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CS 245: Database System
Principles

Notes 10: More TP

Steven Whang
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Sections to Skim:

• Section 18.8 [18.8]
• Sections 19.2 19.4, 19.5, 19.6

[none, i.e., read all Ch 19]
• [In the Second Edition, skip all of Chapter 20, and

Sections 21.5, 21.6, 21.7, 22.2 through 22.7]
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Chapter 19 [19]  More on transaction
    processing

Topics:
• Cascading rollback, recoverable schedule
• Deadlocks

– Prevention
– Detection

• Long transactions (nested, compensation)
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Example:          Tj   Ti

Wj(A)
  ri(A)
  Commit Ti

Abort Tj

Concurrency control & recovery

…
…

…

…
…

…
 Non-Persistent Commit (Bad!)
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Example:          Tj   Ti

Wj(A)
  ri(A)
  Commit Ti

Abort Tj

Concurrency control & recovery

…
…

…

…
…

…

 Non-Persistent Commit (Bad!)
avoided by
recoverable
schedules
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Example:          Tj   Ti

Wj(A)
  ri(A)
  wi(B)

Abort Tj

                                                              [Commit Ti]

Concurrency control & recovery

…
…

…

…
…

…

 Cascading rollback (Bad!)
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Example:          Tj   Ti

Wj(A)
  ri(A)
  wi(B)

Abort Tj

                                                              [Commit Ti]

Concurrency control & recovery

…
…

…

…
…

…

 Cascading rollback (Bad!)
avoided by
avoids-cascading-
rollback (ACR)
schedules
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• Schedule is conflict serializable
• Tj         Ti

• But not recoverable
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• Need to make “final’ decision for each
transaction:
– commit decision - system guarantees

transaction will or has completed, no
matter what

– abort decision - system guarantees
transaction will or has been rolled back

   (has no effect)
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To model this, two new actions:

• Ci - transaction Ti commits
• Ai - transaction Ti aborts
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..
.

..
.

..
.

..
.

Back to example:

                Tj Ti

Wj(A)
ri(A)

Ci  ← can we commit 

here?
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Definition

Ti  reads from Tj in S (Tj  ⇒S Ti)  if

(1) wj(A) <S  ri(A)

(2)  aj  <S   ri(A)        (< : does not precede)

(3) If wj(A) <S wk(A)  <S  ri(A)  then
       ak <S ri(A)
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Definition

Schedule S is recoverable if
whenever Tj  ⇒S Ti   and  j ≠ i and Ci ∈ S
then Cj  <S  Ci
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Note: in transactions, reads and writes 
  precede commit or abort

➳  If Ci ∈ Ti, then ri(A) < Ci

      wi(A) < Ci

➳  If Ai ∈ Ti, then ri(A) < Ai

      wi(A) < Ai

• Also, one of Ci, Ai per transaction
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How to achieve recoverable schedules?
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➳ With 2PL, hold write locks to 
commit (strict 2PL)

               Tj Ti

Wj(A)

Cj

uj(A)
ri(A)

..
.

..
.

..
.

..
.

..
.

..
.

..
.
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➳  With validation, no change!
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• S is recoverable if each transaction
commits only after all transactions from
which it read have committed.

• S avoids cascading rollback if each
transaction may read only those values
written by committed transactions.
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• S is strict if each transaction may read
and write only items previously written
by committed transactions.

Avoids cascading rollback

RC

ACR

ST SERIAL
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Where are serializable schedules?

Avoids cascading rollback

RC

ACR

ST SERIAL
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Examples

• Recoverable:
– w1(A) w1(B)  w2(A) r2(B)   c1 c2

• Avoids Cascading Rollback:
– w1(A) w1(B)  w2(A)  c1  r2(B)   c2

• Strict:
– w1(A) w1(B) c1  w2(A) r2(B)   c2

Assumes w2(A) is done
without reading
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Deadlocks

• Detection
– Wait-for graph

• Prevention
– Resource ordering
– Timeout
– Wait-die
– Wound-wait
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Deadlock Detection

• Build Wait-For graph
• Use lock table structures
• Build incrementally or periodically
• When cycle found, rollback victim

T1

T3

T2

T6

T5

T4
T7
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Resource Ordering

• Order all elements A1, A2, …, An

• A transaction T can lock Ai after Aj only
if  i > j

Problem : Ordered lock requests not
realistic in most cases
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Timeout

• If transaction waits more than L sec.,
    roll it back!

