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CS 245: Database System
Principles

Notes 09: Concurrency Control

Steven Whang
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Chapter 18 [18] Concurrency Control

   T1 T2 … Tn

DB
(consistency
constraints)
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Example:

T1: Read(A) T2: Read(A)
A ← A+100 A ← A×2
Write(A) Write(A)
Read(B) Read(B)
B ← B+100 B ← B×2

Write(B) Write(B)
Constraint:  A=B
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Schedule A

T1 T2
Read(A); A ← A+100

Write(A);
Read(B); B ←  B+100;
Write(B);

Read(A);A ←  A×2;

Write(A);

    Read(B);B ←  B×2;

Write(B);

A B
25 25

125

125

250

250
250 250
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Schedule B

T1 T2

Read(A);A ←  A×2;

Write(A);

Read(B);B ←  B×2;

Write(B);
Read(A); A ← A+100

Write(A);
Read(B); B ←  B+100;

Write(B);

A B
25 25

50

50

150

150
150 150
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Schedule C

T1 T2
Read(A); A ← A+100

Write(A);

Read(A);A ←  A×2;

Write(A);
Read(B); B ←  B+100;

Write(B);

    Read(B);B ←  B×2;

Write(B);

A B
25 25

125

250

125

250
250 250
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Schedule D

T1 T2
Read(A); A ← A+100

Write(A);

Read(A);A ←  A×2;

Write(A);

    Read(B);B ←  B×2;

Write(B);
Read(B); B ←  B+100;

Write(B);

A B
25 25

125

250

50

150
250 150
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Schedule E

T1 T2’
Read(A); A ← A+100

Write(A);

Read(A);A ←  A×1;

Write(A);

    Read(B);B ←  B×1;

Write(B);
Read(B); B ←  B+100;

Write(B);

A B
25 25

125

125

25

125
125 125

Same as Schedule D
but with new T2’
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• Want schedules that are “good”,
regardless of
– initial state and
– transaction semantics

• Only look at order of read and writes

Example:
Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)
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Sc’=r1(A)w1(A) r1(B)w1(B)r2(A)w2(A)r2(B)w2(B)

     T1         T2

Example:
Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)
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However, for Sd:
Sd=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B)

• as a matter of fact,
       T2 must precede T1

        in any equivalent schedule,
        i.e.,  T2 → T1
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T1    T2 Sd cannot be rearranged
into a serial schedule

Sd is not “equivalent” to
any serial schedule

Sd is “bad”

•   T2 → T1

•   Also, T1 → T2
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Returning to Sc

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

 T1 → T2  T1 → T2

 no cycles ⇒ Sc is “equivalent” to a
serial schedule
(in this case T1,T2)
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Concepts

Transaction: sequence of ri(x), wi(x) actions
Conflicting actions: r1(A)    w2(A)    w1(A)

        w2(A)   r1(A)     w2(A)

Schedule: represents chronological order
in which actions are executed

Serial schedule: no interleaving of actions
  or transactions
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What about concurrent actions?

Ti issues System Input(X)    t ← x
read(x,t) issues completes

input(x)
time

T2 issues
write(B,S)

System
issues

input(B)

input(B)
completes

B ← S

System
issues

output(B)
output(B)
completes

CS 245 Notes 09 16

So net effect is either
•  S=…r1(x)…w2(b)…  or
•  S=…w2(B)…r1(x)…
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• Assume equivalent to either r1(A) w2(A)
or w2(A) r1(A)

• ⇒ low level synchronization mechanism

• Assumption called “atomic actions”

What about conflicting, concurrent actions
on same object?

start r1(A) end r1(A)

start w2(A)  end w2(A) time
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Definition

S1, S2 are conflict equivalent  schedules
if S1 can be transformed into S2 by a
series of swaps on non-conflicting
actions.
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Definition

A schedule is conflict serializable if it is
conflict equivalent to some serial
schedule.
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Nodes: transactions in S
Arcs:  Ti → Tj whenever

- pi(A), qj(A) are actions in S
- pi(A) <S  qj(A)
- at least one of pi, qj is a write

Precedence graph P(S)  (S is schedule)
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Exercise:

• What is P(S) for
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D)

• Is S serializable?
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Another Exercise:

