
CS 245 Notes 09 1

CS 245: Database System
Principles

Notes 09: Concurrency Control

Steven Whang

CS 245 Notes 09 2

Chapter 18 [18] Concurrency Control

 T1 T2 … Tn

DB
(consistency
constraints)

CS 245 Notes 09 3

Example:

T1: Read(A) T2: Read(A)
A ← A+100 A ← A×2
Write(A) Write(A)
Read(B) Read(B)
B ← B+100 B ← B×2

Write(B) Write(B)
Constraint: A=B

CS 245 Notes 09 4

Schedule A

T1 T2
Read(A); A ← A+100

Write(A);
Read(B); B ← B+100;
Write(B);

Read(A);A ← A×2;

Write(A);

 Read(B);B ← B×2;

Write(B);

A B
25 25

125

125

250

250
250 250

CS 245 Notes 09 5

Schedule B

T1 T2

Read(A);A ← A×2;

Write(A);

Read(B);B ← B×2;

Write(B);
Read(A); A ← A+100

Write(A);
Read(B); B ← B+100;

Write(B);

A B
25 25

50

50

150

150
150 150

CS 245 Notes 09 6

Schedule C

T1 T2
Read(A); A ← A+100

Write(A);

Read(A);A ← A×2;

Write(A);
Read(B); B ← B+100;

Write(B);

 Read(B);B ← B×2;

Write(B);

A B
25 25

125

250

125

250
250 250

CS 245 Notes 09 7

Schedule D

T1 T2
Read(A); A ← A+100

Write(A);

Read(A);A ← A×2;

Write(A);

 Read(B);B ← B×2;

Write(B);
Read(B); B ← B+100;

Write(B);

A B
25 25

125

250

50

150
250 150

CS 245 Notes 09 8

Schedule E

T1 T2’
Read(A); A ← A+100

Write(A);

Read(A);A ← A×1;

Write(A);

 Read(B);B ← B×1;

Write(B);
Read(B); B ← B+100;

Write(B);

A B
25 25

125

125

25

125
125 125

Same as Schedule D
but with new T2’

CS 245 Notes 09 9

• Want schedules that are “good”,
regardless of
– initial state and
– transaction semantics

• Only look at order of read and writes

Example:
Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

CS 245 Notes 09 10

Sc’=r1(A)w1(A) r1(B)w1(B)r2(A)w2(A)r2(B)w2(B)

 T1 T2

Example:
Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

CS 245 Notes 09 11

However, for Sd:
Sd=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B)

• as a matter of fact,
 T2 must precede T1

 in any equivalent schedule,
 i.e., T2 → T1

CS 245 Notes 09 12

T1 T2 Sd cannot be rearranged
into a serial schedule

Sd is not “equivalent” to
any serial schedule

Sd is “bad”

• T2 → T1

• Also, T1 → T2

CS 245 Notes 09 13

Returning to Sc

Sc=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

 T1 → T2 T1 → T2

 no cycles ⇒ Sc is “equivalent” to a
serial schedule
(in this case T1,T2)

CS 245 Notes 09 14

Concepts

Transaction: sequence of ri(x), wi(x) actions
Conflicting actions: r1(A) w2(A) w1(A)

 w2(A) r1(A) w2(A)

Schedule: represents chronological order
in which actions are executed

Serial schedule: no interleaving of actions
 or transactions

CS 245 Notes 09 15

What about concurrent actions?

Ti issues System Input(X) t ← x
read(x,t) issues completes

input(x)
time

T2 issues
write(B,S)

System
issues

input(B)

input(B)
completes

B ← S

System
issues

output(B)
output(B)
completes

CS 245 Notes 09 16

So net effect is either
• S=…r1(x)…w2(b)… or
• S=…w2(B)…r1(x)…

CS 245 Notes 09 17

• Assume equivalent to either r1(A) w2(A)
or w2(A) r1(A)

• ⇒ low level synchronization mechanism

• Assumption called “atomic actions”

What about conflicting, concurrent actions
on same object?

start r1(A) end r1(A)

start w2(A) end w2(A) time

CS 245 Notes 09 18

Definition

S1, S2 are conflict equivalent schedules
if S1 can be transformed into S2 by a
series of swaps on non-conflicting
actions.

