CS 245: Database System Principles

Notes 02: Hardware

Steven Whang

- Hardware: Disks
- Access Times
- Example - Megatron 747
- Optimizations
- Other Topics:
- Storage costs
- Using secondary storage
- Disk failures

Processor

Fast, slow, reduced instruction set, with cache, pipelined...
Speed: $100 \rightarrow 500 \rightarrow 1000$ MIPS
Memory
Fast, slow, non-volatile, read-only,... Access time: $10^{-6} \rightarrow 10^{-9} \mathrm{sec}$.
$1 \mu \mathrm{~s} \rightarrow 1 \mathrm{~ns}$

Secondary storage

Many flavors:

- Disk: Floppy (hard, soft)

Removable Packs
Winchester
Ram disks
Optical, CD-ROM...
Arrays

- Tape Reel, cartridge Robots

Hardware

4

Focus on: "Typical Disk"

Terms: Platter, Head, Actuator Cylinder, Track Sector (physical), Block (logical), Gap
CS 245
Notes 2
"Typical" Numbers
Diameter: 1 inch $\rightarrow 15$ inches
Cylinders: $100 \rightarrow 2000$
Surfaces: 1 (CDs) \rightarrow
(Tracks/cyl) 2 (floppies) $\rightarrow 30$
Sector Size: 512B \rightarrow 50K
Capacity: $\quad 360 \mathrm{~KB}$ (old floppy)

$$
\rightarrow 2 \text { TB }
$$

Time $=$ Seek Time + Rotational Delay + Transfer Time + Other

Seek Time

Average Random Seek Time

$$
S=\frac{\sum_{i=1}^{N} \sum_{\substack{j=1 \\ j=i}}^{N} \operatorname{SEEKTIME}(i \rightarrow j)}{N(N-1)}
$$

"Typical" S: $10 \mathrm{~ms} \rightarrow 40 \mathrm{~ms}$

Rotational Delay

Transfer Rate: t

- "typical" t: $1 \rightarrow 3$ MB/second
- transfer time: block size
t
- So far: Random Block Access
- What about: Reading "Next" block?

Rule of Random I/O: Expensive
 Thumb Sequential I/O: Much less

- Ex: 1 KB Block
» Random I/O: ~ 20 ms .
» Sequential I/O: ~ 1 ms.

Cost for Writing similar to Reading
.... unless we want to verify!
need to add (full) rotation + Block size

Block Address:

- Physical Device
- Cylinder \#
- Surface \#
- Sector
- To Modify a Block?

To Modify Block:
(a) Read Block
(b) Modify in Memory
(c) Write Block
[(d) Verify?]

Complication: Bad Blocks

- Messy to handle
- May map via software to integer sequence
1
2
$\left.\begin{array}{l}. \\ m\end{array}\right\} \rightarrow$ Map Actual Block Addresses

An Example Megatron 747 Disk (old)

- 3.5 in diameter
- 3600 RPM
- 1 surface
- 16 MB usable capacity (16×2^{20})
- 128 cylinders
- seek time: average $=25 \mathrm{~ms}$. adjacent cyl $=5 \mathrm{~ms}$.
- 1 KB blocks = sectors
- 10\% overhead between blocks
- capacity $=16 \mathrm{MB}=\left(2^{20}\right) 16=2^{24}$
- $\#$ cylinders $=128=2^{7}$
- bytes/cyl $=2^{24} / 2^{7}=2^{17}=128 \mathrm{~KB}$
- blocks/cyl = $128 \mathrm{~KB} / 1 \mathrm{~KB}=128$

Burst Bandwith

1 KB in 0.117 ms.
$B B=1 / 0.117=8.54 \mathrm{~KB} / \mathrm{ms}$.
or
$B B=8.54 K B / \mathrm{ms} \times 1000 \mathrm{~ms} / 1 \mathrm{sec} \times 1 \mathrm{MB} / 1024 \mathrm{~KB}$

$$
=8540 / 1024=8.33 \mathrm{MB} / \mathrm{sec}
$$

$\mathrm{T}_{1}=$ Time to read one random block

$$
\begin{aligned}
\mathrm{T}_{1} & =\text { seek }+ \text { rotational delay }+\mathrm{T} \\
& =25+(16.66 / 2)+.117=33.45 \mathrm{~ms}
\end{aligned}
$$