• Simple scheme
• Hard to select L
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Wait-die

• Transactions given a timestamp when
they arrive …. ts(Ti)

• Ti can only wait for Tj if ts(Ti)< ts(Tj)
     ...else die
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     T1
(ts =10)

T2
(ts =20)

T3
        (ts =25)

wait

wait

Example:

wait?
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Starvation with Wait-Die

• When transaction dies, re-try later
with what timestamp?
– original timestamp
– new timestamp (time of re-submit)

CS 245 Notes 10 29

Starvation with Wait-Die

• Resubmit with original timestamp
• Guarantees no starvation

– Transaction with oldest ts never dies
– A transaction that dies will eventually

have oldest ts and will complete...
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     T1
(ts =22)

T2
(ts =20)

T3
        (ts =25)

wait(A)

Second Example:

requests A: wait for T2 or T3?

Note: ts between
20 and 25.
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     T1
(ts =22)

T2

(ts =20)

T3
        (ts =25)

wait(A)

Second Example (continued):

wait(A)

One option: T1 waits just for T3, transaction holding lock.
But when T2 gets lock, T1 will have to die!
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     T1
(ts =22)

T2

(ts =20)

T3
        (ts =25)

wait(A)

Second Example (continued):

wait(A)

wait(A)

Another option: T1 only gets A lock after T2, T3 complete,
so T1 waits for both T2, T3   ⇒   T1 dies right away!
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     T1
(ts =22)

T2

(ts =20)

T3
        (ts =25)

wait(A)

Second Example (continued):

wait(A)

wait(A)

Yet another option: T1 preempts T2, so T1 only waits for
T3; T2 then waits for T3 and T1...   ⇒   T2 may starve?

redundant arc
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Wound-wait

• Transactions given a timestamp when
they arrive … ts(Ti)

• Ti wounds Tj if  ts(Ti)< ts(Tj)
        else Ti  waits

“Wound”: Tj rolls back and gives lock to Ti
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     T1
(ts =25)

T2
(ts =20)

T3
        (ts =10)

wait

wait

Example:

wait
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Starvation with Wound-Wait

• When transaction dies, re-try later
with what timestamp?
– original timestamp
– new timestamp (time of re-submit)
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     T1
(ts =15)

T2
(ts =20)

T3
        (ts =10)

wait(A)

Second Example:

requests A: wait for T2 or T3?

Note: ts between
10 and 20.
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     T1
(ts =15)

T2

(ts =20)

T3
        (ts =10)

wait(A)

Second Example (continued):

wait(A)

One option: T1 waits just for T3, transaction holding lock.
But when T2 gets lock, T1 waits for T2 and wounds T2.
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     T1
(ts =15)

T2

(ts =20)

T3
        (ts =10)

wait(A)

Second Example (continued):

wait(A)

wait(A)

Another option: T1 only gets A lock after T2, T3 complete,
so T1 waits for both T2, T3   ⇒   T2 wounded right away!
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     T1
(ts =15)

T2

(ts =20)

T3
        (ts =10)

wait(A)

Second Example (continued):

wait(A)

wait(A)

Yet another option: T1 preempts T2, so T1 only waits for
T3; T2 then waits for T3 and T1...   ⇒   T2 is spared!
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User/Program commands

Lots of variations, but in general
• Begin_work
• Commit_work
• Abort_work
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Nested transactions

User program:

Begin_work;

If results_ok, then commit work
else abort_work

..
.

..
.

..
.
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Nested transactions

User program:

Begin_work;
Begin_work;

If results_ok, then commit work
    else {abort_work; try something else…}

If results_ok, then commit work
else abort_work

..
.

..
.

