

CS 245 Notes 08 1

CS 245: Database System
Principles

Notes 08: Failure Recovery

Steven Whang

CS 245 Notes 08 2

PART II

• Crash recovery (1 lectures) Ch.17[17]
• Concurrency control (2 lectures) Ch.18[18]
• Transaction processing (1 lect) Ch.19[19]
• Information integration (1 lect) Ch.20[21,22]
• Entity resolution (1 lect)

CS 245 Notes 08 3

Integrity or correctness of data

• Would like data to be “accurate” or
“correct” at all times

 EMP Name

White
Green
Gray

Age

52
3421

1

CS 245 Notes 08 4

Integrity or consistency constraints

• Predicates data must satisfy
• Examples:

- x is key of relation R
- x → y holds in R

- Domain(x) = {Red, Blue, Green}
− α is valid index for attribute x of R

- no employee should make more than
twice the average salary

CS 245 Notes 08 5

Definition:

• Consistent state: satisfies all constraints
• Consistent DB: DB in consistent state

CS 245 Notes 08 6

Constraints (as we use here) may
not capture “full correctness”

Example 1 Transaction constraints
• When salary is updated,

new salary > old salary
• When account record is deleted,

balance = 0

CS 245 Notes 08 7

Note: could be “emulated” by simple
constraints, e.g.,

account Acct # …. balance deleted?

CS 245 Notes 08 8

Example 2 Database should reflect
real world

DB
Reality

Constraints (as we use here) may
not capture “full correctness”

CS 245 Notes 08 9

in any case, continue with constraints...

Observation: DB cannot be consistent
always!

Example: a1 + a2 +…. an = TOT (constraint)
Deposit $100 in a2: a2 ← a2 + 100

TOT ← TOT + 100

CS 245 Notes 08 10

 a2

 TOT

..
50

..
1000

..
150

..
1000

..
150

..
1100

Example: a1 + a2 +…. an = TOT (constraint)
Deposit $100 in a2: a2 ← a2 + 100

TOT ← TOT + 100

CS 245 Notes 08 11

Transaction: collection of actions
that preserve consistency

Consistent DB Consistent DB’T

CS 245 Notes 08 12

Big assumption:

If T starts with consistent state +
 T executes in isolation

⇒ T leaves consistent state

CS 245 Notes 08 13

Correctness (informally)

• If we stop running transactions,
DB left consistent

• Each transaction sees a consistent DB

CS 245 Notes 08 14

How can constraints be violated?

• Transaction bug
• DBMS bug
• Hardware failure

e.g., disk crash alters balance of account

• Data sharing
e.g.: T1: give 10% raise to programmers

T2: change programmers ⇒ systems analysts

CS 245 Notes 08 15

How can we prevent/fix violations?

• Chapter 17[17]: due to failures only
• Chapter 18[18]: due to data sharing only
• Chapter 19[19]: due to failures and sharing

CS 245 Notes 08 16

Will not consider:

• How to write correct transactions
• How to write correct DBMS
• Constraint checking & repair

That is, solutions studied here do not need
to know constraints

CS 245 Notes 08 17

Chapter 17[17]: Recovery

• First order of business:
Failure Model

CS 245 Notes 08 18

Events Desired
 Undesired Expected

 Unexpected

CS 245 Notes 08 19

Our failure model

 processor

memory disk

CPU

M D

CS 245 Notes 08 20

Desired events: see product manuals….

Undesired expected events:
System crash

- memory lost
- cpu halts, resets

Undesired Unexpected: Everything else!

that’s it!!

CS 245 Notes 08 21

Examples:
• Disk data is lost
• Memory lost without CPU halt
• CPU implodes wiping out universe….

Undesired Unexpected: Everything else!

CS 245 Notes 08 22

Is this model reasonable?

Approach: Add low level checks +
 redundancy to increase
 probability model holds

E.g., Replicate disk storage (stable store)
 Memory parity
 CPU checks

CS 245 Notes 08 23

Second order of business:

Storage hierarchy

Memory Disk

x x

CS 245 Notes 08 24

Operations:

• Input (x): block containing x → memory
• Output (x): block containing x → disk

• Read (x,t): do input(x) if necessary
 t ← value of x in block

• Write (x,t): do input(x) if necessary
 value of x in block ← t

CS 245 Notes 08 25

Key problem Unfinished transaction

Example Constraint: A=B
 T1: A ← A × 2
 B ← B × 2

CS 245 Notes 08 26

T1: Read (A,t); t ← t×2
Write (A,t);
Read (B,t); t ← t×2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

16
16

16

failure!

