both selecting samples and retrieving images given the class boundary.

o Informative example. Each image cluster is represented by its centroid. Initially we use just the centroids as
unlabeled images in our pool. Since the number of cluster-centroidsis substantially less than the number of
data objects?, they can be cached in main memory to avoid 10s. When SV M agive cONsiders images from the
pool, it is simply accessing unlabeled centroids in main memory. The time required for selecting images can
thus be drastically reduced. After using just the centroidsin the pool, SVMagive then adds the images in the
clusters close to the current decision boundary.

o Image retrieval. Given an SVM hyperplane, our search engine tests the centroidsthat fall on the relevant side
of the boundary. Each cluster isranked by its centroid’s distance to the SVM hyperplane: the farther avay a
cluster is from the hyperplane on the relevant side, the higher the priority. The search engine then reads the
“farthest” cluster into memory and performsasequential scan on the cluster to find thetop-k nearest neighbors.
If higher recall is desired, we read the next farthest cluster.

7 Seeding

SVMaciive requires at least one relevant and one irrelevant example to start itslearning. Though irrelevant examples
abound, relevant examples can be difficultto find. In particular, if the number of objectsrelevant to the query concept

2The ratio of the number of clusters over the total number of objectsis data-set dependent and is adjustable. A typical ratio isless than 0.5%
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is substantially less than that of theirrelevant ones, we need an effective strategy to find relevant starting images.

We call the process of finding initia relevant images seeding, and we present three seeding options. seeding by
MEGA, seeding by keywords, and seeding by images. Although SVMagive Can be seeded by any of these methods,
we believe that the first two options are more effective. The seeding-by-images paradigm, which relies upon users
to start a search with “good” images, may not be realistic. After al, if users can aways find good images to seed
a search, why would they need an image search engine? In the remainder of this section, we first present our
seeding-by-MEGA method, which uses another learning algorithm MEGA [11] to find relevant images. We then
discuss a seeding-by-keywords alternative.

7.1 Seeding by MEGA

We propose using MEGA to seed SVMagive. MEGA uses a boolean formulato describe query concepts. For the
task of searching for an initia relevant image, MEGA uses a k-DNF formulato bound the set of permitted formul ae.
Thus, any image with features that satisfy the k-DNF is regarded as potentialy relevant. MEGA attempts to choose
images that either will be relevant, or will make the k-DNF as specific as possible. The detailed MEGA algorithmis
documented in [11].

Seeding by MEGA Example

We present an exampl e produced using a Corel image dataset to show thelearning stepsof SVM agive Seeded by MEGA
for grasping a query concept “tigers” Our prototype works directly with the low-level image features described in
Section 6.1. Thisinteractive query session involves four screens that areillustrated in four figures.

Screen 1. Initia Screen. The system presentsthe initial screen to the user as depicted in Figure 4(a). The screenis
splitinto two frames vertically. On theleft-hand side of the screen isthelearner frame; on theright-hand sideisthe
retrieval frame. Inthelearner frame, the system displaysinformativeimages so asto learn what the user wantsvia
an active learning process. The retrieval frame displays images that the system believes are most relevant, i.e., the
images that the user wants. In thisfirst screen, the system displaysarandom selection of images from the database.
Notice that there is no tiger image present, so we press the submit button without highlighting any images.

Screen 2. Since SVM acive did not receive ardevant imagein the initia round of random images, it uses MEGA to
search for asingle relevant seed image. Thus, MEGA now decides which images should be displayed for the user
to label next. It chooses images that are rather different from the initial random selection. Notice that it presents
aflower, clouds and tiger images. We are interested in tigers, so we highlight the tiger image as relevant, and the
rest of the unmarked images are considered irrelevant. We indicate our selection by clicking on the submit button
inthelearner screen. Thisaction brings up the next screen.

Screen 3. Sampling and relevance feedback continues. Now that MEGA has successfully found a relevant image,
SVMaciive then learns an SVM using the one relevant image and 31 irrelevant images. SVMagive then displays
Figure 5(8). The right-hand frame displays images that the system expects will match the user’s query concept
at thistime. Asthe figure indicates, with nine out of the top fifteen images already showing tigers, the system is
beginning to learn which types of images we are seeking. In the |left-hand frame, the system displays the images
that it expects would be most informative for the user to label. The user can ask the system to further refine the
target concept by selecting relevant images in thislearner frame. After the user clicks on the submit button in the
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learner frame, the fourth screen is displayed.
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Screen 4. Sampling and relevance feedback ends. Figure 5(b) shows that al returned images in the similarity
search frame fit the query concept (tiger).