• What is P(S) for
S = w1(A) r2(A)  r3(A) w4(A) ?
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Lemma

S1, S2 conflict equivalent ⇒ P(S1)=P(S2)

Proof:
Assume P(S1) ≠ P(S2)
⇒ ∃ Ti: Ti → Tj in S1 and not in S2

⇒ S1 = …pi(A)... qj(A)… pi, qj

  S2 = …qj(A)…pi(A)... conflict

⇒ S1, S2 not conflict equivalent
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Note: P(S1)=P(S2) ⇒ S1, S2 conflict equivalent

Counter example:

S1=w1(A) r2(A)     w2(B) r1(B)

S2=r2(A) w1(A)     r1(B) w2(B)
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Theorem

P(S1) acyclic ⇐⇒ S1 conflict serializable

(⇐) Assume S1 is conflict serializable
⇒ ∃ Ss: Ss, S1 conflict equivalent
⇒ P(Ss) = P(S1)
⇒ P(S1) acyclic since P(Ss) is acyclic
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(⇒) Assume P(S1) is acyclic
Transform S1 as follows:
(1) Take T1 to be transaction with no incident arcs
(2) Move all T1 actions to the front

S1 = …….  qj(A)…….p1(A)…..

(3) we now have S1 = < T1 actions ><... rest ...>
(4) repeat above steps to serialize rest!

T1

T2    T3

   T4

Theorem
P(S1) acyclic ⇐⇒ S1 conflict serializable
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How to enforce serializable schedules?

Option 1:  run system, recording P(S);
 at end of day, check for P(S)
 cycles and declare if execution
 was good
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Option 2:  prevent P(S) cycles from 
 occurring

T1  T2 ….. Tn

Scheduler

DB

How to enforce serializable schedules?

CS 245 Notes 09 29

A locking protocol

Two new actions:
lock (exclusive): li (A)

   unlock: ui (A)

scheduler

T1     T2

lock
table
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Rule #1:  Well-formed transactions

Ti:  … li(A) … pi(A) … ui(A) ...
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Rule #2    Legal scheduler

S = …….. li(A) ………... ui(A) ……...

 no lj(A)
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• What schedules are legal?
What transactions are well-formed?
S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)
r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

S2 = l1(A)r1(A)w1(B)u1(A)u1(B)
l2(B)r2(B)w2(B)l3(B)r3(B)u3(B)

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B)
l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

Exercise:
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• What schedules are legal?
What transactions are well-formed?
S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)
r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

S2 = l1(A)r1(A)w1(B)u1(A)u1(B)
l2(B)r2(B)w2(B)l3(B)r3(B)u3(B)

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B)
l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

Exercise:
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Schedule F

T1      T2
l1(A);Read(A)
A   A+100;Write(A);u1(A) 

l2(A);Read(A)
A   Ax2;Write(A);u2(A)
l2(B);Read(B)
B   Bx2;Write(B);u2(B)

l1(B);Read(B)
B   B+100;Write(B);u1(B)
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Schedule F

T1      T2        25   25
l1(A);Read(A)
A   A+100;Write(A);u1(A)       125

l2(A);Read(A)
A   Ax2;Write(A);u2(A)   250
l2(B);Read(B)
B   Bx2;Write(B);u2(B)    50

l1(B);Read(B)
B   B+100;Write(B);u1(B)   150

      250 150

A   B
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Rule #3  Two phase locking (2PL)
for transactions

Ti = ……. li(A) ………... ui(A) ……...

no unlocks   no locks
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# locks
held by
Ti

Time
       Growing  Shrinking
         Phase   Phase
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Schedule G

T1   T2
l1(A);Read(A)
A   A+100;Write(A)
l1(B); u1(A) 

  l2(A);Read(A)
  A   Ax2;Write(A);ll 22(B)(B)

delayed
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Schedule G

T1     T2
l1(A);Read(A)
A   A+100;Write(A)
l1(B); u1(A) 

    l2(A);Read(A)
    A   Ax2;Write(A);ll22(B)(B)

Read(B);B    B+100
Write(B); u1(B)

delayed
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Schedule G

T1     T2
l1(A);Read(A)
A   A+100;Write(A)
l1(B); u1(A) 

    l2(A);Read(A)
    A   Ax2;Write(A);ll22(B)(B)

