
DATA ANALYTICS: INTEGRATION AND PRIVACY

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Steven E. Whang

June 2012

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/ch599mk0589

© 2012 by Steven Euijong Whang. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/ch599mk0589

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Hector Garcia-Molina, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Jurij Leskovec

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Jennifer Widom

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

Data analytics has become an extremely important and challenging problem in disciplines

like computer science, biology, medicine, finance, and homeland security. As massive

amounts of data are available for analysis, scalable integration techniques become impor-

tant. At the same time, new privacy issues arise where one’s sensitive information can

easily be inferred from the large amounts of data.

In this thesis, we first cover the problem of entity resolution (ER), which identifies

database records that refer to the same real-world entity. The recent explosion of data has

now made ER a challenging problem in a wide range of applications. We propose scalable

ER techniques and new ER functionalities that have not been studied in the past. We also

view ER as a black-box operation and provide general techniques that can be used across

applications.

Next, we introduce the problem of managing information leakage, where one must try

to prevent important bits of information from being resolved by ER, to guard against loss

of data privacy. As more of our sensitive data gets exposed to a variety of merchants, health

care providers, employers, social sites and so on, there is a higher chance that an adversary

can “connect the dots” and piece together our information, leading to even more loss of pri-

vacy. We propose a measure for quantifying information leakage and use “disinformation”

as a tool for containing information leakage.

iv

Acknowledgements

I would first like to thank my advisor Prof. Hector Garcia-Molina for the wonderful experi-

ence I had at Stanford. You are the best advisor I can ever imagine. I started without much

experience in research, but you have trained me to become a professional researcher that is

ready to tackle the challenging and exciting problems in the real world. I have learned how

to be unbiased when solving problems and provide original solutions with impact. I have

trained to become persistent enough to navigate through rough waves. I have also learned

the art of communicating my research with colleagues. I have always appreciated the deep

respect you have on your students. Throughout my PhD, I was truly self-motivated in my

research while getting just the right advice for each pitfall I encountered. I probably made

a lot of mistakes, but you never discouraged me. I am grateful to have trained under a true

master of education. When I become a professor, I hope to be half as good as you are both

in terms of research and personality.

I thank Prof. Gio Wiederhold for caring about me since my father was your student. I

really appreciate the genuine advice you gave me before and during my graduate studies. I

loved our occasional InfoLab retreats to San Francisco for various classical performances.

Those were the times I could broaden my scope and have a more balanced view of life.

I also enjoyed assisting you in maintaining the Gates Computer Science Museum. I will

always remember the first Google server that used to be displayed in the basement. I

also thank Voy Wiederhold for always being such a warm presence in the lab and also

throughout my life.

I thank Prof. Jennifer Widom for being the gold standard in research. You have set

the bars high for writing papers and giving talks, but it was well worth the effort to meet

those standards. I really appreciate all the guidance you gave me. I thank Prof. Jeffrey

v

Ullman for being the perfect computer scientist who taught us how exactly we should be

doing theoretical and practical computer science. It was an honor to be working in an office

right next to yours. I thank Prof. Jure Leskovec for kindly agreeing to be in my reading

committee. I really admire your hard-working ethic and would like to be as diligent as you

are. I thank Prof. Kincho Law for chairing my defense. I thank Andreas Paepcke for giving

me fresh perspectives in research with his vast creativity. I thank Marianne Siroker for her

impeccable management of the InfoLab and cannot imagine the lab running without her. I

thank Andy Kacsmar for solving all my technical problems.

I thank my wonderful InfoLab colleagues. I first thank David Menestrina for being my

long-time office mate. I especially thank you for being such a kind and encouraging TA

when I took CS245 as a Master’s student and was trying to make a good impression in class.

I thank Petros Venetis for being a great office mate and appreciate your help in research and

the encouragements you gave me. I wish the best in your thesis work. In addition, there are

many names I would like to thank and mention: Parag Aggrawal, Yannis Antonellis, Omar

Benjelloun, Anish Das Sarma, Heng Gong, Stephen Guo, Zoltán Gyöngyi, Paul Heymann,

Robert Ikeda, Jawed Karim, Hideki Kawai, Myunghwan Kim, Georgia Koutrika, Bobji

Mungamuru, Raghotham Murthy, Aditya Parameswaran, Hyunjung Park, Eldar Sadikov,

Semih Salihoglu, Qi Su, Sutthipong Thavisomboon, Martin Theobald, Gary Wesley, and

Jaewon Yang. Many of you have already graduated and are having awesome careers. I

would like to follow your footsteps.

I also thank my other friends within the Gates building: James Chen, Philip Guo, Sung-

pack Hong, Eric Kao, Minsung Kim, Sangkyun Kim, Seungbeom Kim, Aleksandra Ko-

rolova, Jinsung Kwon, Honglak Lee, HyoukJoong Lee, Jungwoo Lee, Suin Lee, Austen

McDonald, Sung Hee Park, Jiwon Seo, Dongjun Shin, Qiqi Yan, and Richard Yoo.

I thank my KAIST Alumni buddies, who have been a great support throughout my

PhD. I also thank my numerous bible study friends for making me grow spiritually in God

and teaching me what is really important in life. I especially thank my Korean Christian

Fellowship and Menlo Park Presbyterian Church friends.

I thank my parents who have sacrificed so much for my education. Without them, I

would not have been able to study at Stanford. I love them from the bottom of my heart.

vi

Contents

Abstract iv

Acknowledgements v

1 Introduction 1
1.1 Basic ER Model . 4

1.2 ER Measure . 5

1.3 Structure of This Thesis . 5

1.3.1 Data Integration . 6

1.3.2 Data Privacy . 7

1.4 Related Work . 8

2 Pay-As-You-Go Entity Resolution 10
2.1 Framework . 13

2.1.1 ER Model . 13

2.1.2 Pay-As-You-Go Model . 14

2.2 Sorted List of Record Pairs . 16

2.2.1 Generation . 17

2.2.2 Use . 19

2.3 Hierarchy of Record Partitions . 21

2.3.1 Generation . 22

2.3.2 Use . 25

2.3.3 General Incremental Property . 28

2.4 Ordered List of Records . 31

vii

2.4.1 Generation . 32

2.4.2 Use . 37

2.5 Using Multiple Hints . 38

2.6 Determining Which Hint to Use . 39

2.7 Experimental Results . 39

2.7.1 Experimental setting . 41

2.7.2 Hint Benefit . 44

2.7.3 Hint Overhead . 47

2.7.4 Choosing the Number of Levels 52

2.7.5 Sampling Performance . 53

2.7.6 Using Weights on Partition Hierarchy Levels 54

2.7.7 Non-incremental ER algorithms 55

2.7.8 Early Termination on Large Datasets 56

2.7.9 Scalability of Generating Hints . 58

2.8 Related Work . 59

2.9 Conclusion . 60

3 Evolving Rules 61
3.1 Match-based Evolution . 64

3.1.1 Match-based Clustering Model . 64

3.1.2 Properties . 66

3.1.3 Materialization . 79

3.1.4 Rule Evolution . 79

3.2 Materialization Strategies . 86

3.3 Distance-based Evolution . 86

3.3.1 Distance-based Clustering Model 87

3.3.2 Properties . 88

3.3.3 Rule Evolution . 93

3.4 Experimental Evaluation . 94

3.4.1 Experimental Setting . 95

3.4.2 Evaluating IO costs . 97

viii

3.4.3 Rule Evolution Efficiency . 98

3.4.4 Common Rule Strictness . 100

3.4.5 Materialization Overhead . 101

3.4.6 Total Runtime . 103

3.4.7 Without the Properties . 104

3.5 Related Work . 106

3.6 Conclusion . 107

4 Joint Entity Resolution 109
4.1 Framework . 112

4.1.1 ER Model . 113

4.1.2 Joint ER Model . 115

4.1.3 Physical Execution . 115

4.2 Scheduler . 119

4.2.1 Influence Graph . 119

4.2.2 Execution Plan . 121

4.2.3 Exploiting the Influence Graph . 128

4.3 Joint ER Processor . 129

4.3.1 Concurrent Set . 129

4.3.2 Fixed-Point Set . 130

4.3.3 Joint ER Algorithm . 132

4.3.4 Expander Function . 132

4.4 ER Algorithm Training . 136

4.4.1 Match Rule . 136

4.4.2 Training . 137

4.4.3 State-based Training . 138

4.5 Experimental Results . 139

4.5.1 Synthetic Data Experiments . 139

4.5.2 Real Data Experiments . 147

4.5.3 Training Accuracy . 152

4.6 Related Work . 156

ix

4.7 Conclusion . 157

5 Entity Resolution with Negative Rules 159
5.1 ER-N Model . 162

5.1.1 ER . 162

5.1.2 Negative Rules . 165

5.1.3 ER-N . 165

5.1.4 Resolving Inconsistencies . 166

5.2 The GNR Algorithm . 168

5.3 Properties for the Rules . 171

5.3.1 Match and Merge Functions . 172

5.3.2 Negative Rules . 174

5.4 The ENR Algorithm . 175

5.5 Precision and Recall . 178

5.5.1 Experimental Setting . 178

5.5.2 Rules . 179

5.5.3 Strategies . 180

5.5.4 Other Negative Rules . 183

5.5.5 Choosing Negative Rules . 185

5.6 Performance . 187

5.6.1 Human Effort . 187

5.6.2 System Runtime . 189

5.6.3 Without the Properties . 191

5.7 Related Work . 192

5.8 Conclusion . 194

6 A Model for Quantifying Information Leakage 195
6.1 Information Leakage Measure . 197

6.1.1 Correctness . 199

6.1.2 Completeness . 200

6.1.3 Adversary Confidence . 201

6.1.4 Adversary Effort on Data Analysis 203

x

6.2 Relationship to Other Measures . 205

6.2.1 k-anonymity . 206

6.2.2 l-diversity . 208

6.3 Applications . 209

6.3.1 Releasing Critical Information . 209

6.3.2 Releasing Disinformation . 211

6.3.3 Enhancing a Composite Record 212

6.4 Computation . 213

6.4.1 Exact Solution using Constant Weights 214

6.4.2 Approximation using Arbitrary Weights 217

6.5 Experiments . 218

6.5.1 Trends . 219

6.5.2 Accuracy of Approximate Algorithm 220

6.5.3 Runtime Performance . 220

6.6 Related Work . 221

6.7 Conclusion . 222

7 Disinformation Techniques for Entity Resolution 223
7.1 Framework . 227

7.1.1 ER Model . 227

7.1.2 Pairwise Approach for Merging Clusters 228

7.1.3 Disinformation Problem . 229

7.1.4 Monotonicity . 234

7.2 Planning Algorithms . 235

7.2.1 Exact Algorithm for 1-Level Plans 235

7.2.2 Approximate Algorithm for 1-Level Plans 237

7.2.3 Heuristics for General Plans . 238

7.3 Creating New Records . 241

7.3.1 Euclidean Space . 241

7.3.2 Non-Euclidean Space . 242

7.4 Experiments . 244

xi

7.4.1 Synthetic Data Experiments . 244

7.4.2 Real Data Experiments . 257

7.5 Related Work . 262

7.6 Conclusion . 263

8 Conclusion 264
8.1 Summary . 264

8.2 Future Work . 266

Bibliography 269

xii

List of Tables

1.1 A set of records representing persons . 4

3.1 Match Rules . 96

3.2 ER and rule evolution algorithms tested 97

3.3 Basic operations in blocking ER framework 98

3.4 Decomposition of ER processes for one rule evolution 98

3.5 ER algorithm and rule evolution runtimes 99

3.6 Time overhead (ratio to old ER algorithm runtime) and space overhead

(ratio to old ER result) of rule materialization, 3K records 102

3.7 Runtime and accuracy results for ER algorithms without the properties . . . 106

4.1 Papers and Venues . 111

4.2 Execution Plan Syntax . 122

4.3 Parameters for generating synthetic data 140

4.4 Physical Execution Summary on Spock Data 152

4.5 Cora data match rules . 153

4.6 Trained weights . 154

4.7 Trained weights without states . 155

4.8 Accuracy results of training with states . 155

4.9 Accuracy results of training without states 156

6.1 Database of Patients (R) . 206

6.2 3-Anonymous Version of Table 6.1 (Ra) 207

6.3 Background Information (Rb) . 208

xiii

6.4 Parameters for Data Generation . 218

6.5 Information Leakage Comparison . 220

7.1 Camera Rumor Records . 225

7.2 Parameters for generating synthetic data 245

7.3 Disinformation Plan Algorithms . 247

7.4 Decrease in confusion (%) with sampling 253

7.5 Decrease in confusion (%) with restrictions 254

xiv

List of Figures

2.1 Pay-as-you-go approach of ER . 11

2.2 Pay-As-You-Go ER Framework . 16

2.3 A partition hierarchy hint for resolving R 21

2.4 Hints to generate and ER algorithms to run 40

2.5 Recall of ER algorithms using hints against work or runtime, 3K shop-

ping/hotel records . 48

2.6 Time and space hint construction overhead depending on the type of hint,

3K shopping/hotel records . 49

2.7 Construction time versus time to obtain 0.8 recall, 3K shopping records . . 52

2.8 Construction time impact on hint payoff point, 3K shopping records 53

2.9 Number of levels impact on recall, 3K shopping records 54

2.10 List of pairs using sampling, 3K shopping records 55

2.11 Weights impact on accuracy, 3K shopping records 56

2.12 Non-incremental algorithm accuracy, 3K shopping records 57

2.13 Runtime and recall for different schemes, 2M shopping records 58

2.14 Hint generation time (secs), 2M shopping records 59

3.1 Records to resolve . 62

3.2 Evolving from rule B1 to rule B3 . 62

3.3 ER Algorithms satisfying properties . 74

3.4 Degree of change impact on runtime, 3K shopping records 101

3.5 Scalability, 1M shopping records . 104

4.1 System Architecture . 113

xv

4.2 The Physical Execution (((R), (S)),((),(S, T))) 116

4.3 An Influence Graph . 120

4.4 Linear structure results . 142

4.5 Random structure results . 143

4.6 Value similarity weights versus iterations 144

4.7 Threshold versus expander function performance 145

4.8 Number of duplicates versus expander function performance 146

4.9 Number of processors versus record comparisons 146

4.10 Blocking scenario versus record comparisons 148

4.11 Scalability results on the Spock dataset . 151

4.12 Scalability results when running R-Swoosh on P 152

5.1 A list of people . 160

5.2 Package formation . 176

5.3 Precision and recall for different strategies 181

5.4 Distribution of base records per output record 181

5.5 Precision and recall for various negative rules 184

5.6 Human effort versus recall . 185

5.7 List of negative rules . 186

5.8 Results for various combinations of negative rules 186

5.9 Human effort . 188

5.10 Binary density impact on human effort . 189

5.11 Runtime decomposition . 190

5.12 Scalability . 190

5.13 Result sizes and similarities . 192

6.1 Information Leakage with Entity Resolution 197

6.2 Self and Linkage Disinformation . 212

6.3 Trends and Scalability . 219

7.1 Cost Graph . 230

7.2 Robustness of the HCS and SN algorithms 248

xvi

7.3 Comparison of disinformation algorithms 249

7.4 Window size impact on confusion for SN 250

7.5 Robustness of the HCS algorithm . 250

7.6 Entity distance impact on confusion . 251

7.7 Universal disinformation . 252

7.8 Number of dimensions impact on confusion 255

7.9 Entities with fewer duplicates . 256

7.10 Scalability of disinformation generation 257

7.11 Hotel data confusion results . 260

7.12 Shopping data confusion results . 262

xvii

Chapter 1

Introduction

Data analytics has become an extremely important and challenging problem in disciplines

like computer science, biology, medicine, finance, and homeland security. This problem

involves several aspects. First, large volumes of data must be imported and stored relying

on cleansing and filtering techniques. Next, sophisticated algorithms are used to analyze

the data and extract “useful” information. Finally, various user interfaces can be used to

visualize and understand the data.

Analyzing large amounts of data has become an extremely hard task. Everywhere you

look around, the quantity of information in the world is large and increasing exponentially.

For example, various social networks like Facebook generate terabytes of data per day in

the form of photos, videos, wall posts, etc., and will generate significantly more data in the

near future. The size of today’s data is unprecedented and cannot simply be analyzed with

conventional data management techniques.

Nevertheless, being able to efficiently “make sense” out of big data is becoming even

more important than ever in various areas. In computer science, Web-scale data needs to

be analyzed in order to understand global trends and user behavior. In biology, interpreting

massive amounts of DNA and RNA sequencing data is essential for understanding complex

biological systems. Already, the explosive growth of sequencing data has exceeded the

growth rate of storage capacity. In medicine, health devices generate huge amounts of

data that reflect the condition of patients by monitoring their sleep, heart rate, and other

health conditions. In finance, the stock market generates immense quantities of transaction

1

CHAPTER 1. INTRODUCTION 2

data that can help companies maximize profit. In homeland security, the U.S. government

receives more terabytes each day than the amount of text in the Library of Congress. This

data may then be analyzed for identifying potential threats to the country. While we have

only listed a few examples, there are many other areas that are starting to exploit large

amounts of information as well.

One of the main challenges in data analytics is to collect data from multiple sources and

combine them together so that data analysts can access and manipulate the information in

a unified way. When combining different data, a fundamental problem is identifying which

pieces of information describe the same real-world entity. In this thesis, we thus focus on

Entity Resolution (ER) (sometimes referred to as deduplication), which is the process of

“matching” and “merging” database records judged to represent the same real-world entity.

To illustrate ER, mailing lists may contain multiple entries representing the same physical

address, but each record may be slightly different, e.g., containing different spellings or

missing some information. As a second example, a comparative shopping website may

aggregate product catalogs from multiple merchants.

Records that refer to the same real-world entity are said to match with each other. Iden-

tifying records that match poses challenging problems because typically there are no unique

identifiers across sources. For example, when we are trying to identify the records that

represent the same product, merchant catalogs that contain product information may use

different product codes. A given record may appear in a different way in each source,

and there is a fair amount of guesswork in determining which records match. Deciding

if records match is often computationally expensive, e.g., may involve finding maximal

common subsequences in two strings.

An ER process sometimes combines the matching records by merging them together.

How to actually merge records is often application dependent. For example, let us suppose

different prices appear in two records to be merged; in some cases we may wish to keep

both prices while in others we may want to pick just one as the “consolidated” price.

The first contribution of this thesis is a set of scalable and general solutions for ER.

Scaling ER on very large datasets is essential for applications using big data. For example,

a people search engine may have to quickly resolve hundreds of millions of people records

collected from the Web to stay in business. We view either the entire ER process or the

CHAPTER 1. INTRODUCTION 3

matching and merging of records as black-box operations and provide general techniques

that can be used in a wide range of applications.

One way to solve the scalability problem is to produce approximate ER results us-

ing significantly less time. In practice, applications may need to resolve large data sets

efficiently, but do not require the ER result that would be produced from running ER ex-

haustively on the entire data. For example, people data from the Web may simply be too

large to completely resolve with a reasonable amount of work. As another example, real-

time applications may not be able to tolerate any ER processing that takes longer than a

certain amount of time. We thus study a pay-as-you-go approach for ER where the goal is

to maximize the ER progress using a limited amount of work.

In addition, there are scalability challenges for specific functionalities of ER. First, ER

is not a one-time process, but may be constantly improved as the data, schema and applica-

tion are better understood. Hence we study the problem of incrementally updating an ER

result where the logic of the ER algorithm is improved frequently. Second, ER may involve

different types of records (e.g., authors, publications, institutions, venues), and resolving

records of one type can impact the resolution of other types of records. We thus study the

problem of jointly resolving multiple types of records together using efficient scheduling.

Finally, ER results may contain “inconsistencies,” which are patterns that should not ap-

pear in a final ER result. Inconsistencies may occur either due to mistakes by the match

and merge function writers or changes in the application semantics. We thus study the

problem of ER with integrity constraints that can be used to produce ER results without the

inconsistencies. All of these functionalities of ER must be performed in a scalable fashion

as well.

The second contribution of this thesis is a study of data analytics from a privacy point of

view. The flip side of data integration is that there is now a danger of one’s personal infor-

mation being more exposed to the public. For example, life insurers are exploring ways to

predict the life spans of their customers by piecing together health-related personal infor-

mation on the Web [100]. As another example, people search engines like Spock.com [92]

resolve hundreds of millions of person records crawled from the Web to create one profile

per person and thus reveal more personal information.

The first step for solving the data privacy problem is to quantify information leakage.

CHAPTER 1. INTRODUCTION 4

Name Phone E-mail
r1 John Doe 235-2635 jdoe@yahoo
r2 J. Doe 234-4358
r3 John D. 234-4358 jdoe@yahoo

Table 1.1: A set of records representing persons

As more of our sensitive data gets exposed to a variety of merchants, health care providers,

employers, social sites and so on, there is a higher chance that an adversary can use ER to

“connect the dots” and piece together our information, leading to even more loss of privacy.

The more complete the integrated information, the more our privacy is compromised.

Once we are able to quantify information leakage, the next step is to develop techniques

for managing information leakage. We assume that an agent has some sensitive informa-

tion that the adversary is trying to obtain. For example, a camera company (the agent)

may secretly be developing its new camera model, and a user (the adversary) may want to

know in advance the detailed specs of the model. The agent’s goal is to disseminate false

information to “dilute” what is known by the adversary.

1.1 Basic ER Model

We define a basic model for ER. This model, or its variants, are used throughout this thesis.

We start with a set of records R = {r1, r2, . . . , rn}. We do not assume any particular form

or data model for representing records. An ER algorithm takes R as its input and clusters

together records that the algorithm decides are likely to represent the same real-world entity.

The ER output can thus be viewed as a simple partition of the input set.

To illustrate an ER algorithm, consider the records of Table 1.1. Note that the structure

of these records and the way we determine if records refer to the same real-world entity (via

a pairwise comparison) are part of the example. For this example, the ER algorithm works

as follows: A function compares the name, phone, and email values of pairs of records.

If the names are very similar (above some threshold), the records are said to match. The

records also match if the phone and email are identical.

For our sample data, the ER algorithm may determine that r1 and r2 match, but r3 does

CHAPTER 1. INTRODUCTION 5

not match either r1 or r2. For instance, the function may determine that “John Doe” and

“J. Doe” are similar to each other, but “John D.” is not similar to anything. Thus, r1 and r2

are clustered together to form the partition {{r1, r2}, {r3}} where the inner curly brackets

denote the clusters in the output partition.

Since records in an output cluster are meant to represent a single real-world entity, the

cluster can be considered a “composite” new record. In some cases we may apply a merge

operation to actually generate the composite record. In our example above, suppose that

the ER algorithm combines the names into a “normalized” representative, and performs a

set-union on the emails and phone numbers. Then the records r1 and r2 will merge into the

new record 〈r1, r2〉 as shown below. (Here we denote a merged record with angle brackets.)

〈r1, r2〉 John Doe 234-4358, 235-2635 jdoe@yahoo

In this case, the ER result is the set of records {〈r1, r2〉, r3}. Notice that the ER algo-

rithm can now iteratively match 〈r1, r2〉with r3 and merge them together because they have

an identical phone and email pair.

1.2 ER Measure

Our basic method for evaluating an ER algorithm is to compare the ER result with a “Gold

Standard”. Suppose that the Gold Standard G contains the set of record pairs that correctly

refer to the same entity while set S contains the matching pairs produced by our ER al-

gorithm. Then the precision Pr is |G∩S||S| while the recall Re is |G∩S||G| . For example, if G

= {{r, s, t}, {u}, {v}} and S = {{r, s}, {t}, {u, v}}, then Pr = 1
2

and Re = 1
3
. Using

Pr and Re, we compute the F1-measure, which is defined as 2×Pr×Re
Pr+Re

, and use it as our

accuracy measure. Throughout this thesis, we use the F1-measure, or some of its variants,

for evaluating ER.

1.3 Structure of This Thesis

In this thesis, we study two problems: data integration and data privacy. For data integration

(Chapters 2–5), we propose scalable techniques and new functionalities for ER. For data

CHAPTER 1. INTRODUCTION 6

privacy (Chapters 6 and 7), we propose a measure for quantifying information leakage

using ER and techniques for managing information leakage, respectively. In Chapter 8, we

summarize the results of this thesis and discuss future ER extensions. We now elaborate on

each chapter.

1.3.1 Data Integration

In Chapter 2, we propose a “pay-as-you-go” approach for ER [108] where we investigate

how to maximize the progress of ER with a limited amount of work. The key idea is to

exploit hints, which give information on records that are likely to refer to the same real-

world entity. A hint can be represented in various formats (e.g., a grouping of records

based on their likelihood of matching), and ER can use this information as a guideline for

which records to compare first. We introduce a family of techniques for constructing hints

efficiently and techniques for using the hints to maximize the number of matching records

identified using a limited amount of work. Using real data sets, we illustrate the potential

gains of our pay-as-you-go approach compared to running ER without using hints.

In Chapter 3, we study the problem of incremental ER [103]. ER may not be a one-time

process, but is constantly improved as the data, schema, and application are better under-

stood. We say that ER logic evolves whenever it is modified. Our goal is to keep the ER

result up-to-date when the ER logic used to compare records evolves frequently. A naı̈ve

approach that re-runs ER from scratch may not be tolerable for resolving large datasets.

This chapter investigates when and how we can instead exploit previous materialized ER

results to save redundant work with evolved logic. We introduce algorithm properties that

facilitate evolution, and we propose efficient rule evolution techniques for two clustering

ER models: match-based clustering and distance-based clustering. Using real data sets, we

illustrate the cost of materializations and the potential gains over the naı̈ve approach.

In Chapter 4, we study the problem of joint ER where multiple datasets of different

entity types are resolved together [107]. We propose a flexible, modular resolution frame-

work where existing ER algorithms developed for a given record type can be plugged in

and used in concert with other ER algorithms. Our approach also makes it possible to run

ER on subsets of similar records at a time, important when the full data is too large to

CHAPTER 1. INTRODUCTION 7

resolve together. We study the problem of joint ER where individual ER algorithms are

scheduled and coordinated in order to resolve the full data set. We then evaluate our joint

ER techniques on synthetic and real data and show the scalability of our approach. We

also introduce a state-based training technique where each ER algorithm is trained using

machine learning for the particular execution context (relative to other types of records)

where it will be used.

In Chapter 5, we study the problem of ER with inconsistencies [102]. To remove ER in-

consistencies, we introduce negative rules that disallow inconsistencies in the ER solution.

A consistent solution is then derived based on guidance from a domain expert, leading to

accurate solutions. We formalize the problem of ER with negative rules (ER-N), treating

the match, merge, and negative rules as black boxes, which permits expressive and extensi-

ble ER-N solutions. We identify important properties for the rules that, if satisfied, enable

much more efficient ER-N. We develop and evaluate two algorithms that find an ER-N so-

lution based on guidance from the domain expert: the GNR algorithm that does not assume

the properties and the ENR algorithm that exploits the properties.

1.3.2 Data Privacy

In Chapter 6, we address the problem of quantifying information leakage [105, 106]. We

present a model that captures the privacy loss (information leakage) relative to a target

person, on a continuous scale from 0 (no information about the target is known by the

adversary) to 1 (adversary knows everything about the target). The model takes into ac-

count the confidence the adversary has for the gathered information (leakage is less if the

adversary is not confident), as well as incorrect information (leakage is less if the gath-

ered information does not match the target’s). We compare our information leakage model

with existing privacy models, and we propose several interesting problems that can be for-

mulated with our model. We also propose efficient algorithms for computing information

leakage and evaluate their performance and scalability.

In Chapter 7, we propose disinformation techniques for Entity Resolution in order to

manage information leakage [104]. We model the adversary as an ER process that pieces

together available information. We formalize the problem of finding the disinformation

CHAPTER 1. INTRODUCTION 8

with the highest benefit given a limited budget for creating the disinformation and propose

efficient algorithms for solving the problem. We then evaluate our disinformation planning

algorithms on synthetic and real data and compare the robustness of existing ER algo-

rithms. In general, our disinformation techniques can be used as a framework for testing

ER robustness.

1.4 Related Work

In this section, we cover the related work for ER in general. The other chapters in this

thesis cover different aspects of ER and will have their own specific related work.

Originally introduced by Newcombe et al. [78] as “record linkage”, entity resolution

was then studied under various names, such as merge/purge [54], deduplication [87], refer-

ence reconciliation [31], object identification [97], and others.

Several works have addressed the issue of performance for ER algorithms. However,

most of them make strong assumptions on the data and/or the match functions to make

their algorithms efficient. For example, references [54, 55] assume that records can be

represented by one or multiple alphanumeric keys, and that most matches occur between

records whose keys are lexicographically close. A “blocking key” can be used to split

records into buckets [60] or canopies [71]. Reference [62] proposed mapping the records’

values into a multi-dimensional Euclidean space, then performing a similarity join. An

overview of such “blocking” methods can be found in [8]. Since they do not compare all

records, such techniques make ER algorithms produce approximate results. More recently,

reference [6] proposed efficient algorithms for set similarity joins using string similarity

functions. In comparison, we view the entire ER process as a black-box operation and

provide general and scalable techniques that can be used in various applications. (In some

cases we only view the match and merge functions of ER as black-box operations.)

While our work focuses on performance, there has also been a significant amount of

work on enhancing the precision and recall of the ER process. The first formalization, by

Fellegi and Sunter [37], optimizes the relative importance of numerical similarity functions

between records, in a probabilistic setting. In this paper and most follow-ups (see [111, 48]

CHAPTER 1. INTRODUCTION 9

for recent surveys), the assessment of ER is in terms of precision and recall of the ob-

tained classification. Many string comparison techniques based on edit-distances [91], TF-

IDF [25], or adaptive techniques such as q-grams [20, 47] are used for matching records.

Reference [75] removes attribute level conflicts of matching records by comparing the qual-

ity of their data sources. Reference [88] provides user-defined grouping as part of an SQL

extension. As domain-independent techniques may not be suitable for some domains, one

may need domain-specific value comparison functions [5]. Any of these techniques can fill

in the black boxes of either the entire ER process or the match and merge functions. We

can thus decouple the techniques above from our ER algorithms that call the black boxes.

Chapter 2

Pay-As-You-Go Entity Resolution

An ER process is often extremely expensive due to very large data sets and compute-

intensive record comparisons. For example, collecting people profiles on social websites

can yield hundreds of millions of records that need to be resolved. Comparing each pair of

records to estimate their “similarity” can be expensive as many of their fields may need to

be compared and substantial application logic must be invoked.

At the same time, it may be very important to run ER within a limited amount of time.

For example, anti-terrorism applications may require almost real-time analysis (where

streaming data is processed in small batches using operations like ER) to capture a sus-

pect who is on the brink of escaping. Although the analysis may not be as complete as

when the full data is available, the fast processing can increase the chance of the suspect

being captured. As another example, a newsfeed entity matching algorithm may have very

limited time for resolving company names and individuals in a stock market trading sce-

nario where financial data is generated with high frequency.

In this chapter we explore a “pay-as-you-go” approach to entity resolution, where we

obtain partial results gradually as we perform resolution, so we can at least get some results

faster. As we will see, the partial results may not identify all the records that correspond

to the same real-world entity. Our goal will be to obtain as much of the overall result as

possible, as quickly as possible.

Figure 2.1 is a simple cartoon sketch to illustrate our approach. The horizontal axis

is the amount of work performed, say the number of record pairs that are compared. The

10

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 11

8

Comparisons

M

at
ch

es
 F

ou
nd

Conventional

Pay-as-you-go

Figure 2.1: Pay-as-you-go approach of ER

vertical axis shows the “quality” of the result, say the number of pairs that have been found

to match (i.e., to represent the same entity). The bottom curve in the figure (running mostly

along the horizontal axis) illustrates the behavior of a typical non-incremental ER algo-

rithm: it only yields its final answer after it has done all the work. If we do not have time

to wait to the end, we get no results. The center solid line represents a typical incremental

ER algorithm that reports results as it goes along. This algorithm is preferable when we do

not have time for the full resolution.

The dotted line in Figure 2.1 shows the type of algorithm we want to develop here:

instead of comparing records in random order, it looks for matches in the pairs that are

most likely to match, hence it gets good quality results very fast. To identify the most

profitable work to do early on, the algorithm performs some pre-analysis (the initial flat

part of the curve). The pre-analysis yields what we call hints that are then used by the

subsequent resolution phase to identify profitable work. If we have limited time, in our

example say half of the time taken by the full resolution, our approach is able to give us a

much better result than the traditional algorithms. Of course, in other cases our approach

may be counterproductive (e.g., if the pre-analysis takes too long relative to the available

time). Furthermore, not all ER approaches are amenable to the pay-as-you-go approach.

In this chapter we address three important questions. First, how do we construct the

hints? Our hints rely on an approximate and inexpensive way to compare records, e.g.,

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 12

two records are more likely to represent the same person if they have similar zip codes.

However, there are several ways in which the hint can be encoded. For instance, a hint can

be an ordered list of record pairs, sorted by likelihood of matching. A hint can also be an

ordering of the records such that the number of matching records identified is maximized

when the list is resolved sequentially.

Second, how do we use the hints? The answer to this question depends on the ER strat-

egy one is utilizing, and as stated earlier, some algorithms are not amenable to using hints.

Since there are so many ER strategies available, clearly we cannot give a comprehensive

answer to this second question, but we do illustrate the use of different types of hints in

several representative instances.

Third, in what cases does pay-as-you-go pay off? Again, we cannot give a comprehen-

sive answer but we do illustrate performance on several real scenarios and we identify the

key factors that determine the desirability of pay-as-you-go.

It is important to note that our work is empirical by nature. Hints are heuristics. We will

show they work well in representative cases, but they provide no formal guarantees. Also,

our goal here is to provide a unifying framework for hints and to evaluate the potential

gains. Certain types of hints have been used before (see Section 2.8), and we do not claim

to cover all possible types of hints.

In summary, our contributions in this chapter are as follows:

• We formalize pay-as-you-go ER where our goal is to improve the partial ER result

(Section 2.1). Our techniques build on top of blocking [77], which is a standard

technique for scaling ER.

• We propose three types of hints:

– Sorted List of Record Pairs: The most informative (but least compact) type of

hint (Section 2.2).