CS 245 Notes 08 27

• Need atomicity: execute all actions of
 a transaction or none

at all

CS 245 Notes 08 28

One solution: undo logging (immediate
modification)

due to: Hansel and Gretel, 782 AD

• Improved in 784 AD to durable
 undo logging

CS 245 Notes 08 29

T1: Read (A,t); t ← t×2 A=B
Write (A,t);
Read (B,t); t ← t×2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

 Undo logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

<T1, commit>
16 <T1, B, 8>
16

CS 245 Notes 08 30

One “complication”

• Log is first written in memory
• Not written to disk on every action

memory

DB

Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8

16
BAD STATE

1

CS 245 Notes 08 31

One “complication”

• Log is first written in memory
• Not written to disk on every action

memory

DB

 Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>
<T1, commit>

A: 8
B: 8

16
BAD STATE

2

<T1, B, 8>
<T1, commit>

..
.

CS 245 Notes 08 32

Undo logging rules

(1) For every action generate undo log
record (containing old value)

(2) Before x is modified on disk, log
records pertaining to x must be
on disk (write ahead logging: WAL)

(3) Before commit is flushed to log, all
writes of transaction must be
reflected on disk

CS 245 Notes 08 33

Recovery rules: Undo logging

• For every Ti with <Ti, start> in log:
- If <Ti,commit> or <Ti,abort>

 in log, do nothing
- Else For all <Ti, X, v> in log:

write (X, v)
output (X)

 Write <Ti, abort> to log

➽IS THIS CORRECT??
CS 245 Notes 08 34

Recovery rules: Undo logging

(1) Let S = set of transactions with
<Ti, start> in log, but no
<Ti, commit> (or <Ti, abort>) record in log

(2) For each <Ti, X, v> in log,

 in reverse order (latest → earliest) do:

- if Ti ∈ S then - write (X, v)

 - output (X)

(3) For each Ti ∈ S do

- write <Ti, abort> to log

CS 245 Notes 08 35

Question

• Can writes of <Ti, abort> records
be done in any order (in Step 3)?
– Example: T1 and T2 both write A
– T1 executed before T2
– T1 and T2 both rolled-back
– <T1, abort> written but NOT <T2, abort>

T1 write A T2 write A
time/log

CS 245 Notes 08 36

What if failure during recovery?
No problem! ✏ Undo idempotent

CS 245 Notes 08 37

To discuss:

• Redo logging
• Undo/redo logging, why both?
• Real world actions
• Checkpoints
• Media failures

CS 245 Notes 08 38

Redo logging (deferred modification)

T1: Read(A,t); t t×2; write (A,t);
 Read(B,t); t t×2; write (B,t);

Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB

 LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>
<T1, end>

output
16
16

CS 245 Notes 08 39

Redo logging rules
(1) For every action, generate redo log

record (containing new value)
(2) Before X is modified on disk (DB),

all log records for transaction that
modified X (including commit) must

 be on disk
(3) Flush log at commit
(4) Write END record after DB updates

flushed to disk
CS 245 Notes 08 40

• For every Ti with <Ti, commit> in log:
– For all <Ti, X, v> in log:

Write(X, v)
Output(X)

Recovery rules: Redo logging

➽IS THIS CORRECT??

CS 245 Notes 08 41

(1) Let S = set of transactions with
<Ti, commit> (and no <Ti, end>) in log

(2) For each <Ti, X, v> in log, in forward
 order (earliest → latest) do:

- if Ti ∈ S then Write(X, v)

 Output(X)
(3) For each Ti ∈ S, write <Ti, end>

Recovery rules: Redo logging

CS 245 Notes 08 42

Combining <Ti, end> Records

• Want to delay DB flushes for hot objects

Say X is branch balance:
T1: ... update X...
T2: ... update X...
T3: ... update X...
T4: ... update X...