This example showsthat by using SVM agive Seeded with MEGA, aquery concept can be learned in very few user
iterationsfrom no initia starting knowledge. The learner is able to match high-level concepts to low-level features
directly through an active learning process.

Although much work is needed to improve our learning agorithms, this prototype demonstrates a potential to
facilitateinformation retrieval in three respects:

¢ Eliminating the seeding requirement. A user isnot required to initiatea query with “good” seed images. He or she
does not need to provide an example image to start the search. Even if al initial examples presented are negative,
the negative-label ed instances can be used to shrink the pool of the next sampling round substantialy. Therefore,
the probability that a relevant example will be presented in the next iteration will be substantialy higher.

o Supporting flexible concept formulation. One can search for agenera animal concept or a specific kind of animal.
In the above example, if we were to mark al wild anima images as relevant, the fina result would show other
wild animals as well as tigers. Also notein the third screen that the system presents tigers of different kinds and
on different backgrounds, to ask for feedback. The system can intelligently explore more possibilitiesto refine the
guery concept. (The readers are encouraged to experiment with our online demo [9].)

o Accomplishing the above tasks quickly and accurately. Our multi-resolution image-feature extractor and high-
dimensional indexer (presented in Section 6) make both query-concept learning and image retrieva efficient and
effective.

7.2 Seeding by Keyword

A text-based image retrieval engine finds images based on keywords. The keywords entered by users may have
multiple senses and hence may not precisely characterize the users' query concept. There are a number of systems
that perform image retrieval by keyword. For example, Figure 6 shows the search results with the keyword “baby”
using the Googl e image search engine avail able at images.google.com. As observed, the returned images range from
baby photosto baby furniture, statues, and cartoons.

Although keyword searches may not achieve high precision, alow-accuracy keyword search can be used instead
of MEGA to seed SVMacive Withasinglerelevant image. Aspointed out by [1, 2, 10], automatic annotation may not
attain extremely high accuracy at the present state of computer vision and image processing. However, providing
images with some reliable semantical 1abels and then refining these unconfirmed labels via relevance feedback is
deemed an effective approach [68].

8 Experiments

For empirica evaluation of our learning methods, we used three real-world image datasets. a four-category, a ten-
category, and a fifteen-category image dataset, each category consisting of 100 to 150 images. These image datasets
were collected from Corel Image CDs and the Internet.
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Figure 6: Google Image Search Resultswith Keyword “baby”.

o Four-category set. The 602 imagesinthisdataset belongto four categories — architecture, flowers, landscape,
and people.

o Ten-category set. The 1277 images in this dataset belong to ten categories — architecture, bears, clouds,
flowers, landscape, people, objectionableimages, tigers, tools, and waves. In thisset, afew categories were
added to increase learning difficulty. The tiger category contains images of tigers with landscape and water
backgrounds to complicate landscape category. The objectionable (pronographic) images can be confused
with people wearing little clothing (beach wear). Cloudsand waves have substantial color similarity.

o Fifteen-category set. In addition to the ten categories in the above dataset, the tota of 1920 images in this
dataset includes elephants, fabrics, fireworks, food, and texture. We added e ephants with landscape and
water backgroundsto increase learning difficulty in distinguishing landscape, tigers and e ephants. We added
colorful fabrics and food to interfere with flowers. Various texture images (e.g., skin, brick, grass, water, etc.)
were added to raise learning difficulty for al categories.

To obtain an objective measure of performance, we assumed that a query concept was an image category. The
SVMdive l€ANEr has no prior knowledge about image categories®. It treats each image as a 144-dimension vector
described in Section 6.1. The goal of SV M agive iSt0 learn agiven concept through a relevance feedback process. In
this process, at each feedback round SVMacive Selects twenty images to ask the user to label as “relevant” or “not
relevant” with respect to the query concept. It then uses the labeled instances to successively refine the concept
boundary. After finishing the relevance feedback rounds, SVMagive then retrieves the top-k most relevant images

3Unlike some recently developed systems[66] that contain a semantical layer between image features and queriesto assist query refinement,
our system does not have an explicit semantical layer. We arguethat having a hard-coded semantical layer can makearetrieval system restrictive.
Rather, dynamically learning the semantics of a query concept is more flexible and hence makes the system more useful.
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from the dataset, based on the final concept it has learned. Accuracy is then computed by looking at the fraction
of the k returned result that belongs to the target image category. We note that this computation is equivaent to
computing the precision on the top-k images. This measure of performance appears to be the most appropriate for
the image retrieval task — particularly since, in most cases, not al of the relevant images can be displayed to the
user on one screen. Asin the case of web searching, we typically wish the first screen of returned imagesto contain
a high proportion of relevant images. We are less concerned that not every single instance that satisfies the query
concept isdisplayed. Aswith al SVM agorithms, SVM acive requires at least one relevant and one irrel evant image
to function. In practice a single relevant image could be seeded into SVMagive by a keyword search or by MEGA,
as we discussed in Section 7. In either case our experiments assume that we start off with one randomly selected
relevant image and one randomly selected irrelevant image.