– Hierarchy of Partitions: A moderately informative and compact type of hint

(Section 2.3).

– Sorted List of Records: The most compact (but least informative) type of hint

(Section 2.4).

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 13

For each hint type, we propose techniques for efficiently generating hints and in-

vestigate how ER algorithms can utilize hints to maximize the quality of ER while

minimizing the number of record comparisons.

• We extend our approach to using multiple hints (Section 2.5).

• We experimentally evaluate how applying hints can help ER produce good quality

results fast (Section 2.7). We use actual comparison shopping data from Yahoo!

Shopping and hotel information from Yahoo! Travel. Our results show scenarios

where hints improve the ER processing to find the majority of matching records

within a fraction of the total runtime.

2.1 Framework

In this section, we define our framework for pay-as-you-go ER. We first define a general

model for entity resolution, and then we explain how pay-as-you-go fits in.

2.1.1 ER Model

An ER algorithm E takes as input a set of records R that describe real-world entities. The

ER output is a partition of the input that groups together records that describe the same

real-world entity. For example, the output F = {{r1, r3}, {r2}, {r4, r5, r6}} indicates that

records r1 and r3 represent one entity, r2 by itself represents a different entity, and so on.

Since sometimes we wish to run ER on the output of a previous resolution, we actually

define the input as a partition. Initially, each record is in its own partition, e.g., {{r1},
{r2},{r3}, {r4}, {r5}, {r6}}.

We denote the ER result of E on R at time t as E(R)[t]. In the above example, if E

has grouped {r1} and {r3} after 5 seconds, then E(R)[5] = {{r1, r3}, {r2}, {r4}, {r5},
{r6}}. We denote the total runtime of E(R) as T (E,R). A quality metric M can be

used to evaluate an ER result against the correct partitioning of R. For example, suppose

that M computes the fraction of clustered record pairs that are also clustered according to

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 14

the correct ER answer. Then if E(R) = {{r1, r2, r3}, {r4}} and the correct clustering is

{{r1, r2}, {r3}, {r4}}, M(E(R)) = 1
3
.

We focus on ER algorithms that work by repeatedly comparing pairs of records to

determine their semantic similarity or difference. Although ER algorithms use different

strategies, the general principle is that if a pair of records appear “similar,” then they are

candidates for the same output partition. Since there are many potential records pairs to

compare (n×(n−1)
2

pairs for n records), most algorithms use some type of pruning strategy,

where many pairs are ruled out based on a very coarse computation.

The most popular pruning strategy uses blocking or indexing [77, 54, 71, 43]. Input

records are placed in blocks according to one or more of their fields, e.g., for product

records, cameras are placed in one block, cell phones in another, and so on. LSH (locality

sensitive hashing) [43] can also be used to place each record in one or more blocks. Then

only pairs of records within the same block are compared. The number of record compar-

isons is substantially reduced, although of course matches may be missed. For instance,

one store may call a camera-phone a cell phone while another may (mistakenly) call it a

camera, so the two records from different stores will not be matched up even though they

represent the same product.

Conceptually then we can think of blocking as defining a set of candidate pairs that

will be carefully compared. The set may not be materialized, i.e., may only be implicitly

defined. For instance, the placement of records in blocks defines the candidate set to be all

pairs of records residing within a single block.

2.1.2 Pay-As-You-Go Model

With the pay-as-you-go model, we conceptually order the candidate pairs by the likelihood

of a match. Then the ER algorithm performs its record comparisons considering first the

more-likely-to-match pairs. The key of course is to determine the ordering of pairs very

efficiently, even if the order is approximate.

To illustrate, say we have placed six records into two blocks: the first block contains

records r1, r2, and r3, while the second block contains r4, r5, and r6. The implicit set

of candidate pairs is {r1 − r2, r1 − r3, r2 − r3, r4 − r5 . . .}. A traditional ER algorithm

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 15

would then compare these pairs, probably by considering all pairs in the first block in some

arbitrary order, and then the pairs in the second block. With pay-as-you-go, we instead

first compare the most likely pair from either bucket, say r5 − r6. Then we compare the

next most likely, say r2 − r3. However, if only one block at a time fits in memory, we may

prefer to order each block independently. That is, we first compare the pairs in the first

block by descending match likelihood, then we do the same for the second block. Either

way, the goal is to discover matching pairs faster than by considering the candidate pairs in

an arbitrary order. The ER algorithm can then incrementally construct an output partition

that will more quickly approximate the final result. (As noted earlier, not all ER algorithms

can be changed to compute the output incrementally and to consider candidate pairs by

increasing match likelihood.)

More formally, we define a pay-as-you-go version of an ER algorithm as follows.

Definition 2.1.0.1. Given a quality metric M , a pay-as-you-go algorithm E ′ of the ER

algorithm E satisfies the following conditions.

• Improved Early Quality: For some given target time(s) tg < T (E,R),M(E ′(R)[tg]) >

M(E(R)[tg]). Target time tg may be substantially smaller than T (E,R) and repre-

sent the time at which early results are needed.

• Same Eventual Quality: M(E ′(R)[t]) = M(E(R)[t]) for some time t ≥ T (E,R).

The first condition captures our goal of producing higher-quality ER results early on.

The second condition guarantees that the pay-as-you-go algorithm will eventually produce

an ER result that has the same quality as the ER result produced without hints. In com-

parison, blocking techniques may return an approximate ER result where the quality has

decreased.

To efficiently generate candidate pairs in (approximate) order by match likelihood, we

use an auxiliary data structure we call the hints. As illustrated in Figure 2.2, we discuss

three types of hints. The most general form is a sorted list of record pairs, although as we

will see, the list need not be fully materialized. A less general but more compact structure is

a hierarchy where each level represents a partition of the records grouped by their likelihood

of matching. A partition on a higher level is always coarser (see Definition 2.3.0.2) than a

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 16

All Pairs

Candidate Pairs

Ordered Pairs
(by likelihood of match)

Sorted List
of Pairs

Hierarchy of
Partitions

Sorted List
of Records

Blocking

Hints

Figure 2.2: Pay-As-You-Go ER Framework

partition on a lower level of the hierarchy. The third structure is a sorted list of records (not

pairs) where records that appear early in the list are more likely to match with each other

than records far down the list.

Note that a hint is not an interchangeable “module” than can simply be plugged into

any ER algorithm. Each hint is a tool that may or may not be applicable for a given ER

algorithm. In the following three sections we describe each hint type in more detail, and

show how it can be used by some ER algorithms. For simplicity we will focus on processing

a single block of records (although as noted earlier a single hint could span multiple blocks).

In Section 2.5, we discuss how to use multiple hints for resolving records.

2.2 Sorted List of Record Pairs

In this section we explore a hint that consists of a list of record pairs, ranked by the like-

lihood that the pairs match. We assume that the ER algorithm uses either a distance or a

match function. The distance function d(r, s) quantifies the differences between records r

and s: the smaller the distance the more likely it is that r and s represent the same real-

world entity. A match functionm(r, s) evaluates to true if it is deemed that r and s represent

the same real-world entity. Note that a match function may use a distance function. For

instance, the match function may be of the form “if d(r, s) < T and other conditions then

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 17

true,” where T is a threshold.

We also assume the existence of an estimator function e(r, s) that is much less expensive

to compute than both m(r, s) and d(r, s). The value of e(r, s) approximates the value of

d(r, s), and if the ER algorithm uses a match function, then the smaller the value of e(r, s),

the more likely it is that m(r, s) evaluates to true.

Conceptually, our hint will be the list of all record pairs, ordered by increasing e value.

In practice, the list may not be explicitly and fully generated. For instance, the list may be

truncated after a fixed number of pairs, or after the estimates reach a given threshold. As

we will see, another alternative is to generate the pairs “on demand”: the ER algorithm can

request the next pair on the list, at which point that pair is computed. As a result, we can

avoid an O(N2) complexity for generating the hint.

We now discuss how to generate the pair-list hint, and then how an ER algorithm can

use such a list.

2.2.1 Generation

We first discuss how we can generate pair-list hints using cheaper estimation techniques.

We then discuss a more general technique that does not require application estimates.

Using Application Estimates

In some cases, it is possible to construct an application-specific estimate function that is

cheap to compute. For example, if the distance function computes the geographic distance

between people records, we may estimate the distance using zip codes: if two records have

the same zip code, we say they are close, else we say they are far. If the distance function

computes and combines the similarity between many of the record’s attributes, the estimate

can only consider the similarity of one or two attributes, perhaps the most significant.

To generate the hint, we can compute e(r, s) for all record pairs, and insert each pair and

its estimate into a heap data structure, with the pair with smallest estimate at the top. After

we have inserted all pairs, if we want the full list we can remove all pairs by increasing

estimate. However, if we only want the top estimates, we can remove entries until we reach

a threshold distance, a limited number of pairs, or until the ER algorithm stops requesting

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 18

pairs from the hint.

In other cases, the estimates map into distances along a single dimension, in which case

the amount of data in the heap can be reduced substantially. For example, say e(r, s) is

the difference in the price attribute of records. (Say that records that are close in price are

likely to match.) In such a case, we can sort the records by price. Then, for each record, we

enter into the heap its closest neighbor on the price dimension (and the corresponding price

difference). To get the smallest estimate pair, we retrieve from the heap the record r with

the closest neighbor. We immediately look for r’s next closest neighbor (by consulting the

sorted list) and re-insert r into the heap with that new estimate. The space requirement in

this case is proportional to |R|, the number of records. On the other hand, if we store all

pairs of records in the heap, the space requirement is order of O(|R|2).

Application Estimate Not Available

In some cases, there may be no known inexpensive application specific estimate function

e(r, s). In such scenarios, we can actually construct a “generic but rough” estimate based on

sampling. This technique may not always give good results, but as we show in Section 2.7,

it can yield surprisingly good estimates in some cases.

The basic idea is to use the expensive function d to compute the distances for a small

subset of record pairs, and then use the computed distances to estimate the rest of the

distances. We do not assume the records to be in any space (e.g., Euclidean), so d does not

have to compute an absolute distance. The main advantage of this sampling technique is

its generality where we can estimate distances by only using the given distance function.

Suppose we have a sample S, which is a subset of the set of recordsR. We first measure the

actual distances between all the records within S and between records in S and records in

R − S. Assuming that the sample size |S| is significantly smaller than the total number of

records |R|, the number of real distances measured is much smaller than the total number

of pairwise distances. For example, if |R| = 1000 and |S| = 10, then the fraction of real

distances we compute is (10
2)+990×10

(1000
2)

= 9945
499500

≈ 2%.

Given a fraction of the real distances, we can estimate the other distances. One pos-

sible scheme captures the distance between two records r and s as the sum of squares

of the difference of d(r, t) and d(t, s) for each t ∈ S. Formally, the estimate e(r, s) =

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 19

Σt∈S(d(r, t) − d(t, s))2. The intuition is that, if r and s are very close, then they will be

almost the same distance from any sample point t. For example, if d(r, t1) = 8, d(r, t2) =

10, d(t1, s) = 5, and d(t2, s) = 4, then e(r, s) = (8−5)2 +(10−4)2 = 45. While 45 is not a

“real” distance, we only need to compare the relative sizes of estimates of different record

pairs to construct hints. The estimated distances among records within S and between

records in S and R − S must also be computed the same way as above. Our techniques

resemble triangulation techniques where a point is located by measuring angles to it from

known reference points.

The sample set may affect the quality of estimation. In the worst case, the sample can

be |S| duplicate records, and all estimates turn out to be the same for any pair of records.

Hence it is desirable for the sample records to be evenly dispersed within R as much as

possible. In practice, selecting a small random subset of |S| records works reasonably well

(see Section 2.7.5).

2.2.2 Use

The details on how to use a pair-list hint depend on the actual ER algorithm used. However,

there are two general principles that can be employed:

• If there is flexibility on the order in which functionsm(r, s) or d(r, s) are called, eval-

uate these functions first on r, s pairs that are higher in the pair-list. This approach

will hopefully let the algorithm identify matching pairs (or pairs that are clustered

together) earlier than if pairs are evaluated in random order.

• Do not call the d or m functions on pairs of records that are low on the pair-list,

assuming instead that the pair is “far” (pick some large distance as default) or does

not match.

Note that in some cases the ER algorithm with hints will return the same final answer

(call it F ′) as the unmodified algorithm (call it F), but matches or clusters will be found

faster. In other cases, the ER algorithm will return an answer F ′ that is different from the

unmodified answer F , but hopefully F ′ will have a high quality compared to F .

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 20

We now illustrate how the Sorted Neighbor algorithm [54] (called SN) can benefit from

a pair-list hint. Say a block contains the records R = {r1, r2, r3}. The SN algorithm first

sorts the records in R using a certain key assuming that closer records in the sorted list are

more likely to match. For example, suppose that we sort the records in R by their names

(which are not visible in this example) in alphabetical order to obtain the list [r3, r2, r1].

The SN algorithm then slides a window of size w on the sorted record list and compares

all the pairs of clusters that are inside the same window at any point. If the window size is 2

in our example, then we compare r3 with r2 and then r2 with r1, but not r3 with r1 because

they are never in the same window. We thus produce pairs of records that match with each

other. We can repeat this process using different keys (e.g., we could also sort the person

records by their address values). While collecting all the pairs of records that match, we

can perform a transitive closure on all the matching pairs of records to produce a partition

S of records. For example, if r3 matches with r2 and r2 matches with r1, then we merge r1,

r2, r3 together into the output S = {{r1, r2, r3}}.
To use a pair list as a hint, we define the cheap distance function e(r, s) to be the

difference in rank between records according to the sorted list. That is, given two records

r and s, e(r, s) = |Rank(r) − Rank(s)| where Rank(r) indicates the index of r in the

sorted list of the records in R. Intuitively, the closer records are according to the sorted list,

the more they are likely to match. In our example above, our sorted list is [r3, r2, r1], so

Rank(r3) = 1, Rank(r2) = 2, and Rank(r1) = 3. Hence, the distance between r1 and r2

is 1 while the distance between r1 and r3 is 2. The modified ER algorithm SN compares

the records with the shortest estimated distances first, we are effectively comparing records

within the smallest sliding window, and repeating the process of increasing the size of the

window by 1 and comparing the records that are within the new sliding window, but have

not been compared before. Notice that once the next shortest distance of records exceeds

the window size w, we have done the exact same record comparisons as the SN algorithm.

In addition, we can also stop comparing records in the middle of ER once we have exceeded

the work limit W . For instance, if we set W to only allow one record comparison, then we

only compare either 〈r3, r2〉 or 〈r2, r1〉 and terminate the ER algorithm.

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 21

7

{r1, r2}, {r3}, {r4, r5}

{r1, r2, r3}, {r4, r5}

{r1, r2, r3, r4, r5}P3 :

P2 :

P1 :

Figure 2.3: A partition hierarchy hint for resolving R

2.3 Hierarchy of Record Partitions

In this section, we propose the partition hierarchy as a possible format for hints. A parti-

tion hierarchy gives information on likely matching records in the form of partitions with

different levels of granularity where each partition represents a “possible world” of an ER

result. The partition of the bottom-most level is the most fine-grained clustering of the in-

put records. Higher partitions in the hierarchy are more coarse grained with larger clusters.

That is, instead of storing arbitrary partitions, we require the partitions to have an order of

granularity where coarser partitions are higher up in the hierarchy.

Definition 2.3.0.2. A partition P is coarser than another partition P ′ (denoted as P ′ ≤ P)

when the following condition holds:

• ∀c′ ∈ P ′,∃c ∈ P s.t. c′ ⊆ c

Figure 2.3 shows a hierarchy hint for the set of records {r1, r2, r3, r4, r5}. Suppose

that the most likely matching pairs of the records are 〈r1, r2〉 and 〈r4, r5〉. We can express

this information as the bottom-level partition {{r1, r2}, {r3}, {r4, r5}} of the hierarchy.

Among the clusters in the bottom level, suppose that {r1, r2} is more likely to be the same

entity as {r3} than {r4, r5}. The next level of the hint can then be a coarser partition of the

bottom level partition where the clusters {r1, r2} and {r3} from the bottom-level partition

have merged.

We now formally define a partition hierarchy hint.

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 22

Definition 2.3.0.3. A valid partition hierarchy hint H with L levels is a list of partitions

P1, . . . , PL of R where Pj ≤ Pj+1 for any 1 ≤ j < L.

For example, Figure 2.3 is a valid partition hierarchy hint where P1 = {{r1, r2}, {r3},
{r4, r5}} and P2 = {{r1, r2, r3}, {r4, r5}} (i.e., P1 ≤ P2). However, if P2 were {{r1}, {r2},
{r3}, {r4, r5}}, then H would not be valid because P1 6≤ P2.

Within the hierarchy of a partition hierarchy hint, a cluster c in a higher level is con-

nected to the clusters in the lower level that were combined to construct c. We call these

clusters the children of c.

Definition 2.3.0.4. The children of a cluster c (denoted as c.ch) in the ith level (i > 1) of

a partition hierarchy hint H is the largest set of clusters S in the (i − 1)st level of H such

that ∀c′ ∈ S, c′ ≤ c.

For example, in Figure 2.3, the children of cluster {r1, r2, r3} in P2 is the set {{r1, r2},
{r3}}, and the children of cluster {r4, r5} in P2 is the set {{r4, r5}}.

A significant advantage of the partition hierarchy structure is that the storage space

is linear in the number of records regardless of the height L. A compact way to store

the information of a partition hierarchy is to keep track of the clusters splitting into their

children in lower levels. For example, in Figure 2.3, there are two cluster splits: one that

splits the cluster {r1, r2, r3, r4, r5} in P3 into {r1, r2, r3} and {r4, r5} and another that splits

{r1, r2, r3} in P2 into {r1, r2} and {r3}. Hence we only need to save the information of

two cluster splits. Since a partition hierarchy can have at most |R| − 1 splits, the maximum

space required to store the splits information is linear in the number of records.

2.3.1 Generation

We propose various methods for efficiently constructing a partition hierarchy. In the fol-

lowing section, we construct hints based on sorted records, which are application estimates.

Next, we discuss how partition hierarchies can also be generated using hash functions

(which are also application estimates) and inexpensive distance functions (which are not

application estimates).

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 23

ALGORITHM 1: Generating a partition hierarchy hint from sorted records
1: Input: a list of sorted records Sorted = [r1, r2, . . .] and a list of thresholds T = [T1, . . . , TL]
2: Output: a hint H = {P1, . . . , PL}
3: Initialize partitions P1, . . . , PL
4: for r ∈ Sorted do
5: for Tj ∈ T do
6: if r.prev.exists() ∧KeyDistance(r.key, r.prev.key) ≤ Tj then
7: Add r into the newest cluster in Pj
8: else
9: Create new cluster in Pj containing r

10: return {P1, . . . , PL}

Using Sorted Records

We explore how a partition hierarchy can be generated when the estimated distances be-

tween records can map into distances along a single dimension according to a certain at-

tribute key.

Algorithm 1 shows how we can construct a partition hierarchy hint H using different

thresholds T1, . . . , TL for partitioning records based on their key value distances. (The

thresholds values are pre-specified based on the number of levels L in H .) For example,

say we have a list of three records [Bob, Bobby, Bobji] (the records are represented and

sorted by their names). Suppose that we set two thresholds T1 = 1 and T2 = 2, and use edit

distance (i.e., the number of character inserts and deletes required to convert one string to

another) for measuring the key distance between records. Algorithm 1 first reads Bob and

adds it into a new cluster both for P1 and P2 (Step 9). Then we read Bobby and compare

it with the previous record Bob (Step 6). The edit distance between Bob and Bobby is 2.

Since this value is larger than T1, we create a new cluster in P1 and add Bobby (Step 9).

Since the edit distance does not exceed T2, we add Bobby into the first cluster in P2 (Step

7). For the last record Bobji, the edit distance with the previous record Bobby is 4, which

exceeds both thresholds. As a result, a new cluster with Bobji is created for both P1 and

P2. The resulting hint thus contains two partitions: P1 = {{Bob}, {Bobby}, {Bobji}} and

P2 = {{Bob,Bobby}, {Bobji}}.
The following result shows the correctness of Algorithm 1.

Proposition 2.3.1. Algorithm 1 returns a valid hint.

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 24

Proof. A higher level partition P is always coarser than a lower level partition P ′ because

a higher threshold is used to split records in the sorted list. Hence, P ′ ≤ P . Since higher

level partitions is always coarser than lower level partitions, H is a valid hint according to

Definition 2.3.0.3.

Given that the input Sorted is already sorted, Algorithm 1 runs in O(L× |R|) time by

iterating all records in Sorted and, for each record, iterating through all thresholds.

Using Hash Functions

We can also generate a partition hierarchy based on hash functions with different probabil-

ities of collision. For example, minhash signatures [57] can be used to estimate set similar-

ity. Or if an attribute of records contains categorical values, then each record can be hashed

as its category. To generate L partitions for a hint, we can use a family of hash functions

H1, . . . , HL where for any 1 ≤ i < L, Hi has a lower probability of collision thanHi+1 and

any collision that occurs in Hi also occurs in Hi+1. The algorithm for constructing the hint

is similar to Algorithm 1, except that records are now assigned to clusters based on their

hash values. For example, suppose that we have a set of three records {Bobbie, Bobby,

Bobji}. Given H1 that uses the first four characters of a name as a record’s hash value

while H2 uses the first three characters, then P1 = {{Bobbie, Bobby}, {Bobji}} while P2

= {{Bobbie, Bobby, Bobji}}. The complexity of the algorithm is O(L× |R|) because for

each level, we iterate all the records and assign each record to its bucket in each level.

Using Distance Estimation Functions

We can also use an inexpensive distance estimator function e(r, s) to generate a partition

hierarchy. The e(r, s) function can be application specific or generated by a sampling

technique (see Section 2.2.1).

Algorithm 2 shows how we can construct a partition hierarchy hint given the distance

estimates. For each level Lj in H , we can use a union-find algorithm [95] to generate a

transitive closure of records that have estimated distances less than a given threshold Tj .

For example, suppose we have three records r1, r2, r3 whose estimated distances are set

as e(r1, r2) = 1, e(r1, r3) = 2, e(r2, r3) = 3. Also, suppose that we set T1 = 1 and T2 = 2.

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 25

ALGORITHM 2: Generating a partition hierarchy hint from pairwise distance estimates
1: Input: a list of pairs with their estimated distances Pairs = [〈r1, s1〉, 〈r2, s2〉, . . .], and a list

of thresholds T = [T1, . . . , TL]
2: Output: a hint H = {P1, . . . , PL}
3: Initialize partitions P1, . . . , PL
4: for 〈r, s〉 ∈ Pairs do
5: for Tj ∈ T do
6: if e(r, s) ≤ Tj then
7: TransitiveClosure(Pj , 〈r, s〉)
8: return {P1, . . . , PL}

Algorithm 2 first initializes all partitions P1, . . . , PL into empty sets (Step 3). For the first

pair 〈r1, r2〉, we compare its estimated distance 1 with T1 = 1 (Step 6). Since r1 and r2

are close enough, we connect r1 and r2 in P1 (Step 7). Next, we compare the estimated

distance 1 with T2 = 2. Again, r1 and r2 are connected in P2. We then read the next pair of

records 〈r1, r3〉. Since the estimated distance is 2, r1 and r3 are connected in P2, but not in

P1. For the last pair 〈r2, r3〉, the estimated distance 3 exceeds both thresholds. As a result,

the resulting hint contains two partitions: P1 = {{r1, r2}, {r3}} and P2 = {{r1, r2, r3}}.
In Step 7, one can use a more sophisticated clustering algorithm (instead of a transitive

closure) provided that the clustering results {P1, . . . , PL} satisfy Definition 2.3.0.3.

Notice that when estimating the distances between records, we do not have to actually

store the estimates for each pair of records, which would require a space quadratic in the

number of records. Instead, we can construct the partition hierarchy while generating the

estimates. Hence, the space complexity of construction based on sampling is O(L × |R|).

The time complexity for constructing the partition hierarchy isO(|R|2 +L×C(|R|)) where

|R|2 is needed for the sampling and C(|R|) is the complexity of the clustering algorithm

used to generate the partitions of R in the hierarchy.

2.3.2 Use

Given a partition hierarchy, the next question is how an ER algorithm can actually exploit

this information to maximize the ER quality with a limited amount of work. We assume

the ER algorithm is given based on what works best for the application or what developers

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 26

have experience with. In general, there are two principles that can be employed to use a

partition hierarchy:

• If there is flexibility on the order of which records are resolved, compare the records

that are in the same cluster in the bottom-most level of the hierarchy hint.

• If there is more time, start comparing records in the same cluster in higher levels of

the hierarchy hint.

Algorithm 3 shows how a partition hierarchy hint can be used by an ER algorithm.

Given a set of records R, an ER algorithm E, a partition hierarchy hint H , and a work limit

W , we intuitively resolve the records in the bottom-level clusters first and progressively

resolve more records in higher-level clusters in the hierarchy until there are no more records

to resolve or the amount of work done exceeds W (e.g., the number of record comparisons

should not exceed 1 million).

We illustrate Algorithm 3 using the Single-link Hierarchical Clustering algorithm [45,

70] (which we call HCS). The HCS algorithm merges the closest pair of clusters (i.e., the

two clusters that have the smallest distance) into a single cluster until the smallest distance

among all pairs of clusters exceeds a certain threshold T . The distance between two records

is measured using a commutative distance function D that returns a non-negative distance

between two records. When measuring the distance between two clusters, the algorithm

takes the smallest possible distance between records within the two clusters. Now suppose

we have R = {r1, r2, r3} (which can also be viewed as a list of three singleton clusters)

where the pairwise distances areD(r1, r2) = 2,D(r2, r3) = 4, andD(r1, r3) = 5 with a given

threshold T = 2. The HCS algorithm first merges r1 and r2, which are the closest records

and have a distance smaller or equal to T , into {r1, r2}. The cluster distance between

{r1, r2} and {r3} is the minimum of D(r1, r3) and D(r2, r3), which is 4. Since the distance

exceeds T , {r1, r2} and {r3} do not merge, and the final ER result is {{r1, r2}, {r3}}.
We can use Algorithm 3 to run the HCS algorithm with a hint that is a partition hier-

archy. Continuing our example above where R = {r1, r2, r3}, suppose that we are given

the hint P1 = {{r1, r2}, {r3}} and P2 = {{r1, r2, r3}}. Also say that W is set to three

record comparisons. According to Algorithm 3, we first resolve the clusters in P1 of the

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 27

ALGORITHM 3: Using a partition hierarchy in ER
1: Input: a set of records R, an ER algorithm E, a hint H = {P1, . . . , PL}, and a work limit W
2: Output: an intermediate ER result F of E(R)
3: F ← ∅, h← ∅
4: for i = 1 . . . L do
5: for c ∈ Pi do
6: for child ∈ c.ch do
7: F ← F − {clus|clus ∈ F ∧ clus ⊆ child}
8: h(c)← Resolve(E, c, h)
9: F ← F ∪ h(c)

10: if total work ≥W then
11: return F
12: return F

hint. Thus we compare r1 with r2 by invoking Resolve(E, {r1, r2}, h) in Step 8. Since r1

and r2 match, F becomes {{r1, r2}, {r3}}. We also store the ER results of {r1, r2} and

{r3} in h. Next, we start resolving records in the cluster {r1, r2, r3} in P2. When resolving

{r1, r2, r3}, we first subtract from F the clusters that are subsets of {r1, r2, r3}, leaving us

with F = {} (Step 7). We now run Resolve(E, {r1, r2, r3}, h) in Step 8. Again, only r1

and r2 match and we union F with {{r1, r2}, {r3}} (Step 9). Assuming Resolve used at

least two more record comparisons to resolve {r1, r2, r3}, the total work is larger or equal

to the work limit W , and we return the ER result F = {{r1, r2}, {r3}} (Step 12), which

is the correct answer. Notice that, if W was set to 1 instead of 3, the same ER result F =

{{r1, r2}, {r3}} would have been returned using only one record comparison.

Proposition 2.3.2. Given a valid ER algorithm E, Algorithm 3 returns a correct ER result

when PL = {R} and W is unlimited.

Proof. Given that W is never satisfied, E can always run to the end. Since PL = {R}, the

final result F = E(Rp), which is the correct result by definition.

The complexity of Algorithm 3 is at least the complexity of the ER algorithmE because

we can always use a hierarchy with one level having {R} as its partition. The actual

efficiency of the algorithm largely depends on the implementation of Resolve(E, c, h) in

Step 8. In the worst case, E can simply ignore the information of resolved records h and

run E(c) from scratch. However, an ER algorithm can exploit the information in h to

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 28

produce Resolve(E, c, h) more efficiently. For example, if c = {r1, r2, r3} and we know by

h that r1 and r2 are the same entity. Then the ER algorithm can avoid a redundant record

comparison between r1 and r2.

2.3.3 General Incremental Property

We explore an interesting property of an ER algorithm (called “general incremental”) that,

when satisfied, can enable efficient computation given information of previously resolved

records. That is, given an input set of records R and ER results of previously resolved

records, we would like E(R) to run faster than resolving R from scratch. An ER algorithm

is incremental [59] if it can resolve one record at a time. We use a more generalized version

of the incremental property [103] for our ER model where subsets of R can be resolved in

any order.

In order to precisely define the general incremental property, we need to formalize our

general ER definition further. First, we assume that an ER algorithm receives a partition

of R (called Rp) and returns a new partition of R. This view does not change our original

ER model (where ER partitions a set of records) because a set of records R = {r1, . . . , rn}
can also be viewed as a set of singleton clusters Rp = {{r1}, . . ., {rn}}. We denote all the

possible partitions that can be produced by the ER algorithm E as Ē(Rp), which is a set

of partitions of R. That is, we assume that ER is non-deterministic in a sense that different

partitions of R may be produced depending on the order of records processed or by some

random factor (e.g., the ER algorithm could be a random algorithm). Hence, E(Rp) is

always one of the partitions in Ē(Rp). For example, given Rp = {{r1}, {r2}, {r3}}, Ē(Rp)

could be {{{r1, r2}, {r3}}, {{r1}, {r2, r3}}} while E(Rp) = {{r1, r2}, {r3}}.

Definition 2.3.2.1. An ER algorithm is generally incremental [103] if for any four parti-

tions P1, P2, F1, and F2 such that

• P1 ⊆ P2 and

• F1 ∈ Ē(P1) and

• F2 ∈ Ē(F1 ∪ (P2 − P1))

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 29

then F2 ∈ Ē(P2).

For example, suppose we have P1 = {{r1}, {r2}}, P2 = {{r1}, {r2}, {r3}}, and F1 =

{{r1, r2}}. That is, we have already resolved P1 into the result F1. We can then add to F1

the remaining cluster {r3}, and resolve all the clusters together (i.e., we run E({{r1, r2},
{r3}})). The result is as if we had resolved everything from scratch (i.e., from P2). Pre-

sumably, the former way (incremental) will be more efficient than the latter by exploiting

the information on records have already been resolved.

Proposition 2.3.3. Suppose we have a partition S = {s1, . . . , sn} of Rp. That is,
⋃
si =

Rp and for any 1 ≤ i, j ≤ n where i 6= j, si ∩ sj = ∅. Then given a general incremental

ER algorithm E, F = E(
⋃
i=1...nE(si)) ∈ Ē(Rp).

Proof. We show that, ifE satisfies the general incremental property, thenE(
⋃
i=1...n E(si)) ∈

Ē(Rp). We define the following two notations: α(k) =
⋃
s∈Rp−{s1,...,sk} E(s) and β(k)

=
⋃
s∈{s1,...,sk} s. To prove that F = E(α(0)) ∈ Ē(Rp) = Ē(β(|S|)), we prove the more

general statement that F ∈ Ē(α(k) ∪ β(k)) for k ∈{0,. . ., |S|}. Clearly, if our general

statement holds, we can show that F ∈ Ē(β(|S|)) = Ē(Rp) by setting k = |S|.
Base case: We set k = 0. Then F = E(α(0)) ∈ Ē(α(0)) = Ē(α(0) ∪ β(0)) .

Induction: Suppose that our statement holds for k = n, i.e., F = E(α(0)) ∈ Ē(α(n) ∪
β(n)). We want to show that the same expression holds for k = n + 1 where n + 1 ≤ |S|.
We use the general incremental property by setting P1 = sn+1 and P2 = α(n+1) ∪ β(n+1).

The first condition P1 ⊆ P2 is satisfied because β(n + 1) contains P1. We then set F1 =

E(P1) = E(sn+1) and F2 = E(F1 ∪ (P2−P1)) = E(E(sn+1) ∪α(n+ 1) ∪ β(n)) = E(α(n) ∪
β(n)). The general incremental property tells us that F2 ∈ Ē(P2) = Ē(α(n+1) ∪ β(n+1)).

Thus, any E(α(n) ∪ β(n)) ∈ Ē(α(n+ 1) ∪ β(n+ 1)). Using our induction hypothesis, we

conclude that F = E(α(0)) ∈ Ē(α(n) ∪ β(n)) ⊆ Ē(α(n+ 1) ∪ β(n+ 1)).

We now propose Algorithm 4 that runs ER on previously resolved records and can

be used as the Resolve function in Algorithm 3. For example, suppose that c = {r1, r2,

r3, r4, r5} and c’s children c.ch = {{r1, r2, r3}, {r4, r5}}. Also say that h({r1, r2, r3}) =

{{r1, r3}, {r2}}, and h({r4, r5}) = {{r4, r5}}. We thus construct Rp as {{r1, r3}, {r2},
{r4, r5}} in Steps 4–5. Alternatively, if h did not contain any ER result, then at Step 7

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 30

ALGORITHM 4: Efficient Resolve function using information on previously resolved records
1: Input: an ER algorithm E, a set c of records to resolve and a hash table h containing ER

results of sets of records
2: Output: F ∈ Ē({{r}|r ∈ c})
3: Rp ← ∅
4: for s ∈ c.ch do
5: Rp ← Rp ∪ h(s)
6: if Rp = ∅ then
7: Rp ← {{r}|r ∈ c}
8: return E(Rp)

Rp would have been set to the singleton partition of c, i.e., {{r1}, {r2}, {r3}, {r4}, {r5}}.
The algorithm then returns E(Rp). In the former case where h does contain ER results

of previously resolved records, Algorithm 4 is presumably faster than simply running ER

from the singleton partition of c by avoiding redundant record comparisons.