Actions:
write X
output X
write X
output X
write X
output X
write X
output X

combined <end> (checkpoint)

CS 245 Notes 08 43

Solution: Checkpoint

Periodically:
(1) Do not accept new transactions
(2) Wait until all transactions finish
(3) Flush all log records to disk (log)
(4) Flush all buffers to disk (DB) (do not discard buffers)

(5) Write “checkpoint” record on disk (log)
(6) Resume transaction processing

• no <ti, end> actions>
•simple checkpoint

CS 245 Notes 08 44

Example: what to do at recovery?

Redo log (disk):

<
T1

,A
,1

6>

<
T1

,c
om

m
it>

C
he

ck
po

in
t

<
T2

,B
,1

7>

<
T2

,c
om

m
it>

<
T3

,C
,2

1>

Crash
...

CS 245 Notes 08 45

Key drawbacks:

• Undo logging: cannot bring backup DB
copies up to date

• Redo logging: need to keep all modified
blocks in memory
until commit

CS 245 Notes 08 46

Solution: undo/redo logging!

Update ⇒ <Ti, Xid, New X val, Old X val>

page X

CS 245 Notes 08 47

Rules

• Page X can be flushed before or
after Ti commit

• Log record flushed before
corresponding updated page (WAL)

• Flush at commit (log only)

CS 245 Notes 08 48

Example: Undo/Redo logging
 what to do at recovery?

log (disk):

<
ch

ec
kp

oi
nt

>

<
T1

,
A,

 9
,1

0>

<
T1

,
B,

 1
9,

20
>

<
T1

,
co

m
m

it>

<
T2

,
C
,
29

,3
0>

<
T2

,
D

,
39

,4
0>

Crash
...

CS 245 Notes 08 49

Non-quiesce checkpoint

L
O
G

 for
 undo dirty buffer

pool pages
flushed

Start-ckpt
active TR:
Ti,T2,...

end
ckpt

.........

..
.

CS 245 Notes 08 50

Examples what to do at recovery time?

 no T1 commit

L
O
G

T1,-
a ... Ckpt

T1
... Ckpt

end ... T1-
b...

➽ Undo T1 (undo a,b)

CS 245 Notes 08 51

Example

L
O
G

... T1

a T1

b T1

c ... T1

cmt ...ckpt-
end

ckpt-s
T1

➽ Redo T1: (redo b,c)

CS 245 Notes 08 52

Recover From Valid Checkpoint:

... ckpt
start T1

b T1

c ...ckpt-
start

ckpt
end

L
O
G

start
of latest
valid
checkpoint

CS 245 Notes 08 53

Recovery process:

• Backwards pass (end of log ➜ latest valid checkpoint start)

– construct set S of committed transactions
– undo actions of transactions not in S

• Undo pending transactions
– follow undo chains for transactions in

 (checkpoint active list) - S

• Forward pass (latest checkpoint start ➜ end of log)

– redo actions of S transactions

backward pass

forward pass
start

check-
point

CS 245 Notes 08 54

Real world actions

E.g., dispense cash at ATM
Ti = a1 a2 …... aj …... an

$

CS 245 Notes 08 55

Solution

(1) execute real-world actions after commit
(2) try to make idempotent

CS 245 Notes 08 56

 ATM
Give$$
(amt, Tid, time)

$

give(amt)

lastTid:
time:

CS 245 Notes 08 57

Media failure (loss of non-volatile
storage)

A: 16

Solution: Make copies of data!

CS 245 Notes 08 58

Example 1 Triple modular redundancy

• Keep 3 copies on separate disks
• Output(X) --> three outputs
• Input(X) --> three inputs + vote

X1 X2 X3

CS 245 Notes 08 59

Example #2 Redundant writes,
 Single reads

• Keep N copies on separate disks
• Output(X) --> N outputs
• Input(X) --> Input one copy

- if ok, done
- else try another one

➳ Assumes bad data can be detected

CS 245 Notes 08 60

Example #3: DB Dump + Log

backup
database

active
database

log

• If active database is lost,
– restore active database from backup
– bring up-to-date using redo entries in log

CS 245 Notes 08 61

When can log be discarded?

check-
point

db
dump

last
needed
undo

not needed for
media recovery

not needed for undo
after system failure

not needed for
redo after system failure

log

time

CS 245 Notes 08 62

Summary

• Consistency of data
• One source of problems: failures

- Logging
- Redundancy

• Another source of problems:
 Data Sharing..... next