..
.
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Parallel Nested Transactions

T1: begin-work

parallel:
T11: begin_work

commit_work

T12: begin_work

commit_work

commit_work

...
...

...
...

T1

T11 T12

T1
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Locking
Locking

What are we really locking?
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Example:

Ti

Read record r1

Read record r1 do record
locking

Modify record r3

..
.

..
.

..
.

..
.
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But underneath:

Disk

pages

R3

R1

R2

record id

If we lock all

data involved in read 

of R1, we may prevent

an update to R2

(which may require 

reorganization within

block)
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Solution:  view DB at two levels

Top level: record actions
 record locks
 undo/redo actions — logical

e.g., Insert record(X,Y,Z)
       Redo: insert(X,Y,Z)
       Undo: delete
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Low level: deal with physical details
 latch page during action
(release at end of action)
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Note: undo does not return physical DB to
original state; only same logical state

e.g.,       Insert R3 Undo (delete R3)

R1 R1
R2

R1
R2

R2 R3
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Logging Logical Actions

• Logical action typically span one block
(physiological actions)

• Undo/redo log entry specifies
undo/redo logical action

• Challenge: making actions idempotent
• Example (bad): redo insert ⇒

    key inserted multiple times!
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Solution: Add Log Sequence Number

Log record:
•LSN=26
•OP=insert(5,v2)
         into P
• ...

3, v1
sem lsn=25 ...

3, v1
sem lsn=26 ...

5, v2
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Still Have a Problem!

3, v1
lsn=24 ...

4, v2
3, v1

lsn=25 ...

3, v1
lsn=26 ...

5, v3

T1
Del 4

T2
Ins 5

3, v1
lsn=?? ...

5, v3
4, v2

undo
Del 4

Make log entry
for undo

lsn=27
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Compensation Log Records

• Log record to indicate undo (not redo)
action performed

• Note: Compensation may not return
page to exactly the initial state
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At Recovery: Example

lsn=21
T1
a1
p1

lsn=35
T1
a2-1

p2

lsn=27
T1
a2
p2

... ... ......

Log:
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What to do with p2 (during T1 rollback)?

• If lsn(p2)<27 then ... ?
• If 27 ≤ lsn(p2) < 35 then ... ?
• If lsn(p2) ≥ 35 then ... ?

Note: lsn(p2) is lsn of p copy on disk
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Recovery Strategy

[1] Reconstruct state at time of crash
– Find latest valid checkpoint, Ck, and let ac

be its set of active transactions
– Scan log from Ck to end:

• For each log entry [lsn, page] do:
if lsn(page) < lsn then redo action

• If log entry is start or commit, update ac
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Recovery Strategy

[2] Abort uncommitted transactions
– Set ac contains transactions to abort
– Scan log from end to Ck :

• For each log entry (not undo) of an ac transaction,
undo action (making log entry)

– For ac transactions not fully aborted,
read their log entries older than Ck and
undo their actions
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Example: What To Do After Crash

lsn=21
T1
a1
p1

lsn=35
T1
a2-1

p2

lsn=27
T1
a2
p2

... ... ......

Log:

...

lsn=29
T1
a3
p3

lsn=31
T1
a3-1

p3 ...

chk
pt
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During Undo: Skip Undo’s

lsn=21
T1
a1
p1

lsn=35
T1
a2-1

p2

lsn=27
T1
a2
p2

... ... ......

Log:

...

lsn=29
T1
a3
p3

lsn=31
T1
a3-1

p3 ...

chk
pt

pointer to forward action

pointer to previous T1 action
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Related idea: Sagas
• Long running activity: T1, T2, ... Tn

• Each step/trasnaction Ti has a
compensating transaction Ti-1

• Semantic atomicity: execute one of
– T1, T2, ... Tn

– T1, T2, ... Tn-1  T-1
n-1, T-1

n-2, ... T-1
1

– T1, T2, ... Tn-2   T-1
n-2, T-1

n-3, ... T-1
1

– T1,  T-1
1

– nothing

...
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Summary

• Cascading rollback
Recoverable schedule

• Deadlock
– Prevention
– Detectoin

• Nested transactions
• Multi-level view