The following result shows the correctness of Algorithm 4.

Proposition 2.3.4. If E is general incremental (satisfying Definition 2.3.2.1), Algorithm 4

correctly returns an ER result F ∈ Ē({{r}|r ∈ c}).

Proof. In the case where Rp 6= ∅ in Step 5, we have Rp =
⋃
s∈c.chE(s). By Proposi-

tion 2.3.3, the final ER result E(Rp) = E(
⋃
s∈c.chE(s)) ∈ Ē(c). Otherwise, if Rp = ∅

in Step 5, then again by Proposition 2.3.3, E(Rp) = E({{r}|r ∈ c} = E(
⋃
r∈cE({r})) ∈

Ē(c).

We now show that the HCS algorithm is general incremental and can thus be used in

Algorithm 4.

Proposition 2.3.5. The HCS algorithm is general incremental.

Proof. We first define the notation of connectedness for HCS . Two records r and s are

connected under D, T , and Rp if there exists a sequence of records [r1 (= r), . . ., rn (=

s)] where for each pair (ri, ri+1) in the path, either D(ri, ri+1) ≤ T or ∃c ∈ Rp s.t. ri ∈
c, ri+1 ∈ c.

We now prove the following Lemma.

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 31

Lemma 2.3.6. Two records r and s are connected under D, T , and Rp if and only if r and

s are in the same cluster in E(Rp) using the HCS algorithm.

Proof. Suppose that r and s are in the same cluster in E(Rp). If r and s are in the same

cluster in Rp, then r and s are trivially connected under D, T , and Rp. Otherwise, there

exists a sequence of merges of the clusters in Rp that grouped r and s together. When two

clusters ci and cj in Rp merge, all the records in ci and cj are connected by transitivity

because two records within ci or cj are trivially connected and there exists at least one pair

of records from ci and cj whose distance according to D does not exceed T . Furthermore,

for any two clusters (not necessarily in Rp) that merge, all the records in the two clusters

are also connected by transitivity. Since the clusters containing r and s merged at some

point, r and s are thus connected under D, T , and Rp. Conversely, suppose that r and s are

connected as the sequence [r1(= r), . . . , rn(= s)] under D, T , and Rp. If r and s are in

the same cluster in Rp, they are already clustered together. Otherwise, all the clusters that

contain r1, . . . , rn eventually merge together according to the HCS algorithm, clustering r

and s together.

Lemma 2.3.6 directly implies that HCS returns a unique solution. Suppose that there

are two possible solutions for E(Rp): F1 and F2. Without loss of generality, suppose that

the records r and s are in the same cluster in F1, but not so in F2. Then r and s are connected

under D, T , and Rp according to F1 and Lemma 2.3.6, but not connected according to F2,

which is a contradiction.

We now prove that the HCS algorithm is general incremental. In Definition 2.3.2.1,

suppose that the three conditions hold, i.e., P1 ⊆ P2, F1 ∈ Ē(P1), and F2 ∈ Ē(F1 ∪ (P2 −
P1)). Since HCS returns a unique solution regardless of the order of records resolved, the

ER results E(P2) and E(F1 ∪ (P2 − P1)) are both unique.

2.4 Ordered List of Records

We now propose an ordered list of records as a format for hints. In comparison to a partition

hierarchy, a list of records tries to maximize the number of matching records identified

when the list is resolved sequentially. Two significant advantages are that the ER algorithm

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 32

itself does not have to change in order to exploit the information in a record list and that

there is no required storage space for the hint. On the downside, finding the right ordering

of records in order to guide the ER algorithm to find matching records as much as possible

is a non-trivial task where the best solution depends on the ER algorithm itself. We propose

general techniques for constructing record lists either from a partition hierarchy or from

sampling. We then discuss how a record list can be used by ER algorithms.

2.4.1 Generation

We propose methods for efficiently constructing a list of records. The following section

uses a partition hierarchy for generation. We also discuss how record lists can be generated

using distance estimation functions.

Using Partition Hierarchies

We propose a technique for generating record lists based on a partition hierarchy. Assuming

that an ER algorithm resolves records in the input list from left to right, a desirable feature

of a record list is to order the records such that the ER algorithm can minimize the number

of fully identified entities at any point of time. A fully identified entity is one where the ER

algorithm has found all the matching records for that entity. For example, given a record

list [r1, r2, r3] where r1 refers to the same entity as r2, an ER algorithm fully identifies the

entity for {r1, r2} after resolving the first two records and fully identifies the entity for {r3}
after resolving the last record. Another input list could be [r3, r1, r2] where one entity (i.e.,

{r3}) is already identified after resolving the first record in the list. The first list is better

as a record list in a sense that the only record match between r1 and r2 was found early

on. The second list is worse because {r3} was fully identified early on, and the comparison

between r1 and r3 was unnecessary and could have been done after matching r1 and r2.

That is, if we are only able to do one record comparison, then we will find the correct

answer when using the record list [r1, r2, r3] and not when using the list [r3, r1, r2].

In general, we want to minimize the entities that are fully identified because they gen-

erate unnecessary comparisons with newer records resolved. We will later capture this

idea by minimizing the expected number of fully-identified entities when the record list is

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 33

resolved sequentially from left to right. While we can use other orderings for generating

a record list hint, our generation focuses on ER algorithms that follow the guideline in

Section 2.4.2 where records in the front of the list are compared first.

Given a partition hierarchyH withL levels, we assume each of the partitions P1, . . . , PL

are equally likely to be the ER answer. That is, each partition has the same chance of being

the correct ER result of R and is thus a possible world of the records resolved. Suppose

that we resolve a subset S of R. For each partition Pj , we estimate the number of clusters

that are fully identified by resolving S as nEntitiesj(S) = Σc∈Pj

|c∩S|
|c| . Since each partition

is equally likely to be the answer, we define the overall estimate of the number of entities

fully identified by resolving S as Σj=1...L(1
L
× nEntitiesj(S)).

For example, suppose that the partition hierarchy H1 has 3 levels where P1 = {{r1, r2},
{r3}, {r4, r5}}, P2 = {{r1, r2, r3}, {r4, r5}}, and P3 = {{r1, r2, r3, r4, r5}}. Each partition

is equally likely to be the ER answer. Suppose that we resolve the set of records S =

{r1, r2, r4, r5}, which is a subset of R. Then according to our definition of nEntities, the

estimated number of entities identified in P1 is 2
2

+ 2
2

= 2 because all records in {r1, r2}
and {r4, r5} have been resolved. For P2, the estimation is 2

3
+ 2

2
= 5

3
because 2 out of 3

records in {r1, r2, r3} and all records in {r4, r5} have been resolved. For P3, the estimation

is 4
5
. Our overall estimate for the actual number of entities identified nEntities(S) is thus

1
3
× (2 + 5

3
+ 4

5
) = 67

45
, i.e., about 1.5 entities identified.

One could extend our model by allowing each partition to have its own probability of

being the ER answer. That is, for each possible world Pi, we add a probabilitywi indicating

the confidence we have on that possible world. Given that the sum of the weights is 1, the

estimated number of fully identified entities for the set S resolved would be Σj=1...L(wj ×
nEntitiesj(S)). While we have considered the extension, we have chosen the current

simple scheme for two reasons. First, setting the probabilities for each partition is difficult

in practice. Second, the simple scheme usually performs as well as any other scheme using

different probabilities (see Section 2.7.6).

We now define an optimal record list. Intuitively, we would like to minimize the number

of entities fully identified at any point in time given that the ER algorithm resolves the

records in the input list from left to right. We define a prefix set of a list to be the set of

records from the beginning of the list. For example, the prefix sets of the list [r1, r2] are {},

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 34

{r1}, and {r1, r2}.

Definition 2.4.0.1. A record list H of R is optimal if any prefix set P of H has a minimum

value of Σj=1...L(1
L
× nEntitiesj(P)) among all subsets of R with size |P |.

Interestingly, we can always derive a record list that is optimal according to Defini-

tion 2.4.0.1. A key observation is that nEntities (S) = Σr∈S nEntities({r}), which

says that the expected number of entities identified by a set S is the sum of the expected

numbers of entities identified by the records in S. For example, according to H1 (de-

fined above), nEntities({r1, r3}) = 1
L
× (nEntities1({r1, r3}) + nEntities2({r1, r3}) +

nEntities3({r1, r3})) = 1
L
× ((1

2
+ 1

1
) + 2

3
+ 2

5
) = 1

3
× (1

2
+ 1

3
+ 1

5
) + 1

3
× (1

1
+ 1

3
+ 1

5
) =

nEntities({r1}) + nEntities({r3}). Hence, by simply sorting the records in R by their

nEntities values in increasing order (remember, we want to minimize the number of fully-

resolved records), we can derive a record list where any prefix set has an optimal nEntities

value.

Algorithm 5 derives an optimal record list according to Definition 2.4.0.1. Using Steps

5–8 we compute the estimated number of entities for each record. According to H1 above,

record r3 has a nEntities value of 1
3
× (1

1
+ 1

3
+ 1

5
) = 46

90
. Similarly, r1 and r2 each have a

value of 1
3
×(1

2
+ 1

3
+ 1

5
) = 31

90
. Finally, records r4 and r5 each have a value of 1

3
×(1

2
+ 1

2
+ 1

5
)

= 36
90

(the fractions were not reduced for easy comparison). We now sort the records by their

nEntities values (Step 9) in increasing order. In our example, we can produce the record

list H ′ = [r1, r2, r4, r5, r3]. (Records with the same nEntities value can swap positions

within the list.) As a simple verification, no prefix set of size 2 has a nEntities value

smaller than that of {r1, r2}, which is 31
90

+ 31
90

= 62
90

.

We now show that Algorithm 5 returns an optimal record list.

Proposition 2.4.1. Algorithm 5 returns an optimal record list.

Proof. We first prove that nEntities(S) = Σr∈SnEntities({r}). The reason is that nEntities(S)

= Σj=1...L(1
L
×Σc∈Pj

|S∩c|
|c|) = Σr∈SΣj=1...L(1

L
×Σc∈Pj

|{r}∩c|
|c|) = Σr∈SnEntities({r}). Now

given a prefix S ofR sorted by nEntities values, we show that nEntities(S) ≤ nEntities(S ′)

for any S ′ ⊆ R. Suppose that there exists an S ′ ⊆ R such that nEntities(S) > nEntities(S ′)

while |S| = |S ′|. Then there exists an r′ 6∈ S where nEntities({r′}) is smaller than the

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 35

ALGORITHM 5: Generating an optimal record list from a partition hierarchy
1: Input: the set of records R, a hint H = {P1, . . . , PL}
2: Output: an optimal record list H ′

3: for r ∈ R do
4: nEntities({r}) = 0
5: for i = 1 . . . L do
6: for c ∈ Pi do
7: for r ∈ c do
8: nEntities({r})← nEntities({r}) + 1

L ×
1
|c|

9: H ′ ← Sorted records in R by their nEntities values in increasing order
10: return H ′

nEntities value of the |S|th record in the record list. However, we have just contradicted

the fact that the record list is sorted by the nEntities values.

The complexity of Algorithm 5 is O(|R|× (L+ log(|R|))) because of the loop in Steps

5–8 and the sorting of records in Step 9. In special cases, however, the sorting can be done

in linear time. For example, if there is only one level P in the hierarchy, then for a record

r, nEntities({r}) = Σc∈P
|{r}∩c|
|c| = 1

|cr| where cr is the cluster in P containing r. Hence,

we can sort the records in R by the sizes of clusters that contain them in decreasing order.

If we are given a maximum cluster size constant MaxSize of P , we can create MaxSize

buckets and assign each record r to the bucket with the index |cr|. We can then generate

an optimal record list by iterating through all the buckets. The sorting can thus be done in

O(|R|) time. Using our example above, suppose that P = {{r1, r2}, {r3}, {r4, r5}}. Then

one optimal record list is [r1, r2, r4, r5, r3] because the cluster in P containing r3 has a size

of 1 while the cluster sizes for the other four records are all 2. Here, we can sort the five

records using two buckets (i.e., MaxSize = 2).

Obviously, there are other ways to generate record lists using a partition hierarchy. For

example, one could simply return the records in one of the partitions of the partition hier-

archy. Our approach is a general way to produce record lists and has theoretical guarantees

of minimizing the expected number of entities identified at any point in time.

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 36

ALGORITHM 6: Generating a record list based on a list of pairs
1: Input: a list of pairs with their estimated distances L = [〈r1, s1〉, 〈r2, s2〉, . . .]
2: Output: a record list H
3: H ← []
4: Sort L by estimated distances in increasing order
5: for 〈r, s〉 ∈ L do
6: if r 6∈ H then
7: H ← H + r
8: if s 6∈ H then
9: H ← H + s

10: return H

Using Distance Estimation Functions

We can also use an inexpensive distance estimator function e(r, s) (application specific or

sampling based) to generate a record list. Algorithm 6 shows how we can generate a list that

resembles the given pair list. For example, given the pair list [〈r1, r2〉, 〈r1, r3〉, 〈r2, r3〉], we

first read the pair 〈r1, r2〉 and append the records r1 and r2 to H . For the next pair 〈r1, r3〉,
we only need to append r3 to H because r1 already exists in H . Hence, we generate the

record list H = [r1, r2, r3]. Of course, the record list H does not necessarily preserve all

the information in the pair list. While some information cannot avoid being lost, we make

the best effort to place the most likely matching records up front in the record list.

Unlike Algorithm 2 where a partition hierarchy hint can be constructed without sorting

the list of pairs, a record list requires the list of pairs to be sorted by the estimated distances

of the pairs. Hence, the complexity of Algorithm 6 is O(|R|2 × log(|R|)) where R is the

set of input records. Moreover, a space complexity of O(|R|2) is required to store the

estimated distances of all record pairs. In the case where there is limited time or space, we

can approximate the result of Algorithm 6 by only retaining the top-k closest pairs where

k is a parameter reflecting the limited time or space. A heap structure can be used to store

the top-k pairs while estimating the pairwise distances in the sampling scheme. We then

consider all the other pairs to be infinitely distanced. The time complexity of Algorithm 6 is

then O(k × log(k)) while the space complexity O(k). In Section 2.7.3, we experimentally

show that limiting k can significantly improve the time and space requirements with almost

no decrease in quality.

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 37

2.4.2 Use

A record list can be applied to any ER algorithm that accepts as input a record list. A key

advantage of using record lists is that the ER algorithm itself does not have to change. The

following principle can be employed to benefit from a record-list hint:

• If there is flexibility in the order of which records are resolved, resolve the records in

the front of the list first.

Again, our goal is to help the ER algorithm with hints to efficiently return an answer F ′

that has high precision and recall relative to the unmodified answer F .

As an example, we consider hierarchical clustering based on a Boolean match function

[10] (called HCB), which can benefit from record lists. The HCB algorithm combines

matching pairs of clusters in any order until no clusters match with each other. The com-

parison of two clusters can be done using an arbitrary function that receives two clusters

and returns true or false, using the Boolean comparison function B to compare pairs of

records. For example, suppose we have R = {r1, r2, r3} (which can also be viewed as a list

of three singleton clusters) and the comparison function B where B(r1, r2) = true, B(r2,

r3) = true, but B(r1, r3) = false. Also assume that, whenever we compare two clusters of

records, we simply compare the records with the smallest IDs (e.g., a record r2 has an ID of

2) from each cluster using B. For instance, when comparing {r1, r2} with {r3}, we return

the result of B(r1, r3). Depending on the order of clusters compared, the HCB algorithm

can merge {r1} and {r2} first, or {r2} and {r3} first. In the first case, the final ER result

is {{r1, r2}, {r3}} (because the clusters {r1} and {r2} match, but {r1, r2} and {r3} do not

match) while in the second case, the ER result is {{r1,r2, r3}} (the clusters {r2} and {r3}
match, and then {r1} and {r2, r3} match). Now given a record list [r1, r2, r3] (the ordering

is arbitrary and is set to illustrate the behavior of HCB), the HCB algorithm first compares

r1 and r2. If we set the work limit W to one record comparison, then HCB will terminate

returning {{r1, r2}, {r3}}.

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 38

2.5 Using Multiple Hints

Until now, we have assumed that one hint is generated per block. However, depending on

the type of hint and the number of attributes used to generate the hint, we may have to

generate multiple hints in order to accurately capture the order information of record pairs.

For example, suppose that we are resolving people records and there are two ways to order

the pairs of records: by their name or address similarities. If we are generating a list of

pairs hint, then we could choose one of two attributes – name or address – and use it to sort

the pairs into one hint. Another option is to combine the name and address similarity into

one similarity (e.g., by taking a weighted sum of the values) and generate one hint. Finally,

we can generate two separate hints for the two attributes. In this section, we assume that

multiple hints of the same type are generated (corresponding to the last case in the above

example) and discuss three options on how to exploit them while resolving records.

The first straightforward option is to repeatedly resolve the block of records for each

hint and combine the results. For example, we could resolve the people with the closest

names first and then resolve those with the closest addresses first and union the matching

records. While this method is easy to apply to any type of hint, the overall runtime of

resolving records may slow down due to redundant record comparisons for different hints.

Another option is to merge the multiple orderings into one ordering and then resolve

the records once using this new combined hint. For example, given two sorted lists of

records, we can merge the lists by sorting the records according to their sum of ranks in

the two sorted lists. As another example, if we are combining two partition hierarchies, we

could combine each level by performing a meet operation on the corresponding partitions.

While combining hints may result in a loss of information of the ordering of pairs, the main

advantage is that there is only one hint to use when resolving records and thus no redundant

record comparisons.

The final option is to exploit the multiple hints simultaneously without combining them

into one hint. For example, if there are two sorted lists of record pairs, then we can start

reading the first pairs of records from both hints. If any record pair from one hint has

already been read from the other hint, then we can read the next pair of records. While this

option has the potential to fully exploit the ordering information of all the hints, deciding

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 39

how exactly we can exploit the multiple hints is not obvious.

2.6 Determining Which Hint to Use

As mentioned in Section 2.1.2, an ER algorithm may only be compatible with some types

of hints (or with none at all), depending on the data structures and processing used. In this

section we provide some hint selection guidelines and then illustrate how the guidelines

apply to the ER algorithms we have already introduced.

If the ER algorithm compares pairs of records, and there is an estimator function e

that is cheaper than the distance function d, a pair-list hint may be useful. If there is no

estimator function e, then sampling techniques can be used to estimate the other distances.

Next, if the ER algorithm clusters records based on their relative distances, then a hierarchy

hint could be useful for focusing on the relatively closer records first. Finally, if the ER

algorithm performs a sequential scan of records when resolving them, a record list hint

may help compare the records that are more likely to match first.

Figure 2.4 summarizes our three hint types and the techniques used to generated them

(see Section 2.7.1 for details). The figure also shows the ER algorithms we used in Sec-

tions 2.2 through 2.4 to illustrate each hint type. Although we could use a hierarchy hint or

a record-list hint for the SN algorithm, the pair-list hint can be used most naturally because

SN basically compares pairs of records that are likely to match in a given order. We use a

partition hierarchy hint for the HCS algorithm because HCS can naturally resolve subsets

of R with the guidance of the partition hint. While HCS can also use a record list as a hint,

the record list is designed to work better for ER algorithms that resolve records sequentially.

For the HCB algorithm we use a record lists hint because HCB sequentially resolves its

records. The HCB algorithm could also use a partition hierarchy as its hint. However, we

would have to modify HCB and thus change its efficient algorithm for comparing records.

2.7 Experimental Results

In this section, we evaluate pay-as-you-go ER on real data sets and show how creating and

using hints can improve the ER quality given a limit on how much work can be done. We

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 40

Hint Generated from ER algorithm

Pair list (PL)
Cheap dist. functions

SN
Sampling

Hierarchy (H)
Sorted records
Hash functions HCS
Sampling

Record list (RL)
Partition hierarchy

HCBComplete sampling
Partial sampling

Figure 2.4: Hints to generate and ER algorithms to run

assume that blocking [77] is used (see Section 2.1), as it is in most ER applications with

massive data. With blocking, the input records are divided into separate blocks using one

or more key fields. For instance, if we are resolving products, we can partition them by

category (books, movies, electronics, etc.). Then the records within one block are resolved

independently from the other blocks. This approach lowers accuracy because records in

separate blocks are not compared, but makes resolution feasible. (See [71, 109] for more

sophisticated approaches.) From our point of view, the use of blocking means that we can

read a full block (which can still span many disk blocks) into memory, perform resolution

using hints, and then move on to the next block. In our experiments we thus evaluate the

cost of resolving a single block, except for Section 2.7.8 where we perform scalability ex-

periments by resolving multiple blocks. Keep in mind that these costs should be multiplied

by the number of blocks. Finally in our experiments, we generate one hint for each block.

Our approach can easily be extended to multiple hints using the techniques described in

Section 2.5.

We start by describing our experimental setting in Section 2.7.1. In Section 2.7.2,

we show how using hints can improve the ER quality with limited amounts of work. In

Section 2.7.3, we investigate the CPU time and space overhead for creating hints and dis-

cuss the tradeoffs between the overhead and benefit of using hints. In Section 2.7.4 we

investigate the right number of levels in a partition hierarchy hint. In Section 2.7.5, we

explore the impact of the sample size on the accuracy of hints using sampling techniques.

In Section 2.7.6, we experiment on record lists generated from partition hierarchies using

an extended model where partitions in the hierarchy now have different confidence values.

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 41

In Section 2.7.7, we discuss how partition hierarchy hints can still enhance ER algorithms

that are not incremental. In Section 2.7.8, we show how hints can be used to enhance ER in

practical scenarios where the datasets can be very large. Finally, in Section 2.7.9, we show

how our hint generation algorithms scale.

2.7.1 Experimental setting

In this section, we describe the settings used for our experiments. Our algorithms were

implemented in Java, and our experiments were run on a 2.4GHz Intel(R) Core 2 processor

with 4 GB of RAM.

Quality Metric

Since ER results may now be incomplete, it is important to measure the quality of an in-

termediate ER result. We compare an intermediate result with a “Gold Standard,” which

is the result of running ER on the same dataset to the end. Notice that we are not mea-

suring the correctness of the ER algorithm itself, but instead determining how “close” the

intermediate results are to the exhaustive result. Since ER results are partitions of the input

set of records, we consider all the input records in the same output cluster to be identical.

For instance, if records r and s are clustered into {r, s} and then clustered with t, all three

records r, s, t are considered to be the same (i.e., to match).

Suppose that the Gold Standard G contains the record pairs that match for the exhaus-

tive solution while set S contains the matching pairs for the intermediate result. Then the

precision Pr is |G∩S||S| while the recall Re is |G∩S||G| . If the precision Pr is always 1 (i.e., the

incremental algorithm always reports true matches), we use Re, the fraction of matching

pairs found, as our quality metric. Otherwise, we can use the F1 metric, which is defined

as 2×Pr×Re
Pr+Re

, as the quality metric (for more general ER metrics, see [73]).

We will use recall as our metric for all the experiments sections (except for Section 2.7.7)

because the precision is always 1 for any intermediate ER result.

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 42

Real Data

The comparison shopping dataset we use was provided by Yahoo! Shopping and contains

millions of records that arrive on a regular basis from different online stores and must be

resolved before they are used to answer customer queries. Each record contains attributes

including the title, price, and category of an item. We experimented on a random subset

of 3,000 shopping records that had the string “iPod” in their titles and 2 million shopping

records. When scaling ER on 2 million shopping records (see Section 2.7.8), the average

block size was 124 records while the maximum block size was 6,082 records. Hence,

the random subset of 3,000 shopping records can be considered as one (relatively large)

block. We also experimented on a hotel dataset provided by Yahoo! Travel where tens of

thousands of records arrive from different travel sources (e.g., Orbitz.com), and must be

resolved before they are shown to the users. We experimented on a random subset of 3,000

hotel records located in the United States. Each hotel record contains attributes including

the name, address, city, state, zip code, latitude, longitude, and phone number of a hotel.

Again, the 3,000 hotel records can be considered as one block. While the 3K shopping and

hotel datasets fit in memory, the 2 million shopping dataset did not fit in memory and had

to be stored on disk.

Hints and ER Algorithms

For our experiments we use the three ER algorithms used to illustrate our hints (and sum-

marized earlier in Figure 2.4). In this sub-section we provide some implementation details

for the ER algorithms used.

The SN algorithm uses a Boolean match function for comparing two records. When

comparing shopping records, the Boolean match function B compares the titles, prices,

and categories. When comparing hotel records, B compares the states, cities, zip codes,

and the names of the two hotels. We generate a pair list using cheap distance functions

or from sampling. When generating record lists using cheap distance functions, we used

the estimate function e(r, s) = |Rank(r) − Rank(s)| using the title (name) attributes of

shopping (hotel) records as the sort key. When generating pair lists using sampling, we

only computed and stored the top-((w− 1)× |R| − w×(w−1)
2

) closest pairs (i.e., the number

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 43

of record pairs that would be compared by SN given the window size w) to limit the time

and space overhead. We also used a random sample of 10 records.

The HCS algorithm uses a distance function for comparing two records. When the

comparing shopping records, the distance function D measures the Jaro distance [111] be-

tween the titles of two records. For the hotel records, D measures the Jaro distance of

the names of two records. We generate partition hierarchies in three ways: using sorted

records, hash functions, and sampling. By default, we set the number of levels of a par-

tition hierarchy to 5. While increasing the number of levels helps us find more matching

records early on, the benefits diminish from a certain point (see Section 2.7.4). The par-

tition hierarchies based on sorted lists were balanced binary trees with the highest level

containing a single cluster with all input records. The partition hierarchies based on hash

functions used the prefixes of titles (names) as the hash values of shopping (hotel) records.

When generating partition hierarchies using sampling, we clustered records with similar

titles (for the shopping dataset) or names (for the hotel dataset) using several string com-

parison thresholds. We randomly selected 10 records for our samples. (In Section 2.7.5,

we show that small sample sizes are sufficient for reasonable results.) A partition hierarchy

is suitable for the HCS algorithm because the hint suggests sets of records to resolve first,

and the HCS algorithm can easily resolve subsets of records at a time.

The HCB algorithm uses a Boolean match function for comparing two records. When

comparing shopping records, the Boolean match functionB compares the titles, prices, and

categories. When comparing hotel records, B compares the states, cities, zip codes, and

the names of the two hotels. We generate a record list from a partition hierarchy (generated

with hash functions) and from sampling. When generating a partition hierarchy used for

constructing a record list, we used minhash signatures [57] generated from titles (names) as

the hash values of shopping (hotel) records. When generating record lists using sampling,

we tested two schemes. For the complete sampling scheme, we computed and stored all the

estimate distances of pairs (i.e., |R|×(|R|−1)
2

pairs) and generated a record list. For the partial

sampling scheme, we only computed and stored the top-(5 ×|R|) closest pairs to limit the

time and space overhead. In both schemes, we used a random sample of 10 records.

In all our algorithms, we avoid expensive comparisons when possible by comparing in

phases. For example, when comparing two shopping records, we compare the category,

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 44

price, and title attributes, in that order. If the categories do not match, we avoid comparing

the prices and titles. If the categories match, but not the prices, we avoid comparing the ti-

tles. This way, we can avoid many expensive title string comparisons. When experimenting

on large datasets, we use various blocking techniques (see Section 2.7.8) to further scale

ER. While more optimizations can be used on the base ER algorithms, our focus is to show

the relative benefits of using hints compared to when they are not used.

2.7.2 Hint Benefit

In this section, we explore the benefits of using hints by measuring the recall values for var-

ious ER algorithms using different hints. Figure 2.5(a) shows how a pair list can help the

SN algorithm compare the most likely matching record pairs for 3,000 shopping records.

We experimented on the SN algorithm using two types of hints. Recall that the SN algo-

rithm first sorts the records by a certain key. In our implementation, we sorted the records

by their titles and then slid a window of size 100, comparing only the record pairs within

the same window. The first hint we used was to order the pairs of records according to their

difference in rank according to the sorted list. That is, the difference in rank was considered

the distance between two records. The second hint we used estimated the pairwise distance

between the records using the sampling technique (see Section 2.2.1) and compared the

records with the closest estimated distance first. In our experiments, we set the sample size

to 10 records. (In Section 2.7.5, we show that even a sample this small produces reasonable

results.) Notice that when using the sampling technique, the SN algorithm does not use a

sliding window on a sorted list of the records, but simply compares the pairs of records as

dictated by the pair list.

As more records are compared using the match function B, the quality of SN using

hints rapidly increases. For example, the quality of SN using a pair list generated from

cheap distance functions achieves 0.96 recall with only 12.5% of the record comparisons

required when running SN without hints. The quality of SN using the sampling technique

achieves 0.8 recall with 0.78% of the entire work. While the sampling techniques gives a

high recall early on, it does not give 1.0 recall even after performing as many comparisons

as the SN algorithm without hints. The reason is that there are still matching record pairs

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 45

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Re
ca

ll

Percentage of record comparisons

Cheap distance functions
Sampling
No hints

(a) Pair list (shopping)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Re
ca

ll

Percentage of record comparisons

Cheap distance functions
Sampling
No hints

(b) Pair list (hotel)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

Re
ca

ll

Runtime (s)

Cheap distance functions
Sampling
No hints

(c) Pair list (shopping)

that would have been found by SN without hints, but are further down the pair list and

will eventually be compared if more pairs are compared (recall that the SN algorithm only

compares a small fraction of the total record pairs using a sliding window). In Section 2.7.5,

however, we show that the sampling technique is actually very good at finding all matching

pairs that are not necessarily within the same window. Finally, the recall of SN without

hints increases linearly with more record comparisons.

Figure 2.5(d) shows how a partition hierarchy can help the HCS algorithm to quickly

identify matching records for 3,000 shopping records. The bottom-right plot (in Fig-

ure 2.5(d)) shows the progress of the original HCS algorithm where records are clustered

only after all pairs of base records are compared. Notice that the clustering of records does

not involve record comparisons, which is why the original HCS algorithm has a jump in

recall from 0 to 1 when 100% of the record comparisons are done. The actual runtime for

the second clustering step is very small (0.004s). The random hierarchy plot shows how

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 46

a randomized partition hierarchy helps the ER quality. Here, the records are clustered in

a random fashion without any similarity comparisons. As a result, the plot shows a linear

increase of recall as the number of record comparisons increases. The other three plots use

partition hierarchies generated from a sorted list, hash functions, and sampling. Among

them, a partition hierarchy based on sampling gives the slowest increase in recall where

we get 0.51 recall with 14% of the comparisons HCS uses without hints. The main reason

for the relatively low recall is that the partitions in the hierarchy were highly skewed where

some clusters in a partition were very large. As a result, the partitions in the hierarchy

were not “pinpointing” the likely matching records. Moreover, setting the thresholds for

creating the partitions was not a trivial task, making this approach relatively difficult to

use. When using a partition hierarchy hint generated from a sorted list, we achieve 0.99

recall with 16% of the total comparisons of HCS without hints. Finally, when using a hint

generated using hash functions, we achieve a similar result of 0.89 recall using 6.5% of the

total comparisons.

Figure 2.5(g) shows how record lists can help the HCB algorithm to identify matching

records early without modifying the ER algorithm itself. Again, we experimented on 3,000

shopping records. When using a record list generated from a partition hierarchy, we obtain

0.61 recall with 50% of the comparisons used byHCB without hints. Record lists generated

from complete or partial sampling give similar results where we obtain 0.67 recall with 50%

of the total comparisons. In contrast, the HCB algorithm without hints obtains 0.47 recall

for 50% of its comparisons. While the complete and partial sampling schemes produce

near-identical recall results against the number of record comparisons done, we will see in

Section 2.7.3 that the partial sampling scheme outperforms the complete sampling scheme

in recall against the actual ER runtime. Although the record list does not generally improve

HCB as much as partition hierarchies improve HCS , the main advantage is that all these

benefits were achieved without modifying the HCB algorithm itself.

Figures 2.5(b), 2.5(e), and 2.5(h) show the hint results when resolving 3,000 hotel

records. Unlike the shopping dataset where multiple records can match, the records in

the hotel datasets mostly come from two data sources that do not have duplicates within

themselves, so relatively few clusters have a size larger than 2. The hotel results show that

a partition hierarchy based on sampling or any record list performs better on hotel data

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 47

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Re
ca

ll

Percentage of record comparisons

Hash functions
Sorted list
Sampling

Random hierarchy
No hints

(d) Partition hierarchy (shopping)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Re
ca

ll

Percentage of record comparisons

Hash functions
Sorted list
Sampling

Random hierarchy
No hints

(e) Partition hierarchy (hotel)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

Re
ca

ll

Runtime (s)

Hash functions
Sorted list
Sampling

Random hierarchy
No hints

(f) Partition hierarchy (shopping)

than when they are used on shopping data. Figures 2.5(c), 2.5(f), and 2.5(i) show the recall

values of ER algorithms against runtime and will be explained in Section 2.7.3.

2.7.3 Hint Overhead

In this section we explore the CPU and memory space overhead of using hints. We first

explore the time and space overhead of constructing and using hints. We then show the

tradeoffs between the overhead and benefit of using hints from various perspectives.

Time and Space Overhead

The time overhead of a hint consists of the time to construct the hint and the time to use

the hint. While we will measure the construction time for hints, the time overhead of using

the hints themselves is not significant. The usage time overhead for accessing a pair list is

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 48

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Re
ca

ll

Percentage of record comparisons

Partition hierarchy
Complete sampling

Partial sampling
No hints

(g) Record list (shopping)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Re
ca

ll

Percentage of record comparisons

Partition hierarchy
Complete sampling

Partial sampling
No hints

(h) Record list (hotel)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

Re
ca

ll

Runtime (s)

Partition hierarchy
Complete sampling

Partial sampling
No hints

(i) Record list (shopping)

Figure 2.5: Recall of ER algorithms using hints against work or runtime, 3K shopping/hotel
records

a simple iteration of the pairs in the list. The usage time overhead for accessing a partition

hierarchy is an iteration of the clusters from the bottom partition to top. There is no time

overhead for using a record list because we simply reorder the input list of records.

