
CS 245 Notes 5 1

CS 245: Database System
Principles

Steven Whang

Notes 5: Hashing and More

CS 245 Notes 5 2

key → h(key)

Hashing

<key>

...

Buckets
(typically 1
disk block)

CS 245 Notes 5 3

.

..

Two alternatives

records

.

..

(1) key → h(key)

CS 245 Notes 5 4

(2) key → h(key)

Index

record
key 1

Two alternatives

• Alt (2) for “secondary” search key

CS 245 Notes 5 5

Example hash function

• Key = ‘x1 x2 … xn’ n byte character string
• Have b buckets
• h: add x1 + x2 + ….. xn

– compute sum modulo b

CS 245 Notes 5 6

➽ This may not be best function …
➽ Read Knuth Vol. 3 if you really

need to select a good function.

Good hash  Expected number of
 function: keys/bucket is the

same for all buckets

CS 245 Notes 5 7

Within a bucket:

• Do we keep keys sorted?

• Yes, if CPU time critical
 & Inserts/Deletes not too frequent

CS 245 Notes 5 8

Next: example to illustrate
inserts, overflows, deletes

h(K)

CS 245 Notes 5 9

EXAMPLE 2 records/bucket

INSERT:
h(a) = 1
h(b) = 2
h(c) = 1
h(d) = 0

0

1

2

3

d

a
c
b

h(e) = 1

e

CS 245 Notes 5 10

0

1

2

3

a

b
c
e

d

EXAMPLE: deletion

Delete:
e
f

f
g

maybe move
“g” up

c
d

CS 245 Notes 5 11

Rule of thumb:
• Try to keep space utilization

between 50% and 80%
 Utilization = # keys used

 total # keys that fit

• If < 50%, wasting space
• If > 80%, overflows significant

depends on how good hash
function is & on # keys/bucket

CS 245 Notes 5 12

How do we cope with growth?

• Overflows and reorganizations
• Dynamic hashing

• Extensible
• Linear

CS 245 Notes 5 13

Extensible hashing: two ideas

(a) Use i of b bits output by hash function
 b

 h(K) →

 use i → grows over time….

00110101

CS 245 Notes 5 14

(b) Use directory

h(K)[i] to bucket
...

.

..

CS 245 Notes 5 15

Example: h(k) is 4 bits; 2 keys/bucket

i = 1
1

1

0001

1001
1100

Insert 1010
1
1100

1010

New directory

2
00

01

10

11

i =

2

2

CS 245 Notes 5 16

1
0001

2
1001
1010

2
1100

Insert:

0111

0000

00

01

10

11

2i =

Example continued

0111

0000

0111

0001

2

2

CS 245 Notes 5 17

00

01

10

11

2i =

21001

1010

21100

20111

20000
0001

Insert:

1001

Example continued

1001

1001

1010

000

001

010

011

100

101

110

111

3i =

3

3

CS 245 Notes 5 18

Extensible hashing: deletion

• No merging of blocks
• Merge blocks

 and cut directory if possible
(Reverse insert procedure)

CS 245 Notes 5 19

Deletion example:

• Run thru insert example in reverse!

CS 245 Notes 5 20

Note: Still need overflow chains

• Example: many records with duplicate keys

1
1100
1100

2

2
1100

insert 1100

1100

if we split:

CS 245 Notes 5 21

Solution: overflow chains

1
1100

1100

1
1100

insert 1100 add overflow block:

1100

1100

CS 245 Notes 5 22

Extensible hashing

Can handle growing files
- with less wasted space
- with no full reorganizations

Summary

+

Indirection
(Not bad if directory in memory)

Directory doubles in size
(Now it fits, now it does not)

-

-

CS 245 Notes 5 23

Linear hashing

• Another dynamic hashing scheme

Two ideas:
(a) Use i low order bits of hash

01110101
grows

b

i

(b) File grows linearly

CS 245 Notes 5 24

Example b=4 bits, i =2, 2 keys/bucket

00 01 10 11

0101

1111

0000

1010

m = 01 (max used block)

Future
growth
buckets

If h(k)[i] ≤ m, then

 look at bucket h(k)[i]
 else, look at bucket h(k)[i] - 2i -1

Rule

0101
• can have overflow chains!

