
Virtual IO: Preemptible Disk Access

Zoran Dimitrijević
Computer Science
UC, Santa Barbara

zoran@cs.ucsb.edu

Raju Rangaswami
Computer Science
UC, Santa Barbara

raju@cs.ucsb.edu

Edward Chang
Electrical Engineering

UC, Santa Barbara

echang@ece.ucsb.edu

ABSTRACT
Supporting preemptible disk access is essential for interactive mul-
timedia applications that require short response time. In this study,
we propose Virtual IO, an abstraction for disk IO, that transforms
a non-preemptible IO request into a preemptible one. In order to
achieve its objective efficiently, Virtual IO uses disk profiling to
obtain accurate and detailed knowledge about the disk. Upon im-
plementation of Virtual IO, we show that not only does Virtual IO
enable highly preemptible disk access, but it does so with little or
no loss in disk throughput.

1. INTRODUCTION
Many varieties of media such as video, audio, and interactive

virtual reality are proliferating. Because of the large amount of
memory required by these media data, they are stored on disks and
are retrieved into main memory only when needed. For interactive
multimedia applications which require short response time, a disk
IO request must be serviced promptly. For example, in an immer-
sive virtual world, the latency tolerance between a head movement
and the rendering of the next scene (which may involve a disk IO
to retrieve relevant media data) is around15 milliseconds [1]. Such
interactive IO requests can be modeled as higher-priority IO re-
quests. However, the disk might already be servicing an IO request
when the higher-priority IO request arrives. Due to the typically
large media-IO size and the non-preemptible nature of an ongoing
disk IO, even higher-priority IO requests can be kept waiting for at
least tens, if not hundreds, of milliseconds before they are serviced
by the disk.

To reduce the response time for a higher-priority request, its
waiting time must be reduced. Thewaiting time for an IO re-
quest is defined as the amount of time it must wait, due to the non-
preemptibility of the ongoing IO request, before being serviced by
the disk. The response time for the higher-priority request is then
the sum of its waiting time and service time. Theservice timeis
the sum of the seek time, rotational delay, and data transfer time
for an IO request and can be reduced by intelligent data placement
policies [19]. However, our focus is on reducing the waiting time
by increasing the preemptibility of disk access.

In this study, we proposeVirtual IO, an abstraction for disk IO,
which provides highly preemptible disk access with little or no loss
in disk throughput. Virtual IO breaks the components of an IO job
into fine-grained physical disk-commands and enables IO preemp-
tion between any two disk commands. LetTwaiting denote the
waiting time for a higher-priority IO request which arrives when
the disk is currently servicing an ongoing IO request. The waiting
time for the higher-priority request,Twaiting, can include seek time
(Tseek), rotational delay (Trot), and data transfer time (Ttransfer)
for the ongoing IO request. If a higher-priority IO request can ar-

rive at any time during the service time for the ongoing IO request
with equal probability, then the expected value for the waiting time
of the higher-priority request can be expressed as

E(Twaiting) =
1

2
(Tseek + Trot + Ttransfer).

Virtual IO maps each IO request into multiple fast-executing disk
commands using three methods. The ongoing IO request can now
be preempted to service another higher-priority IO between two
disk commands. Each method within Virtual IO addresses the re-
duction of one of the components of the waiting time.

• Chunking Ttransfer. A large IO transfer is divided into a
number of small chunk transfers, and preemption is made
possible between the small transfers. If the IO is not pre-
empted between the chunk transfers, chunking does not in-
cur any overhead. This is due to the prefetching mechanism
in current disk drives (Section 3.1).

• Preempting Trot. By performing just-in-time (JIT) seek
for servicing an IO request, the rotational delay at the desti-
nation track is virtually eliminated. The pre-seek slack time
thus obtained is preemptible. This slack can also be used
to perform prefetching for the ongoing IO request, or/and to
perform seek splitting (Section 3.2).

• Splitting Tseek. Virtual IO splits a long seek into sub-seeks,
and permits a preemption between two sub-seeks (Section 3.3).

Virtual IO services a single IO request using multiple disk com-
mands. LetVi be the sequence of disk commands used by Virtual
IO to execute the IO request. Let the time required to execute the
disk commandVi beTi. The expected waiting time1 using Virtual
IO can then be expressed as:

E(T ′waiting) =
1

2

P
T 2

iP
Ti

.

The following example illustrates how Virtual IO improves the ex-
pected waiting time for a high-priority request.

[Illustrative Example] Suppose a2 MB read-request has to seek
20, 000 cylinders requiringTseek of 14 ms, must wait for aTrot

of 8 ms, and requiresTtransfer of 100 ms at a transfer rate of
20 MBps. The expected waiting time,E(Twaiting), for a higher-
priority request arriving during the execution of this request, is61
ms, while the maximum waiting time is122 ms. Virtual IO can
reduce the waiting time by performing the following operations.

It first predicts both the seek time and rotational delay. Since
the predicted seek time is long (Tseek = 14 ms), it decides to split
1Please refer to Section 3 for the derivation of this equation.

1

the seek operation into two sub-seeks, each of10, 000 cylinders,
requiringT ′seek = 9 ms each. Please note that this seek splitting
does not cause extra overhead because theTrot = 8 can mask the4
ms increased total seek time (2×T ′seek−Tseek = 2×9−14 = 4)
incurred by seek splitting. The rotational delay is nowT ′rot =
Trot − (2× T ′seek − Tseek) = 4 ms.

With this T ′rot = 4 ms knowledge, Virtual IO can wait for4 ms
before performing a JIT-seek. This JIT-seek method makesT ′rot

preemptible, since no disk operation is being performed. The disk
then performs the two sub-seek disk commands, and then100 suc-
cessive read commands, each of size20 kB, requiring1 ms each.
A high-priority IO request can be serviced immediately after each
disk-command. Virtual IO thus makes preemptible the originally
non-preemptible read IO request. Now, during the service of this
IO, we have two scenarios:

• No higher-priority IO arrives.
In this case, the disk does not incur additional overhead for
transferring data due to disk prefetching (discussed in Sec-
tions 3.1 and 3.4) nor additional disk latency. (Please note
that if Trot cannot mask seek-splitting, we can choose not to
perform seek-splitting.)

• A higher-priority IO arrives.
In this case, the maximum waiting time for the high-priority
request is now a mere9 ms, if it arrives during one of the two
seek disk commands. However, if the ongoing request is at
the stage of transferring data, the longest stall for the high-
priority request is just1 ms. The expected value for waiting
time is only 1

2
0×42+2×92+100×12

4+2×9+100
= 1.1 ms, a significant

reduction from61 ms.