The “Time Overhead” column in Figure 2.6 shows the construction time overhead for

each type of hint in Figure 2.4 (we explain the space overhead later). The sub-column

head Sho3K means 3,000 shopping records while the sub-column head Ho3K means 3,000

hotel records. Each construction time overhead was produced by dividing the construction

time of a hint by the CPU time for running the ER algorithm without using any hints.

For example, the construction time for a partition hierarchy based on hash functions using

3,000 shopping records is 0.0001x the time for running the HCS algorithm without hints.

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 49

Hint Generation Time Overhead Space Overhead (Const/Use)
Sho3K Ho3K Sho3K Ho3K

Pairs List
Cheap dist. functions 0.005 0.19 22 / 22 7.8 / 7.8

Sampling 0.16 3.56 22 / 22 7.8 / 7.8

Hierarchy
Sorted records 4E-4 2E-4 0.07 / 0.07 0.02 / 0.02
Hash functions 1E-4 1E-4 0.08 / 0.08 0.03 / 0.03

Sampling 0.02 0.01 0.08 / 0.08 0.03 / 0.03

Record List
Partition hierarchy 7E-4 0.01 0.08 / 0 0.03 / 0
Complete sampling 0.09 1.07 349 / 0 119 / 0

Partial sampling 0.02 0.31 1.15 / 0 0.4 / 0

Figure 2.6: Time and space hint construction overhead depending on the type of hint, 3K
shopping/hotel records

The overhead for constructing pair lists based on cheap functions depends on the num-

ber of pairs compared (which depends on the window size w). The larger the window size,

the larger the construction time overhead. The overhead for constructing pair lists based

on sampling is more expensive because all record pairs are compared before taking the top

matching pairs. The time overhead for resolving 3,000 hotel records is 3.56x, which means

that the time to construct the hint takes longer than running the ER algorithm itself. In this

case, it is better to simply run the ER algorithm. The overhead for constructing partition

hierarchies based on sorting or hashing is very small compared to running the HCS algo-

rithm because the record comparisons in HCS are relatively expensive. Even if sampling is

used (which requires a runtime quadratic in the number of input records), the construction

time overhead is 0.02x for shopping records because the cost for estimating distances is

much cheaper than computing the real distances. The overhead for constructing a record

list from a partition hierarchy is relatively small compared to running the HCB algorithm

because, again, the record comparisons in HCB are relatively expensive. However, when

constructing a record list with complete sampling, the time overhead for HCS resolving

3,000 hotel records is 1.07x. The partial sampling scheme significantly improves the com-

plete sampling scheme where the time overhead for the same hint and data is 0.31x. Note

that this improvement comes with almost no penalty in recall (see Figure 2.5(h)).

The “Space Overhead (Const/Use)” column in Figure 2.6 shows the space overhead

for each type of hint. The space overhead of a hint consists of the memory space needed

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 50

for constructing the hint and the memory space needed to use the hint while running ER.

Both of these costs can be significant and will be explored. The words “Const” and “Use”

indicate the construction space overhead and usage-space overhead, respectively. The con-

struction space overhead of a hint was computed by dividing the memory space needed for

creating the hint by the memory space needed to store the input record list. The usage-

space overhead of a hint was computed by dividing the memory space needed for storing

the constructed hint by the memory space of the input record list. For example, the con-

struction space overhead of a record list based on a partition hierarchy is 0.08x the space

needed to store 3,000 shopping records while the space needed to store and use that hint

(i.e., the usage overhead) is 0. Note that the space overhead is dependent on the size of the

input records (i.e., if the records are larger, then the space overhead will decrease).

The space overhead for pair lists is proportional to the number of record pairs stored

(which depends on the window size w). While the current space overhead for shopping

records is 22x, one could reduce the window size to reduce the overhead if necessary. (Of

course, reducing the number of pairs stored comes at a price of reducing the recall of SN .)

The space overhead is same regardless of the how the list was made because the sampling

technique store exactly the same number of record pairs as when using cheap functions.

The space overhead for partition hierarchies based on sorted records and hash functions

is reasonably small (0.07–0.08x for shopping records) because the hierarchy size is lin-

ear in the number of records. A partition hierarchy based on sampling has a reasonable

construction space overhead (0.08x for shopping records) because we do not actually store

the pairwise distance estimates computed by the sampling technique. The record-list hint

based on a hierarchy hint has a construction space overhead of 0.08x because the parti-

tion hierarchy hint was based on hash functions. The record-list hint based on complete

sampling has a large construction space overhead (349x for shopping records) because of

the quadratic space required. This result is the largest space overhead a sampling scheme

can have where all distance estimates between records are sorted and stored. The partial

sampling scheme, however, shows a much lower and reasonable space overhead (1.15x for

shopping records). We achieve this significant improvement with near-identical recall re-

sults (see Figures 2.5(g) and 2.5(h)). Finally, both record-list hints do not have usage-space

overhead.

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 51

Tradeoff between Time Overhead and Benefit

We now observe how the construction time overhead of a hint actually affects the overall

runtime of ER. We experiment on 3,000 shopping records. Figures 2.5(c), 2.5(f), and

2.5(i) show the recall values of ER results as a function of the ER runtime. The plots

do not differ significantly from Figures 2.5(a), 2.5(d), and 2.5(g), respectively. While the

construction time overhead are reflected in the plots, only the plots for using pair lists

based on sampling and record lists based on complete and partial sampling show visible

construction time overhead. When using pair lists based on sampling, it takes 1.45 seconds

for SN to perform better than SN without hints. We also observe that the runtime needed

to cluster records by HCS after the pairwise distances is negligible (0.004s) compared to

the total ER runtime. The results show that hints can benefit ER in runtime even with the

construction time overhead.

We demonstrate how hints are helpful in finding “most” of the matching record pairs

efficiently. Figure 2.7 shows how efficient hints are when obtaining 0.8 recall using 3,000

shopping records. For each hint type, we measure its construction time overhead (x-value).

We then measure the time for the ER algorithm using the hint to achieve 0.8 recall divided

by the ER runtime without hints (y-value). For example, a partition hierarchy generated

from sampling for SN takes 0.01x the time to run HCS without hints (x-value). Also, the

time for HCS with this hint to get 0.8 recall takes 0.37x the time to run HCS without hints

(y-value). Hence, the total runtime of SN using the hierarchy is 0.38x the runtime for SN

without hints. Notice that in the case where the sum of the x and y values of a point is 1

(i.e., if the point is on the diagonal line X + Y = 1), then running ER with hints to obtain

0.8 recall takes the same time as running ER fully without hints. Hence, a hint is useful

when its point is below the diagonal line. Our results show that all hints have points below

the diagonal line, which means that our hints can efficiently identify 80% of the matching

record pairs.

Figure 2.8 shows how the construction time of a hint can affect the point when using a

hint starts to help. At one extreme, if there is no construction time, then hints can improve

ER progress within a short time. On the other hand, if the construction time is very large, it

may take many record comparisons until the overhead starts to pay off. For each hint type,

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 52

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
im

e
 t

o
 g

a
in

 0
.8

 r
e
c
a
ll

/
E

R
 t

im
e
 w

/o
 h

in
ts

Construction time overhead

Pair list from cheap distance function
Pair list from sampling

Hierarchy from sampling
Hierarchy from hash function

Hierarchy from sorted records
Record list from complete sampling

Record list from partial sampling
Record list from hierarchy

Figure 2.7: Construction time versus time to obtain 0.8 recall, 3K shopping records

we vary the construction time and convert it into number of record comparisons performed.

For example, suppose HCS does Z record comparisons without using hints. Then we can

set the construction time of a partition hierarchy based on sampling to be equivalent to, say,

35% of Z. For each construction time, we also derive the number of record comparisons

when ER using hints starts to achieve higher recall than ER without hints. When using a

partition hierarchy based on sampling it takes about 46% ofZ comparisons for the overhead

of constructing the hint to pay off (see the right-most black-circle in Figure 2.8). The

“ideal” plot would be exactly the Y = X plot where no matter the overhead of constructing

the hint, we immediately start benefitting by using the hints. For each hint, there is a point

where the hint can no longer benefit ER with larger construction times. For example, if the

construction overhead for a partition hierarchy based on sampling exceeds 35% of Z (i.e.,

if we go beyond the right-most black-circle), then the HCB algorithm using the hint can

never perform better than HCB without hints.

2.7.4 Choosing the Number of Levels

Figure 2.9 shows the impact of the number of levels in the recall achieved by a given num-

ber of record comparisons. We resolved 3,000 shopping records using the HCS algorithm

using a hierarchy hint generated from the records sorted by their titles. Each hierarchy has

{R} as its highest-level partition and was a binary tree where each cluster {r1, . . . , rn} had

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 53

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100P
e
rc

e
n
ta

g
e
 o

f
re

c
o

rd
 c

o
m

p
a

ri
s
o
n

s
 f
o

r
h

in
t

to
 b

e
n
e
fi
t

Construction time as percentage of record comparisons

Pair list from cheap func.
Pair list from sampling

Hierarchy from sampling
Hierarchy from hash function

Hierarchy from sorted records
Record list from complete sampling

Record list from partial sampling
Record list from hierarchy

Figure 2.8: Construction time impact on hint payoff point, 3K shopping records

exactly two children {r1, . . . , rn
2
} and {rn

2
+1, . . . , rn}. As a result, the more levels there

are in the hint (increasing from 3 to 9), the steeper the recall curve becomes. For exam-

ple, while using a hint with 3 levels gives a 65% recall for 25% of the total comparisons

done by HCS without hints, using a hint with 7 levels gives a 98% recall with only 15%

of the total comparisons. Starting from 7 levels, however, the recall improvement becomes

negligible. When the number of levels increase from 3 to 9, the hint construction time

overhead ranges from 1.4E-4x to 5.3E-4x and the space overhead 0.07x to 0.08x. Hence,

the time and construction space overhead do not significantly change with varying numbers

of levels.

2.7.5 Sampling Performance

Figure 2.10 shows how the sample size affects the sampling scheme. We resolved 3,000

shopping records using a pair list as a hint where we simply compared pairs of records

using a Boolean match functionB following the order in the hint and performed a transitive

closure at the end. The sample sizes ranged from 2 to 1000 and were chosen randomly from

the input set of records. We also ran the naı̈ve method where records were compared in a

random order. The ER result was compared with the entire result of comparing all pairs of

records using B and performing a transitive closure at the end. As a result, even a sample

size of 2 produced a result significantly better than the random comparisons result and close

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 54

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

R
e
c
a
ll

Percentage of record comparisons

3 levels
5 levels
7 levels
9 levels

Figure 2.9: Number of levels impact on recall, 3K shopping records

to the result using a sample size of 1,000. Notice that the sample size = 2 plot sometimes

performs better than the sample size = 10 plot. This result implies that simply having a

larger sample size does not guarantee strictly better ER results. In summary, our sampling

results show that small sample sizes suffice for near-optimal results.

2.7.6 Using Weights on Partition Hierarchy Levels

We consider the scenario where the HCB algorithm uses a record list hint generated from

a partition hierarchy. In Section 2.4.1, we discussed an extension of the partition hierarchy

model where each partition can have a weight (or confidence value) associated with it.

In this section, we vary the weights when generating record lists and see the impact the

weights have on the quality ofHCB. We can use Algorithm 5 to generate an optimal record

list by replacing Step 8 with the line “nEntities({r})← nEntities({r}) + wi × 1
|c| .”

Figure 2.11 shows for each combination of weights, the final recall of running HCB
on 3,000 shopping records where the work limit is set as half the number of comparisons

HCB would have performed without hints. For example, if w1 = 1 and all the other weights

are 0, we only use the bottom-most partition of the hierarchy for generating the record list.

In Figure 2.11, the recall values range from 0.431 to 0.634. Not surprisingly, the minimum

recall occurs when w5 = 1, which means that only the highest-level partition was used to

generate the record list. Any other weight assignment gives better results than setting w5

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 55

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

R
e
c
a
ll

Percentage of record comparisons

Sample size = 2
Sample size = 10

Sample size = 100
Sample size = 1000

Random comparisons

Figure 2.10: List of pairs using sampling, 3K shopping records

= 1. The recall when all weights have equal values (i.e., each weight is 1
5
) is 0.618, which

is not significantly lower than the highest recall possible. We conclude that using equal

weights is a reasonable strategy with the benefit that one does not have to fine-tune the

weights of the hierarchy.

2.7.7 Non-incremental ER algorithms

We now experiment with ER algorithms that do not satisfy the general incremental property

(see Definition 2.3.2.1). A non-incremental ER algorithm is not guaranteed to return a

correct ER result when using Algorithm 4 for resolving clusters (see below). In this section,

we experiment on the complete-link hierarchical clustering algorithm (called HCC), which

is identical to the HCS algorithm (see Section 2.3.2) except that the distance between two

clusters is defined by the maximum pairwise distance between their records. To see how

using a partition hint can incorrectly alter the ER result of HCC , suppose that we have R

= {r1, r2, r3} where the pairwise distances are D(r1, r2) = 2, D(r2, r3) = 2, and D(r1, r3)

= 5 with a given threshold T = 2. The ER result would be {{r1, r2}, {r3}} because {r1}
and {r2} match while {r1, r2} and {r3} do not (having a distance of 5). However, if the

partition hierarchy hint contains one partition {{r1}, {r2, r3}}, then HCC will resolve

{r2, r3} first and will merge r2 and r3. Since {r1} and {r2, r3} do not match, the ER result

is {{r1}, {r2, r3}}. However, this result can never occur when running E(R) without

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 56

Weights Recall Weights Recall
w1 w2 w3 w4 w5 w1 w2 w3 w4 w5

1 0 0 0 0 0.623 0 0 0 0 1 0.431
0 1 0 0 0 0.598 1/2 0 0 0 1/2 0.623

1/2 1/2 0 0 0 0.620 0 1/2 0 0 1/2 0.598
0 0 1 0 0 0.535 1/3 1/3 0 0 1/3 0.620

1/2 0 1/2 0 0 0.634 0 0 1/2 0 1/2 0.535
0 1/2 1/2 0 0 0.591 1/3 0 1/3 0 1/3 0.634

1/3 1/3 1/3 0 0 0.621 0 1/3 1/3 0 1/3 0.591
0 0 0 1 0 0.491 1/4 1/4 1/4 0 1/4 0.621

1/2 0 0 1/2 0 0.620 0 0 0 1/2 1/2 0.491
0 1/2 0 1/2 0 0.591 1/3 0 0 1/3 1/3 0.620

1/3 1/3 0 1/3 0 0.620 0 1/3 0 1/3 1/3 0.591
0 0 1/2 1/2 0 0.529 1/4 1/4 0 1/4 1/4 0.620

1/3 0 1/3 1/3 0 0.620 0 0 1/3 1/3 1/3 0.529
0 1/3 1/3 1/3 0 0.585 1/4 0 1/4 1/4 1/4 0.620

1/4 1/4 1/4 1/4 0 0.618 1/5 1/5 1/5 1/5 1/5 0.618

Figure 2.11: Weights impact on accuracy, 3K shopping records

hints. We measure the accuracy of an intermediate ER result using the F1 measure defined

in Section 1.2. Our experiments were done using 3,000 shopping records.

Figure 2.12 shows the accuracy results of running HCC against the number of record

comparisons performed. Among all schemes, using a partition hierarchy hint generated

from a hash function produces an ER result with 0.98 accuracy using only 6% of the record

comparisons required for a naı̈ve approach without hints. The experiments show that par-

tition hierarchy hints can produce highly-accurate ER results with few record comparisons

even if the ER algorithms are not general incremental.

2.7.8 Early Termination on Large Datasets

We now scale our techniques on 0.5–2 million shopping records. Since the records do not

fit in memory, we used blocking techniques as described in the beginning of Section 2.7.

We used minhash signatures [57] for distributing the records into blocks. For the shopping

dataset, we extracted 3-grams from the titles of records. We then generated a minhash

signature for each records, which is an array of integers where each integer is generated by

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 57

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

A
c
c
u
ra

c
y

Percentage of record comparisons

Generated from sampling
Generated from hash functions

Generated from sorted list
Random hierarchy

No hints

Figure 2.12: Non-incremental algorithm accuracy, 3K shopping records

applying a random hash function to the 3-gram set of the record.

While hints can help maximize the ER quality, it is not obvious exactly when to stop

ER without knowledge on how many more matching records need to be identified. We

compare three possible schemes on when to terminate ER:

• No Limit: We simply run ER without hints to the end.

• Popcorn Scheme (Limit Rate): We stop when the rate of newly found matching pairs

drops below a threshold. The analogy is making popcorn where we stop cooking

when the frequency of pops drops below a certain level.

• TV Dinner Scheme (Limit Computation): We limit the number of record comparisons

based on the number of records to be resolved. The analogy is heating a TV Dinner in

a microwave oven for a fixed amount of time as specified by the cooking instructions.

We used the HCS algorithm and partition hierarchy hints generated from sorted lists.

The first Popcorn scheme is useful when we want to maximize recall and yet minimize

the runtime as much as possible. In our implementation, we terminate ER when the rate of

finding new matching pairs among all record pairs compared drops below 1%. For example,

for the next 200 record pairs compared, if fewer than 2 pairs matched, then we terminated

HCS . The rate was checked after each level iteration in the hierarchy. The second TV

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 58

Scheme Runtime(hrs) Recall
0.5M 1M 2M 0.5M 1M 2M

No Limit 0.4 1.8 15 1.0 1.0 1.0
Popcorn 0.12 0.37 2.5 0.98 0.98 0.99

TV Dinner 0.08 0.26 1.3 0.6 0.6 0.6

Figure 2.13: Runtime and recall for different schemes, 2M shopping records

Dinner scheme is useful when there is only a given amount of time for the application to

run. In our experiments, we set the computation limit to be 10% of the total number of

record pairs in the current set of records to be resolved. For example, when resolving a

cluster of size 20, we ran at most about 1
10
× 20×19

2
= 19 record comparisons.

Figure 2.13 shows how the two schemes perform compared to when ER runs without

hints. We measured the entire ER runtimes including the hint construction times and the

IO costs for reading and writing blocks on disk. However, the bottleneck for the entire ER

process was the CPU time to resolve the blocks in memory. While the Popcorn scheme

tends to give better recall, it does not guarantee termination within a given amount of time.

On the other hand, while the TV Dinner scheme has the advantage of having a predictable

runtime, it may not always give the best recall results. The runtime improvements (at most

11.5x) are not as high as what we observed in the 3,000 shopping dataset results. (Accord-

ing to Figure 2.5(f), we can obtain 0.99 recall about 18x faster than running ER without

hints using partition hierarchies generated from sorted lists on 3,000 shopping records.)

The reason is that in our scenario many blocks were not large enough for hints to help as

much (i.e., the overhead of constructing hints did not pay off as much), so the average bene-

fit of using hints was relatively low. Nevertheless, using hints can still significantly improve

the runtime of ER on large datasets (by 3.3–11.5x) while still obtaining high recall.

2.7.9 Scalability of Generating Hints

Table 2.14 shows the scalability results for generating hints. The construction times for

hints scale well with the exception of generating a record list using complete sampling (for

2M records, the memory overflowed). However, by using partial sampling instead, we can

obtain scalability with minimal loss in quality (see Section 2.7.2).

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 59

Hint Generation 0.5M 1M 2M

PL
Cheap dist. fns 4 9 20

Sampling 47 120 309

H
Sorted records 3 6 12
Hash functions 8 11 16

Sampling 40 130 379

RL
Par. hierarchy 11 19 31

Com. sampling 291 1256 OOM
Par. sampling 53 158 597

Figure 2.14: Hint generation time (secs), 2M shopping records

2.8 Related Work

Most of the ER work in the literature has focused on optimizing the overall runtime. In

contrast, our approach takes a pay-as-you-go approach that optimizes the intermediate re-

sults of ER. Our approach is useful when either the data set is too large to resolve within a

reasonable amount of time, or when there is not even enough time to resolve a small data

set.

Blocking techniques [71, 8, 54] focus on improving the overall runtime of ER where

the records are divided into possibly overlapping blocks, and the blocks are resolved one at

a time. Locality sensitive hashing [43] is a method for performing probabilistic dimension

reduction of high-dimensional data and can also be used as a blocking technique. A number

of works [6, 25] propose efficient similarity joins. Our pay-as-you-go techniques improve

blocking by also exploiting the ordering of record pairs according to their likelihood of

matching to produce the best intermediate ER results.

A line of ER work [31, 101] implicitly uses hints by comparing record pairs in the order

of their similarity. More recently, a framework for clustering records based on similarity

join results [53, 52] has been proposed. Here, the duplication detection framework con-

sists of two stages: an efficient similarity join, which returns similarities between likely

matching records, and a clustering stage where records are clustered based on the given

similarities. While these systems may already use hints, we believe our work is the first to

explicitly identify and study a wide range of hints that yield results early.

Another line of work proposes similarity search [116, 20, 115] techniques where indices

CHAPTER 2. PAY-AS-YOU-GO ENTITY RESOLUTION 60

or blocking criteria are used for quickly finding the records that are likely to match with

a single record. In contrast, our work focuses on resolving all the records (instead of just

one) by using hints, which provide information on the best record pairs that are more likely

to match.

There has been a recent surge of work on pay-as-you-go information integration [69,

61] on large scale data. Our work is in the same spirit of these works where we incremen-

tally resolve records given the limited amount of time and resources we have. Our work

focuses on the ER domain and improves existing ER algorithms to produce results in a

pay-as-you-go fashion using hints.

2.9 Conclusion

We have proposed a pay-as-you-go approach for Entity Resolution (ER) where given a limit

in resources (e.g., work, runtime) we attempt to make the maximum progress possible. We

introduce the concept of hints, which can guide an ER algorithm to focus on resolving

the more likely matching records first. Our techniques are effective when there are either

too many records to resolve within a reasonable amount of time or when there is a time

limit (e.g., real-time systems). We proposed three types of hints that are compatible with

different ER algorithms: a sorted list of record pairs, a hierarchy of record partitions, and

an ordered list of records. We have also proposed various methods for ER algorithms to use

these hints. Our experimental results evaluated the overhead of constructing hints as well

as the runtime benefits for using hints. We considered a variety of ER algorithms and two

real-world data sets. The results suggest that the benefits of using hints can be well worth

the overhead required for constructing and using hints. Many interesting problems remain

to be solved, including a more formal analysis of different types of hints and a general

guidance for constructing and updating the “best” hint for any given ER algorithm.

Chapter 3

Evolving Rules

We explore the problem of incrementally updating ER results. In some cases ER result may

not be produced just once, but constantly improved based on better understanding of the

data, the schema, and the logic that examines and compares records. In particular, here we

focus on changes to the logic that compares two records. We call this logic the match rule,

and it can be a Boolean function that determines if two records represent the same entity,

or a distance function that quantifies how different (or similar) the records are. Initially we

start with a set of records S, then produce a first ER result E1 based on S and a rule B1.

Some time later rule B1 is improved yielding rule B2, so we need to compute a new ER

result E2 based on S and B2. The process continues with new rules B3, B4 and so on.

A naı̈ve approach would compute each new ER result from scratch, starting from S, a

potentially very expensive proposition. Instead, in this chapter we explore an incremental

approach, where we compute E2 based on E1. Of course for this approach to work, we

need to understand how the new rule B2 relates to the old one B1, so we can understand

what changes incrementally in E1 to obtain E2. As we will see, our incremental approach

may yield large savings over the naı̈ve approach, but not in all cases.

To motivate and explain our approach, consider the following example. Our initial set

of people records S is shown in Figure 3.1. The first rule B1 (see Figure 3.2) says that

two records match if predicate pname evaluates to true. Predicates can in general be quite

complex, but for this example assume that predicates simply perform an equality check.

The ER algorithm calls on B1 to compare records and groups together records with name

61

CHAPTER 3. EVOLVING RULES 62

Record Name Zip Phone
r1 John 54321 123-4567
r2 John 54321 987-6543
r3 John 11111 987-6543
r4 Bob null 121-1212

Figure 3.1: Records to resolve

Match Rule Definition
B1 pname
B2 pname ∧ pzip
B3 pname ∧ pphone

Figure 3.2: Evolving from rule B1 to rule B3

“John”, producing the result {{r1, r2, r3}, {r4}}. (As we will see, there are different types

of ER algorithms, but in this simple case most would return this same result.)

Next, say users are not satisfied with this result, so a data administrator decides to

refine B1 by adding a predicate that checks zip codes. Thus, the new rule is B2 shown in

Figure 3.2. The naı̈ve option is to run the same ER algorithm with rule B2 on set S to

obtain the partition {{r1, r2}, {r3}, {r4}}. (Only records r1 and r2 have the same name

and same zip code.) This process repeats much unnecessary work: For instance, we would

need to compare r1 with r4 to see if they match on name and zip code, but we already know

from the first run that they do not match on name (B1), so they cannot match under B2.

Because the new rule B2 is stricter than B1 (we define this term precisely later on), we

can actually start the second ER from the first result {{r1, r2, r3}, {r4}}. That is, we only

need to check each cluster separately and see if it needs to split. In our example, we find

that r3 does not match the other records in its cluster, so we arrive at {{r1, r2}, {r3}, {r4}}.
This approach only works if the ER algorithm satisfies certain properties and B2 is stricter

than B1. If B2 is not stricter and the ER algorithm satisfies different properties, there are

other incremental techniques we can apply. Our goal in this chapter is to explore these

options: Under what conditions and for what ER algorithms are incremental approaches

feasible? And in what scenarios are the savings over the naı̈ve approach significant?

In addition, we study a complementary technique: materialize auxiliary results during

one ER run, in order to improve the performance of future ER runs. To illustrate, say that

CHAPTER 3. EVOLVING RULES 63

when we process B2 = pname∧pzip, we concurrently produce the results for each predicate

individually. That is, we compute three separate partitions, one for the full B2, one for

rule pname and one for rule pzip. The result for pname is the same {{r1, r2, r3}, {r4}} seen

earlier. For pzip it is {{r1, r2}, {r3}, {r4}}. As we will see later, the cost of computing the

two extra materializations can be significantly lower than running the ER algorithm three

times, as a lot of the work can be shared among the runs.

The materializations pay off when rule B2 evolves into a related rule that is not quite

stricter. For example, say thatB2 evolves intoB3 = pname∧pphone, where pphone checks for

matching phone numbers. In this case,B3 is not stricter thanB2 so we cannot start from the

B2 result. However, we can start from the pname result, sinceB3 is stricter than pname. Thus,

we independently examine each cluster in {{r1, r2, r3}, {r4}}, splitting the first cluster

because r2 has a different phone number. The final result is {{r1, r3}, {r2}, {r4}}. Clearly,

materialization of partial results may or may not pay off, just like materialized views and

indexes may or may not help. Our objective here is, again, to study when is materialization

feasible and to illustrate scenarios where it can pay off.

In summary, our contributions in this chapter are as follows:

• We formalize rule evolution for two general types of record match rules: Boolean match

functions and distance-based functions. We identify two desirable properties of ER al-

gorithms (rule monotonic and context free) that enable efficient rule evolution. We also

contrast these properties to two properties mentioned in the literature (order indepen-

dent and incremental). We categorize a number of existing ER algorithms based on

the properties they satisfy. We then propose efficient rule evolution techniques that use

one or more of the four properties (Sections 3.1 and 3.3). We believe that our results

can be a useful guide for ER algorithm designers: if they need to handle evolving rules

efficiently, they may want to build algorithms that have at least some of the properties

we present.

• We experimentally evaluate (Section 3.4) the rule evolution algorithms for various ER

algorithms using actual comparison shopping data from Yahoo! Shopping and hotel

information from Yahoo! Travel. Our results show scenarios where rule evolution

can be faster than the naı̈ve approach by up to several orders of magnitude. We also

illustrate the time and space cost of materializing partial results, and argue that these

CHAPTER 3. EVOLVING RULES 64

costs can be amortized with a small number of future evolutions. Finally, we also

experiment with ER algorithms that do not satisfy our properties, and show that if one

is willing to sacrifice accuracy, one can still use our rule evolution techniques.

3.1 Match-based Evolution

We consider rule evolution for ER algorithms that cluster records based on Boolean match

rules. (We consider ER algorithms based on distance functions in Section 3.3.) We first

formalize an ER model that is based on clustering. We then discuss two important prop-

erties for ER algorithms that can significantly enhance the runtime of rule evolution. We

also compare the two properties with existing properties for ER algorithms in the litera-

ture. Finally, we present efficient rule evolution algorithms that use one or more of the four

properties.

3.1.1 Match-based Clustering Model

We define a Boolean match rule B as a function that takes two records and returns true or

false. We assume that B is commutative, i.e., ∀ri, rj, B(ri, rj) = B(rj, ri). A Boolean

match rule is identical to a match function, and the two terms are used interchangeably.

Suppose we are given a set of records S = {r1, . . . , rn}. An ER algorithm receives as

inputs a partition Pi of S and a Boolean comparison rule B, and returns another partition

Po of S. A partition of S is defined as a set of clusters P = {c1, . . . , cm} such that c1 ∪ . . .
∪ cm = S and ∀ci, cj ∈ P where i 6= j, ci ∩ cj = ∅.

We require the input to be a partition of S so that we may also run ER on the output of

a previous ER result. In our motivating example in the beginning of this chapter, the input

was a set of records S = {r1, r2, r3, r4}, which can be viewed as a partition of singletons Pi
= {{r1}, {r2}, {r3}, {r4}}, and the output using the comparison rule B2 = pname ∧ pzip
was the partition Po = {{r1, r2},{r3},{r4}}. If we run ER a second time on the ER output

{{r1, r2}, {r3}, {r4}}, we may obtain the new output partition Po = {{r1, r2, r3}, {r4}}
where the cluster {r1, r2} accumulated enough information to match with the cluster {r3}.

How exactly the ER algorithm uses B to derive the output partition Po depends on the

CHAPTER 3. EVOLVING RULES 65

specific ER algorithm. The records are clustered based on the results ofB when comparing

records. In our motivating example (beginning of this chapter), all pairs of records that

matched according to B2 = pname ∧ pzip were clustered together. Note that, in general, an

ER algorithm may not cluster two records simply because they match according to B. For

example, two records r and s may be in the same cluster c ∈ Po even if B(r, s) = false.

Or the two records could also be in two different clusters ci, cj ∈ Po (i 6= j) even if B(r, s)

= true.

We also allow input clusters to be un-merged as long as the final ER result is still a par-

tition of the records in S. For example, given an input partition {{r1, r2, r3},{r4}}, an out-

put of an ER algorithm could be {{r1, r2},{r3, r4}} and not necessarily {{r1, r2, r3},{r4}}
or {{r1, r2, r3, r4}}. Un-merging could occur when an ER algorithm decides that some

records were incorrectly clustered [102].

Finally, we assume the ER algorithm to be non-deterministic in a sense that different

partitions of S may be produced depending on the order of records processed or by some

random factor (e.g., the ER algorithm could be a randomized algorithm). For example, a

hierarchical clustering algorithm based on Boolean rules (see Section 3.1.2) may produce

different partitions depending on which records are compared first. While the ER algorithm

is non-deterministic, we assume the match rule itself to be deterministic, i.e., it always

returns the same matching result for a given pair of records.

We now formally define a valid ER algorithm.

Definition 3.1.1. Given any input partition Pi of a set of records S and any Boolean match

rule B, a valid ER algorithm E non-deterministically returns an ER result E(Pi,B) that is

also a partition Po of S.

We denote all the possible partitions that can be produced by the ER algorithm E as

Ē(Pi, B), which is a set of partitions of S. Hence, E(Pi,B) is always one of the partitions

in Ē(Pi,B). For example, given Pi = {{r1}, {r2}, {r3}}, Ē(Pi,B) could be {{{r1, r2},
{r3}}, {{r1}, {r2, r3}}} while E(Pi, B) = {{r1, r2}, {r3}}.

A rule evolution occurs when a Boolean comparison rule B1 is replaced by a new

Boolean comparison rule B2. An important concept used throughout the paper is the rela-

tive strictness between comparison rules:

CHAPTER 3. EVOLVING RULES 66

Definition 3.1.2. A Boolean comparison rule B1 is stricter than another rule B2 (denoted

as B1 ≤ B2) if ∀ri, rj , B1(ri, rj) = true implies B2(ri, rj) = true.

For example, a comparison rule B1 that compares the string distance of two names and

returns true when the distance is lower than 5 is stricter than a comparison rule B2 that

uses a higher threshold of, say, 10. As another example, a comparison rule B1 that checks

whether the names and addresses are same is stricter than another rule B2 that only checks

whether the names are same.

3.1.2 Properties

We introduce two important properties for ER algorithms – rule monotonic and context free

– that enable efficient rule evolution for match-based clustering.

Rule Monotonic

Before defining the rule monotonic property, we first define the notion of refinement be-

tween partitions.

Definition 3.1.3. A partition P1 of a set S refines another partition P2 of S (denoted as

P1 ≤ P2) if ∀c1 ∈ P1,∃c2 ∈ P2 s.t. c1 ⊆ c2.

For example, given the partitions P1 = {{r1, r2}, {r3}, {r4}} and P2 = {{r1, r2, r3},
{r4}}, P1 ≤ P2 because {r1, r2} and {r3} are subsets of {r1, r2, r3} while {r4} is a subset

of {r4}.
We now define the rule monotonic property, which guarantees that the stricter the match

rule, the more refined the ER result.

Definition 3.1.4. An ER algorithm is rule monotonic (RM) if, for any three partitions

P, P 1
o , P

2
o and two match rules B1 and B2 such that

• B1 ≤ B2 and

• P 1
o ∈ Ē(P , B1) and

• P 2
o ∈ Ē(P , B2)

then P 1
o ≤ P 2

o .

CHAPTER 3. EVOLVING RULES 67

An ER algorithm satisfying RM guarantees that, if the match rule B1 is stricter than

B2, the ER result produced with B1 refines the ER result produced with B2. For exam-

ple, suppose that P = {{r1},{r2},{r3},{r4}}, B1 ≤ B2, and E(Pi, B1) = {{r1, r2, r3},
{r4}}. If the ER algorithm is RM, E(Pi, B2) can only return {{r1, r2, r3}, {r4}} or

{{r1, r2, r3, r4}}.

