CS 245: Database System
Principles

Notes 08: Failure Recovery

Steven Whang

CS 245 Notes 08

PART II

Crash recovery (1 lectures) Ch.17[17]
Concurrency control (2 lectures) Ch.18[18]
Transaction processing (1 lect) Ch.19[19]

Information integration (1 lect)
Entity resolution (1 lect)

Ch.20[21,22]

CS 245 Notes 08 2

Integrity or correctness of data

* Would like data to be “accurate” or
“correct” at all times

EMP | Name |Age

White | 52
Green (3421
Gray 1

CS 245 Notes 08 3

Integrity or consistency constraints

* Predicates data must satisfy
e Examples:
- X is key of relation R
-Xx — y holds in R
- Domain(x) = {Red, Blue, Green}
- ais valid index for attribute x of R

- no employee should make more than
twice the average salary

CS 245 Notes 08 4

Definition:

e Consistent state: satisfies all constraints
¢ Consistent DB: DB in consistent state

CS 245 Notes 08 5

Constraints (as we use here) may
not capture “full correctness”

Example 1 Transaction constraints
* When salary is updated,
new salary > old salary
* When account record is deleted,
balance = 0

CS 245 Notes 08 6

Note: could be “emulated” by simple
constraints, e.g.,

account ‘Acct#‘ ‘balance‘deleted?‘

CS 245 Notes 08 7

Constraints (as we use here) may
not capture “full correctness”

Example 2 Database should reflect
real world

Cjat=S

CS 245 Notes 08 8

="in any case, continue with constraints...

Observation: DB cannot be consistent
always!

Example: a1 + a2z +.... an = TOT (constraint)
Deposit $100 in az:{ a2 < a:+ 100
TOT < TOT + 100

CS 245 Notes 08 9

Example: a1 + a2z +.... an = TOT (constraint)
Deposit $100in@z2: a2 < a2+ 100
TOT < TOT + 100

az 50 150 150

TOT | 1000 1000 1100

CS 245 Notes 08 10

Transaction: collection of actions
that preserve consistency

Consistent DB T

CS 245 Notes 08 1

Big assumption:

If T starts with consistent state +
T executes in isolation
= T leaves consistent state

CS 245 Notes 08 12

How can constraints be violated?

Correctness (informally)

¢ Transaction bug
* DBMS bug
¢ Hardware failure

« If we stop running transactions,
DB left consistent

¢ Each transaction sees a consistent DB i
e.g., disk crash alters balance of account

¢ Data sharing

e.g.: T1: give 10% raise to programmers
T2: change programmers => systems analysts

CS 245 Notes 08 13 CS 245 Notes 08 14
. Will not consider:
How can we prevent/fix violations?

e How to write correct transactions
e How to write correct DBMS
¢ Constraint checking & repair

e Chapter 17[17]: due to failures only
e Chapter 18[18]: due to data sharing only
e Chapter 19[19]: due to failures and sharing

That is, solutions studied here do not need
to know constraints

CS 245 Notes 08 15 CS 245

Notes 08 16

Chapter 17[17]: Recovery

Events — Desired

™~ Cod
* First order of business: Undesired Expected
Failure Model Unexpected

CS 245 Notes 08 17 CS 245

Notes 08 18

Our failure model
< processor

memory - > @ """ disk

CS 245 Notes 08 19

Desired events: see product manuals....

Undesired expected events:
System crash
- memory lost
- cpu halts, resets

that’s it!!

Undesired Unexpected: Everything else!

CS 245 Notes 08 20

Undesired Unexpected: Everything else!

Examples:

» Disk data is lost

e Memory lost without CPU halt

¢ CPU implodes wiping out universe....

CS 245 Notes 08 21

Is this model reasonable?