CS 245 Notes 09 19

Definition

A schedule is conflict serializable if it is
conflict equivalent to some serial
schedule.

CS 245 Notes 09 20

Nodes: transactions in S
Arcs: Ti → Tj whenever

- pi(A), qj(A) are actions in S
- pi(A) <S qj(A)
- at least one of pi, qj is a write

Precedence graph P(S) (S is schedule)

CS 245 Notes 09 21

Exercise:

• What is P(S) for
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D)

• Is S serializable?

CS 245 Notes 09 22

Another Exercise:

• What is P(S) for
S = w1(A) r2(A) r3(A) w4(A) ?

CS 245 Notes 09 23

Lemma

S1, S2 conflict equivalent ⇒ P(S1)=P(S2)

Proof:
Assume P(S1) ≠ P(S2)
⇒ ∃ Ti: Ti → Tj in S1 and not in S2

⇒ S1 = …pi(A)... qj(A)… pi, qj

 S2 = …qj(A)…pi(A)... conflict

⇒ S1, S2 not conflict equivalent
CS 245 Notes 09 24

Note: P(S1)=P(S2) ⇒ S1, S2 conflict equivalent

Counter example:

S1=w1(A) r2(A) w2(B) r1(B)

S2=r2(A) w1(A) r1(B) w2(B)

CS 245 Notes 09 25

Theorem

P(S1) acyclic ⇐⇒ S1 conflict serializable

(⇐) Assume S1 is conflict serializable
⇒ ∃ Ss: Ss, S1 conflict equivalent
⇒ P(Ss) = P(S1)
⇒ P(S1) acyclic since P(Ss) is acyclic

CS 245 Notes 09 26

(⇒) Assume P(S1) is acyclic
Transform S1 as follows:
(1) Take T1 to be transaction with no incident arcs
(2) Move all T1 actions to the front

S1 = ……. qj(A)…….p1(A)…..

(3) we now have S1 = < T1 actions ><... rest ...>
(4) repeat above steps to serialize rest!

T1

T2 T3

 T4

Theorem
P(S1) acyclic ⇐⇒ S1 conflict serializable

CS 245 Notes 09 27

How to enforce serializable schedules?

Option 1: run system, recording P(S);
 at end of day, check for P(S)
 cycles and declare if execution
 was good

CS 245 Notes 09 28

Option 2: prevent P(S) cycles from
 occurring

T1 T2 ….. Tn

Scheduler

DB

How to enforce serializable schedules?

CS 245 Notes 09 29

A locking protocol

Two new actions:
lock (exclusive): li (A)

 unlock: ui (A)

scheduler

T1 T2

lock
table

CS 245 Notes 09 30

Rule #1: Well-formed transactions

Ti: … li(A) … pi(A) … ui(A) ...

CS 245 Notes 09 31

Rule #2 Legal scheduler

S = …….. li(A) ………... ui(A) ……...

 no lj(A)

CS 245 Notes 09 32

• What schedules are legal?
What transactions are well-formed?
S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)
r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

S2 = l1(A)r1(A)w1(B)u1(A)u1(B)
l2(B)r2(B)w2(B)l3(B)r3(B)u3(B)

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B)
l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

Exercise:

CS 245 Notes 09 33

• What schedules are legal?
What transactions are well-formed?
S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)
r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

S2 = l1(A)r1(A)w1(B)u1(A)u1(B)
l2(B)r2(B)w2(B)l3(B)r3(B)u3(B)

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B)
l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

Exercise:

CS 245 Notes 09 34

Schedule F

T1 T2
l1(A);Read(A)
A A+100;Write(A);u1(A)

l2(A);Read(A)
A Ax2;Write(A);u2(A)
l2(B);Read(B)
B Bx2;Write(B);u2(B)

l1(B);Read(B)
B B+100;Write(B);u1(B)