This example shows that Virtual IO drastically reducesE(Twaiting)
2.

As the above example may reveal, in order to implement Virtual
IO, we must know accurate disk parameters (e.g., the chunk size,
seek time, rotational delay between disk blocks, etc.) to perform
effective chunking, just-in-time seek, and seek splitting. These
disk parameters differ between disk models. Moreover, even disks
which are of the same model and from the same vendor can be dif-
ferent [5]. We show that the disk profiler we have implemented,
Diskbench [5], can extract essential disk information so that accu-
rate disk-performance prediction is feasible within Virtual IO. In
addition, as we will show in Section 3.1, write IOs behave differ-
ently from read IOs. In summary, the contributions of this paper
are as follows:

• We introduce Virtual IO, which abstracts both read and write
IO requests so as to make them highly preemptible. More
significantly, it achieves this objective with little or no loss
in disk throughput. As a result, Virtual IO can drastically
reduce the waiting time for a higher-priority request at little
or no extra cost.

• We show a feasible path to implement Virtual IO. We ex-
plain how the implementation of Virtual IO is made possible
through Diskbench, a disk profiling tool that we have previ-
ously devised [5].

2Virtual IO increases the preemptibility of disk access. However,
if an IO request is preempted to service a higher-priority request,
an extra seek operation may be required to resume service for the
preempted IO. The distinction betweenIO preemptibilityand IO
preemptionis an important one. Preemptibility enables preemp-
tion, but itself has little overhead. IO preemption may result in
degradation in disk throughput and might not always be desirable.
We explore the effects of IO preemption further, in Section 4.3.

The rest of this paper is organized as follows: Section 2 presents
related research. Section 3 introduces Virtual IO and describes its
three components. In Section 4, we evaluate the Virtual IO scheme.
In Section 5, we make concluding remarks and suggest directions
for future work.

2. RELATED WORK
In the past, little need has been expressed for highly preemptible

disk access. However, new applications like immersive virtual real-
ity, 3D gaming, etc., require a high level of responsiveness from the
system, thus necessitating preemption of ongoing disk IO requests
to retrieve more urgently required data.

Before the pioneering work of [3, 9], it was assumed that the
nature of disk IOs was inherently non-preemptible. In [3], the au-
thors proposed breaking up a large IO into multiple smaller chunks
to reduce the data transfer component (Ttransfer) of the waiting
time (Twaiting) for high-priority requests. A minimum chunk size
of one track was proposed. In this paper, we present the implemen-
tation of Virtual IO, which improves upon the conceptual model in
the three major aspects:

1. In addition to reducing the data transfer component of the wait-
ing time, we show how theTrot andTseek components can also
be reduced. This further improves the preemptibility of a system,
and reduces the waiting time for a high-priority request.

2. Even for the data transfer component, we show that the bounds
for zero-overhead preemptibility proposed by [3] are too tight and
do not apply to current disk drive technology. We propose bounds
which are far more relaxed.

3. To the best of our knowledge, the preemptibility of write IOs
has not received sufficient attention in the past. It is more dif-
ficult to make write IO requests preemptible than to do so with
read IOs. We propose one possible solution for making write IOs
preemptible.
Virtual IO uses ajust-in-time seektechnique to make the rota-

tional delay preemptible. In addition, JIT-seek can mask the rota-
tional delay with useful data prefetching. In order to implement
both methods, Virtual IO relies on the accurate disk profiling [17,
11, 15, 5]. Rotational delay masking has been proposed in mul-
tiple forms. In [18, 7], the authors present the rotational-latency-
sensitive schedulers, which consider the rotational position of the
disk arm to make better scheduling decisions. In [8], the authors
presentfreeblock scheduling, wherein the disk arm services back-
ground jobs using the rotational delay between foreground jobs.
Virtual IO differs from these approaches not only in its primary
goal, which is to make rotational delays preemptible, but also in the
method employed for increasing throughput. Virtual IO usesfree
prefetching(introduced in Section 3.2) to increase disk throughput.

There is a large body of literature proposing IO scheduling poli-
cies for multimedia and real-time systems that improve disk re-
sponse time [6, 16, 2, 14, 13, 12]. Virtual IO, however, is orthogo-
nal to these contributions. We believe that the existing methods can
benefit from using preemptible Virtual IO, to further decrease re-
sponse time for high-priority requests. For instance, to model real-
time disk IOs, one can draw from real-time CPU scheduling theo-
ries. In [9], the authors adapt theEarliest Deadline First(EDF) al-
gorithm from CPU scheduling to disk IO scheduling. Since EDF is
a preemptive scheduling algorithm, a higher-priority request must
be able to preempt a lower-priority request. However, an ongo-
ing disk request cannot be preempted instantaneously. Applying
such classical real-time CPU scheduling theory requires a certain
preemption granularity which must be independent of system vari-
ables like IO sizes. Virtual IO provides exactly such an ability.

2

3. VIRTUAL IO
Before introducing the concept ofVirtual IO, we first define

some terms which we will use throughout the rest of this paper.
Then, we propose Virtual IO, an abstraction for disk IO, which en-
ables preemption of IO requests. Finally, we present our disk pro-
filer [5] and the disk parameters required for the implementation of
Virtual IO.
Definitions:

• A logical disk blockis the smallest unit of data that can be
accessed on a disk drive (typically512 B). Each logical block
resides at a physical disk location, depicted by a physical
address (cylinder, track, sector).

• A disk commandis a non-preemptible request issued to the
disk over the IO bus. Examples of disk commands are the
read, write, and seek commands.

• An IO requestis a request for read or write access to a se-
quential set of logical disk blocks.

• Thewaiting timeis the time between the arrival of a higher-
priority IO request and the moment the disk starts servicing
it.

• Theexpected waiting timeis the expected value for the wait-
ing time for a higher-priority IO request.

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
����

��

Seek Time Rotational
Delay

Data Transfer
Disk Head

IO Bus

Read
Data Transfer on IO Bus

Request

Figure 1: Timing diagram for a disk read request.

In order to understand the magnitude of the waiting time, let
us consider a typical read IO request, depicted in Figure 1. The
disk first performs a seek to the destination cylinder requiringTseek

time. Then, the disk must wait for a rotational delay, denoted by
Trot, so that the target disk block comes under the disk arm. The
final stage is the data transfer stage, requiring a time ofTtransfer,
when the data is read from the disk media to the disk buffer. This
data is simultaneously transferred over the IO bus to the system
memory via the IO controller.