Approach: Add low level checks +
redundancy to increase

probability model holds
E.g.,| Replicate disk storage (stable store)
Memory parity
CPU checks

CS 245 Notes 08 22

Second order of business:

Storage hierarchy

5
Memory Disk

CS 245 Notes 08 23

Operations:

e Input (x): block containing x — memory
¢ QOutput (x): block containing x — disk

e Read (x,t): do input(x) if necessary
t < value of x in block

o Write (x,t): do input(x) if necessary
value of x in block < t

CS 245 Notes 08 24

.) T1: Read (At); t< tx2
Key problem Unfinished transaction Write ((A,t));
Read (B,t); t < tx2
Example Constraint: A=B erite (B,';C‘)}
. - utput (A), _
T A Ax2 Output (B); failure!
B < Bx2
A8 16
B:.8" 16
memory

One solution: undo logging (immediate

» Need atomicity: execute all actions of modification)
a transaction or none
at all

due to: Hansel and Gretel, 782 AD

e Improved in 784 AD to durable
undo logging

CS 245 Notes 08 27 CS 245 Notes 08 28

Undo logging (immediate modification) L.
One “complication”

T1: Read (At); t < tx2 A=B
Write (A,t); e Log is first written in memory
Read (B,t); t <« tx2 Not written to disk on every action

Write (B,t);
Output (A);
Output (B);

— 5
A:8 16 A:816
B:8" 16 B:816

memory disk

CS 245 Notes 08 29 CS 245 Notes 08 30

A:B16 B:8 | DB BAD STATE
<T1, start> B:8'16 #1
<T1, A, 8> Log: Log

<T1,start>
<Ti, A, 8>
<Ti, B, 8>

One “complication”

e Log is first written in memory
* Not written to disk on every action

memory
AZ16 DB BAD STATE
B 216

Log:
<T1,start>
<Ti, A, 8>
<Ti, B, 8>
<T1, commit>

CS 245 Notes 08 31

Undo logging rules

(1) For every action generate undo log
record (containing old value)

(2) Before x is modified on disk, log
records pertaining to x must be
on disk (write ahead logging: WAL)

(3) Before commit is flushed to log, all
writes of transaction must be

reflected on disk

CS 245 Notes 08 32

Recovery rules:

Undo logging

e For every Ti with <Ti, start> in log:
- If <Ti,commit> or <Ti,abort>
in log, do nothing
- Else | For all <Ti, X, v> in log:
{write X v)
output (X))
Write <Ti, abort> to log

»]S THIS CORRECT??

CS 245 Notes 08 33

Recovery rules:

Undo logging
(1) Let S = set of transactions with
<Ti, start> in log, but no

<Ti, commit> (or <Ti, abort>) record in log
(2) For each <Ti, X, v> in log,

in reverse order (latest — earliest) do:
-if Ti€ S then | - write (X, v)
{ - output (X)
(3) Foreach Ti € S do
- write <Ti, abort> to log

CS 245 Notes 08 34

Question

e Can writes of <Ti, abort> records
be done in any order (in Step 3)?
— Example: T1 and T2 both write A
—T1 executed before T2
—T1 and T2 both rolled-back
— <T1, abort> written but NOT <T2, abort>

—
T1 write A T2 write A time/log

CS 245 Notes 08 35

What if failure during recovery?
No problem! = Undo idempotent

CS 245 Notes 08 36

To discuss:

* Redo logging

¢ Undo/redo logging, why both?
» Real world actions

¢ Checkpoints

¢ Media failures

CS 245 Notes 08 37

Redo logging (deferred modification)

T1: Read(At); t- tx2; write (At);
Read(B,t); t« tx2; write (B,t);
Output(A); Output(B)

Redo logging rules

(1) For every action, generate redo log
record (containing new value)

(2) Before X is modified on disk (DB),
all log records for transaction that
modified X (including commit) must
be on disk

(3) Flush log at commit

(4) Write END record after DB updates
flushed to disk

CS 245 Notes 08 39

ot <T1, start>
output < T <T1, A, 16>
A:816 T~ |A1816 <T1, B, 16>
B: 8716 B: 816 <T1, commit>
memory DB <T1, end>
LOG
CS 245 Notes 08 38
Recovery rules: Redo logging

e For every Ti with <Ti, commit> in log:
- For all <Ti, X, v> in log:
Write(X, v)
Output(X)

»]S THIS CORRECT??