CS 245 Notes 09 35

Schedule F

T1 T2 25 25
l1(A);Read(A)
A A+100;Write(A);u1(A) 125

l2(A);Read(A)
A Ax2;Write(A);u2(A) 250
l2(B);Read(B)
B Bx2;Write(B);u2(B) 50

l1(B);Read(B)
B B+100;Write(B);u1(B) 150

 250 150

A B

CS 245 Notes 09 36

Rule #3 Two phase locking (2PL)
for transactions

Ti = ……. li(A) ………... ui(A) ……...

no unlocks no locks

CS 245 Notes 09 37

locks
held by
Ti

Time
 Growing Shrinking
 Phase Phase

CS 245 Notes 09 38

Schedule G

T1 T2
l1(A);Read(A)
A A+100;Write(A)
l1(B); u1(A)

 l2(A);Read(A)
 A Ax2;Write(A);ll 22(B)(B)

delayed

CS 245 Notes 09 39

Schedule G

T1 T2
l1(A);Read(A)
A A+100;Write(A)
l1(B); u1(A)

 l2(A);Read(A)
 A Ax2;Write(A);ll22(B)(B)

Read(B);B B+100
Write(B); u1(B)

delayed

CS 245 Notes 09 40

Schedule G

T1 T2
l1(A);Read(A)
A A+100;Write(A)
l1(B); u1(A)

 l2(A);Read(A)
 A Ax2;Write(A);ll22(B)(B)

Read(B);B B+100
Write(B); u1(B)

 l2(B); u2(A);Read(B)
 B Bx2;Write(B);u2(B);

delayed

CS 245 Notes 09 41

Schedule H (T2 reversed)

T1 T2
l1(A); Read(A) l2(B);Read(B)
A A+100;Write(A) B Bx2;Write(B)
ll11(B)(B) l l22(A)(A)

delayeddelayed

CS 245 Notes 09 42

• Assume deadlocked transactions are
rolled back
– They have no effect
– They do not appear in schedule

E.g., Schedule H =
This space intentionally

left blank!

CS 245 Notes 09 43

Next step:

Show that rules #1,2,3 ⇒ conflict-

 serializable
 schedules

CS 245 Notes 09 44

Conflict rules for li(A), ui(A):

• li(A), lj(A) conflict
• li(A), uj(A) conflict

Note: no conflict < ui(A), uj(A)>, < li(A), rj(A)>,...

CS 245 Notes 09 45

Theorem Rules #1,2,3 ⇒ conflict
 (2PL) serializable

 schedule

To help in proof:
Definition Shrink(Ti) = SH(Ti) =

first unlock action of Ti

CS 245 Notes 09 46

Lemma
Ti → Tj in S ⇒ SH(Ti) <S SH(Tj)

Proof of lemma:
Ti → Tj means that

S = … pi(A) … qj(A) …; p,q conflict
By rules 1,2:

S = … pi(A) … ui(A) … lj(A) ... qj(A) …

By rule 3: SH(Ti) SH(Tj)

So, SH(Ti) <S SH(Tj)

CS 245 Notes 09 47

Proof:
(1) Assume P(S) has cycle

T1 → T2 →…. Tn → T1

(2) By lemma: SH(T1) < SH(T2) < ... < SH(T1)

(3) Impossible, so P(S) acyclic
(4) ⇒ S is conflict serializable

Theorem Rules #1,2,3 ⇒ conflict
 (2PL) serializable

 schedule

CS 245 Notes 09 48

2PL subset of Serializable

2PL
Serializable

CS 245 Notes 09 49

S1: w1(x) w3(x) w2(y) w1(y)

• S1 cannot be achieved via 2PL:
The lock by T1 for y must occur after w2(y),
so the unlock by T1 for x must occur after
this point (and before w1(x)). Thus, w3(x)
cannot occur under 2PL where shown in S1
because T1 holds the x lock at that point.

• However, S1 is serializable
(equivalent to T2, T1, T3).