For a typical commodity system, once a disk command is issued
on the IO bus, it cannot be stopped3. Traditionally, an IO request
is serviced using a single disk command. Consequently, the system
must wait until the ongoing IO is completed before it can service
the next IO request on the same disk. Let us assume that a higher-
priority request may arrive at any time during the execution of an
ongoing IO request with equal probability. The waiting time for the
higher-priority request can be as long as the duration of the ongoing
IO. The expected waiting time of a higher-priority IO request can
then be expressed in terms of seek time, rotational delay, and data
transfer time required for ongoing IO request as

E(Twaiting) =
1

2
(Tseek + Trot + Ttransfer). (1)

3In this paper we investigate the possible level of preemptibility of
IO requests when the disk commands are non-preemptible.

To reduce the waiting time, we propose Virtual IO, which judi-
ciously services an IO request using fine-grained disk commands.
Virtual IO enables preemption of each of the above waiting-time
components using three techniques: chunkingTtransfer, preempt-
ing Trot, and splittingTseek, with little or no loss in disk through-
put. LetVi be the sequence of fine-grained disk commands used
by Virtual IO to service an IO request. Let the time required to
execute disk-commandVi beTi. Using above assumption that the
higher-priority request can arrive at any time with equal probabil-
ity, the probability that it will arrive during the execution of the
ith commandVi can be expressed aspi = TiP

Ti
. Finally, the ex-

pected waiting time of a higher-priority request in Virtual IO can
be expressed as

E(T ′waiting) =
1

2

X
(piTi) =

1

2

P
T 2

iP
Ti

. (2)

In the remainder of this section, we present 1)chunking, which
dividesTtransfer (Section 3.1); 2)just-in-time seek, which masks
Trot (Section 3.2); and 3)seek splitting, which dividesTseek (Sec-
tion 3.3). In addition, we present our disk profiler, Diskbench [5],
and summarize all the disk parameters required for the implemen-
tation of Virtual IO (Section 3.4).

3.1 Chunking: PreemptingTtransfer

Preemption of the data transfer component (Ttransfer) in disk
IOs is important since it can be large (e.g., in multimedia applica-
tions). A 2 MB IO requires100 ms at a data transfer rate of20
MBps. To make theTtransfer component preemptible, Virtual IO
useschunking.
Definition 3.1: Chunkingis a method for splitting the data transfer
component of an IO request into multiple smallerchunktransfers.
The chunk transfers are serviced using separate disk commands,
issued sequentially.
Benefits: Chunking reduces the transfer component ofTwaiting.
A higher-priority request can be serviced after a chunk transfer is
completed instead of having to wait for the entire IO to complete.
For example, suppose a2 MB IO request requires aTtransfer of
100 ms at a transfer rate of20 MBps. Using a chunk size of20
kB, the expected waiting time for a high priority request is reduced
from 50 ms to0.5 ms.
Overhead: For small chunk sizes, the IO bus can become a perfor-
mance bottleneck due to the overhead of issuing a large number of
disk commands. As a result, the disk throughput degrades. Issuing
multiple disk commands instead of a single one also increases the
CPU overhead for performing IO. However, for the range of chunk
sizes, the disk throughput using chunking is optimal with negligible
CPU overhead.

3.1.1 The Method
To perform chunking, Virtual IO must decide on the chunk size.

Virtual IO chooses the minimum chunk size for which the disk
throughput is optimal and CPU overhead acceptable. Surprisingly,
very large chunk sizes can also suffer from throughput degradation
due to the sub-optimal implementation of disk firmware. Conse-
quently, Virtual IO may achieve even better disk throughput than
the traditional method where an IO request is serviced using a sin-
gle disk command.

In order to perform chunking efficiently, Virtual IO relies on the
existence of a read cache and a write buffer on the disk. To extract
the optimal range for the chunk size, Virtual IO uses disk profil-
ing. Since the chunking method is different for read and write IO
requests, we now present these methods separately.

3

The Read Case
Disk drives are optimized for sequential access, and they continue
prefetching data into the disk cache even after a read operation is
completed [10]. Chunking for a read IO requests is illustrated in
Figure 2. The x-axis shows time, and the two horizontal time lines
depict the activity on the IO bus and the disk head, respectively.
Employing chunking, a largeTtransfer is divided into smaller chunk
transfers issued in succession. The first read command issued on
the IO bus is for the first chunk. Due to the prefetching mecha-
nism, all chunk transfers following the first one are serviced from
the disk cache rather than the disk media. Thus, the data transfers
on the IO bus (the small dark bars shown on the IO bus line in the
figure) and the data transfer into the disk cache (the shaded bar on
the disk-head line in the figure) occur concurrently. The disk head
continuously transfers data after the first read command, thereby
fully utilizing the disk throughput.

������
������
������
������
������
������

������
������
������
������
������
������

��
��
��
��
��
�

��
��
��
��
��
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

		
		
		
		
		
		

������
������
������
������
������
������

��
��
��
��
��
��� ��� ������� ��������� ��������� �������

Seek Time Rotational
Delay

Data Transfer
Disk Head

IO Bus

Read
Data Transfer on IO Bus

Request

Figure 2: Virtual preemption of the data transfer component.

The effect of the chunk size on the disk throughput is explained
using a mock disk in Figure 3. The optimal chunk size lies be-
tweena andb. A smaller chunk size reduces the waiting time for a
higher-priority request. Hence, Virtual IO uses a chunk size close
to but larger thana. For chunk sizes smaller thana, due to the
overhead associated with issuing a disk command, the IO bus can
become a bottleneck. We explain this behavior further in an ex-
tended version [4] using an analytical model. Pointb in Figure 3
denotes the point beyond which the performance of the cache may
be sub-optimal. We observed surprising effect in many disks that
we experimented with. We believe that this behavior can be mostly
attributed to the design of the disk firmware. Pointsa and b in
Figure 3 can both be extracted using our disk profiler (please see
Section 3.4 for details).

D
is

k
th

ro
ug

hp
ut

maximum

(b)

minimum

(a)

good firmware design

sub−optimal firmware design

chunk size chunk size
Chunk size

Figure 3: Effect of chunk size on disk throughput.