Read(B);B    B+100
Write(B); u1(B)

        l2(B); u2(A);Read(B)
    B    Bx2;Write(B);u2(B);

delayed
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Schedule H    (T2 reversed)

T1 T2
l1(A); Read(A)  l2(B);Read(B)
A   A+100;Write(A)  B   Bx2;Write(B)
ll11(B)(B)  l l22(A)(A)

delayeddelayed
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• Assume deadlocked transactions are
rolled back
– They have no effect
– They do not appear in schedule

E.g., Schedule H =
This space intentionally

left blank!
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Next step:

Show that rules #1,2,3 ⇒ conflict-

   serializable
   schedules
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Conflict rules for  li(A), ui(A):

• li(A), lj(A) conflict
• li(A), uj(A) conflict

Note: no conflict < ui(A), uj(A)>, < li(A), rj(A)>,...
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Theorem  Rules #1,2,3  ⇒  conflict
     (2PL)     serializable

    schedule

To help in proof:
Definition    Shrink(Ti) = SH(Ti) =

first unlock action of Ti
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Lemma
Ti → Tj in S ⇒ SH(Ti) <S  SH(Tj)

Proof of lemma:
Ti → Tj means that

S = … pi(A) …  qj(A) …;    p,q conflict
By rules 1,2:

S = … pi(A) … ui(A) … lj(A) ... qj(A) …

By rule 3:    SH(Ti)          SH(Tj)

So,  SH(Ti) <S SH(Tj)
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Proof:
(1) Assume P(S) has cycle

T1 → T2 →…. Tn → T1

(2) By lemma: SH(T1) < SH(T2) < ... < SH(T1)

(3) Impossible, so P(S) acyclic
(4) ⇒ S is conflict serializable

Theorem  Rules #1,2,3  ⇒ conflict
     (2PL)      serializable

     schedule
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2PL subset of Serializable

2PL
Serializable
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S1: w1(x)  w3(x)  w2(y)  w1(y)

• S1 cannot be achieved via 2PL:
The lock by T1 for y must occur after w2(y),
so the unlock by T1 for x must occur after
this point (and before w1(x)). Thus, w3(x)
cannot occur under 2PL where shown in S1
because T1 holds the x lock at that point.

• However, S1 is serializable
(equivalent to T2, T1, T3).
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• Beyond this simple 2PL protocol, it is all
a matter of improving performance and
allowing more concurrency….
– Shared locks
– Multiple granularity
– Inserts, deletes and phantoms
– Other types of C.C. mechanisms
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Shared locks

So far:
S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

Do not conflict

Instead:
S=... ls1(A) r1(A) ls2(A) r2(A) …. us1(A) us2(A)
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Lock actions
l-ti(A): lock A in t mode (t is S or X)
u-ti(A): unlock t mode (t is S or X)

Shorthand:
ui(A): unlock whatever modes

Ti has locked A
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Rule #1    Well formed transactions

Ti =... l-S1(A) … r1(A) …  u1 (A) …
Ti =... l-X1(A) … w1(A) …  u1 (A) …
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• What about transactions that read and
write same object?

Option 1:  Request exclusive lock
Ti = ...l-X1(A) … r1(A) ... w1(A) ... u(A) …
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Option 2:  Upgrade
(E.g.,  need to read, but don’t know if will write…)

Ti=... l-S1(A) … r1(A) ... l-X1(A) …w1(A) ...u(A)…

Think of
- Get 2nd lock on A, or
- Drop S, get X lock

• What about transactions that read and
   write same object?
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Rule #2   Legal scheduler

S = ....l-Si(A) …  … ui(A) …

 no l-Xj(A)

S = ... l-Xi(A) …    … ui(A) …

  no l-Xj(A)
  no l-Sj(A)
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A way to summarize Rule #2

Compatibility matrix

Comp   S  X
S    true      false
X false      false
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Rule # 3     2PL transactions

No change except for upgrades:
(I)  If upgrade gets more locks

(e.g., S → {S, X})  then no change!
(II) If upgrade releases read (shared)

lock (e.g., S → X)
- can be allowed in growing phase
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Proof:  similar to X locks case

Detail:
l-ti(A), l-rj(A) do not conflict if comp(t,r)
l-ti(A), u-rj(A) do not conflict if comp(t,r)