CS 245 Notes 09 50

• Beyond this simple 2PL protocol, it is all
a matter of improving performance and
allowing more concurrency….
– Shared locks
– Multiple granularity
– Inserts, deletes and phantoms
– Other types of C.C. mechanisms

CS 245 Notes 09 51

Shared locks

So far:
S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

Do not conflict

Instead:
S=... ls1(A) r1(A) ls2(A) r2(A) …. us1(A) us2(A)

CS 245 Notes 09 52

Lock actions
l-ti(A): lock A in t mode (t is S or X)
u-ti(A): unlock t mode (t is S or X)

Shorthand:
ui(A): unlock whatever modes

Ti has locked A

CS 245 Notes 09 53

Rule #1 Well formed transactions

Ti =... l-S1(A) … r1(A) … u1 (A) …
Ti =... l-X1(A) … w1(A) … u1 (A) …

CS 245 Notes 09 54

• What about transactions that read and
write same object?

Option 1: Request exclusive lock
Ti = ...l-X1(A) … r1(A) ... w1(A) ... u(A) …

CS 245 Notes 09 55

Option 2: Upgrade
(E.g., need to read, but don’t know if will write…)

Ti=... l-S1(A) … r1(A) ... l-X1(A) …w1(A) ...u(A)…

Think of
- Get 2nd lock on A, or
- Drop S, get X lock

• What about transactions that read and
 write same object?

CS 245 Notes 09 56

Rule #2 Legal scheduler

S =l-Si(A) … … ui(A) …

 no l-Xj(A)

S = ... l-Xi(A) … … ui(A) …

 no l-Xj(A)
 no l-Sj(A)

CS 245 Notes 09 57

A way to summarize Rule #2

Compatibility matrix

Comp S X
S true false
X false false

CS 245 Notes 09 58

Rule # 3 2PL transactions

No change except for upgrades:
(I) If upgrade gets more locks

(e.g., S → {S, X}) then no change!
(II) If upgrade releases read (shared)

lock (e.g., S → X)
- can be allowed in growing phase

CS 245 Notes 09 59

Proof: similar to X locks case

Detail:
l-ti(A), l-rj(A) do not conflict if comp(t,r)
l-ti(A), u-rj(A) do not conflict if comp(t,r)

Theorem Rules 1,2,3 ⇒ Conf.serializable
for S/X locks schedules

CS 245 Notes 09 60

Lock types beyond S/X

Examples:
(1) increment lock
(2) update lock

CS 245 Notes 09 61

Example (1): increment lock

• Atomic increment action: INi(A)
{Read(A); A ← A+k; Write(A)}

• INi(A), INj(A) do not conflict!
A=7

A=5 A=17
A=15

INi(A)
+2

INj(A)
+10

+10

INj(A)

+2

INi(A)

CS 245 Notes 09 62

Comp S X I
S
X
I

CS 245 Notes 09 63

Comp S X I
S T F F
X F F F
I F F T

CS 245 Notes 09 64

Update locks

A common deadlock problem with upgrades:
T1 T2
l-S1(A)

 l-S2(A)
l-Xl-X11(A)(A)

 l-X l-X22(A)(A)
 --- Deadlock ---

CS 245 Notes 09 65

Solution

If Ti wants to read A and knows it
may later want to write A, it requests
update lock (not shared)

CS 245 Notes 09 66

Comp S X U
S
X
U

 New request

Lock
already
held in

CS 245 Notes 09 67

Comp S X U
S T F T
X F F F
U TorF F F

 -> symmetric table?

 New request

Lock
already
held in

CS 245 Notes 09 68

Note: object A may be locked in different
 modes at the same time...

S1=...l-S1(A)…l-S2(A)…l-U3(A)… l-S4(A)…?
 l-U4(A)…?

• To grant a lock in mode t, mode t must
be compatible with all currently held
locks on object

CS 245 Notes 09 69

How does locking work in practice?

• Every system is different
(E.g., may not even provide
 CONFLICT-SERIALIZABLE schedules)

• But here is one (simplified) way ...

CS 245 Notes 09 70

(1) Don’t trust transactions to
request/release locks

(2) Hold all locks until transaction
commits

#
locks

time

Sample Locking System:

CS 245 Notes 09 71

Ti
 Read(A),Write(B)

 l(A),Read(A),l(B),Write(B)…

 Read(A),Write(B)

Scheduler, part I

Scheduler, part II

DB

lock
table

CS 245 Notes 09 72

Lock table Conceptually

A Λ

B
C

Λ

...