Context Free

The second property, context free, tells us when a subset of Pi can be processed “in isola-

tion” from the rest of the clusters.

Definition 3.1.5. An ER algorithm is context free (CF) if for any four partitions P, Pi, P 1
o , P

2
o

and a match rule B such that

• P ⊆ Pi and

• ∀Po ∈ Ē(Pi, B), Po ≤ {
⋃
c∈P c ,

⋃
c∈Pi−P c} and

• P 1
o ∈ Ē(P , B) and

• P 2
o ∈ Ē(Pi − P , B)

then P 1
o ∪ P 2

o ∈ Ē(Pi, B).

Suppose that we are resolving Pi = {{r1}, {r2}, {r3}, {r4}}with the knowledge that no

clusters in P = {{r1}, {r2}} will merge with any of the clusters in Pi − P = {{r3}, {r4}}.
Then for any Po ∈ Ē(Pi, B), Po ≤ {{r1, r2}, {r3, r4}}. In this case, an ER algorithm that

is CF can resolve {{r1}, {r2}} independently from {{r3}, {r4}}, and there exists an ER

result of Pi that is the same as the union of the ER results of {{r1}, {r2}} and {{r3}, {r4}}.

Existing ER Properties

To get a better understanding ofRM and CF , we compare them to two existing properties

in the literature: incremental and order independent.

An ER algorithm is incremental [59, 58] if it can resolve one record at a time. We

define a more generalized version of the incremental property for our ER model where any

subsets of clusters in Pi can be resolved at a time.

CHAPTER 3. EVOLVING RULES 68

Definition 3.1.6. An ER algorithm is general incremental (GI) if for any four partitions

P, Pi, P
1
o , P

2
o , and a match rule B such that

• P ⊆ Pi and

• P 1
o ∈ Ē(P , B) and

• P 2
o ∈ Ē(P 1

o ∪ (Pi − P), B)

then P 2
o ∈ Ē(Pi, B).

For example, suppose we have P = {{r1}, {r2}}, Pi = {{r1}, {r2}, {r3}}, and P 1
o =

{{r1, r2}}. That is, we have already resolved P into the result P 1
o . We can then add to P 1

o

the remaining cluster {r3}, and resolve all the clusters together. The result is as if we had

resolved everything from scratch (i.e., from Pi). Presumably, the former way (incremental)

will be more efficient than the latter.

The GI property is similar to the CF property, but also different in a number of ways.

First GI and CF are similar in a sense that they use two subsets of Pi: P and Pi − P .

However, under GI, Pi − P is not resolved until P has been resolved. Also, GI does not

assume P and Pi − P to be independent (i.e., a cluster in P may merge with a cluster in

Pi − P).

We now explore the second property in the literature. An ER algorithm is order inde-

pendent (OI) [59] if the ER result is same regardless of the order of the records processed.

That is, for any input partition Pi and match rule B, Ē(Pi, B) is a singleton (i.e., Ē(Pi, B)

contains exactly one partition of S).

ER Algorithm Categorization

To see how the four propertiesRM, CF , GI, andOI hold in practice, we consider several

ER algorithms in the literature: SN , HCB, HCBR, and ME. While the original defini-

tions of all four ER algorithms assume a set of records S as an input, we provide simple

extensions for the algorithms to accept a set of clusters Pi as in Definition 3.1.1.

SN The sorted neighborhood (SN) algorithm [54] was defined in Section 2.2.2.

Proposition 3.1.7. The SN algorithm isRM, but not CF .

CHAPTER 3. EVOLVING RULES 69

Proof. We prove that the SN algorithm is RM. Given any partition P and two match

rules B1 and B2 such that B1 ≤ B2, the set of pairs of matching records found by B1 is

clearly a subset of that found byB2, during the first phase of the SN algorithm. As a result,

the transitive closure of the matching pairs by B1 refines the transitive closure result of B2

(i.e., P 1
o ≤ P 2

o).

We prove that the SN algorithm is not CF using a counter example. Suppose that the

input partition is Pi = {{r1}, {r2}, {r3}}, and we sort the records in Pi by their record

IDs (e.g., the record r2 has the ID of 2) into the sorted list [r1, r2, r3]. Given the match

rule B, suppose that only the pair r1 and r3 match with each other. Using a window size

of 2, we do not identify any matching pairs of records because r1 and r3 are never in the

same window according to the sorted list. Hence, E(Pi, B) = {{r1}, {r2}, {r3}}. To apply

the CF property, we set P = {{r1}, {r3}} and Pi = {{r1}, {r2}, {r3}}. The first two

conditions in Definition 3.1.5 are satisfied because P ⊆ Pi and ∀Po ∈Ē(Pi, B) = {{{r1},
{r2}, {r3}}}, Po ≤ {

⋃
c∈P ,

⋃
c∈Pi
} = {{r1, r3}, {r2}}. Also, E(P , B) is always {{r1, r3}}

(because r1 and r3 surely match being in the same window) and E(Pi − P , B) is always

{{r2}}. However, E(P , B) ∪ E(Pi−P , B) = {{r1, r3}, {r2}} 6⊆ Ē(Pi, B) = {{{r1}, {r2},
{r3}}}, violating the CF property.

HCB Hierarchical clustering based on a Boolean match rule [10] (which we call HCB)

was defined in Section 2.4.2.

Proposition 3.1.8. The HCB algorithm is CF , but notRM.

Proof. We prove that the HCB algorithm is CF . Given the four partitions P, Pi, P 1
o , P

2
o of

Definition 3.1.5, suppose that P 1
o ∪ P 2

o 6∈ Ē(Pi, B). We then prove that the four conditions

of Definition 3.1.5 cannot all be satisfied at the same time. We first assume that the first,

third, and fourth conditions are satisfied. That is, P ⊆ Pi, P 1
o ∈ Ē(P,B), and P 2

o ∈
Ē(Pi−P,B). Now suppose when derivingE(Pi,B) that we “replay” all the merges among

the clusters of P that were used to derive P 1
o and then “replay” all the merges among the

clusters of Pi−P that were used to derive P 2
o . We thus arrive at the state P 1

o ∪P 2
o , and can

further merge any matching clusters until no clusters match to produce a possible ER result

in Ē(Pi, B). Since P 1
o ∪ P 2

o 6∈ Ē(Pi, B), there must have been new merges among clusters

CHAPTER 3. EVOLVING RULES 70

in P 1
o and P 2

o . Since none of the clusters within P 1
o or clusters within P 2

o match with each

other, we know that there must have been at least one more merge between a cluster in

P 1
o and a cluster in P 2

o when deriving E(Pi, B). As a result, the second condition cannot

hold because there exists an ER result Po ∈ Ē(Pi, B) such that Po 6≤ {
⋃
c∈P c,

⋃
c∈Pi−P c}

because there exists a cluster in Po that contains records in P as well as Pi − P . Hence we

have proved that all four conditions can never be satisfied if P 1
o ∪ P 2

o 6∈ Ē(Pi, B).

We prove that the HCB algorithm is not RM using a counter example. Consider

the example we used for illustrating the HCB algorithm where Ē(Pi, B) was {{{r1, r2},
{r3}}, {{r1}, {r2, r3}}}. Now without having to define a new Boolean match rule, by

setting B1 = B, B2 = B, P 1
o = {{r1, r2}, {r3}}, and P 2

o = {{r1}, {r2, r3}}, we see that

P 1
o 6≤ P 2

o (although B1 ≤ B2), contradicting the RM property. This result suggests that

any ER algorithm that can produce more than one possible partition given any Pi and B is

not RM. We show in Proposition 3.1.13 the equivalent statement that any ER algorithm

that isRM always returns a unique solution.

HCBR We define the HCBR algorithm as a hierarchical clustering algorithm based on

a Boolean match rule (just like HCB). In addition, we require the match rule to match

two clusters whenever at least one of the records from the two clusters match according

to B. (This property is equivalent to the representativity property in reference [10].) For

example, a cluster comparison function that compares all the records between two clusters

using B for an existential match is representative. That is, given two clusters {r1, r2} and

{r3, r4}, the cluster comparison function returns true if at least one ofB(r1, r3), B(r1, r4),

B(r2, r3), or B(r2, r4) returns true.

We can prove that the HCBR is both RM and CF (see Proposition 3.1.11). We first

define the notation of connectedness. Two records r and s are connected under B and Pi if

there exists a sequence of records [r1 (= r), . . ., rn (= s)] where for each pair (ri, ri+1) in the

path, either B(ri, ri+1) = true or ∃c ∈ Pi s.t. ri ∈ c, ri+1 ∈ c. Notice that connectedness

is “transitive,” i.e., if r and s are connected and s and t are connected, then r and t are also

connected.

Lemma 3.1.9. Two records r and s are connected under B and Pi if and only if r and s

are in the same cluster in Po ∈ Ē(Pi, B) using the HCBR algorithm.

CHAPTER 3. EVOLVING RULES 71

Proof. Suppose that r and s are in the same cluster in Po. If r and s are in the same

cluster in Pi, then r and s are trivially connected under B and Pi. Otherwise, there exists

a sequence of merges of the clusters in Pi that grouped r and s together. If two clusters ca
and cb in Pi merge where r ∈ ca and s ∈ cb, then r and s are connected because there is

at least one pair of records r′ ∈ ca and s′ ∈ cb such that r′ and s′ match (i.e., B(r′, s′) =

true), and r is connected to r′ while s is connected to s′. Furthermore, we can prove that

any record in ca ∪ cb is connected with any record in a cluster cc that merges with ca ∪ cb
using a similar argument: we know there exists a pair of records r′ ∈ ca∪cb and s′ ∈ cc that

match with each other, and r is connected to r′ while s is connected to s′, which implies

that r and s are connected under B and Pi. By repeatedly applying the same argument, we

can prove that any r and s are connected if they end up in the same cluster in Po.

Conversely, suppose that r and s are connected as the sequence [r1(= r), . . . , rn(= s)]

underB and Pi. If r and s are in the same cluster in Pi, they are already clustered together in

Po. Otherwise, all the clusters that contain r1, . . . , rn eventually merge together according

to the HCBR algorithm, clustering r and s together in Po.

We next prove that HCBR returns a unique solution.

Proposition 3.1.10. The HCBR algorithm always returns a unique solution.

Proof. Suppose that HCBR produces two different output partitions for a given partition

Pi and match rule B, i.e., Ē(Pi, B) = {P 1
o , P 2

o , . . .}. Then there must exist two records

r and s that have merged into the same cluster according to one ER result, but not in the

same cluster for the other ER result. Suppose that r and s are in the same cluster in P 1
o , but

in separate clusters in P 2
o . Since r and s are clustered together in P 1

o , they are connected

by Lemma 3.1.9. Hence, r and s must also be clustered in P 2
o again by Lemma 3.1.9,

contradicting our hypothesis that they are in different clusters in P 2
o . Hence, HCBR always

returns a unique partition.

Finally, we prove that HCBR is bothRM and CF .

Proposition 3.1.11. The HCBR algorithm is bothRM and CF .

Proof. The HCBR algorithm is CF because the HCB algorithm already is CF . To show

that the HCBR algorithm also is RM, suppose that B1 ≤ B2. Then all the clusters that

CHAPTER 3. EVOLVING RULES 72

match according to B1 also match according to B2. Hence for any P 1
o ∈ Ē(Pi, B1), we

can always construct an ER result P 2
o ∈ Ē(Pi, B2) (which is unique by Proposition 3.1.10)

where P 1
o ≤ P 2

o by performing the exact same merges done for P 1
o and then continuing to

merge clusters that still match according toB2 until no clusters match according toB2.

ME The Monge Elkan (ME) clustering algorithm (we define a variant of the algorithm

in [74] for simplicity) first sorts the records in Pi (i.e., we extract all the records from the

clusters in Pi) by some key and then starts to scan each record. For example, suppose that

we are given the input partition Pi = {{r1}, {r2}, {r3}}, and we sort the records in Pi by

their names (which are not visible in this example) in alphabetical order into the sorted list

of records [r1, r2, r3]. Suppose we are also given the Boolean match rule B where B(r1,

r2) = true, but B(r1, r3) = false and B(r2, r3) = false. Each scanned record is then

compared with clusters in a fixed-length queue. A record r matches with a cluster c if B(r,

s) = true for any s ∈ c. If the new record matches one of the clusters, the record and

cluster merge, and the new cluster is promoted to the head of the queue. Otherwise, the

new record forms a new singleton cluster and is pushed into the head of the queue. If the

queue is full, the last cluster in the queue is dropped. In our example, if the queue size is

1, then we first add r1 into the head of the queue, and then compare r2 with {r1}. Since r2

matches with {r1}, we merge r2 into {r1}. We now compare r3 with the cluster {r1, r2} in

the queue. Since r3 does not match with {r1, r2}, then we insert {r3} into the head of the

queue and thus remove {r1, r2}. Hence, the only possible ER result is {{r1, r2}, {r3}} and

thus Ē(Pi, B) = {{{r1, r2}, {r3}}}. In general, ME always returns a unique partition.

Proposition 3.1.12. The ME algorithm does not satisfyRM or CF .

Proof. We prove that the ME algorithm is not RM using a counter example. Suppose

that the input partition is Pi = {{r1}, {r2}, {r3}}, and we sort the records by their record

IDs (e.g., the record r2 has the ID of 2) into the sorted list of records [r1, r2, r3]. Suppose

that B1(r1, r3) = true, but B1(r1, r2) = false and B1(r2, r3) = false. Compared to B1,

the only difference of B2 is that B2(r2, r3) = true. Clearly, B1 ≤ B2. Using a queue size

of 2, E(Pi, B1) returns {{r1, r3}, {r2}} only because r1 and r2 are inserted into the queue

separately, and r3 then merges with {r1}. On the other hand, E(Pi, B2) returns {{r1},

CHAPTER 3. EVOLVING RULES 73

{r2, r3}} because r1 and r2 are inserted into the queue separately, and r3 matches with

{r2} first. Since E(Pi, B1) = {{r1, r3}, {r2}} 6≤ {{r1}, {r2, r3}} = E(Pi, B2), the RM
property does not hold.

We prove that the ME algorithm is not CF using a counter example. Suppose that the

input partition is Pi = {{r1}, {r2}, {r3}}, and we sort the records by their IDs into the

sorted list of records [r1, r2, r3]. Suppose that B(r1, r3) = true, but B(r1, r2) = false and

B(r2, r3) = false. Using a queue size of 1, we do not identify any matching pairs because

r1 is never compared with r3 because once r2 enters the queue, {r1} is pushed out of the

queue. Hence, E(Pi, B) is always {{r1}, {r2}, {r3}}. Using Definition 3.1.6, suppose we

set P = {{r1}, {r3}} and Pi = {{r1}, {r2}, {r3}}. The first condition is satisfied because

P ⊆ Pi. The second condition is satisfied because ∀Po ∈ Ē(Pi, B), Po = {{r1}, {r2},
{r3}} ≤ {

⋃
c∈P c,

⋃
c∈Pi−P c} = {{r1, r3}, {r2}}. Also, P 1

o is always {{r1, r3}} because r3

matches with {r1}while {r1} is in the queue, and P 2
o is always {{r2}}. As a result, P 1

o ∪P 2
o

= {{r1, r3}, {r2}} 6∈ Ē(Pi, B) = {{{r1}, {r2}, {r3}}}, contradicting the CF property.

The venn diagram in Figure 3.3 shows which ER algorithms satisfy which of the four

properties. The SN2 and HC2
B algorithms are variants of the SN and HCB algorithms,

respectively, and are used to prove Propositions 3.1.17 and 3.1.18, respectively. For now,

ignore the HCDS and HCDC algorithms, which are distance-based clustering algorithms

covered in Section 3.3.2.

We first add the OI property into the venn diagram in Figure 3.3. Proposition 3.1.13

shows that the OI property includes the RM property. Proposition 3.1.14 shows that

the ME algorithm is OI, but not RM. Also, OI partially overlaps with CF , but does

not contain it. According to Proposition 3.1.15, the HCBR algorithm is both OI and

CF . According to Proposition 3.1.16, the HCB algorithm is CF , but not OI. Finally,

Proposition 3.1.14 shows that the ME algorithm is OI, but not CF .

Proposition 3.1.13. Any ER algorithm that isRM is also OI.

Proof. Suppose that we are given an RM ER algorithm E, and the OI property does not

hold. Then there exists a partition Pi and match rule B such that Ē(Pi, B) contains at least

two different partitions Px and Py. Without loss of generality, we assume that Px 6≤ Py.

However, we violate Definition 3.1.4 by setting B1 = B, B2 = B, P 1
o = Px, and P 2

o = Py

CHAPTER 3. EVOLVING RULES 74

HCBHCDS
SN

General
Incremental

Context Free

Rule
Monotonic

Order
Independent

ME

All ER Algorithms

HCDC

HCBR

HCB2

SN2

Figure 3.3: ER Algorithms satisfying properties

because B1 ≤ B2, but P 1
o = Px 6≤ Py = P 2

o . Hence, E cannot satisfy the RM property, a

contradiction.

Proposition 3.1.14. The ME algorithm is OI and GI, but notRM or CF .

Proof. Proposition 3.1.12 shows thatME does not satisfyRM or CF . TheME algorithm

is OI because it first sorts the records in Pi before resolving them with a sliding window

and thus produces a unique solution. The ME algorithm is GI because E(P 1
o ∪ (Pi − P),

B) always returns the same result as E(Pi, B). That is, ME extracts all the records from

its input partition before sorting and resolving them, and P 1
o ∪ (Pi − P) contains the exact

same records as those in Pi (i.e.,
⋃
c∈P 1

o∪(Pi−P) c =
⋃
c∈Pi

c).

Proposition 3.1.15. The HCBR algorithm isRM, CF , GI, and OI.

Proof. Proposition 3.1.11 shows that HCBR is RM and CF . The HCBR algorithm is

also OI by Proposition 3.1.10. To show that HCBR is GI, consider the four partitions

P, Pi, P
1
o , P

2
o of Definition 3.1.6, and suppose that the three conditions P ⊆ Pi, P 1

o ∈ Ē(P ,

B), and P 2
o ∈ Ē(P 1

o ∪ (Pi − P), B) hold. We show that P 2
o ∈ Ē(Pi, B). Starting from

Pi, P 2
o is the result of “replaying” the merges used to produce P 1

o , and then “replaying”

the merges used to produce a possible result of E(P 1
o ∪ (Pi − P), B). Since no clusters in

P 2
o match with each other, P 2

o is also a possible result for E(Pi, B). Hence, P 2
o ∈ Ē(Pi,

B).

CHAPTER 3. EVOLVING RULES 75

Proposition 3.1.16. The HCB algorithm is CF and GI, but notOI (and consequently not

RM).

Proof. Proposition 3.1.8 shows that HCB is CF . The proof that HCB is GI is identical to

the proof for HCBR and is omitted.

The HCB algorithm does not satisfy OI because, depending on the order of records

compared, there could be several possible ER results. For example, given the input partition

Pi = {{r1}, {r2}, {r3}} and the match rule B, suppose that B(r1, r2) = true and B(r2, r3)

= true, but B(r1, r3) = false. Also assume that, whenever we compare two clusters of

records, we simply compare the records with the smallest IDs from each cluster using B.

For instance, when comparing {r1, r2} with {r3}, we return the result of B(r1, r3). Then

depending on the order of clusters in Pi compared, the HCB algorithm either produces

{{r1, r2}, {r3}} or {{r1, r2, r3}}.

We now add the GI property into the venn diagram in Figure 3.3. The GI property

partially intersects with the other three propertiesRM, CF , and OI, and does not include

any of them. Proposition 3.1.15 shows that HCBR is RM, CF , GI, and OI. Hence, GI
intersects with the other three properties. Proposition 3.1.16 shows that the HCB algo-

rithm is GI, but not OI (and consequently not RM). Proposition 3.1.14 shows that the

ME algorithm is GI, but not CF . Hence, none of the other three properties include GI.

Proposition 3.1.17 shows the existence of an ER algorithm that isRM (the same algorithm

is also OI), but not GI. Proposition 3.1.18 shows the existence of an ER algorithm that is

CF , but not GI. Hence, GI does not include any of the other three properties.

Proposition 3.1.17. There exists an ER algorithm that is RM (and consequently OI as

well), but not GI or CF .

Proof. We define a variant of the SN algorithm called SN2. Recall that the SN algorithm

involves identifying the matching pairs of records by first sorting the records from Pi and

then comparing records within the same sliding window. At the end, we produce a transitive

closure of all the matching records. During the transitive closure, however, we define SN2

to also consider all the records within the same cluster in the input partition Pi as matching.

For example, suppose we have Pi = {{r1, r2}, {r3}} and a match rule B such that B(r1, r3)

CHAPTER 3. EVOLVING RULES 76

= true, but B(r1, r2) = false and B(r2, r3) = false. Given a window size of 2, suppose

that we sort the records in Pi by record ID into the list [r1, r2, r3]. Then the original SN

algorithm sorts will return {{r1}, {r2}, {r3}} because r1 and r3 are never compared in

the same window. However, the new SN2 algorithm will consider r1 and r2 as matching

because they were in the same cluster in the input partition Pi. Hence, the result of SN2 is

{{r1, r2}, {r3}}.
We prove that the SN2 algorithm is RM. Given any partition P and two match rules

B1 and B2 such that B1 ≤ B2, the set of pairs of matching records found by B1 is clearly

a subset of that found by B2, during the first phase of the SN algorithm where we find all

the matching pairs of records within the same sliding window at any point. In addition, the

set of matching pairs of records identified from Pi is the same for both B1 and B2. As a

result, the transitive closure of the matching pairs by B1 refines the transitive closure result

of B2 (i.e., for any P 1
o ∈ Ē(Pi, B1) and P 2

o ∈ Ē(Pi, B2), P 1
o ≤ P 2

o).

We prove that the SN2 algorithm is not GI using a counter example. Suppose that we

have Pi = {{r1, r2}, {r3}} and a match rule B such that B(r1, r3) = true, but B(r1, r2) =

false and B(r2, r3) = false. Given a window size of 2, suppose that we sort the records

in Pi by record ID into the list [r1, r2, r3]. As a result, Ē(Pi, B) = {{{r1}, {r2}, {r3}}}
because r1 and r3 are never compared within the same window. Using Definition 3.1.6,

suppose that we set P = {{r1}, {r3}} and Pi = {{r1}, {r2}, {r3}}. As a result, P 1
o = E(P ,

B) = {{r1, r3}} because r1 and r3 surely match being in the same window. Also, P 2
o =

E(P 1
o ∪ (Pi − P), B) = E({{r1, r3}, {r2}}, B) = {{r1, r3}, {r2}} because r1 and r3 are in

the same cluster of the input partition P 1
o ∪ (Pi−P). Since E(Pi, B) is always {{r1}, {r2},

{r3}}, P 2
o 6∈ Ē(Pi, B) = {{{r1}, {r2}, {r3}}}. Hence, the GI property is not satisfied.

(On the other hand, the original SN algorithm is GI; see Proposition 3.1.19.)

To prove that SN2 is not CF (in order to show that Figure 3.3 correctly categorizes

SN2), we can directly use the proof of Proposition 3.1.7 that was used to show SN is not

CF .

Proposition 3.1.18. There exists an ER algorithm that is CF andOI, but not GI orRM.

Proof. We define a variant of theHCB algorithm (calledHC2
B) where all matching clusters

are merged, but only in a certain order. For example, we can define a total ordering between

CHAPTER 3. EVOLVING RULES 77

pairs of clusters where the clusters with the “smallest record IDs” are merged first. We first

define the following notations: MinID1 = min{minr∈c1 ID(r), minr∈c2 ID(r)}, MaxID1

= max{minr∈c1 ID(r), minr∈c2 ID(r)}, MinID2 = min{minr∈c3 ID(r), minr∈c4 ID(r)},
and MaxID2 = max{minr∈c3 ID(r), minr∈c4 ID(r)} where the ID(r) function returns the

ID of r. We merge the pair of clusters (c1, c2) before the pair of matching clusters (c3, c4) if

either MinID1 < MinID2 or both MinID1 = MinID2 and MaxID1 < MaxID2. For

example, the matching clusters {r3, r9} and {r6, r7} merge before the matching clusters

{r4, r8} and {r6, r7} because MinID1 = 3, MaxID1 = 6, MinID2 = 4, MaxID2 = 6 and

thus MinID1 < MinID2. In general, we can use any total ordering of pairs of clusters.

As a result of using the total ordering, the HC2
B algorithm always produces a unique ER

result. For example, suppose that we have Pi = {{r1}, {r2}, {r3}} and the boolean match

rule B where B(r1, r2) = true and B(r2, r3) = true, but B(r1, r3) = false. Also assume

that, whenever we compare two clusters of records, we simply compare the records with

the smallest IDs from each cluster using B. For instance, when comparing {r1, r2} with

{r3}, we return the result ofB(r1, r3). Then the ER resultE(Pi,B) = {{r1, r2}, {r3}}. The

clusters {r1} and {r2} merge before {r2} and {r3} because MinID1 = 1 < 2 = MinID2.

Once {r1} and {r2} merge, {r1, r2} does not match with {r3} because B(r1, r3) = false.

We show that the HC2
B algorithm is CF . Given the four partitions P, Pi, P 1

o , P
2
o , sup-

pose that the four conditions in Definition 3.1.5 are satisfied. That is, P ⊆ Pi, ∀Po ∈
Ē(Pi, B), Po ≤ {

⋃
c∈P c ,

⋃
c∈Pi−P c}, P

1
o ∈ Ē(P , B), and P 2

o ∈ Ē(Pi − P , B). Since

HC2
B returns a unique solution, there is exactly one Po ∈ Ē(Pi, B). Suppose that Po was

generated via a sequence of cluster merges M1, M2, . . . where each M involves a merge of

two clusters. Since Po ≤ {
⋃
c∈P c ,

⋃
c∈Pi−P c}, we can split the sequence into merges Ma

1 ,

Ma
2 , . . . that only involve clusters in P and merges M b

1 , M b
2 , . . . that only involve clusters

in Pi − P . We can run the first batch of merges Ma
1 , Ma

2 , . . . to produce a possible result

of E(P , B) and run the second batch of merges M b
1 , M b

2 , . . . to produce a possible result

of E(Pi − P , B). Since HC2
B returns a unique solution, both ER results E(P , B) and

E(Pi − P , B) are in fact unique and thus are equal to P 1
o and P 2

o , respectively. The union

of P 1
o and P 2

o is equivalent to the result of running the merges M1, M2, . . ., i.e., E(Pi, B).

Hence, P 1
o ∪ P 2

o ∈ Ē(Pi, B).

The HC2
B algorithm is OI because the merges are done in a fixed order.

CHAPTER 3. EVOLVING RULES 78

We show that theHC2
B algorithm does not satisfy GI using a counter example. Suppose

that we have Pi = {{r1}, {r2}, {r3}} and the Boolean match ruleB whereB(r1, r2) = true

and B(r2, r3) = true, but B(r1, r3) = false. Also assume that, whenever we compare two

clusters of records, we simply compare the records with the smallest IDs from each cluster

using B. For instance, when comparing {r1, r2} with {r3}, we return the result of B(r1,

r3). Then the ER result E(Pi, B) = {{r1, r2}, {r3}} because {r1} and {r2} merge first

(before {r2} and {r3}) and then {r1, r2} does not match with {r3} because B(r1, r3) =

false. However, in Definition 3.1.6 suppose that we set P = {{r2}, {r3}} and Pi = {{r1},
{r2}, {r3}}. Then P 1

o = E(P , B) = {{r2, r3}} because {r2} matches with {r3}. Also P 2
o =

E(P 1
o ∪ (Pi − P), B) = E({{r2, r3}, {r1}}, B) = {{r1, r2, r3}} because {r2, r3} and {r1}

match. Since E(Pi, B) is always {{r1, r2}, {r3}}, P 2
o 6∈ Ē(Pi, B) = {{{r1, r2}, {r3}}}.

Hence, the GI property is not satisfied.

We show that theHC2
B algorithm is notRM using a counter example. We use the same

example in the previous paragraph where E(Pi, B) = {{r1, r2}, {r3}}. Now suppose that

we are given a stricter match rule B1 where B1(r2, r3) = true, but B1(r1, r2) = false and

B1(r1, r3) = false. Then E(Pi, B1) = {{r1}, {r2, r3}} because only {r2} and {r3} match.

Hence, although B1 ≤ B, E(Pi, B) = {{r1, r2}, {r3}} 6≤ E(Pi, B1) = {{r1}, {r2, r3}},
violatingRM.

Finally, Proposition 3.1.19 shows that the SN algorithm is RM, OI, and GI, but not

CF .

Proposition 3.1.19. The SN algorithm is RM (and consequently OI) and GI, but not

CF .

Proof. Proposition 3.1.7 shows that SN is RM (and consequently OI), but not CF . We

prove that the SN algorithm is GI. Recall that SN extracts all records in the input partition

before sorting and resolving them. Hence, the ER result is the same for different input

partitions as long as they contain the same records. For example, E({{r1, r2}, {r3}}, B)

= E({{r1}, {r2, r3}}, B) because the two input partitions contain the same records r1, r2,

and r3. In Definition 3.1.6, we know that E(P 1
o ∪ (Pi − P), B) always returns the same

result as E(Pi, B) because P 1
o ∪ (Pi − P) contains the same records as those in Pi. Thus,

for any P2 ∈ Ē(P 1
o ∪ (Pi − P), B), P2 ∈ Ē(Pb, B).

CHAPTER 3. EVOLVING RULES 79

3.1.3 Materialization

To improve our chances that we can efficiently compute a new ER result with ruleB2, when

we compute earlier results we can materialize results that involve predicates likely to be in

B2. When we compute an earlier result E(Pi, B1) where say B1 = p1∧ p2∧ p3, we can also

materialize results such as E(Pi, p1), E(Pi, p2), E(Pi, p1 ∧ p2), and so on. The most useful

materializations will be those that can help us later with E(Pi, B2). (See Section 3.2.) For

concreteness, here we will assume that we materialize all conjuncts of B1 (in our example,

E(Pi, p1), E(Pi, p2), and E(Pi, p3)).

Instead of serially materializing each conjunct, however, we can amortize the common

costs by materializing different conjuncts in a concurrent fashion. For example, parsing and

initializing the records can be done once during the entire materialization. More operations

can be amortized depending on the given ER algorithm. For example, when materializing

conjuncts using an ER algorithm that always sorts its records before resolving them, the

records only need to be sorted once for all materializations. In Section 3.4.5, we show that

amortizing common operations can significantly reduce the time overhead of materializing

conjuncts. A partition of the records in S can be stored compactly in various ways. One

approach is to store sets of records IDs in a set where each inner set represents a cluster

of records. A possibly more space-efficient technique is to maintain an array A of records

(where the ID is used as the index) where each cell contains the cluster ID. For example, if

r5 is in the second cluster, then A[5] = 2. If there are only a few clusters, we only need a

small number of bits for saving each cluster ID. For example, if there are only 8 clusters,

then each entry in A only takes 3 bits of space.

3.1.4 Rule Evolution

We provide efficient rule evolution techniques for ER algorithms using the properties. Our

first algorithm supports ER algorithms that areRM and CF . As we will see, rule evolution

can still be efficient for ER algorithms that are only RM. Our second algorithm supports

ER algorithms that are GI. Before running the rule evolution algorithms, we materialize

ER results for conjuncts of the old match rule B1 by storing a partition of the input records

S (i.e., the ER result) for each conjunct in B1 (see Section 3.2 for possible optimizations).

CHAPTER 3. EVOLVING RULES 80

To explain our rule evolution algorithms, we review a basic operation on partitions.

The meet of two partitions P1 and P2 (denoted as P1 ∧ P2) returns a new partition of S

whose members are the non-empty intersections of the clusters of P1 with those of P2. For

example, given the partitions P1 = {{r1, r2, r3}, {r4}} and P2 = {{r1}, {r2, r3, r4}}, the

meet of P1 and P2 becomes {{r1}, {r2, r3}, {r4}} since r2 and r3 are clustered in both

partitions. We also show the following lemma regarding the meet operation.

Lemma 3.1.20. If ∀i, P ≤ Pi then P ≤
∧
Pi

Proof. We prove by induction on the number k of partitions that are combined with the

meet operation.

Base case: k = 1. Obviously, P ≤ P1.

Induction: Suppose that P ≤
∧
i∈{1,...,k} Pi. We then show that the same equation holds

when k increases by 1. Any pair of records r, s that are clustered in P are also clustered

in
∧
i∈{1,...,k} Pi and Pk+1 by the induction hypothesis. Since r and s are clustered in both∧

i∈{1,...,k} Pi and Pk+1, r and s are also clustered in the meet of the two partitions, i.e.,∧
i∈{1,...,k+1} Pi. Hence any pair of records that are clustered in P are also clustered in∧
i∈{1,...,k+1} Pi.

Algorithm 7 performs rule evolution for ER algorithms that are bothRM and CF . The

input requires the input partition Pi, the old and new match rules (B1 and B2, respectively),

and a hash table H that contains the materialized ER results for the conjuncts of B1. The

conjuncts of a match rule B is denoted as Conj(B). For simplicity, we assume that B1 and

B2 share at least one conjunct. Step 3 exploits the RM property and meets the partitions

of the common conjuncts between B1 and B2. For example, suppose that we have B1 =

p1 ∧ p2 ∧ p3 and B2 = p1 ∧ p2 ∧ p4. Given Pi = {{r1}, {r2}, {r3}, {r4}}, say we also have

the materialized ER results E(Pi, p1) = {{r1, r2, r3}, {r4}} and E(Pi, p2) = E(Pi, p3) =

{{r1}, {r2, r3, r4}}. Since the common conjuncts of B1 and B2 are p1 and p2, we generate

the meet of E(Pi, p1) and E(Pi, p2) as M = {{r1}, {r2, r3}, {r4}}. By RM, we know

that E(Pi, B2) refines M because B2 is stricter than both p1 and p2. That is, each cluster in

the new ER result is contained in exactly one cluster in the meet M . Step 4 then exploits

the CF property to resolve for each cluster c of M , the clusters in Pi that are subsets of c

(i.e., {c′ ∈ Pi|c′ ⊆ c}). Since the clusters in different {c′ ∈ Pi|c′ ⊆ c}’s do not merge with

CHAPTER 3. EVOLVING RULES 81

ALGORITHM 7: Rule evolution givenRM and CF
1: input: The input partition Pi, the match rules B1, B2, the ER result for each conjunct of B1,

the hash table H containing materializations of conjuncts in B1

2: output: The output partition Po ∈ Ē(Pi, B2)
3: Partition M ←

∧
conj∈Conj(B1)∩Conj(B2)H(conj)

4: return
⋃
c∈ME({c′ ∈ Pi|c′ ⊆ c}, B2)

each other, each {c′ ∈ Pi|c′ ⊆ c} can be resolved independently. As a result, we can return

{{r1}} ∪ E({{r2}, {r3}}, B2) ∪ {{r4}} as the new ER result of B2.