• insert 0101

CS 245 Notes 5 25

Note
• In textbook, n is used instead of m
• n=m+1

00 01 10 11

0101

1111

0000

1010

m = 01 (max used block)

Future
growth
buckets

n=10

CS 245 Notes 5 26

Example b=4 bits, i =2, 2 keys/bucket

00 01 10 11

0101

1111

0000

1010

m = 01 (max used block)

Future
growth
buckets

10

1010

0101 • insert 0101

11

1111
0101

CS 245 Notes 5 27

Example Continued: How to grow beyond this?

00 01 10 11

111110100101

0101

0000

m = 11 (max used block)

i = 2

0 0 0 0
100 101 110 111

3

. . .

100

100

101

101

0101
0101

CS 245 Notes 5 28

• If U > threshold then increase m
(and maybe i)

☛ When do we expand file?

• Keep track of: # used slots
 total # of slots

= U

CS 245 Notes 5 29

Linear Hashing

 Can handle growing files
- with less wasted space
- with no full reorganizations

 No indirection like extensible hashing

Summary

+

+

Can still have overflow chains-

CS 245 Notes 5 30

Example: BAD CASE

Very full

Very empty Need to move
m here…
Would waste
space...

CS 245 Notes 5 31

Hashing
- How it works
- Dynamic hashing

- Extensible
- Linear

Summary

CS 245 Notes 5 32

Next:

• Indexing vs Hashing
• Index definition in SQL
• Multiple key access

CS 245 Notes 5 33

• Hashing good for probes given key
e.g., SELECT …

 FROM R
WHERE R.A = 5

Indexing vs Hashing

CS 245 Notes 5 34

• INDEXING (Including B Trees) good for
Range Searches:
e.g., SELECT

FROM R
WHERE R.A > 5

Indexing vs Hashing

CS 245 Notes 5 35

Index definition in SQL

• Create index name on rel (attr)
• Create unique index name on rel (attr)

defines candidate key

• Drop INDEX name

CS 245 Notes 5 36

 CANNOT SPECIFY TYPE OF INDEX
(e.g. B-tree, Hashing, …)

 OR PARAMETERS
(e.g. Load Factor, Size of Hash,...)

 ... at least in SQL...

Note

CS 245 Notes 5 37

 ATTRIBUTE LIST ⇒ MULTIKEY INDEX
(next)

 e.g., CREATE INDEX foo ON R(A,B,C)

Note

CS 245 Notes 5 38

Motivation: Find records where
 DEPT = “Toy” AND SAL > 50k

Multi-key Index

CS 245 Notes 5 39

Strategy I:

• Use one index, say Dept.
• Get all Dept = “Toy” records

 and check their salary

I1

CS 245 Notes 5 40

• Use 2 Indexes; Manipulate Pointers

Toy Sal
> 50k

Strategy II:

CS 245 Notes 5 41

• Multiple Key Index

One idea:

Strategy III:

I1

I2

I3

CS 245 Notes 5 42

Example

Example
Record

Dept
Index

Salary
Index

Name=Joe
DEPT=Sales
SAL=15k

Art
Sales
Toy

10k
15k
17k
21k

12k
15k
15k
19k

CS 245 Notes 5 43

For which queries is this index good?

Find RECs Dept = “Sales” SAL=20k
Find RECs Dept = “Sales” SAL > 20k
Find RECs Dept = “Sales”
Find RECs SAL = 20k

CS 245 Notes 5 44

Interesting application:

• Geographic Data

DATA:

 <X1,Y1, Attributes>
 <X2,Y2, Attributes>x

y

.
.

.
CS 245 Notes 5 45

Queries:

• What city is at <Xi,Yi>?
• What is within 5 miles from <Xi,Yi>?
• Which is closest point to <Xi,Yi>?

CS 245 Notes 5 46

h

n
b

i
a

co

d

10 20

10 20

Example
e

g

f

m

l

k
j25 15 35 20

40

30

20

10

h i a bcd efg

n omlj k

• Search points near f
• Search points near b

5

15 15

CS 245 Notes 5 47

Queries

• Find points with Yi > 20
• Find points with Xi < 5
• Find points “close” to i = <12,38>
• Find points “close” to b = <7,24>

CS 245 Notes 5 48

• Many types of geographic index
structures have been suggested
• kd-Trees (very similar to what we described here)
• Quad Trees
• R Trees
• ...