Lock info for B

Lock info for C

If null, object is unlocked

Ev
er

y
po

ss
ib

le
 o

bj
ec

t

CS 245 Notes 09 73

But use hash table:

A

If object not found in hash table, it is
unlocked

Lock info for AA

...
...

H

CS 245 Notes 09 74

Lock info for A - example

 tran mode wait? Nxt T_link

Object:A
Group mode:U
Waiting:yes
List:

T1 S no

T2 U no

T3 XX yes Λ

To other T3
records

CS 245 Notes 09 75

What are the objects we lock?

?

Relation A

Relation B

...

Tuple A
Tuple B
Tuple C

...

Disk
block

A

Disk
block

B

...

DB DB DB
CS 245 Notes 09 76

• Locking works in any case, but should
we choose small or large objects?

• If we lock large objects (e.g., Relations)
– Need few locks
– Low concurrency

• If we lock small objects (e.g., tuples,fields)
– Need more locks
– More concurrency

CS 245 Notes 09 77

We can have it both ways!!

Ask any janitor to give you the solution...

hall

Stall 1 Stall 2 Stall 3 Stall 4

restroom

CS 245 Notes 09 78

Example

R1

t1
t2 t3

t4

T1(IS)

T1(S)

, T2(S)

CS 245 Notes 09 79

Example

R1

t1
t2 t3

t4

T1(IS)

T1(S)

, T2(IX)

T2(IX)

CS 245 Notes 09 80

Multiple granularity

Comp Requestor
 IS IX S SIX X

 IS
 Holder IX

 S

 SIX

 X

CS 245 Notes 09 81

Multiple granularity

Comp Requestor
 IS IX S SIX X

 IS
 Holder IX

 S

 SIX

 X

T T T T F
F
F

F
FFFFF

FFFT

FTFT
FFTT

CS 245 Notes 09 82

Parent Child can be
locked in locked in

IS
IX
S
SIX
X

P

C

CS 245 Notes 09 83

Parent Child can be locked
locked in by same transaction in

IS
IX
S
SIX
X

P

C

IS, S
IS, S, IX, X, SIX
[S, IS] not necessary
X, IX, [SIX]
none

CS 245 Notes 09 84

Rules

(1) Follow multiple granularity comp function
(2) Lock root of tree first, any mode
(3) Node Q can be locked by Ti in S or IS only if
 parent(Q) locked by Ti in IX or IS
(4) Node Q can be locked by Ti in X,SIX,IX only
 if parent(Q) locked by Ti in IX,SIX
(5) Ti is two-phase
(6) Ti can unlock node Q only if none of Q’s
 children are locked by Ti

CS 245 Notes 09 85

Exercise:

• Can T2 access object f2.2 in X mode?
What locks will T2 get?

R1

t1

t2 t3
t4T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(IX)

T1(X)

CS 245 Notes 09 86

Exercise:

• Can T2 access object f2.2 in X mode?
What locks will T2 get?

R1

t1

t2 t3
t4T1(X)

f2.1 f2.2 f3.1 f3.2

T1(IX)

CS 245 Notes 09 87

Exercise:

• Can T2 access object f3.1 in X mode?
What locks will T2 get?

R1

t1

t2 t3
t4T1(S)

f2.1 f2.2 f3.1 f3.2

T1(IS)

CS 245 Notes 09 88

Exercise:

• Can T2 access object f2.2 in S mode?
What locks will T2 get?

R1

t1

t2 t3
t4T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(SIX)

T1(X)

CS 245 Notes 09 89

Exercise:

• Can T2 access object f2.2 in X mode?
What locks will T2 get?

R1

t1

t2 t3
t4T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(SIX)

T1(X)

CS 245 Notes 09 90

Insert + delete operations

 Insert

A

Z
α

...