Suppose OS deals with 4 KB blocks

$\mathrm{T}_{4}=25+(16.66 / 2)+(.117) \times 1$

$$
+(.130) \times 3=33.83 \mathrm{~ms}
$$

[Compare to $\mathrm{T}_{1}=33.45 \mathrm{~ms}$]

- 128 GB Disk

- If all tracks have 128 sectors
- Outermost density: 420,000 bits/inch
- Inner density: 1000,000 bits/inch - outer 1 inch used
- $2^{14}=16,384$ Tracks/surface
- 128 Sectors/track
- $2^{12}=4096$ Bytes/sector
- Outer third of tracks: 160 sectors
- Middle third of tracks: 128
- Inner third of tracks: 96
- Density: 530,000 \rightarrow 742,000 bits/inch
- Time to read 16,384-byte block:
- MIN: 0.253 ms
- MAX: 25.96 ms
- AVE: 10.88 ms

Outline

- Hardware: Disks
- Access Times
- Example: Megatron 747
- Optimizations

- Other Topics
- Storage Costs
- Using Secondary Storage
- Disk Failures

Double Buffering

Problem: Have a File
» Sequence of Blocks B1, B2
Have a Program
» Process B1
» Process B2
» Process B3
:

Say $\mathrm{P}=$ time to process/block
$R=$ time to read in 1 block
$\mathrm{n}=$ \# blocks

Single buffer time $=n(P+R)$

Say $P \geq R$

$$
\begin{aligned}
& P=\text { Processing time/block } \\
& R=I O \text { time/block } \\
& n=\# \text { blocks } \\
& \hline
\end{aligned}
$$

What is processing time?

- Double buffering time $=\mathrm{R}+\mathrm{nP}$
- Single buffering time $=n(R+P)$

On Disk Cache

Storage Cost

Five Minute Rule

- THE 5 MINUTE RULE FOR TRADING MEMORY FOR DISC ACCESSES
Jim Gray \& Franco Putzolu
May 1985
- The Five Minute Rule, Ten Years Later Goetz Graefe \& Jim Gray December 1997

Five Minute Rule

- Say a page is accessed every X seconds
- CM = cost if we keep that page on RAM
- \$M = cost of 1 MB of RAM
- $\mathrm{P}=$ numbers of pages in 1 MB RAM
- So $C M=\$ M / P$

Using secondary storage effectively

(Sec. 11.4)

- Example: Sorting data on disk
- Conclusion:
- I/O costs dominate
- Design algorithms to reduce I/O
- Also: How big should blocks be?

Five Minute Rule

- Say a page is accessed every X seconds
- CD = cost if we keep that page on disk
$-\$ \mathrm{D}=$ cost of disk unit
- I = numbers IOs that unit can perform
- In X seconds, unit can do XI IOs
- So $C D=\$ D / X I$

Five Minute Rule

- Say a page is accessed every X seconds
- If CD is smaller than CM,
- keep page on disk
- else keep in memory
- Break even point when $\mathrm{CD}=\mathrm{CM}$, or
$X=\frac{\$ D P}{I \$ M}$

Using ' 97 Numbers

- $\mathrm{P}=128$ pages/MB (8KB pages)
- I = 64 accesses/sec/disk
- $\$ \mathrm{D}=2000$ dollars/disk (9GB + controller)
- $\$ \mathrm{M}=15$ dollars/MB of DRAM
- $X=266$ seconds (about 5 minutes)
(did not change much from 85 to 97)

Coping with Disk Failures

- Detection
- e.g. Checksum
- Correction
\Rightarrow Redundancy
\rightarrow Operating System
e.g., Stable Storage

\rightarrow Database System
- e.g.,

Current DB

CS 245

Last week's DB
 60

Summary

- Secondary storage, mainly disks
- I/O times
- I/Os should be avoided, especially random ones.....

Outline

- Hardware: Disks
- Access Times
- Example: Megatron 747
- Optimizations
- Other Topics
- Storage Costs
- Using Secondary Storage
- Disk Failures