CS 245 Notes 08 40

Recovery rules: Redo logging

(1) Let S = set of transactions with
<Ti, commit> (and no <Ti, end>) in log

(2) For each <Ti, X, v> in log, in forward
order (earliest — latest) do:
- if Ti € S then| Write(X, v)
Output(X)
(3) For each Ti € S, write <Ti, end>

CS 245 Notes 08 41

Combining <Ti, end> Records

e Want to delay DB flushes for hot objects

Actions:
! write X

Say X is branch balance: | —
T1: ... update X... /write X

T2: ..update X... —

T3: ... update X... —L w; Erittﬁetxt
T4: ... update X... ;
T write X

output X
combined <end> (checkpoint)

CS 245 Notes 08 42

Solution: Checkpoint

e no <ti, end> actions>
esimple checkpoint

Periodically:
(1) Do not accept new transactions

(2) Wait until all transactions finish

(3) Flush all log records to disk (log)

(4) Flush all buffers to disk (DB) o not disers bufters
(5) Write “checkpoint” record on disk (log)
(6) Resume transaction processing

CS 245 Notes 08 43

Example: what to do at recovery?

Redo log (disk):

Crash

<T1,A,16>
<T1,commit>
Checkpoint
<T2,B,17>
<T2,commit>
<T3,C,21>

CS 245 Notes 08 44

Key drawbacks:

¢ Undo logging: cannot bring backup DB
copies up to date

e Redo logging: need to keep all modified
blocks in memory
until commit

CS 245 Notes 08 45

Solution: undo/redo logging!

Update = <Ti, Xid, New X val, Old X val>
page X

CS 245 Notes 08 46

Rules

¢ Page X can be flushed before or
after Ti commit

¢ Log record flushed before
corresponding updated page (WAL)
¢ Flush at commit (log only)

CS 245 Notes 08 47

Example: Undo/Redo logging
what to do at recovery?

log (disk):

Crash

<checkpoint>
<T1, A, 9,10>
<T1, B, 19,20>
<T1, commit>
<T2, C, 29,30>
T2, D, 39,40>

CS 245 Notes 08 48

Non-quiesce checkpoint

L

Start-ckpt

O active TR: el?d
G TiT2,... Ckpt

* ¥

for
undo dirty buffer
pool pages

flushed

CS 245 Notes 08 49

Examples what to do at recovery time?

no T1 commit

L

0 T1,- Ckpt Ckpt T1-
" a] T1 | " |lend| " | b

G N

» Undo T1 (undo a,b)

CS 245 Notes 08 50

Example

L
(0] Ti| |ckpts| |Ti| ckpt{ |[T1 T1
G |la| [Tt b lend[" | c | lemt

» Redo T1: (redo b,c)

CS 245 Notes 08 51

Recover From Valid Checkpoint:

ckpt ckpt T1 ckpt- T1
stat | "] end || b | |start!” | ¢ |

T

start

of latest
valid
checkpoint

Oaor

CS 245 Notes 08 52

Recovery process:

e Backwards Pass (end of log = latest valid checkpoint start)
— construct set S of committed transactions
— undo actions of transactions not in S
¢ Undo pending transactions
— follow undo chains for transactions in
(checkpoint active list) - S
e Forward Pass (latest checkpoint start = end of log)
- redo actions of S transactions

backward pass
start

heck] forward pass
point

CS 245 Notes 08 53

Real world actions

E.g., dispense cash at ATM

Ti=ataz...... Qjrnens an
$
CS 245 Notes 08 54

Solution

(1) execute real-world actions after commit
(2) try to make idempotent

CS 245 Notes 08 55

ATM

lee$$)) lastTid:
(amt, Tid, time) time:

| give(amt)

5

CS 245 Notes 08 56

Media failure (loss of non-volatile
storage)

Solution: Make copies of data!l

CS 245 Notes 08 57

Example 1 Triple modular redundancy

¢ Keep 3 copies on separate disks
¢ Output(X) --> three outputs
¢ Input(X) --> three inputs + vote

oy —

CS 245 Notes 08 58

Example #2 Redundant writes,
Single reads

* Keep N copies on separate disks
e Output(X) --> N outputs
¢ Input(X) --> Input one copy

{ - if ok, done
- else try another one

»+ Assumes bad data can be detected

CS 245 Notes 08 59

Example #3: DB Dump + Log

- 5
T
database database
log

o If active database is lost,
— restore active database from backup
— bring up-to-date using redo entries in log

CS 245 Notes 08 60

When can log be discarded?

log

VAV
db fast check-
needed N
dump undo point
— .
not needed for time
media recovery
not needed for undo
after system failure
not needed for
redo after system failure
CS 245 Notes 08 61

Summary

¢ Consistency of data
¢ One source of problems: failures

- Logging
- Redundancy
¢ Another source of problems:
Data Sharing..... next

CS 245 Notes 08 62