Theorem  Rules 1,2,3 ⇒  Conf.serializable
for S/X locks           schedules
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Lock types beyond S/X

Examples:
(1) increment lock
(2) update lock
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Example (1): increment lock

• Atomic increment action: INi(A)
{Read(A); A ← A+k; Write(A)}

• INi(A), INj(A) do not conflict!
A=7

A=5 A=17
A=15

INi(A)
+2

INj(A)
+10

+10

INj(A)

+2

INi(A)
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Comp S X I
S
X
I
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Comp S X I
S T F F
X F F F
I F F T
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Update locks

A common deadlock problem with upgrades:
T1 T2
l-S1(A)

 l-S2(A)
l-Xl-X11(A)(A)

 l-X l-X22(A)(A)
      --- Deadlock ---
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Solution

If Ti wants to read A and knows it
may later want to write A, it requests
update lock (not shared)
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Comp S X U
S
X
U

             New request

Lock 
already
held in
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Comp S X U
S T F T
X F F F
U   TorF F F

        -> symmetric table?

             New request

Lock 
already
held in
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Note: object A may be locked in different
  modes at the same time...

S1=...l-S1(A)…l-S2(A)…l-U3(A)…  l-S4(A)…?
   l-U4(A)…?

• To grant a lock in mode t, mode t must
be compatible with all currently held
locks on object
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How does locking work in practice?

• Every system is different
(E.g., may not even provide
    CONFLICT-SERIALIZABLE schedules)

• But here is one (simplified) way ...
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(1) Don’t trust transactions to
request/release locks

(2) Hold all locks until transaction 
commits

#
locks

time

Sample Locking System:
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Ti
   Read(A),Write(B)

   l(A),Read(A),l(B),Write(B)…

   Read(A),Write(B)

Scheduler, part I

Scheduler, part II

DB

lock
table
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Lock table    Conceptually

A Λ

B
C

Λ

...

Lock info for B

Lock info for C

If null, object is unlocked

Ev
er

y 
po

ss
ib

le
 o

bj
ec

t
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But use hash table:

A

If object not found in hash table, it is
unlocked

Lock info for AA

...
...

H
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Lock info for A - example

         tran mode wait? Nxt T_link

Object:A
Group mode:U
Waiting:yes
List:

T1 S no

T2 U no

T3 XX yes Λ

To other T3 
records
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What are the objects we lock?

?

Relation A

Relation B

...

Tuple A
Tuple B
Tuple C

...

Disk 
block

A

Disk 
block

B

...

DB DB DB
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• Locking works in any case, but should
we choose small or large objects?

• If we lock large objects (e.g., Relations)
– Need few locks
– Low concurrency

• If we lock small objects (e.g., tuples,fields)
– Need more locks
– More concurrency
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We can have it both ways!!

Ask any janitor to give you the solution...

hall

Stall 1 Stall 2 Stall 3 Stall 4

restroom
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Example

R1

t1
t2 t3

t4

T1(IS)

T1(S)

, T2(S)



CS 245 Notes 09 79

Example

R1

t1
t2 t3

t4

T1(IS)

T1(S)

, T2(IX)

T2(IX)

CS 245 Notes 09 80

Multiple granularity

Comp Requestor
  IS   IX  S   SIX  X

    IS
      Holder   IX

     S

  SIX

     X
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Multiple granularity

Comp Requestor
  IS   IX  S   SIX  X

    IS
      Holder   IX

     S

  SIX

     X

T T T T F
F
F

F
FFFFF

FFFT

FTFT
FFTT
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Parent Child can be
locked in locked in

IS
IX
S
SIX
X

P

C
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Parent Child can be locked
locked in by same transaction in

IS
IX
S
SIX
X

P

C

IS, S
IS, S, IX, X, SIX
[S, IS] not necessary
X, IX, [SIX]
none
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Rules

(1) Follow multiple granularity comp function
(2) Lock root of tree first, any mode
(3) Node Q can be locked by Ti in S or IS only if
     parent(Q) locked by Ti in IX or IS
(4) Node Q can be locked by Ti in X,SIX,IX only
     if parent(Q) locked by Ti in IX,SIX
(5) Ti is two-phase
(6) Ti can unlock node Q only if none of Q’s
     children are locked by Ti
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Exercise:

• Can T2 access object f2.2 in X mode?
What locks will T2 get?