In order to prove that Algorithm 7 is correct, we first prove three lemmas below. For

simplicity, we denote {c′ ∈ Pi|c′ ⊆ c} as IN(Pi, c). For a set of clusters Q, we define

IN(Pi, Q) =
⋃
c∈QIN(Pi, c).

Lemma 3.1.21. For anRM algorithm, ∀Po ∈ Ē(Pi, B2), Po ≤M .

Proof. We first use the RM property to prove that ∀Po ∈ Ē(Pi, B2), Po ≤ M . For each

conj ∈ Conj(B1)∩Conj(B2), B2 ≤ conj. Hence, byRM, ∀P 1
o ∈ Ē(Pi, B2) and ∀P 2

o ∈
Ē(Pi, conj), P 1

o ≤ P 2
o . Since M =

∧
conj∈Conj(B1)∩Conj(B2) E(Pi, conj), we conclude that

∀Po ∈ Ē(Pi, B2), Po ≤ M using Lemma 3.1.20. (Notice that M is unique because each

E(Pi, conj) is also unique byRM and CF .)

Lemma 3.1.22. Say we have an algorithm that isRM and CF , an initial partition Pi, and

two rules B1, B2 with conjuncts Conj(B1), Conj(B2). Let M =
∧
conj∈Conj(B1)∩Conj(B2)

E(Pi, conj). For any W ⊆M , E(IN(Pi, W), B2) ≤ W .

Proof. We use CF to prove that for any W ⊆ M , E(IN(Pi, W), B2) ≤ W . To avoid

confusion with the initial set of clusters Pi, we use the symbol P ′i instead of Pi when using

Definition 3.1.5. We satisfy the first two conditions in Definition 3.1.5 by setting P = IN(Pi,

W) and P ′i = Pi. The first condition, P ⊆ P ′i , is satisfied because IN(Pi, W) is a subset

of Pi by definition. The second condition, ∀Po ∈ Ē(P ′i , B2), Po ≤ {
⋃
c∈P c ,

⋃
c∈P ′i−P

c},
is satisfied because we know by Lemma 3.1.21 that ∀Po ∈ Ē(Pi, B2), Po ≤ M . Also, we

know that W ⊆ M . Thus, for P 1
o = E(P , B2) and P 2

o = E(P ′i − P , B2), P 1
o ∪ P 2

o = E(P ′i ,

B2). (Notice that E returns a unique solution beingRM and CF .) Since E(P ′i , B2) ≤M ,

P 1
o = E(IN(Pi, W), B2) ≤ W , which also implies that E(IN(Pi, W), B2) ≤M .

CHAPTER 3. EVOLVING RULES 82

Lemma 3.1.23. Given the same setup as in Lemma 3.1.22, let Y ⊆ M and Z ⊆ M such

that Y ∩Z = ∅ and Y ∪Z = W (note: W ⊆M). Let Q = E(IN(Pi, W), B2) (there is only

one solution). Then Q ≤ {
⋃
c∈Y c ,

⋃
c∈Z c}.

Proof. Suppose that Q 6≤ {
⋃
c∈Y c ,

⋃
c∈Z c}. Then a cluster in Q must have one cluster

from Y and one from Z. Since Q ≤ M (by Lemma 3.1.22), however, we arrive at a

contradiction.

Proposition 3.1.24. Algorithm 7 correctly returns a partition Po ∈ Ē(Pi, B2).

Proof. We use CF to prove that Po =
⋃
c∈ME({c′ ∈ Pi|c′ ⊆ c}, B2) ∈Ē(Pi, B2). Suppose

that M = {c1, . . ., c|M |}. We omit the B2 from any expression E(P , B2) for brevity (B1

is not used in this proof). To avoid confusion with the initial set of clusters Pi, we use

the symbol P ′i instead of Pi when using Definition 3.1.5 later in this proof. We define the

following notation: α(k) =
⋃
c∈{c1,...,ck} E(IN(Pi, c)) and β(k) =

⋃
c∈M−{c1,...,ck} IN(Pi, c).

Our goal
⋃
c∈ME({c′ ∈ Pi|c′ ⊆ c}, B2) ∈Ē(Pi, B2) can thus be written as α(|M |) ∈ Ē(Pi).

To prove that α(|M |) ∈ Ē(Pi), we first prove a more general statement: any α(k) ∪E(β(k))

∈ Ē(Pi) for k ∈ {0, . . ., |M |}. Clearly, if our general statement holds, we can show that

α(|M |) ∈ Ē(Pi). We use induction on the number of partitions k processed in isolation.

Base case: k = 0. Then any α(0) ∪ E(β(0)) = E(Pi) ∈ Ē(Pi).

Induction: Suppose the equation above holds for k = n (i.e., any α(n) ∪ E(β(n)) ∈
Ē(Pi)). We want to show that the equation also holds when k = n + 1 where n + 1 ≤ |M |.

We first show that E(IN(Pi, cn+1)) ∪ E(β(n+ 1)) = E(β(n)) using CF . We satisfy the

first two conditions of Definition 3.1.5 by setting P = IN(Pi, cn+1) and P ′i = β(n). The first

condition, P ⊆ P ′, is satisfied because IN(Pi, cn+1) is a subset of β(n) by definition. The

second condition, ∀Po ∈ Ē(P ′i), Po ≤ {
⋃
c∈P c ,

⋃
c∈P ′i−P

c}, is satisfied by Lemma 3.1.23

by setting Y = {cn+1} andZ = {cn+2, . . . , c|M |}. Hence, for P 1
o =E(P) and P 2

o =E(P ′i−P),

P 1
o ∪ P 2

o = E(IN(Pi, cn+1)) ∪ E(β(n+ 1)) = E(β(n)).

Now α(n+ 1) ∪ E(β(n+ 1)) = α(n) ∪ E(IN(Pi, cn+1)) ∪ E(β(n+ 1)), which is equal

to some result α(n) ∪ E(β(n)). Using the induction hypothesis, we know that any α(n) ∪
E(β(n)) ∈ Ē(Pi), so α(n+ 1) ∪ E(β(n+ 1)) ∈ Ē(Pi) as well, which proves our induction

step.

CHAPTER 3. EVOLVING RULES 83

Proposition 3.1.25. The complexity of Algorithm 7 is O(c × |S| + |S|c
zc × g(|Pi|×zc

|S|c , |S||Pi|))

where S is the set of records in the input partition of records Pi, c is the number of common

conjuncts between B1 and B2, z is the average cluster size for any partition produced by

a conjunct, and g(N,A) is the complexity of the ER algorithm E for an input partition

containing N clusters with an average size of A records.

Proof. The complexity of Algorithm 7 can be computed by adding the cost for meeting

partitions of the common conjuncts (Step 3) and the cost for running ER on the clusters

in M (Step 4). In Step 3, we perform c − 1 meets, which takes about O(c × |S|) time

where the meet operation can be run in O(|S|) time [73]. Given a record r, the probability

of some other record s clustering with r is z−1
|S|−1

because each cluster has an average size

of z. The probability for s to be in the same cluster with r for all the c meeting partitions

is thus (z−1
|S|−1

)c, assuming that all conjuncts cluster records independently. As a result, the

expected number of records to be clustered with r in M is (|S| − 1)× (z−1
|S|−1

)c. Hence, the

average cluster size of M is 1+(|S|−1)× (z−1
|S|−1

)c ≈ zc

|S|c−1 records. The expected number

of clusters in M is thus approximately |S|
zc

|S|c−1

= |S|
c

zc . Each {c′ ∈ Pi|c′ ⊆ c} (where c ∈ M)

has on average |Pi|
|S|c
zc

= |Pi|×zc

|S|c clusters of Pi where the average size of each cluster in Pi is
|S|
|Pi| . The complexity of Step 4 is thus O(|S|

c

zc × g(|Pi|×zc

|S|c , |S||Pi|)). Hence, the total algorithm

complexity is O(c× |S|+ |S|c
zc × g(|Pi|×zc

|S|c , |S||Pi|)).

While Algorithm 7 does not improve the complexity of the given ER algorithm E run-

ning without rule evolution, its runtime can be much faster in practice because the overhead

for meeting partitions is not high (Step 3), and there can be large savings by running ER on

small subsets of Pi (i.e., the {c′ ∈ Pi|c′ ⊆ c}’s) (Step 4) rather than on the entire partition

Pi.

The rule evolution algorithm for ER algorithms that are only RM is identical to Al-

gorithm 7 except for Step 4, where we can no longer process subsets of Pi independently.

However, we can still run Step 4 efficiently using global information. We revisit the sorted

neighborhood ER algorithm (SN) in Section 3.1.2. Recall that the first step of SN is to

move a sliding window on a sorted list of records, comparing records pairwise only within

the same window of size W . (The second step is a transitive closure of all matching pairs.)

CHAPTER 3. EVOLVING RULES 84

In Step 4, we are able to resolve each {c′ ∈ Pi|c′ ⊆ c} (c ∈ M) using the same win-

dow size W as long as we also use the global sort information of the records to make

sure only the records that would have been in the same window during the original run of

SN should be compared with each other. Suppose that we have B1 = pname ∧ pzip, B2 =

pname ∧ pphone, and the initial set Pi = {{r1}, {r2}, {r3}, {r4}, {r5}}. We set the sort key

to be the record ID (e.g., r4 has the ID 4). As a result, the records are sorted into the list

[r1, r2, r3, r4, r5]. Using a window size of W= 3, suppose we materialize E(Pi,pname) =

{{r1, r3, r5}, {r2}, {r4}} because r1 and r3 matched when the window covered [r1, r2, r3]

and r3 and r5 matched when the window covered [r3, r4, r5]. The records r1 and r5 only

match during the transitive closure in the second step of SN . The meetM in Algorithm 7 is

also {{r1, r3, r5}, {r2}, {r4}} because there is only one common conjunct pname between

B1 and B2. Thus, we only need to resolve the set {r1, r3, r5} using B2. However, we must

be careful and should not simply run E({r1, r3, r5}, B2) using a sliding window of size 3.

Instead, we must take into account the global ordering information and never compare r1

and r5, which were never in the same window. Thus, if B2(r1, r3) = false, B2(r3, r5) =

false, and B2(r1, r5) = true, the correct ER result is that none of r1, r3, r5 are clustered.

While we need to use the global sort information of records, our rule evolution is still more

efficient than re-running SN on the entire input Pi (see Section 3.4).

Algorithm 3 performs rule evolution for ER algorithms that only satisfy the GI prop-

erty. Algorithm 3 is identical to Algorithm 7 except that Step 4 is replaced with the code

“return E(
⋃
c∈ME({c′ ∈ Pi|c′ ⊆ c}, B2), B2)”. Since the RM property is not satisfied

anymore, we can no longer assume that the meet M is refined by the ER result of B2.

Hence, after each {c′ ∈ Pi|c′ ⊆ c} is resolved, we need to run ER on the union of the

results (i.e., the outermost ER operation in Step 4) to make sure we found all the matching

records. The GI property guarantees that the output Po is equivalent to a result in Ē(Pi,

B2). Using the same example for Algorithm 7, we now return E({{r1}} ∪ E({r2, r3}, B2)

∪ {{r4}}, B2).

There are two factors that make Algorithm 3 efficient for certain ER algorithms. First,

each cluster in M is common to several ER results and thus contains records that are likely

to be clustered. An ER algorithm may run faster by resolving clusters that are likely to

match first. Second, there are fewer clusters for the outer E operation to resolve compared

CHAPTER 3. EVOLVING RULES 85

to when E runs on the initial partition Pi. An ER algorithm may run faster when resolving

fewer (but larger) clusters. While not all ER algorithms that are GI will speed up from

these two factors, we will see in Section 3.4 that the HCB algorithm indeed benefits from

Algorithm 3.

The complexity of Algorithm 3 can be computed by adding the cost for meeting parti-

tions and the cost for running ER on clusters. In comparison to Algorithm 7, the additional

cost is the outermost ER operation in Step 4. In practice, Algorithm 3 is slower than Algo-

rithm 7, but can still be faster than running the ER algorithm E without rule evolution.

Proposition 3.1.26. Algorithm 3 correctly returns an ER result Po ∈ Ē(Pi, B2).

Proof. Suppose M = {c1, c2, . . ., c|M |}. For this proof, we denote {c′ ∈ Pi|c′ ⊆ c} as

IN(Pi, c). We also omit B2 from each E(P , B2) expression for brevity (B1 is not used

in this proof). We define the following notations: α(k) =
⋃
c∈M−{c1,...,ck} E(IN(Pi, c)) and

β(k) =
⋃
c∈{c1,...,ck} IN(Pi, c). To avoid confusion with the initial set of clusters Pi, we

use P ′i instead of Pi when using Definition 3.1.6 later in this proof. To prove that Po =

E(α(0)) ∈ Ē(Pi) = Ē(β(|M |)), we prove the more general statement that Po ∈ Ē(α(k)

∪ β(k))) for k ∈{0, . . ., |M |}. Clearly, if our general statement holds, we can show that

Po ∈ Ē(β(|M |)) = Ē(Pi) by setting k = |M |.
Base case: We set k = 0. Then Po = E(α(0)) ∈ Ē(α(0)) = Ē(α(0) ∪ β(0)) .

Induction: Suppose that our statement holds for k = n, i.e., Po = E(α(0)) ∈ Ē(α(n) ∪
β(n)). We want to show that the same expression holds for k = n + 1 where n + 1 ≤ |M |.
We use the GI property by setting P = IN(Pi, cn+1) and P ′i = α(n + 1) ∪ β(n + 1). The

first condition P ⊆ P ′i is satisfied because β(n + 1) contains P . We then set P 1
o = E(P)

= E(IN(Pi, cn+1)) and P 2
o = E(P 1

o ∪ (P ′i − P)) = E(E(IN(Pi, cn+1)) ∪α(n + 1) ∪ β(n))

= E(α(n) ∪ β(n)). The GI property tells us that P 2
o ∈ Ē(P ′i) = Ē(α(n + 1) ∪ β(n + 1)).

Thus, any E(α(n) ∪ β(n)) ∈ Ē(α(n+ 1) ∪ β(n+ 1)). Using our induction hypothesis, we

conclude that Po = E(α(0)) ∈ Ē(α(n) ∪ β(n)) ⊆ Ē(α(n+ 1) ∪ β(n+ 1)).

CHAPTER 3. EVOLVING RULES 86

3.2 Materialization Strategies

Until now, we have used a general strategy for rule materialization where we materialize

on each conjunct. In this section, we list possible optimizations for materializations given

more application-specific knowledge. Our list is by no means exhaustive, and the possible

optimizations will depend on the ER algorithm and match rules.

A group of conjuncts is “stable” if they appear together in most match rules. As a

result, the group can be materialized instead of all individual conjuncts. For example, if the

conjuncts p1, p2, and p3 are always compared as a conjunction in a person records match

rule, then we can materialize on p1 ∧ p2 ∧ p3 together rather than on the three conjuncts

separately. Hence, the time and space overhead of materialization can be saved.

If we know the pattern of how the match rule will evolve, we can also avoid material-

izing on all conjuncts. In the ideal case where we know that the match rule can only get

stricter, we do not have to save any additional materializations other than the ER result of

the old match rule. Another scenario is when we are only changing the postfix of the old

match rule, so we only need to materialize on all the prefixes of the old match rule. For

example, if we have the match rule p1∧ p2∧ p3, then we can materialize on p1, p1∧ p2, and

p1 ∧ p2 ∧ p3. If the ER algorithm is bothRM and CF , then the ER result of p1 ∧ p2 can be

computed efficiently from the ER result of p1, and the ER result of p1 ∧ p2 ∧ p3 from that

of p1 ∧ p2.

3.3 Distance-based Evolution

We now consider rule evolution on distance-based clustering where records are clustered

based on their relative distances instead of the Boolean match results used in the match-

based clustering model. We first define our match rule as a distance function. We then

define the notion of strictness between distance match rules and define properties analogous

to those in Section 3.1.2. Finally, we provide a model on how the distance match rule can

evolve and present our rule evolution techniques.

CHAPTER 3. EVOLVING RULES 87

3.3.1 Distance-based Clustering Model

A distance match rule is defined as a commutative distance function D that returns a non-

negative distance between two records instead of a Boolean function as in Section 3.1.

For example, the distance between two person records may be the sum of the distances

between their names, addresses, and phone numbers. Records are now clustered based

on their relative distances with each other. The details on how exactly D is used for the

clustering differs for each ER algorithm. In hierarchical clustering using distances [70], the

closest pairs of records are merged first until a certain criterion is met. A more sophisticated

approach [21] may cluster a set of records that are closer to each other compared to records

outside, regardless of the absolute distance values. Other than using a distance match rule

instead of a Boolean match rule, the definition of a valid ER algorithm remains the same as

Definition 3.1.1. Compared to the general ER model in Chapter ??, there is the notion of

plugging in a distance function into an ER algorithm as opposed to using an ER algorithm

with a fixed distance function.

In order to support rule evolution, we model D to return a range of possible non-

negative distances instead of a single non-negative distance. For example, the distance

D(r1, r2) can be all possible distances within the range [13, 15]. We denote the minimum

possible value of D(r1, r2) as D(r1, r2).min (in our example, 13) and the maximum value

as D(r1, r2).max (in our example, 15). As a result, an ER algorithm that only supports

single-value distances must be extended to support ranges of values. The extension is

specific to the given ER algorithm. However, in the case where the distance match rule

only returns single value ranges, the extended algorithm must be identical to the original

ER algorithm. Thus, the extension for general distances is only needed for rule evolution

and does not change the behavior of the original ER algorithm.

A rule evolution occurs when a distance match rule D1 is replaced by a new distance

match rule D2. We define the notion of relative strictness between distance match rules

analogous to Definition ??.

Definition 3.3.1. A distance match rule D1 is stricter than another rule D2 (denoted as

D1 ≤ D2) if ∀r, s, D1(r, s).min ≥ D2(r, s).min and D1(r, s).max ≤ D2(r, s).max.

That is, D1 is stricter than D2 if its distance range is always within that of D2 for any

CHAPTER 3. EVOLVING RULES 88

record pair. For example, if D2(r, s) is defined as all the possible distance values within

[D1(r, s).min−1, D1(r, s).max+1], then D1 ≤ D2 (assuming that D1(r, s).min ≥ 1).

3.3.2 Properties

We use properties analogous toRM, CF , GI, andOI from Section 3.1.2 for the distance-

based clustering model. The only differences are that we now use distance match rules in-

stead of Boolean match rules (hence we must replace allB’s withD’s) and Definition 3.3.1

instead of Definition ?? for comparing the strictness between distance match rules. To show

how the properties hold in practice, we consider two distance-based clustering algorithms:

HCDS and HCDC .

HCDS The Single-link Hierarchical Clustering algorithm [45, 70] (HCDS) merges the

closest pair of clusters (i.e., the two clusters that have the smallest distance) into a single

cluster until the smallest distance among all pairs of clusters exceeds a certain threshold

T . When measuring the distance between two clusters, the algorithm takes the smallest

possible distance between records within the two clusters. Suppose we have the input

partition Pi = {{r1}, {r2}, {r3}} where D(r1, r2) = 2, D(r2, r3) = 4, and D(r1, r3) = 5 (we

later extend HCDS to support ranges of distances) with T = 2. The HCDS algorithm first

merges r1 and r2, which are the closest records and have a distance smaller or equal to T ,

into {r1, r2}. The cluster distance between {r1, r2} and {r3} is the minimum of D(r1, r3)

and D(r2, r3), which is 4. Since the distance exceeds T , {r1, r2} and {r3} do not merge,

and the final ER result is {{r1, r2}, {r3}}.
We extend the HCDS algorithm by allowing ranges of distances to be returned by a

distance match rule, but only comparing the minimum value of a range with either another

range or the threshold T . That is, D(r, s) is considered a smaller distance than D(u, v) if

D(r, s).min ≤ D(u, v).min. Also, D(r, s) is considered smaller than T if D(r, s).min ≤
T . For example, [3, 5] < [4, 4] because 3 is smaller than 4, and [3, 5] > T = 2 because 3

is larger than 2. The extended HCDS algorithm is trivially identical to the original HCDS
algorithm when D only returns a single value.

Proposition 3.3.2 shows that the HCDS algorithm is RM, CF , GI, and OI. As a

CHAPTER 3. EVOLVING RULES 89

result, the HCDS algorithm can use Algorithm 7 (with minor changes; see Section 3.3.3)

for rule evolution.

Proposition 3.3.2. The extended HCDS algorithm isRM, CF , GI, and OI.

Proof. We first define the notation of connectedness for HCDS . Two records r and s are

connected under D, T , and Pi if there exists a sequence of records [r1 (= r), . . ., rn (=

s)] where for each pair (ri, ri+1) in the path, either D(ri, ri+1).min ≤ T or ∃c ∈ Pi s.t.

ri ∈ c, ri+1 ∈ c. Notice that connectedness is “transitive,” i.e., if r and s are connected and

s and t are connected, then r and t are also connected.

We now prove the following Lemma.

Lemma 3.3.3. Two records r and s are connected under D, T , and Pi if and only if r and

s are in the same cluster in E(Pi, D) using the HCDS algorithm.

Proof. The proof is identical to the proof in Lemma 3.1.9, except that we use D and T

instead of B for comparing records.

We prove that the extended HCDS algorithm is RM (and thus OI). Given the input

partition Pi and two distance match rulesD1 andD2 whereD1 ≤ D2, we want to show that

for P 1
o ∈ Ē(Pi, D1) and P 2

o ∈ Ē(Pi, D2), P 1
o ≤ P 2

o . By Lemma 3.3.3, any pair of records r

and s that get clustered together in P 1
o are connected under D1, T , and Pi. If D1 ≤ D2, we

know that D2(ri, ri+1).min ≤ D1(ri, ri+1).min ≤ T . Hence, r and s are also connected

underD2, T , and Pi. By Lemma 3.3.3, r and s are guaranteed to be clustered in P 2
o as well.

As a result, P 1
o ≤ P 2

o . Since HCDS isRM, it is also OI.

We prove that the extended HCDS algorithm is GI. Using Definition 3.1.6, suppose

that the three conditions hold, i.e., P ⊆ Pi, P 1
o ∈ Ē(P , D), and P 2

o ∈ Ē(P 1
o ∪(Pi−P), D).

Since HCDS is OI (proved in previous paragraph), the ER results E(Pi, D) and E(P 1
o ∪

(Pi − P), D) are both unique.

We prove that E(Pi, D) and E(P 1
o ∪ (Pi − P), D) are in fact the same partition. By

Lemma 3.3.3, any pair r and s in E(Pi, D) are connected under D, T , and Pi. As a result,

there exists a sequence of records [r1 (= r), . . ., rn (= s)] where for each pair (ri, ri+1)

in the path, either D(ri, ri+1).min ≤ T or ∃c ∈ Pi s.t. ri ∈ c, ri+1 ∈ c. The fact that

D(ri, ri+1).min ≤ T does not change when evaluating E(P 1
o ∪ (Pi − P), D). If ∃c ∈ Pi

CHAPTER 3. EVOLVING RULES 90

s.t. ri ∈ c, ri+1 ∈ c, then ∃c ∈ P 1
o ∪ (Pi − P) s.t. ri ∈ c, ri+1 ∈ c because none of

the clusters in Pi are un-merged in P 1
o ∪ (Pi − P). Hence, ri and ri+1 are connected in

E(P 1
o ∪ (Pi − P), D), which means that r and s are connected in E(P 1

o ∪ (Pi − P), D).

Thus, r and s are clustered together by Lemma 3.3.3.

Conversely, suppose that r and s are clustered together in E(P 1
o ∪ (Pi − P), D). Then

by Lemma 3.3.3, r and s are connected under D, T , and P 1
o ∪ (Pi − P). As a result, there

exists a sequence of records [r1 (= r), . . ., rn (= s)] where for each pair (ri, ri+1) in the

path, either D(ri, ri+1).min ≤ T or ∃c ∈ P 1
o ∪ (Pi − P) s.t. ri ∈ c, ri+1 ∈ c. The fact that

D(ri, ri+1).min ≤ T does not change when evaluating E(Pi, D). If ∃c ∈ P 1
o ∪ (Pi − P)

s.t. ri ∈ c, ri+1 ∈ c, then ∃c ∈ P 1
o = E(P , D) s.t. ri ∈ c, ri+1 ∈ c or ∃c ∈ Pi − P s.t.

ri ∈ c, ri+1 ∈ c. In the latter case, we know that ∃c ∈ Pi s.t. ri ∈ c, ri+1 ∈ c is true. In the

former case, we know by Lemma 3.3.3 that ri and ri+1 are connected under D, T , and P .

As a result, ri and ri+1 are also connected under D, T , and Pi because P ⊆ Pi. Combining

the former and latter cases, ri and ri+1 are always connected under D, T , and Pi. Hence, r

and s are also connected under D, T , and Pi. By Lemma 3.3.3, r and s must be clustered

together in E(Pi, D). Hence, we have proved that E(Pi, D) and E(P 1
o ∪ (Pi − P), D) are

the same.

Using the third condition P 2
o ∈ Ē(P 1

o ∪ (Pi−P), D), we know that P 2
o ∈ Ē(Pi, D), so

the HCDS algorithm is GI.

Finally, we prove that the extended HCDS algorithm is CF . Given the four partitions

P, Pi, P
1
o , P

2
o , suppose that the four conditions in Definition 3.1.5 are satisfied. That is,

P ⊆ Pi, ∀Po ∈ Ē(Pi, D), Po ≤ {
⋃
c∈P c ,

⋃
c∈Pi−P c}, P

1
o ∈ Ē(P , D), and P 2

o ∈ Ē(Pi−P ,

D). Since HCDS returns a unique solution, there is exactly one P ∈ Ē(Pi, D). Suppose

that E(Pi, D) generates a sequence of cluster merges M1, M2, . . . where each M involves

a merge of two clusters. Since P ≤ {
⋃
c∈P c ,

⋃
c∈Pi−P c}, we can split the sequence into

merges Ma
1 , Ma

2 , . . . that only involve clusters in P and merges M b
1 , M b

2 , . . . that only

involve clusters in Pi − P . We can run the first batch of merges Ma
1 , Ma

2 , . . . to produce a

possible result of E(P , D) and run the second batch of merges M b
1 , M b

2 , . . . to produce a

possible result of E(Pi − P , D). Since HCDS returns a unique solution, both ER results

E(P , D) andE(Pi−P , D) are in fact unique and thus are equal to P 1
o and P 2

o , respectively.

The union of P 1
o and P 2

o is equivalent to the result of running the merges M1, M2, . . ., i.e.,

CHAPTER 3. EVOLVING RULES 91

E(Pi, D). Hence, P 1
o ∪ P 2

o ∈ Ē(Pi, D).

HCDC The Complete-link Hierarchical Clustering (HCDC) algorithm [70] is identical to

the HCDS algorithm except in how it measures the distance between two clusters. While

theHCDS algorithm chooses the smallest possible distance between records within the two

clusters, the HCDC algorithm takes the largest possible distance instead. For example, the

cluster distance between {r1, r2} and {r3} is the maximum of D(r1, r3) and D(r2, r3). We

use the same extension used in HCDS to support ranges of values for distances where only

the minimum values of each range are compared to other ranges or thresholds.

Proposition 3.3.4 shows that the extended HCDC algorithm is CF and OI, but not

RM or GI. As a result, the extended HCDC algorithm cannot use Algorithms 7 or 3 for

rule evolution.

Proposition 3.3.4. The extended HCDC algorithm is CF , but notRM, OI, or GI.

Proof. We prove that the extended HCDC algorithm is CF . Given the four partitions

P, Pi, P
1
o , P

2
o , suppose that the four conditions in Definition 3.1.5 are satisfied. That is,

P ⊆ Pi, ∀Po ∈ Ē(Pi, D), Po ≤ {
⋃
c∈P c ,

⋃
c∈Pi−P c}, P

1
o ∈ Ē(P , D), and P 2

o ∈ Ē(Pi−P ,

D). We define a cluster merge M as two clusters merging. We also denote the distance

of the two clusters merging during M as M.dist. Suppose that the sequence of cluster

merges Ma
1 , Ma

2 , . . . were used to generate P 1
o while a sequence of cluster merges M b

1 ,

M b
2 , . . . were used to generate P 2

o . Notice that both sequences are sorted by their distances

(i.e., by M.dist). We now construct the sequence of merges M1,M2, . . . by merging the

two sequences Ma
1 , Ma

2 , . . . and M b
1 , M b

2 , . . . sorted by distance. Running the sequence

M1,M2, . . . on Pi in fact generates a possible result of E(Pi, B). We sketch a proof by

contradiction. Suppose that one of the merges Mi is incorrect, i.e., the two clusters being

merged in Mi do not have the minimum distance among all pairwise distances between

all clusters. First, we know that none of the cluster pairs that contain records in P have

distances less than Mi.dist because all the merges Ma
1 , . . . ,M

a
j where Ma

j .dist < Mi.dist

and Ma
j+1.dist ≥ Mi.dist have been performed. For similar reasons, none of the cluster

pairs that contain records in Pi−P have distances less thanMi.dist either. Hence, the clus-

ter pair with the minimum distance should be a pair of one cluster that consists of records

CHAPTER 3. EVOLVING RULES 92

in P and another cluster that consists of records in Pi−P . However, by merging these two

clusters, we are contradicting the second condition of Definition 3.1.5 where none of the

records in P are supposed to merge with any records in Pi−P . Hence, the merge sequence

M1,M2, . . . indeed produces a possible result of E(Pi, B). Since running the sequence

M1,M2, . . . produces an equivalent result as running the sequence Ma
1 ,M

a
2 , . . . and then

running the sequence M b
1 ,M

b
2 , . . ., P

1
o ∪ P 2

o ∈ Ē(Pi, D).

We prove that the extended HCDC algorithm does not satisfyOI and consequently not

RM using a counter example. Suppose that we have the input partition Pi = {{r1}, {r2},
{r3}} and a distance match rule where D(r1, r2) = [2], D(r2, r3) = [2], and D(r1, r3) = [4].

We are also given the threshold value T = 3. If r1 and r2 merge first, then the algorithm

terminates without more merges because the next minimum distance is 4 (i.e., the distance

between {r1, r2} and {r3}), which exceeds T . Similarly, if r2 and r3 merge first, then

the algorithm terminates without any more merges. Thus, HCDC returns two possible ER

results {{r1, r2}, {r3}} or {{r1}, {r2, r3}}, violating the OI property and thus the RM
property.

Finally, we prove that the extendedHCDC algorithm is not GI using a counter example.

Suppose that we have the input partition Pi = {{r1}, {r2}, {r3}} and a distance match rule

where D(r1, r2) = [2], D(r2, r3) = [3], and D(r1, r3) = [4]. We are also given the threshold

value T = 3. Then the ER result E(Pi, D) is always {{r1, r2}, {r3}} because {r1} and {r2}
merge first (having the shortest distance 2), and then no clusters match anymore. Using

Definition 3.1.6, suppose we set P = {{r2}, {r3}} and Pi = {{r1}, {r2}, {r3}}. Then

P 1
o ∈ Ē(P , D) is always {{r2, r3}} because {r2} and {r3} merge together. As a result,

P 2
o ∈ Ē(P 1

o ∪ (Pi − P), D) is always {{r1}, {r2, r3}} because {r1} does not match with

{r2, r3} (having a distance of 4). Thus, P 2
o 6∈ Ē(Pi, D) = {{{r1, r2}, {r3}}}, violating the

GI property.

We have now completed the venn diagram in Figure 3.3, which shows the results of

Propositions 3.3.2 and 3.3.4.

CHAPTER 3. EVOLVING RULES 93

3.3.3 Rule Evolution

While we used the CNF structures of match rules to perform rule evolution in Section 3.1.4,

the distance match rules are not Boolean expressions. Instead, we define a model on how

the distance match rule can evolve. We assume that each distance D1(r, s) changes by

at most f(D1(r, s)) where f is a positive function that can be provided by a domain ex-

pert who knows how much D1 can change. Examples of f include a constant value (i.e.,

each distance can change by at most some constant c) or a certain ratio of the original dis-

tance (i.e., each distance can change by at most X percent). As a result, D1(r, s).max +

f(D1(r, s)) ≥ D2(r, s).max and D1(r, s).min− f(D1(r, s)) ≤ D2(r, s).min. As a prac-

tical example, suppose that D1 returns the sum of the distances for the names, addresses,

and zip codes, and D2 returns the sum of the distances for the names, addresses, and phone

numbers. If we restrict the zip code and phone number distances to be at most 10, then

when D1 evolves to D2, we can set f = 10. Or if the zip code and phone number distances

are always within 20% of the D1 distance, then f = 0.2×D1.

Given D1 and D2, we can now define a third distance match rule D3(r, s) = [max

{D1(r, s).min − f(D1(r, s)), 0}, D1(r, s).max + f(D1(r, s))], which satisfies D3 ≥ D1

and D3 ≥ D2. (Notice that our definition ensures all the possible distances of D3 to be

non-negative.) Compared to the Boolean clustering model, rule D3 acts as the “common

conjuncts” between D1 and D2. As a result, we now materialize the ER result of D3, E(Pi,

D3), instead of the ER results for all the conjuncts in the first match rule. We also update

Algorithm 7 in Section 3.1.4 by replacing Step 3 with “Partition M ← H(D3)” where H

is a hash table that only contains the result E(Pi, D3) for the match rule D3.