8.1 SVMauie Experiments

Figures 7(a-c) show the average top-k accuracy for the three different sizes of data sets. We considered the
performance of SVMagive ater each round of relevance feedback. The graphs indicate that performance clearly
increases after each round. Also, the SVMagive agorithm’s performance degrades gracefully when the size and
complexity of the database isincreased —for example, after four rounds of relevance feedback, it achieves an average
of 100%, 95%, and 88% accuracy on the top-20 results for the three different sizes of data sets, respectively. Itis
also interesting to note that SVMagive 1S NOt ONly good at retrieving just the top few images with high precision, but
it also manages to sustain fairly high accuracy even when asked to return larger numbers of images. For example,
after five rounds of querying it attains 99%, 84% and 76% accuracy on thetop-70 results for the three different sizes
of data sets respectively. SVM acive USES the active querying method outlined in Section 5.

We examined the effect that the active querying method had on performance. Figures 8(a) and 8(b) compare the
active querying method with the regular passive method of sampling. The passive method choosesimages randomly
from the pool to be labeled. This method is typically used with SYMs since it creates arandomly selected data set.
Itisclear that the use of active learning isbeneficial in theimage retrieval domain. We gain a significant increasein
performance by using the active method. SV M agive displays 20 images per pool-querying round. Thereisatradeoff
between the number of images to be displayed in one round, and the number of querying rounds. The fewer images
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displayed per round, the lower the performance. However, with fewer images per round we may be able to conduct
more rounds of querying and thusincrease our performance. Figure 8(c) considers the effect of displaying only ten
images per round. In thisexperiment our first round consisted of displaying twenty random images and then, on the
second and subsequent rounds of querying, active learning with 10 or 20 imagesisinvoked. We notice that thereis
indeed a benefit to asking (20 random + two rounds of 10 images) over asking (20 random + oneround of 20 images).
Thisisunsurprising since the active learner has more control and freedom to adapt when asking for two rounds of 10
images rather than one round of 20. What isinteresting isthat asking (20 random + two rounds of 20 images) isfar,
far better than asking (20 random + two rounds of 10 images). The increase in the cost to users of asking 20 images
per round is generally negligible since users can pick out relevant images easily. Furthermore, thereis virtualy no
additional computational cost in calculating with the 20 images to query instead of the 10 images. Thus, for this
particular task, we think it worthwhile to display around 20 images per screen and limit the number of querying
rounds, rather than display fewer images per screen and require many more querying rounds.

Texture Top-50

features Accuracy

None 80.6 £ 2.3

Fine 859+ 1.7

Medium | 84.7+ 1.6

Coarse 85.8+ 1.3
All 86.3+ 1.8

Table2: Average top-50 accuracy over the four-category dataset using aregular SVM trained on 30 images. Texture
spatial features were omitted.

We aso investigated how performance atered when various aspects of the algorithm were changed. Table 2
showsthat all three of thetexture resolutionsareimportant. Also, the performance of the SVM appearsto be grestest

Top-50 Top-100 Top-150
Degree 2 Polynomia | 95.94+ 0.4 86.1 £ 0.5 72.8+0.4
Degree 4 Polynomia | 92.7+ 0.6 82.8+ 0.6 69.0 £ 0.5
Radial Basis 96.8 £ 0.3 89.1+04 76.0+04

Table 3: Accuracy on four-category data set after three querying rounds using various kernels. Bold type indicates
statistically significant results.
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Dataset | Dataset  round of 20 Computing  Retrieving top
Size queries (secs) final SYM 150 images
4 Cat ‘ 602 0.34 £ 0.00 0.5 £ 0.01 0.43 £ 0.02

10 Cat 1277 0.71£0.01 1.03£0.03 0.93£0.03
15 Cat 1920 1.09+£0.02 1.74 £ 0.05 1.37+£0.04

Table 4: Average run times in seconds
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Figure 9: (a) Average top-k accuracy over the ten-category dataset. (b) Average top-k accuracy over the fifteen-
category dataset.

