
CS 245 Notes 10 1

CS 245: Database System
Principles

Notes 10: More TP

Steven Whang

CS 245 Notes 10 2

Sections to Skim:

• Section 18.8 [18.8]
• Sections 19.2 19.4, 19.5, 19.6

[none, i.e., read all Ch 19]
• [In the Second Edition, skip all of Chapter 20, and

Sections 21.5, 21.6, 21.7, 22.2 through 22.7]

CS 245 Notes 10 3

Chapter 19 [19] More on transaction
 processing

Topics:
• Cascading rollback, recoverable schedule
• Deadlocks

– Prevention
– Detection

• Long transactions (nested, compensation)

CS 245 Notes 10 4

Example: Tj Ti

Wj(A)
 ri(A)
 Commit Ti

Abort Tj

Concurrency control & recovery

…
…

…

…
…

…
 Non-Persistent Commit (Bad!)

CS 245 Notes 10 5

Example: Tj Ti

Wj(A)
 ri(A)
 Commit Ti

Abort Tj

Concurrency control & recovery

…
…

…

…
…

…

 Non-Persistent Commit (Bad!)
avoided by
recoverable
schedules

CS 245 Notes 10 6

Example: Tj Ti

Wj(A)
 ri(A)
 wi(B)

Abort Tj

 [Commit Ti]

Concurrency control & recovery

…
…

…

…
…

…

 Cascading rollback (Bad!)

CS 245 Notes 10 7

Example: Tj Ti

Wj(A)
 ri(A)
 wi(B)

Abort Tj

 [Commit Ti]

Concurrency control & recovery

…
…

…

…
…

…

 Cascading rollback (Bad!)
avoided by
avoids-cascading-
rollback (ACR)
schedules

CS 245 Notes 10 8

• Schedule is conflict serializable
• Tj Ti

• But not recoverable

CS 245 Notes 10 9

• Need to make “final’ decision for each
transaction:
– commit decision - system guarantees

transaction will or has completed, no
matter what

– abort decision - system guarantees
transaction will or has been rolled back

 (has no effect)

CS 245 Notes 10 10

To model this, two new actions:

• Ci - transaction Ti commits
• Ai - transaction Ti aborts

CS 245 Notes 10 11

..
.

..
.

..
.

..
.

Back to example:

 Tj Ti

Wj(A)
ri(A)

Ci ← can we commit

here?

CS 245 Notes 10 12

Definition

Ti reads from Tj in S (Tj ⇒S Ti) if

(1) wj(A) <S ri(A)

(2) aj <S ri(A) (< : does not precede)

(3) If wj(A) <S wk(A) <S ri(A) then
 ak <S ri(A)

CS 245 Notes 10 13

Definition

Schedule S is recoverable if
whenever Tj ⇒S Ti and j ≠ i and Ci ∈ S
then Cj <S Ci

CS 245 Notes 10 14

Note: in transactions, reads and writes
 precede commit or abort

➳ If Ci ∈ Ti, then ri(A) < Ci

 wi(A) < Ci

➳ If Ai ∈ Ti, then ri(A) < Ai

 wi(A) < Ai

• Also, one of Ci, Ai per transaction

CS 245 Notes 10 15

How to achieve recoverable schedules?

CS 245 Notes 10 16

➳ With 2PL, hold write locks to
commit (strict 2PL)

 Tj Ti

Wj(A)

Cj

uj(A)
ri(A)

..
.

..
.

..
.

..
.

..
.

..
.

..
.

CS 245 Notes 10 17

➳ With validation, no change!

CS 245 Notes 10 18

• S is recoverable if each transaction
commits only after all transactions from
which it read have committed.

• S avoids cascading rollback if each
transaction may read only those values
written by committed transactions.

CS 245 Notes 10 19

• S is strict if each transaction may read
and write only items previously written
by committed transactions.

Avoids cascading rollback

RC

ACR

ST SERIAL

CS 245 Notes 10 20

Where are serializable schedules?

Avoids cascading rollback

RC

ACR

ST SERIAL

CS 245 Notes 10 21

Examples

• Recoverable:
– w1(A) w1(B) w2(A) r2(B) c1 c2

• Avoids Cascading Rollback:
– w1(A) w1(B) w2(A) c1 r2(B) c2

• Strict:
– w1(A) w1(B) c1 w2(A) r2(B) c2

Assumes w2(A) is done
without reading

CS 245 Notes 10 22

Deadlocks

• Detection
– Wait-for graph

• Prevention
– Resource ordering
– Timeout
– Wait-die
– Wound-wait

CS 245 Notes 10 23

Deadlock Detection

• Build Wait-For graph
• Use lock table structures
• Build incrementally or periodically
• When cycle found, rollback victim

T1

T3

T2

T6

T5

T4
T7

CS 245 Notes 10 24

Resource Ordering

• Order all elements A1, A2, …, An

• A transaction T can lock Ai after Aj only
if i > j

Problem : Ordered lock requests not
realistic in most cases

CS 245 Notes 10 25

Timeout

• If transaction waits more than L sec.,
 roll it back!