Example We illustrate rule evolution for the HCDS algorithm using the updated Algo-

rithm 7. Suppose we are given the input partition Pi = {{r1}, {r2}, {r3}} and the distance

match rule D1 where D1(r1, r2) = [2], D1(r2, r3) = [4], and D1(r1, r3) = [5]. We use the

threshold T = 2 for termination. If we are given f(d) = 0.1×d,D3 is defined asD3(r1, r2) =

[1.8, 2.2],D3(r2, r3) = [3.6, 4.4], andD3(r1, r3) = [4.5, 5.5]. We then materialize the ER re-

sultM = E(Pi, D3). Among the records, only r1 and r2 match havingD3(r1, r2).min = 1.8

≤ T = 2. Once the clusters {r1} and {r2} merge, {r1, r2} and {r3} do not match because

D3(r1, r3).min = 4.5 and D3(r2, r3).min = 3.6, both exceeding T . Hence M = {{r1, r2},

CHAPTER 3. EVOLVING RULES 94

{r3}}. Suppose we are then given D2 such that D2(r1, r2) = [2.2], D2(r2, r3) = [3.9], and

D2(r1, r3) = [4.9] (notice that indeed D2 ≤ D3). We then return
⋃
c∈M E({c′ ∈ Pi|c′ ⊆ c},

D2) using the same threshold T = 2. For the first cluster inM , we runE({{r1}, {r2}},D2).

Since D2(r1, r2).min = 2.2 > T , {r1} and {r2} do not merge. The next partition {{r3}} is

a singleton, so our new ER result is {{r1}, {r2}, {r3}}, which is identical to E(Pi, D2).

3.4 Experimental Evaluation

Evaluating rule evolution is challenging since the results depend on many factors including

the ER algorithm, the match rules, the rate and type of evolution, and the materialization

strategy. Obviously there are many cases where evolution and/or materialization are not

effective, so our goal in this section is to show there are realistic cases where they can pay

off, and that in some cases the savings over a naı̈ve approach can be significant. The savings

can be very important in scenarios where data sets are large and where it is important to

obtain a new ER result as quickly as possible (think of national security applications where

it is critical to respond to new threats as quickly as possible).

For our evaluation, we assume that blocking is used, as it is in most ER applications

with massive data. From our point of view, the use of blocking means that we can read a

full block (which can still span many disk blocks) into memory, perform resolution (naı̈ve

or evolutionary), and then move on to the next block. In our experiments we thus evaluate

the cost of resolving a single block. Keep in mind that these costs should be multiplied by

the number of blocks.

There are three metrics that we use to compare ER strategies: CPU, IO and storage

costs. (Except for Section 3.4.7, we do not consider accuracy since our evolution techniques

do not change the ER result, only the cost of obtaining it.) We discuss CPU and storage

costs in the rest of this section, leaving a discussion of IO costs to Section 3.4.2. In general,

CPU costs tend to be the most critical due to the quadratic nature of the ER problem, and

because matching/distance rules tend to be expensive. In Section 3.4.2 we argue that IO

costs do not vary significantly with or without evolution and/or materialization, further

justifying our focus here on CPU costs.

We start by describing our experimental setting in Section 3.4.1. Then in Sections 3.4.3

CHAPTER 3. EVOLVING RULES 95

and 3.4.4, we discuss the CPU costs of ER evolution compared to a naı̈ve approach (ignor-

ing materialization costs, if any). In Section 3.4.5 we consider the CPU and space overhead

of materializing partitions. Note that we do not discuss the orthogonal problem of when to

materialize (a problem analogous to selecting what views to materialize). In Section 3.4.6

we discuss total costs, including materialization and evolution.

3.4.1 Experimental Setting

We experiment on a comparison shopping dataset provided by Yahoo! Shopping and a

hotel dataset provided by Yahoo! Travel. We evaluated the following ER algorithms: SN ,

HCB, HCBR, ME, HCDS , and HCDC . Our algorithms were implemented in Java, and

our experiments were run on a 2.4GHz Intel(R) Core 2 processor with 4GB of RAM.

Real Data The comparison shopping dataset we use was provided by Yahoo! Shopping

and contains millions of records that arrive on a regular basis from different online stores

and must be resolved before they are used to answer customer queries. Each record contains

various attributes including the title, price, and category of an item. We experimented on

a random subset of 3,000 shopping records that had the string “iPod” in their titles and

a random subset of 1 million shopping records. We also experimented on a hotel dataset

provided by Yahoo! Travel where tens of thousands of records arrive from different travel

sources (e.g., Orbitz.com), and must be resolved before they are shown to the users. We

experimented on a random subset of 3,000 hotel records located in the United States. While

the 3K shopping and hotel datasets fit in memory, the 1 million shopping dataset did not fit

in memory and had to be stored on disk.

Match Rules Table 3.1 summarizes the match rules used in our experiments. The Type

column indicates whether the match rules are Boolean match rules or distance match rules.

The Data column indicates the data source: shopping or hotel data. The match rules col-

umn indicates the match rules used. The first two rows define the Boolean match rules used

on the shopping and hotel datasets. For the shopping datasets, BS
1 compares the titles and

categories of two shopping records while BS
2 compares the titles and prices of shopping

records. For the hotel data, BH
1 compares the states, cities, zip codes, and names of two

CHAPTER 3. EVOLVING RULES 96

Table 3.1: Match Rules
Type Data Match rules

Boolean Shopping
BS

1 : pti ∧ pca
BS

2 : pti ∧ ppr
Boolean Hotel

BH
1 : pst ∧ pci ∧ pzi ∧ pna

BH
2 : pst ∧ pci ∧ pzi ∧ psa

Distance Shopping
DS

1 : Jaroti
DS

2 : Jaroti changes randomly within 5%

Distance Hotel
DH

1 : Jarona + 0.05×Equalsci
DH

2 : Jarona + 0.05×Equalszi

hotel records. The BH
2 rule compares the states, cities, zip codes, and street addresses of

two hotel records. The last two rows define the distance match rules for the two datasets.

For the shopping data, DS
1 measures the Jaro distance [111] between the titles of two shop-

ping records while DS
2 randomly alters the distance of DS

1 by a maximum ratio of 5%.

The Jaro distance returns a value within the range [0, 1], and gives higher values for closer

records. For the hotel data, DH
1 sums the Jaro distance between the names of two records

and the Equality distance between the cities of two records weighted by 0.05. We define

the Equality distance to return 1 if two values are exactly the same and 0 if they are not

the same. The DH
2 rule sums the Jaro distance between names with the Equality distance

between the zip codes of two records weighted by 0.05. As a result, the DH
1 distance can

alter by at most the constant 0.05.

ER and Rule Evolution Algorithms We experiment rule evolution on the following ER

algorithms: SN ,HCB,HCBR,ME,HCDS , and withHCDC . (We do not experiment with

rule evolution using the join ER model, but focus on the clustering ER models.) Table 3.2

summarizes for each ER algorithm which section it was defined in and which rule evolution

algorithm is used. The HCDS and HCDC distanced-based clustering algorithms terminate

when the minimum distance between clusters is smaller than the threshold 0.95 (recall

that closer records have higher Jaro + Equality distances). Although the ME and HCDC
algorithms do not satisfy the RM property, we can still use Algorithm 7 to efficiently

produce new ER results with small loss in accuracy. Notice that, although ME is GI,

Algorithm 3 is not efficient because of the way ME extracts all records from the input

CHAPTER 3. EVOLVING RULES 97

Table 3.2: ER and rule evolution algorithms tested
ER algorithm Section Rule evolution algorithm used
SN 3.1.4 Algorithm for SN in Section 3.1.4
HCB 3.1.4 Algorithm 3
HCBR 3.1.4 Algorithm 7
ME 3.1.4 Algorithm 7
HCDS 3.3.2 Algorithm 7 (for distance-based clustering)
HCDC 3.3.2 Algorithm 7 (for distance-based clustering)

partition Pi (without exploiting any of the clusters in Pi) and sorts them again. Both the

HCDS and HCDC algorithms use Algorithm 7 adjusted for the distance-based clustering

model (see Section 3.3.3).

3.4.2 Evaluating IO costs

We discuss the corresponding IO costs and argue that the materialization IO costs are less

significant than the CPU costs. Using our blocking framework, we can analyze the overall

runtime of an ER process. The basic operations of an ER process are described in Ta-

ble 3.3. The operations are categorized depending on whether they are disk IO consuming

operations or CPU time consuming operations.

To compare the overall performance of an ER process using rule evolution and a naı̈ve

ER process without rule evolution, we consider the scenario where we run ER once using

an old match rule and then perform one rule evolution using a new match rule. A naı̈ve ER

process without rule evolution would roughly require initializing the records, creating the

blocks, and reading and resolving the blocks twice. An ER process using rule evolution on

the other hand would require the same process above plus the additional work of creating

and using rule materializations minus running ER on all blocks during the rule evolution.

The decompositions of the two approaches for our one rule evolution scenario are shown

in Table 3.4. Notice that the listed operations are not necessarily run sequentially. For

example, for the naı̈ve approach, the RB and E operations are actually interleaved because

each block is read and then resolved before the next block is read.

The IO overhead of using rule evolution compared to the IO cost of the naı̈ve approach

CHAPTER 3. EVOLVING RULES 98

Table 3.3: Basic operations in blocking ER framework
Operation Description

IO time consuming operations
RF Read records from input file
RB Read all blocks to memory
WB Write out all blocks to disk
RM Read all materializations to memory
WM Write all materializations to disk
O Write the output ER result to disk

CPU time consuming operations
I Initialize records (trim attributes not used in rules)
E Run ER on all blocks (one block at a time)
M Create materializations for all blocks (one at a time)

V
Run rule evolution (using materializations) on all blocks
(one at a time)

Table 3.4: Decomposition of ER processes for one rule evolution
ER process Decomposition
Naı̈ve RF ,I ,WB,RB,E,O,RB,E,O
Using rule evolution RF ,I ,WB,RB,E,O,M ,WM ,RB,RM ,V ,O

can thus be written as RM +WM

RF +WB+2×RB+2×O . Since the size of the materializations is usually

much smaller than the size of the entire set of records (see Section 3.1.3), the additional

IOs for rule evolution is also smaller than the IOs for reading and writing the blocks. Thus,

the IO costs do not vary significantly with or without evolution and/or materialization.

3.4.3 Rule Evolution Efficiency

We first focus on the CPU time cost of rule evolution (exclusive of materialization costs,

if any) using blocks of data that fit in memory. For each ER algorithm, we use the best

evaluation scheme (see Section 3.4.1) given the properties of the ER algorithm. Table 3.5

shows the results. We run the ER algorithms SN , HCB, and HCBR using the Boolean

match rules in Table 3.1 on the shopping and hotel datasets. When evaluating each match

rule, the conjuncts involving string comparisons (i.e., pti, pna, and psa) are evaluated last

because they are more expensive than the rest of the conjuncts. We also run the HCDS

CHAPTER 3. EVOLVING RULES 99

Table 3.5: ER algorithm and rule evolution runtimes
ER algorithm Sh1K Sh2K Sh3K Ho1K Ho2K Ho3K

ER algorithm runtime (seconds)
SN 0.094 0.152 0.249 0.012 0.027 0.042
HCB 1.85 7.59 17.43 0.386 2.317 5.933
HCBR 3.56 19.37 48.72 0.322 1.632 4.264
HCDS 8.33 40.38 111 5.482 27.96 73.59

Ratio of ER algorithm runtime to rule evolution runtime
SN 4.09 4.22 4.45 1.2 1.93 2
HCB 1.5 1.84 2.07 1.27 1.3 1.27
HCBR 162 807 1218 36 136 237
HCDS 298 708 918 322 499 545

algorithm using the distance match rules in Table 3.1 on the two datasets. Each column

head in Table 3.5 encodes the dataset used and the number of records resolved in the block.

For example, Sh1K means 1,000 shopping records while Ho3K means 3,000 hotel records.

The top five rows of data show the runtime results of the naı̈ve approach while the bottom

five rows show the runtime improvements of rule evolution compared to the naı̈ve approach.

Each runtime improvement is computed by dividing the naı̈ve approach runtime by the rule

evolution runtime. For example, the HCBR algorithm takes 3.56 seconds to run on 1K

shopping records and rule evolution is 162 times faster (i.e., having a runtime of 3.56
162

=

0.022 seconds).

As one can see in Table 3.5, the improvements vary widely but in many cases can be

very significant. For the shopping dataset, the HCBR, and HCDS algorithms show up to

orders of magnitude of runtime improvements. The SN algorithm has a smaller speedup

because SN itself runs efficiently. The HCB algorithm has the least speedup (although

still a speedup). While the rule evolution algorithms for SN , HCBR, and HCDS only need

to resolve few clusters at a time (i.e., each {c′ ∈ Pi|c′ ⊆ c} in Algorithm 7), Algorithm 3

for the HCB algorithm also needs to run an outermost ER operation (Step 4) to resolve the

clusters produced by the inner ER operations. The hotel data results show worse runtime

improvements overall because the ER algorithms without rule evolution ran efficiently.

CHAPTER 3. EVOLVING RULES 100

3.4.4 Common Rule Strictness

The key factor of the runtime savings in Section 3.4.3 is the strictness of the “common

match rule” between the old and new match rules. For match-based clustering, the common

match rule between B1 and B2 comprises the common conjuncts Conj(B1) ∩ Conj(B2).

For distance-based clustering, the common match rule betweenD1 andD2 isD3, as defined

in Section 3.3.3. A stricter rule is more selective (fewer records match or fewer records are

within the threshold), and leads to smaller clusters in a resolved result. If the common

match rule yields smaller clusters, then in many cases the resolution that starts from there

will have less work to do.

By changing the thresholds used by the various predicates, we can experiment with

different common rule strictness, and Figure 3.4 summarizes some of our findings. The

horizontal axis shows the strictness of the common rule: it gives the ratio of record pairs

placed by the common rule within in a cluster to the total number of record pairs. For

example, if an ER algorithm uses pti to produce 10 clusters of size 10, then the strictness is
10×(10

2)
(100

2)
= 0.09. The lower the ratio is, the stricter the common rule, and presumably, fewer

records need to be resolved using the new match rule.

The vertical axis in Figure 3.4 shows the runtime improvement (vs. naı̈ve), for four

algorithms using our shopping data match rules in Table 3.1. The runtime improvement is

computed as the runtime of the naı̈ve approach computing the new ER result divided by the

runtime of rule evolution. As expected, Algorithms SN , HCBR, and HCDS achieve sig-

nificantly higher runtime improvements as the common comparison rule becomes stricter.

However, the HCB algorithm shows a counterintuitive trend (performance decreases as

strictness increases). In this case there are two competing factors. On one hand, having a

stricter common match rule improves runtime for rule evolution because the computation

of each E({c′ ∈ Pi|c′ ⊆ c}, B2) in Step 4 becomes more efficient. On the other hand, a

common comparison rule that is too strict produces many clusters to resolve for the outer-

most ER operation in Step 4, increasing the overall runtime. Hence, although not shown in

the plot, the increasing line will eventually start decreasing as strictness decreases.

CHAPTER 3. EVOLVING RULES 101

 1

 10

 100

 1000

 10000

 0.0001 0.001 0.01 0.1

Ru
nt

im
e

Im
pr

ov
em

en
t (

x
tim

es
)

Strictness of Common Comparison Rule

SN
HCB

HCBR
HCDS

Figure 3.4: Degree of change impact on runtime, 3K shopping records

3.4.5 Materialization Overhead

In this section we examine the CPU and space overhead of materializations, independent of

the question of what conjuncts should be materialized. Recall that materializations are done

as we perform the initial resolution on records S. Thus the materialization can piggyback

on the ER work that needs to be done anyway. For example, the parsing and initialization of

records can be done once for the entire process of creating all materializations and running

ER for the old match rule. In addition, there are other ways to amortize work, as the

resolution is concurrently done for the old rule and the conjuncts we want to materialize.

For example, when materializing for the SN and ME algorithms, the sorting of records is

only done once. For the HCB and HCBR algorithms, we cache the merge information of

records. For the HCDS and HCDC algorithms, the pairwise distances between records are

only computed once. We can also compress the storage space needed by materializations

by storing partitions of record IDs.

Table 3.6 shows the time and space overhead of materialization in several representative

scenarios. In particular, we use Algorithms SN , HCB, HCBR, andHCDS on 3K shopping

and hotel records, and assume all conjuncts in the old rule are materialized.

The Time O/H columns show the time overhead where each number is produced by

dividing the materialization CPU time by the CPU runtime for producing the old ER result.

For example, materialization time for the SN algorithm on 3K shopping records is 0.52x

CHAPTER 3. EVOLVING RULES 102

Table 3.6: Time overhead (ratio to old ER algorithm runtime) and space overhead (ratio to
old ER result) of rule materialization, 3K records

ER algorithm Sho3K Ho3K
Time O/H Space O/H Time O/H Space O/H

SN 0.52 (0.02) 0.28 1.14 (0.27) 0.14
HCB 0.87 (0.04) 0.14 3.18 (0.71) 0.1
HCBR 11 (3E-6) 0.14 13.28 (1.06) 0.1
HCDS 0.44 0.07 0.61 0.02

the time for running E(Pi,BS
1) using SN . Hence, the total time to compute E(Pi, BS

1) and

materialize all the conjuncts of BS
1 is 1+0.52 = 1.52 times the runtime for E(Pi, BS

1) only.

The numbers in parentheses show the time overhead when we do not materialize the most

expensive conjunct. That is, for SN , HCB, and HCBR in the shopping column we only

materialize pca; in the hotel column, we only materialize pst, pci, and pzi (without pna).

For the shopping dataset, the SN and HCB algorithms have time overheads less than 2

(i.e., the number of conjuncts in BS
1) due to amortization. For the same reason, HCDS has

a time overhead below 1. The HCBR algorithm has a large overhead of 11x because each

common conjunct tends to produce larger clusters compared to E(Pi, BH
1), and HCBR ran

slowly when larger clusters were compared using the expensive pti conjunct.

The hotel dataset shows similar time overhead results, except that the time overheads

usually do not exceed 4 (i.e., the number of conjuncts inBH
1) for the match-based clustering

algorithms.

The Space O/H columns show the space overhead of materialization where each number

was produced by dividing the memory space needed for storing the materialization by the

memory space needed for storing the old ER result. For example, the materialization space

for the SN algorithm on 3K shopping records is 0.28x the memory space taken by E(Pi,

BS
1) using SN . The total required space is thus 1+0.28 = 1.28 times the memory space

needed for E(Pi, BS
1). The space overhead of materialization is small in general because

we only store records by their IDs.

CHAPTER 3. EVOLVING RULES 103

3.4.6 Total Runtime

The speedups achievable at evolution time must be balanced against the cost of material-

izations during earlier resolutions. The materialization cost of course depends on what is

materialized: If we do not materialize any conjuncts, as in our initial example in Section

1, then clearly there is no overhead. At the other extreme, if the initial rule B1 has many

conjuncts and we materialize all of them, the materialization cost will be higher. If we

have application knowledge and know what conjuncts are “stable” and likely to be used in

future rules, then we can only materialize those. Then there is also the amortization factor:

if a materialization can be used many times (e.g., if we want to explore many new rules

that share the materialized conjunct), then the materialization cost, even if high, can be

amortized over all the future resolutions.

We study the total run time (CPU and IO time for original resolution plus materializa-

tions plus evolution) for several scenarios. We experiment on 0.25 to 1 million shopping

records (multiple blocks are processed). Our results illustrate scenarios where materializa-

tion does pay off. That is, materialization and evolution lowers the total time, as compared

to the naı̈ve approach that runs ER from scratch each time. Of course, one can also con-

struct scenarios where materialization does not pay off.

We measure the total runtimes of ER processes as defined in Section 3.4.2 where we

run ER once using an old match rule and then perform one rule evolution using a new

match rule. We experimented on 0.25 to 1 million random shopping records and used the

following Boolean match rules for the SN , HCB, and HCBR algorithms: B1 = pca ∧ pti
(same as BS

1 in Table 3.1) and B2 = pca ∧ ppr. In addition, we only materialized on the

conjunct pca instead of on both conjuncts in B1. The time overheads for materializing pca
were shown in parentheses in Figure 3.6. For the HCDS algorithm, we used DS

1 and DS
2

in Table 3.1. We used minhash signatures [57] for distributing the records into blocks. For

the shopping dataset, we extracted 3-grams from the titles of records. We then generated

a minhash signature for each records, which is an array of integers where each integer is

generated by applying a random hash function to the 3-gram set of the record.

Figure 3.5 shows our total time results where we measured the total runtimes of running

CHAPTER 3. EVOLVING RULES 104

 0.01

 0.1

 1

 10

 0 0.5 1 1.5 2

Ru
nt

im
e

(h
rs

)

Number of Records (millions)

SN (Naive)
SN (Evolve)
HCB (Naive)

HCB (Evolve)
HCBR (Naive)

HCBR (Evolve)
HCDS (Naive)

HCDS (Evolve)

Figure 3.5: Scalability, 1M shopping records

ER on B1 and then evolving once to B2. Each rule evolution technique and its correspond-

ing naı̈ve approach use the same shape for points in their plots. For example, the rule

evolution runtime plot for the SN algorithm uses white square points while the naı̈ve SN

approach uses black square points. In addition, all the naı̈ve approach plots use white

shapes while the rule evolution plots use black shapes. Our results show that the total run-

times for the SN and HCB algorithms do not change much because the runtime benefits

of using rule evolution more or less cancels out the runtime overheads of using rule evolu-

tion. For the HCBR and HCDS algorithms, however, the runtime benefits of rule evolution

clearly exceed the overheads. While we have shown the worst case scenario results where

only one evolution occurs, the improvements will most likely increase for multiple rule

evolutions using the same materializations.

3.4.7 Without the Properties

So far, we have only studied scenarios where one or more of the properties needed for our

rule evolution techniques held. We now consider a scenario where the necessary properties

do not hold. In this case, we need to use the naı̈ve approach to get a correct answer. From

our previous results, however, we know that the naı̈ve approach can be very expensive

compared to rule evolution. The alternatives are to fix the ER algorithm to satisfy one of

the properties or to run one of our rule evolution algorithms even though we will not get

CHAPTER 3. EVOLVING RULES 105

correct answers. We investigate the latter case and see if we can still return ER results with

minimum loss in accuracy.

We experiment on two ER algorithms that do not satisfy the RM property and thus

cannot use Algorithm 7: the ME and HCDC algorithms. While the ME algorithm is still

GI and can thus use Algorithm 3, there is no runtime benefit because inME all the records

in Pi are extracted and sorted again regardless of the clusters in Pi.

To measure accuracy, we compare a rule evolution algorithm result with the corre-

sponding result of the naı̈ve approach. We consider all the records that merged into an

output cluster to be identical to each other. For instance, if the clusters {r} and {s}merged

into {r, s} and then merged with {t} into {r, s, t}, all three records r, s, t are considered to

be the same. Suppose that the correct answer A contains the set of record pairs that match

for the naı̈ve solution while set B contains the matching pairs for the rule evolution algo-

rithm. Then the precision Pr is |A∩B||B| while the recall Re is |A∩B||A| . Using Pr and Re, we

compute the F1-measure, which is defined as 2×Pr×Re
Pr+Re

, and use it as our accuracy metric.

Table 3.7 shows the runtime and accuracy results of running Algorithm 7 as the rule

evolution algorithm on datasets that fit in memory. The columns show the dataset used and

the number of records resolved. The top two rows of data show the runtimes for the naı̈ve

approach. The middle two rows of data show the runtime improvements of rule evolution

compared to the naı̈ve approaches. Each runtime improvement is computed by dividing

the naı̈ve approach runtime by the rule evolution runtime (not including the materialization

costs). Overall, the runtime ofME improves by 1.67x to 5.53x while the runtime ofHCDC
improves by 501x to 2386x. The bottom two rows of data show the accuracy values of each

ER result compared to the correct result produced by the naı̈ve approach. The accuracy

results are near-perfect for the ME algorithm while being at least 0.85 for HCDC . The

experiments show that rule evolution may produce highly-accurate ER results even if the

ER algorithms do not satisfy any property while still significantly enhancing the runtime

performance of rule evolution.

CHAPTER 3. EVOLVING RULES 106

Table 3.7: Runtime and accuracy results for ER algorithms without the properties
ER algorithm Sh1K Sh2K Sh3K Ho1K Ho2K Ho3K

ER algorithm runtime (seconds)
ME 0.094 0.162 0.25 0.015 0.033 0.051
HCDC 8.08 39.2 105 5.51 28.1 73.57

Ratio of ER algorithm runtime to rule evolution time
ME 5.53 5.23 5.43 1.67 2.06 2.04
HCDC 674 1509 2386 501 879 1115

F1 accuracy of rule evolution
ME 0.94 0.95 0.97 1.0 1.0 0.997
HCDC 0.93 0.86 0.85 1.0 0.999 0.999

3.5 Related Work

Entity resolution involves comparing records and determining if they refer to the same

entity or not. Most of the work falls into one of the ER models we consider: match-based

clustering [54, 10] and distance-based clustering [12, 70]. While the ER literature focuses

on improving the accuracy or runtime performance of ER, they usually assume a fixed logic

for resolving records. To the best of our knowledge, our work is the first to consider the ER

result update problem when the logic for resolution itself changes.

One of the recent challenges in information integration research is called Holistic In-

formation Integration [49] where both schema and data issues are addressed within a sin-

gle integration framework. For example, schema mapping can help with understanding

the data and thus with ER while ER could also provide valuable information for schema

mapping. Hence, schema mapping and ER can mutually benefit each other in an iterative

fashion. While our work does not address the schema mapping problem, we provide a

framework for iteratively updating ER results when the comparison logic (related to the

schema) changes.

Another related problem is updating clustering results when the records (data) change.

Some work explores the problem of clustering data streams. Charikar et al. [19] propose

incremental clustering algorithms that minimize the maximum cluster diameter given a

stream of records. Aggarwal et al. [1] propose the CluStream algorithm, which views a

CHAPTER 3. EVOLVING RULES 107

stream as a changing process over time and provides clustering over different time hori-

zons in an evolving environment. An interesting avenue of further research is to combine

clustering techniques for both evolving data and rules. Since our rule evolution techniques

are based on materializing ER results, we suspect that the same techniques for evolving

data can be applied on the materialized ER results.

Materializing ER results is related to the topic of query optimization using materialized

views, which has been studied extensively in the database literature [22, 44]. The focus

of materialized views, however, is on optimizing the execution of SQL queries. In com-

parison, our work solves a similar problem for match rules that are Boolean or distance

functions. Our work is also related to constructing data cubes [51] in data warehouses

where each cell of a data cube is a view consisting of an aggregation (e.g., sum, average,

count) of interests like total sales. In comparison, rule evolution stores the ER results of

match rules. Nonetheless, we believe our rule evolution techniques can improve by us-

ing techniques from the literature above. For example, deciding which combinations of

conjuncts to materialize is related to the problem of deciding which views to materialize.

3.6 Conclusion

In most ER scenarios, the logic for matching records evolves over time, as the applica-

tion itself evolves and as the expertise for comparing records improves. In this chapter

we have explored a fundamental question: when and how can we base a resolution on a

previous result as opposed to starting from scratch? We have answered this question in

two commonly-used contexts, record comparisons based on Boolean predicates and record

comparisons based on distance (or similarity) functions. We identified two properties of ER

algorithms, rule monotonic and context free (in addition to order independent and general

incremental), that can significantly reduce runtime at evolution time. We also categorized

several popular ER algorithms according to the four properties.

In some cases, computing an ER result with a new rule can be much faster if certain par-

tial results are materialized when the original ER result (with the old rule) is computed. We

studied how to take advantage of such materializations, and how they could be computed

efficiently by piggybacking the work on the original ER computation.

CHAPTER 3. EVOLVING RULES 108

Our experimental results evaluated the cost of both materializations and the evolution

itself (computing the new ER result), as compared to a naı̈ve approach that computed the

new result from scratch. We considered a variety of popular ER algorithms (each having

different properties), two data sets, and different predicate strictness. The results illustrate

realistic cases where materialization costs are relatively low, and evolution can be done

extremely quickly.

Overall, we believe our analysis and experiments provides guidance for the ER al-

gorithm designer. The experimental results show the potential gains, and if these gains

are attractive in an application scenario, our properties help us design algorithms that can

achieve such gains.

Chapter 4

Joint Entity Resolution

In this chapter, we focus on the problem of joint ER where multiple datasets of different

entity types are resolved together. Addressing a setting in which relationships between

the datasets exist, the result of resolving one dataset may benefit the resolution of another

dataset. For example, the fact that two (apparently different) authors a1 and a2 have pub-

lished exactly the same papers could be strong evidence that the two authors are in fact

the same. Also, by identifying the two authors to be the same, we can further deduce that

two papers p1 and p2 written by a1 and a2, respectively, are more likely to be the same

paper as well. This reasoning can easily be extended to more than two datasets. For ex-

ample, resolving p1 and p2 can now help us resolve the two corresponding venues v1 and

v2. Compared to resolving each dataset separately, joint ER can achieve better accuracy by

exploiting the relationships between datasets.

Among the existing papers on joint ER [31, 15, 27, 81, 90, 7], few have focused on

scalability, which is crucial in resolving large data (e.g., hundreds of millions of people

records crawled from the Web). The solutions that do address scalability propose custom

joint ER algorithms for efficiently resolving records. However, given that there exist ER

algorithms that are optimized for specific types of records (e.g., there could be an ER

algorithm that specializes in resolving authors only and another ER algorithm that is good

at resolving venues), replacing all the ER algorithms with a single joint ER algorithm that

customizes to all types of records may be challenging for the application developer. Instead,

we propose a flexible framework for joint ER where one can simply “plug in” existing ER

109

CHAPTER 4. JOINT ENTITY RESOLUTION 110

algorithms, and our framework can then schedule and resolve the datasets individually

using the given ER algorithms.

While many previous joint ER approaches assume that all the datasets are resolved at

the same time in memory using one processor, our framework allows efficient resource

management by resolving a few datasets at a time in memory using multiple processors.

Our framework extends blocking techniques. In addition, our framework resolves multi-

ples types of data and divides the resolution based on the data type. Our approach may

especially be useful when there are many large datasets that cannot be resolved altogether

in memory. Thus one of the key challenges is determining a good sequence for resolution.

For instance, should we resolve all venues first, and then all papers and then all authors? Or

should we consider a different order? Or should we resolve some venues first, then some

related papers and authors, and then return to resolve more venues? And we may also have

to resolve a type of record multiple times, since subsequent resolutions may impact the

work we did initially.

As a motivating example, consider two datasets P and V (see Table 4.1) that contain

paper records and venue records, respectively. (Note that Table 4.1 is a simple example

used for illustration. In practice, the datasets can be much larger and more complex.) The

P dataset has the attributes Title and Venue while V has the attributes Name and Papers.

For example, P contains record p1 that has the title “The Theory of Joins in Relational

Databases” presented at the venue v1. The Papers field of a V record contains a set of paper

records because one venue typically has more than one paper presented.

Suppose that two papers are considered the same and are clustered if their titles and

venues are similar while two venues are clustered if their names and papers are similar.

Say that we resolve the paper records first. Since p1 and p3 have the exact same title, p1

and p3 are considered the same paper. We then resolve the venue records. Since the names

of v1 and v2 are significantly different, they cannot match based on name similarity alone.

Luckily, using the information that p1 and p3 are the same paper, we can infer that v1 and v2

are most likely the same venue. (In fact “ACM TODS” and “ACM Trans. Database Syst.”

stand for the same journal.) We can then re-resolve the papers in case there are newly

matching records. This time, however, none of the papers match because of their different

titles. Hence, we have arrived at a joint ER result where P was resolved into the partition

CHAPTER 4. JOINT ENTITY RESOLUTION 111

Paper Title Venue
p1 The Theory of Joins in Relational Databases v1

p2 Efficient Optimization of a Class of Relational . . . v1

p3 The Theory of Joins in Relational Databases v2

p4 Optimizing Joins in a Map-Reduce Environment v3

Venue Name Papers
v1 ACM TODS {p1, p2}
v2 ACM Trans. Database Syst. {p3}
v3 EDBT {p4}

Table 4.1: Papers and Venues

{{p1, p3}, {p2}, {p4}} while V was resolved into {{v1, v2}, {v3}}. Notice that we have

followed the sequence of resolving papers, venues, then papers again.

Given enough resources, we can improve the runtime performance by exploiting par-

allelism and minimizing unnecessary record comparisons. For example, if we have two

processors, then we can resolve the papers and venues concurrently. As a result, p1 and p2

match with each other. After the papers and venues are resolved, we resolve the venues

again, but only perform the incremental work. In our example, since p1 and p2 matched

in the previous step, and p1 was published in the venue v1 while p2 was published in the

venue v2, we only need to check if v1 and v2 are the same venue and can skip any com-

parison involving v3. Notice that the papers do not have to be resolved at the same time

because none of the venues merged in the previous step. However, after v1 and v2 are iden-

tified as the same venue, we resolve the papers once more. Again, we only perform the

incremental work necessary where we resolve the three records p1, p2, and p3 (because v1

and v2 matched in the previous step), but not p4. In total, we have concurrently resolved

the papers and venues, then incrementally resolved the venues, and then incrementally re-

solved the papers. If the incremental work is much smaller than resolving a dataset from

the beginning, the total runtime may improve.

In the case where the same dataset is resolved multiple times, an interesting question

to ask is whether we should use the exact same ER algorithm for resolving that dataset

again. For example, the paper dataset above was resolved twice: once before resolving the

venues and once after. Given that the venues are resolved, we may want to “re-train” the

CHAPTER 4. JOINT ENTITY RESOLUTION 112

ER algorithm for that context using machine learning techniques. For instance, we may

want to weight venue similarity more (relative to paper title similarity) now that venues

have been resolved. Thus, in this chapter we propose a state-based training method that

trains an ER algorithm based on the current state of the other datasets being resolved.