The Write Case
Virtual IO performs chunking for write IO requests in the same
manner as it does read requests. However, the implications of

chunking in the write case are different. When a write IO is per-
formed, the disk command can complete as soon as all the data is
transferred to the disk write buffer4. As soon as the write command
is completed, the operating system can issue a disk command to
service a higher-priority IO request. However, the disk may choose
to schedule a write-back operation for disk write buffers before ser-
vicing a new disk command issued by the operating system. We
refer to this delay as theexternal waiting time(Text). Since the
disk can buffer multiple write requests, the write-back operation
can include multiple disk seeks. Consequently, the waiting time for
a higher-priority request can be substantially increased when the
disk services write IO requests.

In order to increase preemptibility of write requests, Virtual IO
must take into consideration the external waiting time for write IO
requests5. To remedy external waiting, Virtual IO forces the disk
to write the last chunk (obtained after chunking) of the write IO
request to disk media. Using this simple technique, Virtual IO trig-
gers the write-back operation at the end of each write IO request.
Consequently, the external waiting time is reduced since the write-
back operation does not include multiple disk seeks.

3.2 JIT-seek: PreemptingTrot

After the reduction of theTtransfer component of the waiting
time, the rotational delay and seek time components become sig-
nificant. The rotational period (TP) can be as much as10 ms in
current-day disk drives. To reduce the rotational delay component
(Trot) of the waiting time, we propose aJust-In-Time seek(JIT-
seek) technique for IO operations.
Definition 3.2: TheJIT-seektechnique delays the servicing of the
next IO request in such a way that the rotational delay to be incurred
is minimized. We refer to the delay between two IO requests, due
to JIT-seek, as the slack time.
Benefits:

1. The slack time between two IO requests is fully preemptible.
For example, suppose that an IO request must incur aTrot of
5 ms, and JIT-seek delays the issuing of the IO request by4
ms. Then, the expected waiting time is reduced from2.5 ms to
1
2

0×4+1×1
1+4

= 0.1 ms.

2. The slack obtained due to JIT-seek can also be used to perform
data prefetching for the previous IO stream. If prefetching for the
previous IO stream is useful, then JIT-seek can increase the disk
throughput.

Overhead: Virtual IO predicts the rotational delay and seek time
between two IO operations in order to perform JIT-seek. If there
is an error in prediction, then the penalty for JIT-seek can be one
extra rotation of the disk.

3.2.1 The Method
The JIT-seek method is illustrated in Figure 4. The x-axis depicts

time, and the two horizontal lines depict a regular IO and an IO
with JIT-seek, respectively. With JIT-seek, the read command for
an IO operation is delayed and issued just-in-time so that the seek
operation takes the disk head directly to the destination block, with-
out incurring any rotational delay at the destination track. Hence,

4If the size of the write IO is larger than the size of the write buffer,
then the disk signals the end of the IO as soon as the excess amount
of data (which cannot be fitted into the disk buffer) has been written
to the disk media.
5External waiting can be reduced to zero by disabling write buffer-
ing. However, in the absence of write buffering, chunking would
severely degrade disk performance. The disk would suffer from
an overhead of one disk rotation after performing an IO for each
chunk.

4

Data TransferSeek TimePreemptible
Rotational

Data Transfer

JIT−seek

Seek Time

Slack

Delay
Rotational

Regular IO

Virtual IO
with JIT−seek

Figure 4: JIT-seek.

data transfer immediately follows the seek operation. The rota-
tional slack available, before issuing the JIT-seek command, is now
preemptible. We can make two key observations about the JIT-
seek method. First, an accurate JIT-seek operation reduces theTrot

component of the waiting time without any loss in performance.
Second, and perhaps more significantly, the ongoing IO request can
be serviced as much as possible, or even completely, if sufficient
slack is available before the JIT-seek operation for a higher-priority
request.

The pre-seek slack made available due to the JIT-seek operation
can be used in three possible ways:

• The slack can be simply left unused. In this case, a higher-
priority request arriving during the slack time can be serviced
immediately.

• The pre-seek slack time can be used to perform useful data
prefetching for the current IO request beyond the necessary
data transfer. We refer to it asfree prefetching. Chunking is
used for the prefetched data, to reduce the waiting time of a
higher-priority request. Free prefetching thus employed can
increase the disk throughput considerably. We must point
out, however, that free prefetching is useful only for sequen-
tial data streams where the prefetched data will be consumed
within a short time.

• The slack can also be used to mask the overhead incurred in
performingseek-splitting, which we shall discuss next.

3.3 Seek Splitting: PreemptingTseek

The seek delay (Tseek) becomes the dominant component when
theTtransfer andTrot components are reduced drastically. A full-
stroke of the disk arm may require as much as20 ms in current day
disk drives. It may then be necessary to reduce theTseek compo-
nent to further reduce the waiting time.
Definition 3.3: Seek-splittingbreaks a long, non-preemptible seek
of the disk arm into multiple smaller sub-seeks.
Benefits: Theseek-splittingmethod reduces theTseek component
of the waiting time. A long non-preemptible seek can be trans-
formed into multiple shorter sub-seeks. A higher-priority request
can now be serviced at the end of a sub-seek, instead of waiting for
the entire seek operation to finish. For example, suppose an IO re-
quest involves a seek of20, 000 cylinders, requiring aTseek of 14
ms. Using seek-splitting this seek operation can be divided into two
sub-seeks, each of10, 000 cylinders, requiring9 ms each. Then the
expected waiting time for a higher-priority request is reduced from
7 ms to4.5 ms.
Overhead: There is a downside to using the seek-splitting method.
Due to the mechanics of the disk arm, the total time required to
perform multiple sub-seeks is greater than that for a single seek of
given seek distance. Thus, the seek-splitting method can degrade
disk throughput. We discuss this issue further later in this section.

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

M
B

/s
)

Chunk size (kB)

(a) SCSI ST318437LW

5

10

15

20

25

30

35

0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

M
B

/s
)

Chunk size (kB)

(b) IDE WD400BB

Figure 5: Sequential read throughput vs. chunk size.

3.3.1 The Method
To split seek operations, virtual IO uses a tunable parameter, the

maximum sub-seek distance. Themaximum sub-seek distancede-
cides whether to split a seek operation. For seek distances smaller
than the maximum sub-seek distance, seek-splitting is not employed.
A smaller value for the maximum sub-seek distance provides higher
responsiveness at the cost of possible throughput degradation.