• Simple scheme
• Hard to select L

CS 245 Notes 10 26

Wait-die

• Transactions given a timestamp when
they arrive …. ts(Ti)

• Ti can only wait for Tj if ts(Ti)< ts(Tj)
 ...else die

CS 245 Notes 10 27

 T1
(ts =10)

T2
(ts =20)

T3
 (ts =25)

wait

wait

Example:

wait?

CS 245 Notes 10 28

Starvation with Wait-Die

• When transaction dies, re-try later
with what timestamp?
– original timestamp
– new timestamp (time of re-submit)

CS 245 Notes 10 29

Starvation with Wait-Die

• Resubmit with original timestamp
• Guarantees no starvation

– Transaction with oldest ts never dies
– A transaction that dies will eventually

have oldest ts and will complete...

CS 245 Notes 10 30

 T1
(ts =22)

T2
(ts =20)

T3
 (ts =25)

wait(A)

Second Example:

requests A: wait for T2 or T3?

Note: ts between
20 and 25.

CS 245 Notes 10 31

 T1
(ts =22)

T2

(ts =20)

T3
 (ts =25)

wait(A)

Second Example (continued):

wait(A)

One option: T1 waits just for T3, transaction holding lock.
But when T2 gets lock, T1 will have to die!

CS 245 Notes 10 32

 T1
(ts =22)

T2

(ts =20)

T3
 (ts =25)

wait(A)

Second Example (continued):

wait(A)

wait(A)

Another option: T1 only gets A lock after T2, T3 complete,
so T1 waits for both T2, T3 ⇒ T1 dies right away!

CS 245 Notes 10 33

 T1
(ts =22)

T2

(ts =20)

T3
 (ts =25)

wait(A)

Second Example (continued):

wait(A)

wait(A)

Yet another option: T1 preempts T2, so T1 only waits for
T3; T2 then waits for T3 and T1... ⇒ T2 may starve?

redundant arc

CS 245 Notes 10 34

Wound-wait

• Transactions given a timestamp when
they arrive … ts(Ti)

• Ti wounds Tj if ts(Ti)< ts(Tj)
 else Ti waits

“Wound”: Tj rolls back and gives lock to Ti

CS 245 Notes 10 35

 T1
(ts =25)

T2
(ts =20)

T3
 (ts =10)

wait

wait

Example:

wait

CS 245 Notes 10 36

Starvation with Wound-Wait

• When transaction dies, re-try later
with what timestamp?
– original timestamp
– new timestamp (time of re-submit)

CS 245 Notes 10 37

 T1
(ts =15)

T2
(ts =20)

T3
 (ts =10)

wait(A)

Second Example:

requests A: wait for T2 or T3?

Note: ts between
10 and 20.

CS 245 Notes 10 38

 T1
(ts =15)

T2

(ts =20)

T3
 (ts =10)

wait(A)

Second Example (continued):

wait(A)

One option: T1 waits just for T3, transaction holding lock.
But when T2 gets lock, T1 waits for T2 and wounds T2.

CS 245 Notes 10 39

 T1
(ts =15)

T2

(ts =20)

T3
 (ts =10)

wait(A)

Second Example (continued):

wait(A)

wait(A)

Another option: T1 only gets A lock after T2, T3 complete,
so T1 waits for both T2, T3 ⇒ T2 wounded right away!

CS 245 Notes 10 40

 T1
(ts =15)

T2

(ts =20)

T3
 (ts =10)

wait(A)

Second Example (continued):

wait(A)

wait(A)

Yet another option: T1 preempts T2, so T1 only waits for
T3; T2 then waits for T3 and T1... ⇒ T2 is spared!

CS 245 Notes 10 41

User/Program commands

Lots of variations, but in general
• Begin_work
• Commit_work
• Abort_work

CS 245 Notes 10 42

Nested transactions

User program:

Begin_work;

If results_ok, then commit work
else abort_work

..
.

..
.

..
.

CS 245 Notes 10 43

Nested transactions

User program:

Begin_work;
Begin_work;

If results_ok, then commit work
 else {abort_work; try something else…}

If results_ok, then commit work
else abort_work

..
.

..
.

..
.