CS 245 Notes 5 49

Two more types of multi key indexes

• Grid
• Partitioned hash

CS 245 Notes 5 50

Grid Index
 Key 2

X1 X2 …… Xn
 V1
 V2

Key 1

 Vn

To records with key1=V3, key2=X2

CS 245 Notes 5 51

CLAIM

• Can quickly find records with
– key 1 = Vi ∧ Key 2 = Xj

– key 1 = Vi

– key 2 = Xj

• And also ranges….
– E.g., key 1 ≥ Vi ∧ key 2 < Xj

CS 245 Notes 5 52

☛ But there is a catch with Grid Indexes!

• How is Grid Index stored on disk?

Like
Array... X1 X2 X3 X4 X1 X2 X3 X4 X1 X2 X3 X4

V1 V2 V3

Problem:
• Need regularity so we can compute

position of <Vi,Xj> entry

CS 245 Notes 5 53

Solution: Use Indirection

Buckets
V1

V2

V3 *Grid only
V4 contains

pointers to
buckets

Buckets

--

X1 X2 X3

CS 245 Notes 5 54

With indirection:

• Grid can be regular without wasting space
• We do have price of indirection

CS 245 Notes 5 55

Can also index grid on value ranges

Salary Grid

Linear Scale

1 2 3

Toy Sales Personnel

0-20K 1
20K-50K 2

50K- 38

CS 245 Notes 5 56

Grid files

Good for multiple-key search
Space, management overhead
 (nothing is free)

Need partitioning ranges that evenly
split keys

+

-

-

CS 245 Notes 5 57

Idea:

Key1 Key2

Partitioned hash function

h1 h2

010110 1110010

CS 245 Notes 5 58

h1(toy) =0 000
h1(sales) =1 001
h1(art) =1 010

. 011

.
h2(10k) =01 100
h2(20k) =11 101
h2(30k) =01 110
h2(40k) =00 111

.

.

<Fred,toy,10k>,<Joe,sales,10k>
<Sally,art,30k>

EX:

Insert

<Joe><Sally>

<Fred>

CS 245 Notes 5 59

h1(toy) =0 000
h1(sales) =1 001
h1(art) =1 010

. 011

.
h2(10k) =01 100
h2(20k) =11 101
h2(30k) =01 110
h2(40k) =00 111

.

.
• Find Emp. with Dept. = Sales ∧ Sal=40k

<Fred>
<Joe><Jan>

<Mary>

<Sally>

<Tom><Bill>
<Andy>

CS 245 Notes 5 60

h1(toy) =0 000
h1(sales) =1 001
h1(art) =1 010

. 011

.
h2(10k) =01 100
h2(20k) =11 101
h2(30k) =01 110
h2(40k) =00 111

.

.
• Find Emp. with Sal=30k

<Fred>
<Joe><Jan>

<Mary>

<Sally>

<Tom><Bill>
<Andy>

look here

CS 245 Notes 5 61

h1(toy) =0 000
h1(sales) =1 001
h1(art) =1 010

. 011

.
h2(10k) =01 100
h2(20k) =11 101
h2(30k) =01 110
h2(40k) =00 111

.

.
• Find Emp. with Dept. = Sales

<Fred>
<Joe><Jan>

<Mary>

<Sally>

<Tom><Bill>
<Andy>

look here

CS 245 Notes 5 62

Post hashing discussion:
- Indexing vs. Hashing
- SQL Index Definition
- Multiple Key Access

- Multi Key Index
Variations: Grid, Geo Data

- Partitioned Hash

Summary

CS 245 Notes 5 63

Reading Chapter 5

• Skim the following sections:
– Sections 14.3.6, 14.3.7, 14.3.8

[Second Ed: 14.6.6, 14.6.7, 14.6.8]
– Sections 14.4.2, 14.4.3, 14.4.4

[Second Ed: 14.7.2, 14.7.3, 14.7.4]

• Read the rest

CS 245 Notes 5 64

The BIG picture….

• Chapters 2 & 3: Storage, records, blocks...
• Chapter 4 & 5: Access Mechanisms

- Indexes
- B trees
- Hashing
- Multi key

• Chapter 6 & 7: Query Processing NEXT