Unlike the previous two methods, seek-splitting may degrade
disk performance. However, we note that the overhead due to seek-
splitting can, in some cases, be masked. If the pre-seek slack ob-
tained due to JIT-seek is greater than the seek overhead, then the
slack can be used to mask this overhead. A specific example of
this phenomenon was presented in Section 1. If the slack is insuf-
ficient to mask the overhead, seek-splitting can be aborted to avoid
throughput degradation. Such a tradeoff, of course, depends on the
requirements of the application.

3.4 Disk Profiling
As mentioned in the beginning of this section, Virtual IO greatly

relies on disk profiling to obtain accurate disk parameters. The
disk profiler runs once before Virtual IO is used for the first time to
obtain the following required disk parameters:

• Disk block mappings. Virtual IO uses disk mappings for
both logical-to-physical and physical-to-logical disk block
address transformation.

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

M
B

/s
)

Chunk size (kB)

(a) SCSI ST318437LW

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

M
B

/s
)

Chunk Size (kB)

(b) IDE WD400BB

Figure 6: Sequential write throughput vs. chunk size.

• The optimal chunk size. In order to efficiently perform
chunking, Virtual IO uses the optimal range for chunk sizes.

• Disk rotational factors. In order to perform JIT-seek, Vir-
tual IO requires accurate rotational delay prediction, which
requires disk rotation period and rotational skew factors for
disk tracks [5].

• Seek curve.JIT-seek and seek-splitting methods rely on ac-
curate seek time prediction.

One of the main parameters which is essential to Virtual IO are
the disk block mappings (logical-to-physical and vice-versa). These
block mappings aid in predicting disk behavior accurately in vari-
ous scenarios. The extraction of these disk mappings is described
in [5]. We now discuss the parameters specific to each of the three
methods described earlier in this section.

As regards chunking, the disk profiler provides virtual IO the op-
timal range for the chunk size. Figure 5 depicts the effect of chunk
size on the read throughput performance for one SCSI and one IDE
disk drive. Figure 6 shows the same for the write case. Clearly,
the optimal range for the chunk size can be automatically extracted
from these figures. The disk profiler implementation was success-
ful in extracting the optimal chunk size for several SCSI and IDE
disk drives with which we experimented. One might also be inter-
ested in the CPU overhead for performing chunking. We present
the CPU utilization to transfer a large data segment from the disk,

0

0.05

0.1

0.15

0.2

0.25

50 100 150 200 250

C
P

U
 U

til
iz

at
io

n

Chunk Size (kB)

system time
user+system time

Figure 7: CPU utilization vs. chunk size for IDE WD400BB.

using different chunk sizes in Figure 7 for an IDE disk. We note
that the CPU utilization decreases rapidly with an increase in the
chunk size. Beyond a chunk size of50 KB, the CPU utilization re-
mains relatively constant. Then, the overhead for small chunk sizes
can be estimated using this constant value which depicts the CPU
utilization for large IO requests. This figure shows that chunking
using even small chunk size (50 KB) is feasible for IDE disk with-
out incurring any significant CPU overhead. For SCSI disks, the
CPU overhead of chunking is even less than that for IDE disks,
since the bulk of the processing is done by the SCSI controller.

0

5

10

15

20

0 5000 10000 15000 20000 25000 30000

S
ee

k
tim

e
(m

s)

Seek distance (cylinders)

Rotational period
Seek curve for ST318437LW

Figure 8: Sample seek curve.

To perform JIT-seek, Virtual IO needs an accurate estimate of
the seek delay between two disk blocks. The disk profiler provides
the seek curve as well as the variations in seek time. The seek time
curve (and variations in seek time) for a SCSI disk obtained by the
disk profiler is presented in Figure 8. The disk profiler also obtains
the required parameters for rotational delay prediction between ac-
cessing two disk blocks in succession with near-microsecond level
precision [5]. However, the variations in seek time can be of the
order of one millisecond, which restricts the possible accuracy of
prediction. Finally, to perform JIT-seek, Virtual IO combines seek
time and rotational delay prediction to predictTrot. We have con-
ducted more detailed study onTrot prediction in [5].

To perform seek-splitting, the disk profiler extracts the seek time
curve for the disk. The seek time curve and variations in seek
time for a SCSI disk obtained by the disk profiler is presented in
Figure 8. Apart from the seek curve, seek-splitting also uses the
disk block mappings provided by the profiler to calculate the seek

6

distance in cylinders between two IO requests. Based on the disk
block mappings, intermediate physical block destinations for sub-
seeks are obtained for a given seek operation.

4. EXPERIMENTAL RESULTS
In this section, we present the performance results for Virtual IO.

Our experiments aimed to answer the following questions:
1. What is the level ofpreemptibilityof Virtual IO and how does
it influence the disk throughput?

2. What are theindividual contributionsof the three components
of Virtual IO?

3. What is the effect of IOpreemptionon the average response
time for higher-priority requests and the disk throughput?
In order to answer these questions, we have implemented a pro-

totype system which can service IO requests using either the tra-
ditional non-preemptible method (non-preemptible IO) or Virtual
IO. Our prototype runs as a user-level process in Linux and talks
directly to a SCSI disk using the Linux SCSI-generic interface.
The prototype uses the logical-to-physical block mapping of the
disk, the seek curves, and the rotational skew times, all of which
are automatically generated by the Diskbench [5]. All experiments
were performed on a Pentium III800 MHz machine with a Seagate
ST318437LW SCSI disk. This SCSI disk has two tracks per cylin-
der, with437 to 750 blocks per track depending on the disk zone.
The rotational speed of the disk is7200 RPM. The maximum se-
quential disk throughput is between24.3 and41.7 MBps.

For performance benchmarking, we use equal-sized IO requests
within each experiment. The low-priority IO requests are for data
located at random positions on the disk. No scheduling algorithm
is employed for the purposes of generality. The Virtual IO proto-
type services a non-preemptible IO request using a single disk com-
mand. Based on the disk profiling, our prototype uses the following
parameters for Virtual IO. Chunking divides the data transfer into
chunks of50 disk blocks each, except for the last chunk, which can
be smaller. JIT-seek uses an offset of1.5 ms to reduce the proba-
bility of prediction misses. Seeks for more than half of a disk size
in cylinders are split into two equal-sized, smaller seeks.