CS 245 Notes 10 44

Parallel Nested Transactions

T1: begin-work

parallel:
T11: begin_work

commit_work

T12: begin_work

commit_work

commit_work

...
...

...
...

T1

T11 T12

T1

CS 245 Notes 10 45

Locking
Locking

What are we really locking?

CS 245 Notes 10 46

Example:

Ti

Read record r1

Read record r1 do record
locking

Modify record r3

..
.

..
.

..
.

..
.

CS 245 Notes 10 47

But underneath:

Disk

pages

R3

R1

R2

record id

If we lock all

data involved in read

of R1, we may prevent

an update to R2

(which may require

reorganization within

block)

CS 245 Notes 10 48

Solution: view DB at two levels

Top level: record actions
 record locks
 undo/redo actions — logical

e.g., Insert record(X,Y,Z)
 Redo: insert(X,Y,Z)
 Undo: delete

CS 245 Notes 10 49

Low level: deal with physical details
 latch page during action
(release at end of action)

CS 245 Notes 10 50

Note: undo does not return physical DB to
original state; only same logical state

e.g., Insert R3 Undo (delete R3)

R1 R1
R2

R1
R2

R2 R3

CS 245 Notes 10 51

Logging Logical Actions

• Logical action typically span one block
(physiological actions)

• Undo/redo log entry specifies
undo/redo logical action

• Challenge: making actions idempotent
• Example (bad): redo insert ⇒

 key inserted multiple times!

CS 245 Notes 10 52

Solution: Add Log Sequence Number

Log record:
•LSN=26
•OP=insert(5,v2)
 into P
• ...

3, v1
sem lsn=25 ...

3, v1
sem lsn=26 ...

5, v2

CS 245 Notes 10 53

Still Have a Problem!

3, v1
lsn=24 ...

4, v2
3, v1

lsn=25 ...

3, v1
lsn=26 ...

5, v3

T1
Del 4

T2
Ins 5

3, v1
lsn=?? ...

5, v3
4, v2

undo
Del 4

Make log entry
for undo

lsn=27

CS 245 Notes 10 54

Compensation Log Records

• Log record to indicate undo (not redo)
action performed

• Note: Compensation may not return
page to exactly the initial state

CS 245 Notes 10 55

At Recovery: Example

lsn=21
T1
a1
p1

lsn=35
T1
a2-1

p2

lsn=27
T1
a2
p2

...

Log:

CS 245 Notes 10 56

What to do with p2 (during T1 rollback)?

• If lsn(p2)<27 then ... ?
• If 27 ≤ lsn(p2) < 35 then ... ?
• If lsn(p2) ≥ 35 then ... ?

Note: lsn(p2) is lsn of p copy on disk

CS 245 Notes 10 57

Recovery Strategy

[1] Reconstruct state at time of crash
– Find latest valid checkpoint, Ck, and let ac

be its set of active transactions
– Scan log from Ck to end:

• For each log entry [lsn, page] do:
if lsn(page) < lsn then redo action

• If log entry is start or commit, update ac

CS 245 Notes 10 58

Recovery Strategy

[2] Abort uncommitted transactions
– Set ac contains transactions to abort
– Scan log from end to Ck :

• For each log entry (not undo) of an ac transaction,
undo action (making log entry)

– For ac transactions not fully aborted,
read their log entries older than Ck and
undo their actions

CS 245 Notes 10 59

Example: What To Do After Crash

lsn=21
T1
a1
p1

lsn=35
T1
a2-1

p2

lsn=27
T1
a2
p2

...

Log:

...

lsn=29
T1
a3
p3

lsn=31
T1
a3-1

p3 ...

chk
pt

CS 245 Notes 10 60

During Undo: Skip Undo’s

lsn=21
T1
a1
p1

lsn=35
T1
a2-1

p2

lsn=27
T1
a2
p2

...

Log:

...

lsn=29
T1
a3
p3

lsn=31
T1
a3-1

p3 ...

chk
pt

pointer to forward action

pointer to previous T1 action

CS 245 Notes 10 61

Related idea: Sagas
• Long running activity: T1, T2, ... Tn

• Each step/trasnaction Ti has a
compensating transaction Ti-1

• Semantic atomicity: execute one of
– T1, T2, ... Tn

– T1, T2, ... Tn-1 T-1
n-1, T-1

n-2, ... T-1
1

– T1, T2, ... Tn-2 T-1
n-2, T-1

n-3, ... T-1
1

– T1, T-1
1

– nothing

...

CS 245 Notes 10 62

Summary

• Cascading rollback
Recoverable schedule

• Deadlock
– Prevention
– Detectoin

• Nested transactions
• Multi-level view