R1

t1

t2 t3
t4T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(IX)

T1(X)
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Exercise:

• Can T2 access object f2.2 in X mode?
What locks will T2 get?

R1

t1

t2 t3
t4T1(X)

f2.1 f2.2 f3.1 f3.2

T1(IX)

CS 245 Notes 09 87

Exercise:

• Can T2 access object f3.1 in X mode?
What locks will T2 get?

R1

t1

t2 t3
t4T1(S)

f2.1 f2.2 f3.1 f3.2

T1(IS)
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Exercise:

• Can T2 access object f2.2 in S mode?
What locks will T2 get?

R1

t1

t2 t3
t4T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(SIX)

T1(X)
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Exercise:

• Can T2 access object f2.2 in X mode?
What locks will T2 get?

R1

t1

t2 t3
t4T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(SIX)

T1(X)
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Insert + delete operations

     Insert

A

Z
α

...
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Modifications to locking rules:

(1) Get exclusive lock on A before
deleting A

(2) At insert A operation by Ti,
 Ti is given exclusive lock on A
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Still have a problem: PhantomsPhantoms

Example: relation R (E#,name,…)
constraint: E# is key
use tuple locking

R E# Name ….
o1 55 Smith
o2 75 Jones
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T1: Insert <04,Kerry,…> into R
T2: Insert <04,Bush,…> into R

   T1    T2

S1(o1)     S2(o1)
S1(o2)     S2(o2)
Check Constraint    Check Constraint

Insert o3[04,Kerry,..]
   Insert o4[04,Bush,..]

...

...
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Solution

• Use multiple granularity tree
• Before insert of node Q,
   lock parent(Q) in
   X mode R1

t1
t2 t3
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Back to example
T1: Insert<04,Kerry>  T2: Insert<04,Bush>

 T1  T2

X1(R)

Check constraint
Insert<04,Kerry>
U(R)

X2(R)
Check constraint
Oops! e# = 04 already in R!

XX22(R)(R) delayed
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Instead of using R, can use index on R:

Example: R

Index
0<E#<100

Index
100<E#<200

E#=2 E#=5 E#=107 E#=109...

...

...
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• This approach can be generalized to
multiple indexes...
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Next:

• Tree-based concurrency control
• Validation concurrency control
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Example

A

B C

D

E F

• all objects accessed
  through root,
  following pointers

T1 lock

T1 lockT1 lock

 can we release A lock
    if we no longer need A??
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Idea: traverse like “Monkey Bars”

A

B C

D

E F

T1 lock

T1 lockT1 lock

T1 lock
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Why does this work?

• Assume all Ti start at root; exclusive lock
• Ti → Tj  ⇒ Ti locks root before Tj

• Actually works if we don’t always
   start at root

Root

Q   Ti → Tj
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Rules: tree protocol (exclusive locks)

(1) First lock by Ti may be on any item
(2) After that, item Q can be locked by Ti

only if parent(Q) locked by Ti

(3) Items may be unlocked at any time
(4) After Ti unlocks Q, it cannot relock Q
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• Tree-like protocols are used typically for
B-tree concurrency control

E.g., during insert, do not release parent lock, until you
are certain child does not have to split

Root
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Tree Protocol with Shared Locks

• Rules for shared & exclusive locks?

A

B C

D

E F

T1 S lock(released)

T1 S lock (held)

T1 X lock (released)

T1 X lock (will get)
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Tree Protocol with Shared Locks

• Rules for shared & exclusive locks?

A

B C

D

E F

T1 S lock(released)

T1 S lock (held)

T1 X lock (released)

T1 X lock (will get)

T2 reads:
• B modified by T1

• F not yet modified by T1
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• Need more restrictive protocol
• Will this work??