4.1 Preemptibility of Virtual IO
In this section, we aim to answer our first question: What is the

level of preemptibility of Virtual IO and how does it influence the
disk throughput? The experiments for preemptibility of disk access
measure the duration of (non-preemptible) disk commands in both
non-preemptible IO and Virtual IO in the absence of higher-priority
IO requests. The results include both detailed distribution of disk
commands durations (and hence maximum possible waiting time)
and the expected waiting time calculated using Equation 1 and 2,
as explained in Section 3.

Figure 9 depicts the difference in the expected waiting time be-
tween non-preemptible IO and Virtual IO. We can see that the ex-
pected waiting time in non-preemptible IO depends linearly on the
size of IO requests. This is to be expected, since the time needed
to complete one IO request increases due to the larger data transfer
time for a larger IO requests. However, the expected waiting time
in Virtual IO does not depend on the IO size. The expected wait-
ing time actually decreases for large IOs, since a disk spends more
time in data transfer, which has a higher preemptibility than the
seek component. We note that Virtual IO can reduce the expected
waiting time by more than an order of magnitude, especially in sys-
tems with large IO requests.

Figure 10 shows disk throughput results in our experiments for
non-preemptible and Virtual IO. Virtual IO provides IO preemptibil-

50 100 250 500 1000 2000
0

10

20

30

40

50

E
xp

ec
te

d
w

ai
tin

g
tim

e
(m

s)

IO size (kB)

Non-preemptible IO
Virtual IO

Figure 9: Improvements in the expected waiting time.

ity with little or no loss in disk throughput. Furthermore, the disk
throughput for large IOs in Virtual IO is better than in non-preemptible
IO. This seemingly unexpected result occurs because Virtual IO
uses optimal chunk size to transfer data (see Sections 3.1 and 3.4
for details). For the individual contributions of each of the three
components of Virtual IO, please refer to Section 4.2.

50 100 250 500 1000 2000
0

5

10

15

20

25

30

D
is

k
th

ro
ug

hp
ut

 (
M

B
/s

)

IO size (kB)

Non-preemptible IO
Virtual IO

Figure 10: Effects on the achieved disk throughput.

Since disk commands are non-preemptible (even in Virtual IO),
we use the duration of disk commands to measure the preemptibil-
ity of the disk access, a smaller value implying a more preemptible
system. Figure 11 shows the distribution of the durations of disk
commands for both non-preemptible IO and Virtual IO (for exactly
the same sequence of IO requests). In the case of non-preemptible
IO (Figure 11 (a)), one IO request is serviced using a single disk
command. Hence, the disk access can be preempted only when the
current IO request is completed. The distribution is dense near the
sum of the average seek time, rotational delay, and transfer time
required to service an entire IO request. We note that the distribu-
tion is wider when the IO requests are larger, because the duration
of data transfer depends not only on the size of the IO request, but
also on the throughput of the disk zone where the data resides [10,
5].

In the case of Virtual IO, the distribution of the durations of disk
commands does not depend on the IO request size, but on individ-
ual disk commands used to perform an IO request. (Please note
that we plot the distribution for the Virtual IO case in logarithmic
scale, so that the probability density of longer disk commands can

7

be better comprehended.) In Figure 11 (b), we see that for Virtual
IO, the largest probability density is around the time required to
transfer a single chunk of data. If the chunk includes the track or
cylinder skew, the duration of the command will be slightly longer.
(The two peaks immediately to the right of the highest peak, at ap-
proximately2 ms have the same probability because the disk used
in our experiments has two tracks per cylinder.) The second part
of the distribution (between approximately3 ms and16 ms) is due
to the combined effect of JIT-seek and seek-splitting on the seek
and rotational delays. However, the probability for this range is
small, approximately0.168, 0.056, and0.017 for 50 kB, 500 kB,
and2, 000 kB equal-sized IO requests in our experiments.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 20 40 60 80 100 120

P
ro

ba
bi

lit
y

de
ns

ity
 (1

/m
s)

Waiting time (ms)

IO size = 50kB
IO size = 500kB

IO size = 2000kB

(a) Non-preemptible IO (linear scale)

0.01

0.1

1

10

0 5 10 15 20

P
ro

ba
bi

lit
y

de
ns

ity
 (1

/m
s)

Waiting time (ms)

IO size = 50kB
IO size = 500kB

IO size = 2000kB

(b) Virtual IO (logaritmic scale)

Figure 11: Distribution of the disk command duration. Smaller
values imply a higher preemptibility of disk access.

The results of our experiments show that Virtual IO indeed suc-
ceeds in providing a high-level of preemptibility of disk access
without significant degradation in disk throughput.

4.2 Individual Contributions within Virtual IO
In this section, we aim to answer our second question: What

are theindividual contributionsof the three components of Virtual
IO? Figure 12 shows the individual contributions of the three Vir-
tual IO components with respect to expected waiting time. In Sec-
tion 4.1, we showed that the expected waiting time can be signif-
icantly smaller in Virtual IO than in non-preemptible IO. Here we
compare only contributions within Virtual IO to show the impor-
tance of each component. Since the time to transfer a single chunk
of data is small compared to the seek time (typically less than1
ms for a chunk transfer and10 ms for a seek), the expected wait-
ing time decreases as the data transfer time becomes more dom-

50 100 250 500 1000 2000
0

1

2

3

4

5

6

7

8

Ex
pe

ct
ed

 w
ai

tin
g

tim
e

(m
s)

IO size (kB)

Chunking
Chunking + JIT-seek
Chunking + JIT-seek + seek-splitting

Figure 12: Individual contributions of Virtual IO components
on the expected waiting time.

inant. When the data transfer time dominates the seek and rota-
tional delays, chunking is the most important method for reducing
the expected waiting time. When the seek and rotational delays are
dominant, JIT-seek and seek-splitting become more important for
reducing the expected waiting time. Virtual IO provides more than
an order of magnitude reduction in waiting time when IO requests
are large, which is often the case in multimedia systems.

50 100 250 500 1000 2000
0

5

10

15

20

25

30

D
is

k
th

ro
ug

hp
ut

 (M
B

/s
)

IO size (kB)

Chunking
Chunking + JIT-seek
Free prefetching
Chunking + JIT-seek + seek-splitting

Figure 13: Individual effects of Virtual IO components on disk
throughput.