CS 245 Notes 09 91

Modifications to locking rules:

(1) Get exclusive lock on A before
deleting A

(2) At insert A operation by Ti,
 Ti is given exclusive lock on A

CS 245 Notes 09 92

Still have a problem: PhantomsPhantoms

Example: relation R (E#,name,…)
constraint: E# is key
use tuple locking

R E# Name ….
o1 55 Smith
o2 75 Jones

CS 245 Notes 09 93

T1: Insert <04,Kerry,…> into R
T2: Insert <04,Bush,…> into R

 T1 T2

S1(o1) S2(o1)
S1(o2) S2(o2)
Check Constraint Check Constraint

Insert o3[04,Kerry,..]
 Insert o4[04,Bush,..]

...

...

CS 245 Notes 09 94

Solution

• Use multiple granularity tree
• Before insert of node Q,
 lock parent(Q) in
 X mode R1

t1
t2 t3

CS 245 Notes 09 95

Back to example
T1: Insert<04,Kerry> T2: Insert<04,Bush>

 T1 T2

X1(R)

Check constraint
Insert<04,Kerry>
U(R)

X2(R)
Check constraint
Oops! e# = 04 already in R!

XX22(R)(R) delayed

CS 245 Notes 09 96

Instead of using R, can use index on R:

Example: R

Index
0<E#<100

Index
100<E#<200

E#=2 E#=5 E#=107 E#=109...

...

...

CS 245 Notes 09 97

• This approach can be generalized to
multiple indexes...

CS 245 Notes 09 98

Next:

• Tree-based concurrency control
• Validation concurrency control

CS 245 Notes 09 99

Example

A

B C

D

E F

• all objects accessed
 through root,
 following pointers

T1 lock

T1 lockT1 lock

 can we release A lock
 if we no longer need A??

CS 245 Notes 09 100

Idea: traverse like “Monkey Bars”

A

B C

D

E F

T1 lock

T1 lockT1 lock

T1 lock

CS 245 Notes 09 101

Why does this work?

• Assume all Ti start at root; exclusive lock
• Ti → Tj ⇒ Ti locks root before Tj

• Actually works if we don’t always
 start at root

Root

Q Ti → Tj

CS 245 Notes 09 102

Rules: tree protocol (exclusive locks)

(1) First lock by Ti may be on any item
(2) After that, item Q can be locked by Ti

only if parent(Q) locked by Ti

(3) Items may be unlocked at any time
(4) After Ti unlocks Q, it cannot relock Q

CS 245 Notes 09 103

• Tree-like protocols are used typically for
B-tree concurrency control

E.g., during insert, do not release parent lock, until you
are certain child does not have to split

Root

CS 245 Notes 09 104

Tree Protocol with Shared Locks

• Rules for shared & exclusive locks?

A

B C

D

E F

T1 S lock(released)

T1 S lock (held)

T1 X lock (released)

T1 X lock (will get)

CS 245 Notes 09 105

Tree Protocol with Shared Locks

• Rules for shared & exclusive locks?

A

B C

D

E F

T1 S lock(released)

T1 S lock (held)

T1 X lock (released)

T1 X lock (will get)

T2 reads:
• B modified by T1

• F not yet modified by T1

CS 245 Notes 09 106

• Need more restrictive protocol
• Will this work??

– Once T1 locks one object in X mode,
all further locks down the tree must be
in X mode

Tree Protocol with Shared Locks

CS 245 Notes 09 107

Validation

Transactions have 3 phases:
(1) Read

– all DB values read
– writes to temporary storage
– no locking

(2) Validate
– check if schedule so far is serializable

(3) Write
– if validate ok, write to DB

CS 245 Notes 09 108

Key idea

• Make validation atomic
• If T1, T2, T3, … is validation order, then

resulting schedule will be conflict
equivalent to Ss = T1 T2 T3...