when al of the texture resolutions are included (although in this case the difference is not statistically significant).
Table 3 indicates how other SVM kerne functions perform on the image retrieval task compared to the radia basis
function kernel. It appears that the radia basis function kernel is the most suitable for this festure space. One
other important aspect of any relevance feedback algorithm isthe wall clock time that it takes to generate the next
pool-queries. Relevance feedback is an interactive task, and if the agorithm takes too long then the user is likely
to lose patience and be less satisfied with the experience. Table 4 shows that SVM agive @verages about a second on
a Sun Workstation to determine the 20 most informative images for the users to label. Retrieva of the 150 most
relevant images takes a similar amount of time, and computing the final SVYM model never exceeds two seconds.

8.2 Scheme Comparison

We a so compared SVM acive With two traditional query refinement methods: query point movement (QPM) and query
expansion (QEX). In this experiment, each scheme returned the 20 most relevant images after up to five rounds of
relevance feedback. To ensure that the comparison to SVM agive Wasfair, we seeded both schemes with onerandomly
selected relevant image to generate the first round of images. On the ten-category image dataset, Figure 9(a) shows
that SV M agiive achieves nearly 90% accuracy on thetop-20 results after three rounds of relevance feedback, whereas
the accuracies of both QPM and QEX never reach 80%. On the fifteen-image category dataset, Figure 9(b) shows
that SVM acive OUtperforms the others by even wider margins. SVMagive reaches 80% top-20 accuracy after three
rounds and 94% after five rounds, whereas QPM and QEX cannot achieve 65% accuracy.

These results hardly surprise us. Traditiona information retrieval schemes require a large number of image
instances to achieve any substantial refinement. By just refining around current relevant instances, both QPM and
QEX tend to be fairly localized in their exploration of the image space and hence rather slow in exploring the entire
space. In contrast, during the relevance feedback phase SVMagive takes both the relevant and irrel evant images into
account when choosing the next pool-queries. Furthermore, it chooses to ask the user to label images that it regards
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as most informative for learning the query concept, rather than those that have the most likelihood of being rel evant.
Thusit tends to explore the feature space more aggressively.

Figures10 and 11 show an experimental run of the SV M agive System. For thisrun, we are interested in obtaining
architectureimages. In Figure 10 we initialize the search by giving SVM acive ONe relevant and one irrelevant image.
We then have three feedback rounds. The images that SV M agive asks usto label in these three feedback rounds are
images that SVM acive Will judge to be most informative. For example, we see that it asks us to label a number of
landscape images and other images with a blue or gray background with something in the foreground. The feedback
rounds alow SVMacive to narrow down the range of images that we like. When it comes to the retrieval phase
(Figure 10) SVM aciive returns, with high precision, alarge variety of different architecture images, ranging from old
buildingsto modern cityscapes.

9 Conclusions and Future Work

We have demonstrated that active learning with support vector machines can provide a powerful tool for searching
image databases, outperforming a number of traditional query refinement schemes. SVM acive NOt ONly achieves
consistently high accuracy on awide variety of desired returned results, but also does it quickly and maintains high
precision when asked to deliver large quantities of images. Also, unlike recent systems such as SIMPLIcity [66],
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it does not require an explicit semantical layer to perform well. Our system takes advantage of the intuition that
there can be considerabl e differences between the set of images that we are aready confident a user wishes to see,
and the set of images that would most informative for the user to label. By decoupling the notions of feedback and
retrieval, and by using a powerful classifier with active learning, we have demonstrated that SVM agive Can provide
considerable gains over other systems.

We have also presented our image characterization and feature indexing methods, which make concept-learning
and image retrieval effective and efficient. We have built prototypes[9, 12], which use MEGA or keywords to seed
SVMacive by finding the first image(s) relevant to the query concept, and then switches to use SVMagive for the
subsequent rounds of feedback. We are currently investigating methods to improve SVM acive'S Sample selection
method. More specificaly, we observed that when thetraininginstances of the target class (i.e., relevant images with
respect to thequery concept) are heavily outhumbered by non-target training instances (irrel evant images), SVMscan
be ineffective in determining the class boundary. To remedy this problem, we have proposed an adaptive conformal
transformation (ACT) agorithm [69]. ACT considers feature-space distance and the class-imbalance ratio when it
performs conformal transformation on akerne function. We will validate ACT’s effectiveness with SVM active-
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