Figure 13 summarizes the individual contributions of the Virtual
IO components with respect to the achieved disk throughput. Seek-
splitting can degrade disk throughput, since whenever a long seek
is split, the disk requires more time to perform multiple sub-seeks.
JIT-seek requires accurate prediction of the seek time and rotational
delay. Our prototype implementation of JIT-seek may introduce
overhead when it makes an incorrect prediction. However, when
the data transfer is dominant, benefits of chunking can mask both
seek-splitting and JIT-seek overheads. JIT-seek aids the through-
put of Virtual IO with free prefetching. The free disk throughput
acquired using free prefetching depends on the rate of JIT-seeks,
which decreases with an increase in IO size. We believe that the
free prefetching can be useful for multimedia systems that often
access data sequentially.

4.3 Effect of Preemption in Virtual IO
In this section, we aim to answer our third question: What is the

8

effect of IO preemptionon the average response time for higher-
priority requests and the disk throughput? To estimate the response
time for higher-priority IO requests, we conducted experiments wherein
higher-priority requests were inserted into the IO queue at a con-
stant rate (ν). While the constant arrival rate may seem unrealistic,
the main purpose of this set of experiments is only to “estimate”
the benefits and overheads associated with preempting an ongoing
Virtual IO request to service a higher-priority IO request.

Figure 14 presents the response time for a higher-priority re-
quest when using Virtual IO in two possible scenarios: (1) when
the higher-priority request is serviced after the ongoing IO is com-
pleted, and (2) when the ongoing IO is preempted to service the
higher-priority IO request. If the ongoing Virtual IO request is not
preempted, then all higher-priority requests that arrive while it is
being serviced, must wait until the ongoing IO is completed. The
results presented in Figure 14 are for2, 000 kB IO requests in or-
der to emphasize the benefits of IO preemption for systems that
require high disk throughput. By preempting the ongoing Virtual
IO, the response time for a high priority request reduces by a factor
of 4. The maximum response times (not shown) for Virtual IO with
and without preemption were measured as34.6 ms and150.1 ms
respectively. More extensive experimental results are presented in
Tables 1 and 3.

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18 20

A
vg

. r
es

po
ns

e
tim

e
(m

s)

Arrival rate for high-priority requests (Hz)

Virtual IO without preemption
Virtual IO

Figure 14: The average response time for higher-priority re-
quests depending on their arrival rate (ν). Ongoing IO requests
are 2, 000 kB each.

Preemption of IO requests does not come without costs. Each
time a higher-priority request preempts a low-priority Virtual IO re-
quest for disk access, an extra seek is required to continue servicing
the preempted request after the high-priority request is completed.
Figure 15 presents disk throughput in the presence of higher-priority
requests with different arrival rates. For applications that require
high responsiveness, the performance penalty of IO preemption
seems acceptable, since the response time can be substantially re-
duced.

Table 1 presents the average response time and the disk through-
put for different arrival rates of higher-priority requests. For the
same size of low-priority IO requests, the average response time
does not increase significantly with the increase in the arrival rate
of higher-priority requests. However, the disk throughput does
decrease with an increase in the arrival rate of higher-priority re-
quests. As explained earlier, this is expected since the overhead of
IO preemption is an extra seek operation per preemption. Depend-
ing on the application, preemption may or may not be desirable.

0

5

10

15

20

25

30

0 5 10 15 20

D
is

k
th

ro
ug

hp
ut

 (
M

B
/s

)

Arrival rate for high-priority requests (Hz)

Virtual IO without preemption
Virtual IO

Figure 15: Disk throughput for 2, 000 kB IOs depending on the
arrival rate of higher-priority requests (ν).

IO ν Avg. Resp.[ms] Throughput[MB/s]
[kB] [Hz] npIO vIO npIO vIO vIO+FP

50 0.5 19.2 19.4 3.386 2.833 6.535
50 1 21.8 16.0 3.359 2.887 6.671
50 2 20.8 17.6 3.319 2.824 6.540
50 5 21.0 18.2 3.178 2.623 6.068
50 10 21.2 18.3 2.949 2.301 5.375
50 20 21.1 18.4 2.488 1.676 3.838

500 0.5 29.2 15.7 16.250 16.400 18.481
500 1 28.1 15.5 16.145 16.202 18.245
500 2 28.2 16.7 15.943 15.774 17.755
500 5 28.6 16.0 15.279 14.575 16.420
500 10 28.9 16.3 14.239 12.483 14.064
500 20 29.4 16.8 11.963 8.566 9.650

2, 000 0.5 54.4 14.0 24.025 26.700 27.526
2, 000 1 58.3 14.7 23.867 26.319 27.144
2, 000 2 55.8 14.3 23.524 25.603 26.411
2, 000 5 55.2 14.7 22.581 23.620 24.363
2, 000 10 56.9 14.4 20.982 20.289 20.916
2, 000 20 55.8 14.7 17.858 13.212 13.626

Table 1: The average response time and disk throughput for
non-preemptible IO (npIO) and Virtual IO with free prefetch-
ing (vIO and vIO + FP).

External Waiting Time
In Section 3.1, we introduced the notion of external waiting time
to explain the difference in the preemptibility of read and write IO
requests. Table 2 summarizes the results of our experiments aimed
to find out the effect of external waiting time on the preemption
of write IO requests. The arrival rate of higher-priority requests is
set toν = 1 Hz. As shown in Table 2, the average response time
for higher-priority requests for write experiments is several times
longer than in read experiments. Since the higher-priority requests
have the same arrival pattern in both experiments, the average seek
time and rotational delay are the same for both read and write ex-
periments. The large and often unpredictable external waiting time
in the write case then explains these seemingly unexpected results.

Table 3 presents the results of our experiments aimed to find out
the effect of write IO preemption on the average response time for
higher-priority requests and disk write throughput. For example,
in the case of50 kB write IO requests the disk can buffer multiple
requests, and the write-back operation can include multiple seek
operations. Virtual IO succeeds in reducing external waiting time
and provides substantial improvement in the response time. How-
ever, since the disk is able to efficiently reorder the buffered write

9

Exp. Waiting[ms] Avg. Response[ms]
IO npIO vIO npIO vIO
[kB] RD WR RD WR RD WR RD WR

50 8.2 11.4 3.9 9.5 21.8 105.8 16.0 24.6
250 11.8 12.9 3.1 5.6 25.5 27.2 16.1 21.2
500 16.4 18.7 2.5 4.7 28.1 36.0 15.5 20.3

1, 000 25.9 33.3 1.9 3.7 36.8 45.7 14.4 19.5
2, 000 45.4 60.9 1.4 2.9 58.3 70.0 14.7 18.3

Table 2: The expected waiting time and average response time
for non-preemptible and Virtual IO (ν = 1 Hz).

requests in the case of non-preemptible IO, it achieves better disk
throughput. For large IO requests, Virtual IO also achieves better
write throughput than that of non-preemptible IO because it uses
optimal chunk size for data transfer. The effects of the external
waiting time is not the focus of this paper, but will be the subject of
our future work.