CS 245 Notes 09 109

To implement validation, system keeps
two sets:

• FIN = transactions that have finished
phase 3 (and are all done)

• VAL = transactions that have
successfully finished phase 2
(validation)

CS 245 Notes 09 110

Example of what validation must prevent:

RS(T2)={B} RS(T3)={A,B}
WS(T2)={B,D} WS(T3)={C}

time

T2
start

T2
validated

T3
validated

T3
start

∩ = φ

CS 245 Notes 09 111

T2

finish
phase 3

Example of what validation must prevent:

RS(T2)={B} RS(T3)={A,B}
WS(T2)={B,D} WS(T3)={C}

time

T2
start

T2
validated

T3
validated

T3
start

∩ = φ

allow

T3
start

CS 245 Notes 09 112

Another thing validation must prevent:

RS(T2)={A} RS(T3)={A,B}
WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

finish

T2
BAD: w3(D) w2(D)

CS 245 Notes 09 113

finish

T2

Another thing validation must prevent:

RS(T2)={A} RS(T3)={A,B}
WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

allow

finish

T2

CS 245 Notes 09 114

Validation rules for Tj:

(1) When Tj starts phase 1:
ignore(Tj) ← FIN

(2) at Tj Validation:
if check (Tj) then

[VAL ← VAL U {Tj};

 do write phase;
 FIN ←FIN U {Tj}]

CS 245 Notes 09 115

Check (Tj):

For Ti ∈ VAL - IGNORE (Tj) DO

IF [WS(Ti) ∩ RS(Tj) ≠ ∅ OR

 Ti ∉ FIN] THEN RETURN false;

RETURN true;

Is this check too restrictive ?

CS 245 Notes 09 116

Improving Check(Tj)

For Ti ∈ VAL - IGNORE (Tj) DO

IF [WS(Ti) ∩ RS(Tj) ≠ ∅ OR

(Ti ∉ FIN AND WS(Ti) ∩ WS(Tj) ≠ ∅)]

THEN RETURN false;
RETURN true;

CS 245 Notes 09 117

Exercise:

T: RS(T)={A,B}
 WS(T)={A,C}

V: RS(V)={B}
 WS(V)={D,E}

U: RS(U)={B}
 WS(U)={D}

W: RS(W)={A,D}
 WS(W)={A,C}

start
validate
finish

CS 245 Notes 09 118

Is Validation = 2PL?

2PL
Val

2PL
Val

2PL
Val

Val
2PL

CS 245 Notes 09 119

S2: w2(y) w1(x) w2(x)

• S2 can be achieved with 2PL:
l2(y) w2(y) l1(x) w1(x) u1(x) l2(x) w2(x) u2(y) u2(x)

• S2 cannot be achieved by validation:
The validation point of T2, val2 must occur before
w2(y) since transactions do not write to the database
until after validation. Because of the conflict on x,
val1 < val2, so we must have something like
 S2: val1 val2 w2(y) w1(x) w2(x)
With the validation protocol, the writes of T2 should
not start until T1 is all done with its writes, which is
not the case.

CS 245 Notes 09 120

Validation subset of 2PL?

• Possible proof (Check!):
– Let S be validation schedule
– For each T in S insert lock/unlocks, get S’:

• At T start: request read locks for all of RS(T)
• At T validation: request write locks for WS(T);

release read locks for read-only objects
• At T end: release all write locks

– Clearly transactions well-formed and 2PL
– Must show S’ is legal (next page)

CS 245 Notes 09 121

• Say S’ not legal:
S’: ... l1(x) w2(x) r1(x) val1 u2(x) ...
– At val1: T2 not in Ignore(T1); T2 in VAL

– T1 does not validate: WS(T2) ∩ RS(T1) ≠ ∅

– contradiction!

• Say S’ not legal:
S’: ... val1 l1(x) w2(x) w1(x) u2(x) ...
– Say T2 validates first (proof similar in other case)
– At val1: T2 not in Ignore(T1); T2 in VAL
– T1 does not validate:

T2 ∉ FIN AND WS(T1) ∩ WS(T2) ≠ ∅)

– contradiction!

CS 245 Notes 09 122

Validation (also called optimistic
concurrency control) is useful in some
cases:

- Conflicts rare
- System resources plentiful
- Have real time constraints

CS 245 Notes 09 123

Summary

Have studied C.C. mechanisms used in
practice
- 2 PL
- Multiple granularity
- Tree (index) protocols
- Validation