– Once T1 locks one object in X mode,
all further locks down the tree must be
in X mode

Tree Protocol with Shared Locks
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Validation

Transactions have 3 phases:
(1) Read

– all DB values read
– writes to temporary storage
– no locking

(2) Validate
– check if schedule so far is serializable

(3) Write
– if validate ok, write to DB
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Key idea

• Make validation atomic
• If T1, T2, T3, … is validation order, then

resulting schedule will be conflict
equivalent to Ss = T1 T2 T3...
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To implement validation, system keeps
two sets:

• FIN = transactions that have finished 
phase 3 (and are all done)

• VAL = transactions that have 
successfully finished phase 2 
(validation)
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Example of what validation must prevent:

RS(T2)={B}  RS(T3)={A,B}
WS(T2)={B,D}  WS(T3)={C}

time

T2
start

T2
validated

T3
validated

T3
start

∩ = φ
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T2

finish
phase 3

Example of what validation must prevent:

RS(T2)={B}  RS(T3)={A,B}
WS(T2)={B,D}  WS(T3)={C}

time

T2
start

T2
validated

T3
validated

T3
start

∩ = φ

allow

T3
start
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Another thing validation must prevent:

RS(T2)={A}     RS(T3)={A,B}
WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

finish

T2
BAD:  w3(D)  w2(D)
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finish

T2

Another thing validation must prevent:

RS(T2)={A}     RS(T3)={A,B}
WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

allow

finish

T2
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Validation rules for Tj:

(1) When Tj starts phase 1:
ignore(Tj) ← FIN

(2) at Tj Validation:
if check (Tj) then 

[ VAL ← VAL U {Tj};

  do write phase;
  FIN  ←FIN U {Tj}  ]
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Check (Tj):

For Ti ∈ VAL - IGNORE (Tj)  DO

IF [ WS(Ti) ∩  RS(Tj) ≠ ∅ OR

  Ti ∉ FIN ] THEN RETURN false;

RETURN true;

Is this check too restrictive ?
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Improving Check(Tj)

For Ti ∈ VAL - IGNORE (Tj)  DO

IF [ WS(Ti) ∩  RS(Tj) ≠ ∅ OR

(Ti ∉ FIN  AND WS(Ti) ∩ WS(Tj) ≠ ∅)]

THEN RETURN false;
RETURN true;
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Exercise:

T: RS(T)={A,B}
     WS(T)={A,C}

V: RS(V)={B}
     WS(V)={D,E}

U: RS(U)={B}
        WS(U)={D}

W: RS(W)={A,D}
       WS(W)={A,C}

start
validate
finish
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Is Validation = 2PL?

2PL
Val

2PL
Val

2PL
Val

Val
2PL
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S2:  w2(y)  w1(x)  w2(x)

• S2 can be achieved with 2PL:
l2(y) w2(y) l1(x) w1(x) u1(x)  l2(x) w2(x) u2(y) u2(x)

• S2 cannot be achieved by validation:
The validation point of T2, val2 must occur before
w2(y) since transactions do not write to the database
until after validation. Because of the conflict on x,
val1 < val2, so we must have something like
      S2:  val1  val2  w2(y)  w1(x)  w2(x)
With the validation protocol, the writes of T2 should
not start until T1 is all done with its writes, which is
not the case.
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Validation subset of 2PL?

• Possible proof (Check!):
– Let S be validation schedule
– For each T in S insert lock/unlocks, get S’:

• At T start: request read locks for all of RS(T)
• At T validation: request write locks for WS(T);

release read locks for read-only objects
• At T end: release all write locks

– Clearly transactions well-formed and 2PL
– Must show S’ is legal (next page)
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• Say S’ not legal:
S’: ... l1(x)     w2(x)  r1(x)   val1 u2(x) ...
– At val1: T2 not in Ignore(T1); T2 in VAL

– T1 does not validate: WS(T2) ∩  RS(T1) ≠ ∅

– contradiction!

• Say S’ not legal:
S’: ... val1 l1(x)     w2(x)  w1(x)   u2(x) ...
– Say T2 validates first (proof similar in other case)
– At val1: T2 not in Ignore(T1); T2 in VAL
– T1 does not validate:

T2 ∉ FIN  AND WS(T1) ∩ WS(T2) ≠ ∅)

– contradiction!
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Validation (also called optimistic
concurrency control) is useful in some
cases:

- Conflicts rare
- System resources plentiful
- Have real time constraints

CS 245 Notes 09 123

Summary

Have studied C.C. mechanisms used in
practice
- 2 PL
- Multiple granularity
- Tree (index) protocols
- Validation