IO ν Avg. Response[ms] Throughput[MB/s]
[kB] [Hz] npIO vIO npIO vIO

50 0.5 93.1 26.9 4.849 1.980
50 1 105.8 24.6 4.746 1.964
50 2 91.1 22.7 4.683 1.935
50 5 102.2 24.4 4.397 1.843
50 10 87.5 23.7 3.947 1.698
50 20 81.3 23.3 3.088 1.420

500 0.5 32.4 20.3 13.708 11.406
500 1 36.0 20.3 13.643 11.237
500 2 35.0 20.8 13.450 11.016
500 5 34.9 20.5 12.824 10.357
500 10 36.6 20.3 11.672 9.132
500 20 34.6 20.7 9.643 6.915

2, 000 0.5 79.3 18.2 17.568 19.952
2, 000 1 70.0 18.3 17.681 19.742
2, 000 2 77.2 19.1 17.489 19.319
2, 000 5 73.6 18.9 16.603 17.828
2, 000 10 70.7 19.2 15.364 15.245
2, 000 20 72.5 19.0 12.961 10.165

Table 3: The average response time and disk write throughput
for non-preemptible and Virtual IO.

5. CONCLUSION AND FUTURE WORK
In this paper, we have presented the design and implementation

of Virtual IO, and proposed three techniques— data transfer chunk-
ing, just-in-time seek, and seek-splitting. These techniques enable
the preemption of a disk IO request, and thus drastically reduce the
waiting time for a higher-priority IO request. More significantly,
we have shown that an efficient implementation of Virtual IO can
achieve this objective with little or no loss in disk throughput. In or-
der to efficiently implement Virtual IO, disk parameters such as op-
timal chunk size, seek time, and rotational delay must be obtained
accurately. We have explained how our disk profiler extracts these
parameters, effectively assisting our implementation of Virtual IO.
Empirical study conducted on our Virtual IO prototype showed that
the expected waiting time of higher-priority IO requests can be re-
duced by an order of magnitude (from more than tens, or even hun-
dreds, of milliseconds to less than a couple of milliseconds). We
believe that delay-sensitive multimedia applications such as virtual
reality and interactive games can take advantage of Virtual IO to
improve the quality of service significantly.

We plan to further our research in three directions. First, we plan
to investigate how preemptible Virtual IO can be used to improve
disk scheduling algorithms for multimedia applications. Second,

believing that Virtual IO can benefit from a more detailed profil-
ing of the disk write buffer, we will continue to improve the pre-
emptibility of write disk access. Additionally, we plan to investi-
gate the benefits of free prefetching for different classes of multi-
media applications.

6. REFERENCES
[1] R. T. Azuma. Tracking requirements for augmented reality.

Communications of the ACM, 36(7):50–51, July 1993.
[2] E. Chang and H. Garcia-Molina. Bubbleup - Low latency fast-scan

for media servers.Proceedings of the 5th ACM Multimedia
Conference, pages 87–98, November 1997.

[3] A. Daigle and J. K. Strosnider. Disk scheduling for multimedia data
streams.Proceedings of the IS&T/SPIE, February 1994.

[4] Z. Dimitrijevic, R. Rangaswami, and E. Chang. Virtual IO:
Preemptible disk access.
http://www.cs.ucsb.edu/∼zoran/papers/vio02x.pdf, April 2002.

[5] Z. Dimitrijevic, R. Rangaswami, E. Chang, D. Watson, and
A. Acharya. Diskbench.
http://www.cs.ucsb.edu/∼zoran/papers/db01.pdf, November 2001.

[6] S. Ghandeharizadeh, A. Dashti, and C. Shahabi. A pipelining
mechanism to minimize the latency time in hierarchical multimedia
storage managers.Computer Communication, 18(3):170–184,
March 1995.

[7] L. Huang and T. cker Chiueh. Implementation of a
rotation-latency-sensitive disk scheduler.SUNY at Stony Brook
Technical Report, May 2000.

[8] C. R. Lumb, J. Schindler, and G. R. Ganger. Freeblock scheduling
outside of disk firmware.Usenix Conference on File and Storage
Technologies, January 2002.

[9] A. Molano, K. Juvva, and R. Rajkumar. Guaranteeing timing
constraints for disk accesses in rt-mach.Real Time Systems
Symposium, 1997.

[10] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling.
Computer, 2:17–28, 1994.

[11] J. Schindler and G. R. Ganger. Automated disk drive
characterization.CMU Technical Report CMU-CS-00-176,
December 1999.

[12] C. Shahabi, S. Ghandeharizadeh, and S. Chaudhuri. On scheduling
atomic and composite multimedia objects.IEEE Transactions on
Knowledge and Data Engineering, 14(2):447–455, 2002.

[13] P. J. Shenoy and H. M. Vin. Cello: A disk scheduling framework for
next generation operating systems.ACM Sigmetrics, June 1998.

[14] P. J. Shenoy and H. M. Vin. Efficient support for interactive
operations in multi-resolution video servers.ACM Multimedia
Systems, 7(3), May 1999.

[15] N. Talagala, R. H. Arpaci-Dusseau, and D. Patterson.
Microbenchmark-based extraction of local and global disk
characteristics.UC Berkeley Technical Report, 1999.

[16] W. Tavanapong, K. Hua, and J. Wang. A framework for supporting
previewing and vcr operations in a low bandwidth environment.
Proceedings of the 5th ACM Multimedia Conference, November
1997.

[17] B. Worthington, G. Ganger, Y. Patt, and J. Wilkes. Online extraction
of scsi disk drive parameters.Proceedings of ACM Sigmetrics
Conference, pages 146–156, 1995.

[18] B. L. Worthington, G. R. Ganger, and Y. N. Patt. Scheduling
algorithms for modern disk drives.Proceedings of the ACM
Sigmetrics, pages 241–251, May 1994.

[19] X. Yu, B. Gum, Y. Chen, R. Y. Wang, K. Li, A. Krishnamurthy, and
T. E. Anderson. Trading capacity for performance in a disk array.
Proceedings of Operating Systems Design and Implementation,
October 2000.

10