In summary, we make the following contributions:

• We present a modular joint ER framework, where existing ER algorithms, tuned to a

particular type of records, can be effectively used. We define the physical executions

of multiple ER algorithms that produce joint ER results (Section 4.1).

• We introduce the concept of a scheduler, whose output (a logical execution plan)

specifies the order for datasets to be resolved in order to produce “correct” joint ER

results (Section 4.2).

• We show how the joint ER processor uses an execution plan to physically execute

the ER algorithms and return a joint ER result while satisfying resource constraints

(Section 4.3).

• We propose a state-based training method that uses the current state of other datasets

for fine tuning joint ER algorithms (Section 4.4).

• We experiment on both synthetic and real data to demonstrate the behavior and scala-

bility of joint ER. We then use real data to explore the accuracy of state-based training

(Section 4.5).

4.1 Framework

In this section, we define the framework for joint entity resolution. Figure 4.1 shows the

overall architecture of our system. Given an influence graph (defined in Section 4.2.1),

a scheduler constructs a logical “execution plan,” which specifies a high-level order for

resolving datasets using the ER algorithms. Next, given the physical resource constraints

(e.g., memory size and number of CPU cores), the joint ER processor uses the execution

plan to “physically execute” the ER algorithms on the given datasets using the available

resources to produce a joint ER result.

CHAPTER 4. JOINT ENTITY RESOLUTION 113

Execution Plan

Joint ER Result

Datasets,
ER Algorithms,
Resource Info. Scheduler

Joint ER Processor

Influence Graph

Figure 4.1: System Architecture

In the following sections, we define our ER model for resolving multiple types of data.

We then formalize joint ER using the ER algorithms. We then formalize physical execu-

tions of ER algorithms that can return joint ER results.

4.1.1 ER Model

Each record r is of one entity type. For example, a record can represent a paper or a venue.

A dataset R contains records of the same type. Thus we may have a dataset for papers and

a dataset for venues. There may also be more than one dataset containing records of the

same entity type. For example, we could have two datasets containing paper records. As a

result, we also allow one dataset to be split into multiple datasets. For instance, a common

technique to resolve a large set of records R is to split it into smaller sets or blocks. In this

case, each block is viewed as one dataset. The entire collection of datasets is denoted as

the set D. We also assume that a record of one entity type may refer to another record of a

different type. For example, if a paper p was published in a venue v, then p may refer to v

by containing a pointer to v. (Further details on references can be found in Section 4.3.4.)

We define a cluster of records c to be a set of records. A partition of the datasetR is defined

as a set of clusters P = {c1, . . . , cm} where the following properties hold: c1 ∪ . . . ∪ cm =

R and ∀ci, cj ∈ P where i 6= j, ci ∩ cj = ∅.
An ER algorithm ER resolves a single dataset R. Given a dataset R = {r1, . . . , rn}, ER

receives as input a partition PR of R and returns another partition P ′R of R. A partition is

a general way to represent the output of an ER algorithm because the clusters provide the

lineage information on which records end up representing the same entity. In addition, one

CHAPTER 4. JOINT ENTITY RESOLUTION 114

could optionally merge the records within the same cluster to produce composite records.

We also require the input of ER to be a partition of R so that we may also run ER on

the output of a previous ER result. In our motivating example in the beginning of this

chapter, the input for papers was a set of records R = {p1, p2, p3}, which can be viewed as

a partition of singletons PR = {{p1}, {p2}, {p3}}, and the output was the partition P ′R =

{{p1, p3},{p2}}. We say that an ER algorithm resolves R if we run ER on a partition of R

to produce another partition of R.

During the resolution of R, ER may use the information of records in other datasets

that the records in R refer to. For example, if paper records refer to author records, we

may want to use the information on which authors are the same when resolving the papers.

To make the potential dependence on other data sets explicit, we write the invocation of

ER on PR as ER(PR,P−R) where P−R = {PY |Y ∈ D − {R}} represents the partitions

of the remaining datasets. For example, if D = {R, S}, and the partitions of R and S are

PR and PS , respectively, then P−R = {PS} and running ER on PR returns the result of

ER(PR,P−R). Notice that the records in R may not refer to records in all the datasets in

P−R.

We now define a valid ER algorithm that resolves a dataset.

Definition 4.1.1. Given any input partition PR of a set of records R, a valid ER algorithm

ER returns an ER result P ′R = ER(PR, P−R) that satisfies the two conditions:

1. P ′R is a partition of R

2. ER(P ′R, P−R) = P ′R

The first condition says that ER returns a partition P ′R of R. The second condition

requires that the output is a fixed point result where applying ER on P ′R will not change

the result further unless the partitions in P−R change. For example, say that there are

two datasets R = {r1, r2, r3} and S = {s1, s2} where PR = {{r1}, {r2}, {r3}} and PS =

{{s1}, {s2}}. Say that ER is a valid algorithm where ER(PR, {PS}) = {{r1, r2}, {r3}} =

P ′R. Then we know by the second condition of Definition 4.1.1 that ER(P ′R, {PS}) returns

P ′R as well. Notice that a valid ER algorithm is not required to be deterministic, and the ER

result does not have to be unique.

CHAPTER 4. JOINT ENTITY RESOLUTION 115

4.1.2 Joint ER Model

Using valid ER algorithms, we can define a joint ER result on all the datasets D as follows.

Definition 4.1.2. A joint ER result on D is the set of partitions {PR|R ∈ D, PR is a

partition of R, and ER(PR,P−R) = PR}.

A joint ER result is thus a fixed point: running any additional ER on any dataset does

not change the results. Continuing our example from Definition 4.1.1, say we have the

partitions P ′R = {{r1, r2}, {r3}} and P ′S = {{s1, s2}}. In addition, say that ER(P ′R, {P ′S})
= P ′R, and ER(P ′S, {P ′R}) = P ′S . Then according to Definition 4.1.2, {P ′R, P ′S} is a joint ER

result of R and S. Notice that a joint ER result is not necessarily unique because even a

single dataset may have multiple ER results satisfying Definition 4.1.1.

4.1.3 Physical Execution

In our framework, we assume the datasets are resolved in parallel in synchronous steps. At

each step, some datasets are resolved using valid ER algorithms while other datasets are

left unchanged. As we will see in the example below, a resolution in a given step refers to

the previous state of the datasets.

For example, Figure 4.2 pictorially shows a physical execution of three datasets R, S,

and T where we first resolve R and S concurrently then S and T sequentially. (For now

ignore the (i, j) annotations.) At Step 0, no resolution occurs, but each dataset X ∈ D is

initialized as the partition P 0
X = {{r}|r ∈ X}. In our example, we initialize P 0

R, P 0
S , and

P 0
T . After n steps of synchronous transitions, a partition of dataset X is denoted as P n

X . We

denote the entire set of partitions after Step n except for P n
R as Pn−R = {P n

Y |Y ∈ D−{R}}
(e.g., P1

−R in Figure 4.2 is {P 1
S , P

1
T}). There are two options for advancing each partition

P n
X into its next step partition P n+1

X . First, we can simply set P n+1
X to P n

X without change,

which we pictorially express as a double line from P n
X to P n+1

X . For example, we do not run

ER on P 0
T during Step 1 and thus draw a double line from P 0

T to P 1
T below. Second, we can

run ER on P n
X using the information in the other partitions Pn−X . We pictorially express the

flow of information as arrows from P n
X and the partitions in Pn−X to P n+1

X . For instance,

producing P 2
S using ER may require the information of all the previous-step partitions, so

CHAPTER 4. JOINT ENTITY RESOLUTION 116

R S T

Step 0

Step 1

Step 2

PR
0 PS

0 PT
0

PR
1 PS

1 PT
1

PR
2 PS

2 PT
2

(1,1)

(2,1)

(2,1)

(2,2)

Figure 4.2: The Physical Execution (((R), (S)),((),(S, T)))

we draw three arrows from P 1
R, P 1

S , and P 1
T to P 2

S . Notice that we do not allow ER to

use the information of partitions in more than 1 step behind because in general it is more

helpful to use the most recent partition information possible.

The datasets resolved in the same step can be resolved in parallel by several machines.

After each step, a synchronization occurs where datasets are re-distributed to different ma-

chines for the next step of processing. (In Section 4.3, we elaborate on how datasets are

distributed to machines.) We call this step-wise sequence of resolutions a physical execu-

tion. For each dataset R being resolved, we also specify the machine number m resolving

R and the execution order o of R by m during the current step as (m, o). For example, in

Step 2, the dataset S is the 1st dataset to be resolved by machine 2.

The physical execution information can be compactly expressed as a nested list of three

levels where the outer-most level specifies the steps, the middle level the machine order, and

the inner-most level the order of datasets resolved within a single machine. Our physical

execution can thus be represented as (((R), (S)), ((), (S, T))). Given a set of initial parti-

tions {P 0
X |X ∈ D}, a physical execution T produces the partitions {P |T |X |X ∈ D} where

|T | is the number of synchronous steps within T . Throughout the chapter, we will omit the

step numbers of partitions if the context is clear. Since a physical execution is a sequence of

datasets to resolve, we can concatenate two physical executions T1 and T2 into one execu-

tion T1 + T2. For example, concatenating two physical executions (((R)), ((S), (T))) and

(((U))) becomes (((R)), ((S), (T)), ((U))). We can access each synchronous execution

within a physical execution using a list index notation. For instance, the first synchronous

execution of T = (((R)), ((S), (T))) is T [1] = ((R)).

CHAPTER 4. JOINT ENTITY RESOLUTION 117

Validity A correct physical execution should produce a joint ER result satisfying Defini-

tion 4.1.2. We capture this desirable property in the following definition.

Definition 4.1.3. A valid physical execution T of the initial partitions of D returns a set of

partitions {PR|R ∈ D} that is the same as the partitions produced by running the physical

execution T + (((S))) for any S ∈ D.

Intuitively, resolving datasets after running a valid physical execution plan does not

change the final result. In our motivating example in the beginning of this chapter, the

physical execution (((P)), ((V)), ((P))) is valid because running ER on the final partitions

of P or V no longer generates new clusterings of records, so running the physical execution

(((P)), ((V)), ((P))) and then either (((P))) or (((V))) produces the same partitions as

well. However, the physical execution (((V)), ((P))) is not valid because we fail to cluster

the venues v1 and v2 together, and resolving V again after the physical execution results in

v1 and v2 clustering (i.e., executing (((V)), ((P))) + (((V))) = (((V)), ((P)), ((V))) will

produce a different result than executing (((V)), ((P)))).

We now prove that running valid ER algorithms using a valid physical execution returns

a correct joint ER result.

Proposition 4.1.4. Running valid ER algorithms on a valid physical execution ofD returns

a joint ER result of D satisfying Definition 4.1.2.

Proof. We show that the result of running a valid physical execution T results in a set of

partitions {PR|R ∈ D, PR is a partition of R,ER(PR,P−R) = PR}. Since we run T on the

initial partitions of the datasets inD using valid ER algorithms, we return a set of partitions

of D. We also know that running ER on each final partition PR of dataset R results in PR
because we know that running T produces the same result as running T + (((R))) by the

condition in Definition 4.1.3.

Notice that while all valid physical executions return correct joint ER results, the con-

verse is not true. That is, not all joint ER results that satisfy Definition 4.1.2 can be pro-

duced by valid physical executions. The reason is that Definition 4.1.2 does not require a

step-wise execution of ER algorithms on the datasets for producing the joint ER result. For

example, suppose that we only have one datasetR = {r, r′} and an ER algorithmER where

CHAPTER 4. JOINT ENTITY RESOLUTION 118

ER({{r}, {r′}}) = {{r}, {r′}} and ER({{r, r′}}) = {{r, r′}}. Then a physical execution

can only produce the joint ER result {{{r}, {r′}}} by running ER on the initial partition of

R. However, there is another correct joint ER result {{{r, r′}}}, which cannot be produced

by running ER. Since our joint ER results are based on running ER algorithms on datasets,

however, our desirable outcome is a valid physical execution that leads to a joint ER result

satisfying Definition 4.1.2.

Feasibility There may be a limit to the available resources for joint ER. For example,

there may be a fixed amount of memory we can use at any point. Or there may be a fixed

number of CPU cores we can use at the same time. In this chapter, we only restrict the

number of processors and define a physical plan to be feasible if it can be executed using

the given number of processors.

Definition 4.1.5. A feasible physical execution T satisfies the following condition.

• ∀i ∈ {1, . . . , |T |}, |T [i]| ≤ number of processors

We denote the estimated running time of ER on R as t(ER, R). For example, if ER
has a runtime quadratic to the size of its input and |R| = 1000, then we can estimate the

runtime t(ER, R) as 106. The total runtime of a physical execution T is then Σi=1...|T |

max{ΣR∈Ct(ER, R)|C ∈ T [i]}. For example, suppose we have the physical execution T
= (((R, S), (T)), ((U))) and running ER on R and ES on S both take 3 hours, running ET
on T takes 5 hours, and running EU on U takes 1 hour. Then the estimated total runtime is

max{3 + 3, 5}+max{1} = 7 hours.

Our goal is to produce a valid and feasible physical execution that minimizes the total

runtime. This problem can be proved to be NP-hard [40], so evaluating every possible phys-

ical execution may not be acceptable for resolving a large number of datasets. Hence in the

following sections, we provide a step-wise approach where we first produce an “execution

plan” that represents a class of valid physical executions (Section 4.2) and then produce

feasible and efficient physical executions based on the execution plan (Section 4.3).

CHAPTER 4. JOINT ENTITY RESOLUTION 119

4.2 Scheduler

The scheduler receives an “influence graph” that captures the relationships among datasets

and produces a logical execution plan using the influence graph. We identify which logical

execution plans are correct in the sense that they can be used to produce valid physical

executions. We propose an algorithm that generates efficient execution plans that satisfy

desirable properties and are thus likely to result in fast physical executions. We also discuss

how to construct influence graphs when blocking techniques are used.

4.2.1 Influence Graph

An influence graph G of the datasets D is generated by the application developer and cap-

tures the semantic relationships between the datasets. The vertices in G are exactly the

datasets in D, and there is an edge from dataset R to S if R “influences” S. We define the

influence relationship between two datasets as follows.

Definition 4.2.1. A dataset R influences another dataset S (denoted as R → S) if there

exist partitions PR ofR and PS of S such that the physical execution (((R)), ((S))) applied

to PR and PS may give a different result than when (((S))) is applied.

In our motivating example in the beginning of this chapter, the dataset P of papers in-

fluences the dataset V of venues because of the following observations. First, clustering

the two papers {p1} and {p3} in P 1
P resulted in the two venues {v1} and {v2} in P 2

V clus-

tering as well. Thus the entire physical execution (((P)), ((V))) on the initial partitions

P 0
P and P 0

V produces the partitions P 2
P = {{p1, p3}, {p2}} and P 2

V = {{v1, v2}}. On the

other hand, if {p1} and {p3} had not been clustered, then {v1} and {v2} would not have

clustered because the two venues have a low string similarity for names. So applying the

physical execution (((V))) on P 0
P and P 0

V produces the partitions P 1
P = {{p1, p3}, {p2}}

and P 1
V = {{v1}, {v2}}. Hence by Definition 4.2.1, P influences V . An influence graph

could possibly be generated automatically based on the ER algorithms. For example, the

scheduler may considerR to influence S if the code in ER for comparing two records r and

r′ in R also compares the S records that r and r′ refer to.

CHAPTER 4. JOINT ENTITY RESOLUTION 120

R

T

S

Figure 4.3: An Influence Graph

The influence relationships among multiple datasets can be expressed as a graph. For

example, suppose that there are three datasets R, S, and T where R influences T , T in-

fluences R, and S influences T . In this case, we can create an influence graph G (shown

in Figure 4.3) that contains three vertices R, S, and T and three directed edges: R → T ,

T → R, and S → T .

The influence graph provides guidance on the order for resolving datasets. According

to the influence graph in Figure 4.3, it seems clear that we should resolve S before T .

However, it is unclear how to order R and T . One possible physical execution we could

use is (((S)), ((R)), ((T))). However, since T influences R, we may want to resolve R

one more time after resolving T just in case there are newly merging (splitting) clusters

in the partition PR of R. As a result, we might end up running the physical execution

(((S)), ((R)), ((T)), ((R))) instead. Furthermore, after resolving the last R, we may want

to resolve T again just in case the partition PT of T may change and so on. In general, we

can only figure out the correct physical execution by actually running the ER algorithms

until the ER results converge according to Definition 4.1.2. In the next section, we define

the execution plan as a way to capture multiple possible physical executions into a more

compact logical expression.

There are several ways to construct an influence graph. An automatic method is to view

the ER algorithm where we draw an edge from R to S if the ER algorithm for S uses any

information in R. Another method is to draw the edges based on the known semantics of

the datasets. For example, while resolving papers may influence the resolution of venues,

it is unlikely that the resolved papers would influence say phone numbers. When construct-

ing an influence graph, It is desirable to avoid unnecessary edges in the influence graph.

Intuitively, the fewer the edges, the scheduler can exploit the graph to generate “efficient”

plans for resolving the datasets as we shall see in Section 4.2.2. On the other hand, if

CHAPTER 4. JOINT ENTITY RESOLUTION 121

most datasets influence each other, then there is not much optimization the scheduler can

perform.

In the case where blocking techniques are used on a dataset R, we can construct an

influence graph with fewer edges. Recall that blocking divides R into possibly overlapping

smaller datasets R1, . . . , Rk where each Ri fits in memory. In general, there can be edges

between any Ri and Rj . If we assume that the resolutions of one block do not affect the

resolutions in another block, however, we may remove the edges between the Ri’s.

Furthermore, if blocking is used on multiple datasets, there are several possible ways

for reducing the edges of the influence graph depending on the application. We illustrate

the choices by considering a scenario of two datasets where R is a set of people and S is

a set of organizations. Suppose that R influences S because some people may be involved

in organizations. We assume that both R and S are too large to fit in memory and are thus

blocked into smaller datasets. Hence, we would like to know which individual blocks of

R influence which blocks in S. In the most general case, a person can be involved in any

organization. Thus, each block in R influences all the blocks in S. However, suppose we

know that the blocking for R and S is done on the country of residence and that the orga-

nizations in S are only domestic. By exploiting these application semantics, we can reduce

the number of edges by only drawing an edge from each block of R to its corresponding

block in S in the same country. In Section 4.2.3, we show how reducing the edges in the

influence graph can improve the efficiency of joint ER.

4.2.2 Execution Plan

While an influence graph can be used to directly generate a physical execution, it is more

convenient to add a level of abstraction and generate an intermediate execution plan first.

The analogy is a DBMS producing a logical query plan for a given query before generating

the actual physical query plan. As a result, the joint ER processor can be flexible in gener-

ating the actual physical execution based on the high-level execution plan. In this section,

we show how the scheduler generates an execution plan based on an influence graph.

CHAPTER 4. JOINT ENTITY RESOLUTION 122

Name Syntax Description
Concurrent Set {. . .} Resolve datasets concurrently once
Fixed-point Set {. . .}+ Resolve datasets until convergence

Table 4.2: Execution Plan Syntax

Syntax and Properties

An execution plan L is a sequence of concurrent and fixed-point sets (see Table 4.2). A

concurrent set contains one or more datasets that are resolved concurrently once. A fixed-

point set contains one or more datasets to resolve together until “convergence.” That is,

the datasets in a fixed-point set F are resolved possibly more than once in a sequence of

concurrent sets to return the set of partitions defined below. (Note that P−R below is still

defined as {PX |X ∈ D − {R}} and not as {PX |X ∈ F − {R}}. That is, when resolving

R ∈ F , the ER algorithm ER may still use the information in a dataset outside F .)

Definition 4.2.2. A converged result of a fixed-point set F is the set of partitions {PR|R ∈
F, PR is a partition of R, and ER(PR,P−R) = PR}.

For example, datasets with the influence graph of Figure 4.3 can be resolved by the ex-

ecution plan L = ({S}, {R, T}+) (see Section 4.2.2 for details on the execution plan gen-

eration) where S is resolved once, and R and T are repeatedly resolved until convergence.

Hence, one possible physical execution forL is (((S), ()), ((R), (T)), ((R), (T)), . . .) where

the number of ((R), (T))’s depends on the contents of the records. (In Section 4.3.2, we

show other techniques for generating physical executions of fixed-point sets that can im-

prove the physical execution runtime.)

We can access a concurrent or fixed-point set of an execution plan using a list index no-

tation. For instance, for the execution plan L above, L[1] = ((S), ()) and L[2] = ((R), (T)).

Since an execution plan is a sequence of fixed-point and concurrent sets, one can concate-

nate two execution plans into a longer sequence.

We would like to define “good” execution plans that can lead to valid physical execu-

tions satisfying Definition 4.1.3. For example, suppose that the influence graph G contains

two datasets R and S, and that R influences S. Then the execution plans ({R, S}+) and

({R}, {S}) seem to be good because for each R resolved, either S is resolved with R in

CHAPTER 4. JOINT ENTITY RESOLUTION 123

the same fixed-point set (in the first plan) or after R (in the second plan). However, the

execution plan ({S},{R}) may not lead to a correct joint ER result because resolving S

again after the resolution of R may generate a different joint ER result.

We capture the desirable notion above into the property of conformance below.

Definition 4.2.3. An execution plan L conforms to an influence graph G of D if

1. ∀R ∈ D, ∃i s.t. R ∈ L[i] and

2. ∀R, S ∈ D s.t. R has an edge to S in G, for each L[i] that contains R, either

• L[i] is a fixed-point set and S ∈ L[i] or

• ∃j where j > i and S ∈ L[j].

For example, suppose there are two datasets R and S where R influence S according

to the influence graph G. Then the execution plans ({R, S}+) and ({R}, {S}) conform

to G because in both cases, R and S are resolved at least once and S is either resolved

with R in the same fixed-point set or resolved after R. However, the execution plan ({S})
does not conform to G because R is not resolved at least once (violating the first condition

of Definition 4.2.3). Also, the execution plan ({R, S}) does not conform to G because S

is neither resolved with R in the same fixed-point set nor resolved after R (violating the

second condition). In Proposition 4.3.2 (see Section 4.3), we show that an execution plan

that conforms to an influence graph G results in a valid physical execution given that the

physical execution terminates.

Construction

A naı̈ve execution plan that conforms to an influence graph G of the datasets D is ({D}+),

which contains a single fixed-point set containing all the datasets in D. The following

Lemma shows that ({D}+) conforms to G.

Lemma 4.2.4. Given an influence graph G of the datasets D, the execution plan ({D}+)

conforms to G.

CHAPTER 4. JOINT ENTITY RESOLUTION 124

Proof. The first condition of Definition 4.2.3 is satisfied because all the datasets in D are

contained in the one fixed-point set of ({D}+). The second condition holds as well because

for any datasets R and S where R influences S, S is in the same fixed-point set as R.

However, ({D}+) is not an “efficient” execution plan in terms of the runtime of the

physical execution since we would need to repeatedly resolve all the datasets until conver-

gence. We thus explore various optimizations for improving an execution plan in general.

We assume the scheduler only has access to the influence graph and not the runtime and

memory physical statistics of the datasets. Hence, we use heuristics that are likely to im-

prove the execution plan. The analogy is logical query optimization in database systems

where pushing down selects in a query plan most likely (but not necessarily) improves the

query execution time. An important requirement for the optimization techniques is that the

final joint ER result must still satisfy Definition 4.1.2 (although the result does not have to

be unique). We present three optimization techniques for execution plans and then present

an algorithm that can produce efficient execution plans according to the optimization crite-

ria.

Remove Redundant Datasets We can improve the efficiency of an execution plan by re-

moving datasets that are redundant. For example, in the execution plan ({R, S}+, {R, S}),

running ER on the concurrent set {R, S} is unnecessary because the fixed-point set {R, S}+
already returns a converged result of R and S. We say that an execution plan L is minimal

if for each dataset X ∈ D, X is inside at most one concurrent or fixed-point set in L. For

example, ({R, S}+, {R, S}) is not a minimal execution plan becauseR and S occur in two

sets while ({R, S}+) is a minimal plan.

Avoid Large Fixed-Point Sets A minimal execution plan is not necessarily the most

efficient one. Consider the naı̈ve execution plan ({D}+), which contains a single fixed-

point set containing all the datasets. While ({D}+) is minimal, it may not be the most

efficient execution plan if the fixed-point set can be divided into smaller concurrent and

fixed-point sets. For example, suppose that D = {R, S, T}, and the execution plan L =

({S}, {R, T}+), which conforms to the influence graph of Figure 4.3. When resolving

the datasets in the order of L, we only need to resolve S once and do not have to worry

CHAPTER 4. JOINT ENTITY RESOLUTION 125

about the ER result of S after resolving R and T together. However, if we were to run the

execution plan ({D}+), we might have to resolve S multiples times because we do not have

any information of which datasets can safely be resolved exactly once.

Hence, our second optimization for execution plans is to avoid large fixed-point sets.

As a result, we can save the time needed to check for convergence as we illustrated above.

Given an execution plan L that conforms to the influence graphG, we say that L is compact

if no fixed-point set in L can be divided into smaller concurrent or fixed-point sets while

still guaranteeing that L conforms to G. For example, suppose we have the two datasets R

and S whereR influences S. Then the execution planL = ({R}, {S}) is compact becauseL

conforms to G and does not contain any fixed-point sets. However, the plan ({R, S}) is not

compact because it does not conform toG. Also, the plan ({R, S}+) is not compact as well

because the fixed-point set {R, S}+ can be divided into the sequence of two concurrent sets

{R} and {S}.
Notice that a minimal execution plan is not necessarily compact and vice versa. For

instance, if there are two datasets R and S that do not influence each other, the plan L1 =

({R, S}+) is minimal while L2 = ({R}, {S}, {R}, {S}) is not minimal. However, L2 is

compact while L1 is not.

Maximize Parallelism Assuming we have enough cores and memory, we can improve

an execution plan by placing more datasets in the same concurrent set to resolve concur-

rently. For example, if R and S do not influence each other, and the execution plan is

({R}, {S}, {T, U}+), then given that we have two cores and enough memory, we could

use the better plan ({R, S}, {T, U}+) where we resolve R and S concurrently. In general,

we say an execution plan is maximally parallel if for each concurrent or fixed-point set S

resolved, we resolve as many datasets that are not influenced by other unresolved datasets

as possible. For example, suppose we have the influence graph R → S, T → U . Then an

execution plan ({R}, {S, T}, {U}) is not maximally parallel because T could have been

resolved with R during the first concurrent set. On the other hand, the execution plan

({R, T}, {S, U}) is maximally parallel because while the first concurrent set {R, T} is

being resolved, neither S nor U can be resolved as well because R influences S and T

influences U .

CHAPTER 4. JOINT ENTITY RESOLUTION 126

ALGORITHM 8: Constructing an execution plan
input : An influence graph G
output: An execution plan L

1 Group each strongly connected component of G into a node in the graph G′;
2 For each pair of nodes n, n′ ∈ G′, draw an edge from n to n′ if ∃R ∈ n and ∃S ∈ n′ where R

has an edge to S in G;
3 repeat
4 Z ← nodes in G′ that are not pointed from other nodes;
5 if a node n ∈ Z has a size |n| > 1 then
6 L← L + (n+);
7 remove n from G′;

8 else
9 L← L + (

⋃
n∈Z n);

10 remove nodes in Z from G′;

11 until G′ is empty;
12 return L;

Construction Algorithm Algorithm 8 uses the three heuristics above to produce execu-

tion plans that conform to the given influence graph G. To illustrate Algorithm 8, suppose

that the influence graph G contains four datasets R, S, T , and U and has three edges

R→ T , T → R, and S → T . In Step 1, we identify the strongly connected components of

G, which are {R, T}, {S}, and {U}. In Step 2, we create the graph G′ where each strongly

connected component in G forms a single node in G′. A node in G′ is thus a set of datasets

that are strongly connected in G. A node n in G′ points to another node n′ if a dataset in

n points to any dataset in n′ according to G. Hence, G′ in our example has three nodes

n1 = {R, T}, n2 = {S}, and n3 = {U} where n2 points to n1 (since S influences T). This

construction guarantees that G′ is always a directed acyclic graph. Starting from Step 3,

we identify the nodes in G′ that are not influenced by any other node. In our example, we

identify the set Z = {{S}, {U}}. Since both nodes in Z have a size of 1, we add to L the

combined set {S, U} (Step 9). Next, we update Z to {{R, T}}. Since the node {R, T} has

two datasets, it is added to L as a fixed-point set {R, T}+ (Step 6). As a result, our final

execution plan is L = ({S, U}, {R, T}+). Finally we return L as the output in Step 12.

The following proposition shows the correctness of Algorithm 8.

Proposition 4.2.5. Given an influence graph G of the datasets D, Algorithm 8 returns an

CHAPTER 4. JOINT ENTITY RESOLUTION 127

execution plan that conforms to G.

Proof. The first condition of Definition 4.2.3 is satisfied because every dataset in D is

allocated to exactly one fixed-point or concurrent set in L by construction. We now prove

the second condition of Definition 4.2.3. Suppose that R influences S in G. First, suppose

there is a directed path from S to R in G. Then R and S form a strongly connected

component and are thus grouped into the same node n in Step 1. In Step 6, n is added to

L as a fixed-point set because n contains at least two datasets. Thus the first OR-condition

of the second condition is satisfied. Second, if there is no directed path from S to R in G,

then by Steps 4 and 8 of the algorithm, the node n containing S is added to L after the node

n′ containing R, satisfying the second OR-condition of the second condition. As a result,

the second condition of Definition 4.2.3 is always satisfied.

The following proposition shows the efficiency of the execution plans produced by

Algorithm 8.

Proposition 4.2.6. An execution plan produced by Algorithm 8 is minimal, compact, and

maximally parallel.

Proof. An execution plan L generated by Algorithm 8 is minimal because any dataset

X ∈ D is not resolved in more than one concurrent or fixed-point set.

Next, we prove that L is also compact where none of the fixed-point sets in L can be

split into smaller fixed-point sets while still guaranteeing that L conforms to G. Suppose

that Algorithm 8 returns an execution plan L, and we split a fixed-point set S in L into two

sets A and B. Since the datasets in S form a strongly connected component C in G, the

sets A and B form two subgraphs C1 and C2 of C that are mutually connected in G. As

a result, there exists a pair of datasets R ∈ C1 and S ∈ C2 where R influences S and a

pair of datasets R′ ∈ C1 and S ′ ∈ C2 where S ′ influences R′. Since L conforms to G and

R influences S, the fixed-point set of C2 must follow the fixed-point set of C1. However,

since S ′ influencesR′, the fixed-point set of C1 must follow the fixed-point set of C2, which

is a contradiction. Thus, C1 and C2 must be combined into a single fixed-point set for L to

conform to G.

Finally, the execution planL is also maximally parallel because we add as many datasets

that are not influenced by other datasets as possible in Step 8.

CHAPTER 4. JOINT ENTITY RESOLUTION 128

We now show that Algorithm 8 runs in linear time.

Proposition 4.2.7. Given an influence graph G with V vertices and E edges, Algorithm 8

runs in O(|V |+ |E|) time.

Proof. Identifying the strongly connected components inG (Step 1) can be done inO(|V |+
|E|) time using existing method such as Tarjan’s algorithm [96]. Next, generating the

execution plan in Steps 3–9 can be done in O(|V | + |E|) time by keeping track of nodes

without incoming edges and removing edges from the nodes added to L. Hence, the total

complexity of Algorithm 8 is O(|V |+ |E|).

Again, the optimizations used in the scheduler are heuristics that are likely (but not

guaranteed) to improve the actual runtime of the physical execution. For example, max-

imizing parallelism is only effective when we have enough cores and memory to resolve

datasets concurrently. For now, we consider the execution plans produced by Algorithm 8

to be reasonably efficient for our experiments. In Section 4.3, we discuss how to produce

efficient physical executions based on the optimized execution plans generated from Algo-

rithm 8.

4.2.3 Exploiting the Influence Graph

The more we know about what data sets do not influence others, the better the scheduler

can exploit the given influence graph and improve the efficiency of the execution plan. We

illustrate this point by considering a blocking scenario where two datasets R and S are

blocked into R1, R2 and S1, S2, respectively. We also assume that the blocks of R may

influence the blocks of S and vice versa, but the blocks within the same dataset do not

influence each other.

In the case where each block in R influences all the blocks in S and vice versa, we need

to draw edges from Ri to Sj and Sj to Ri for i, j ∈ {1, 2}, resulting in a total of 8 edges.

However, the more strongly connected the influence graph, the more difficult it becomes

for the scheduler to generate an efficient execution plan. In our example, the scheduler

generates the execution plan L1 = ({R1, R2, S1, S2}+) using Algorithm 8.

CHAPTER 4. JOINT ENTITY RESOLUTION 129

Now suppose we know through application semantics that each block in R only influ-

ences its corresponding block in S with the same index and vice versa. As a result, we only

need to draw four influence edges: R1 to S1, S1 to R1, R2 to S2, and S2 to R2. Hence, the

scheduler generates the execution plan L2 = ({R1, S1}+, {R2, S2}+) using Algorithm 8.

The plan L2 is more efficient than L1 in a sense that we can exploit the information that R1

and S1 can be resolved separately from R2 and S2.

In an extreme case, we might know that R2 does not influence any block in S. That is,

onlyR1 and S1 influence each other. As a result, the execution plan is nowL3 = ({R1, S1}+,

{R2, S2}) where we exploit that fact that R2 and S2 do not influence each other. Again, the

plan L3 is more efficient than L2 where we know R2 and S2 only need to be resolved once.

4.3 Joint ER Processor

In this section, we discuss how the joint ER processor uses an execution plan to generate

a valid physical execution. We first discuss how a concurrent set can be resolved within a

constant factor of the optimal schedule. Next, we discuss how to resolve fixed-point sets.

We then prove that sequentially resolving the concurrent and fixed-point sets according to

the execution plan produces a valid physical execution as long as the execution terminates.

Finally, we introduce expander functions, which can be used to significantly enhance the

efficiency of joint ER.

4.3.1 Concurrent Set

When resolving a concurrent set, we are given a set of datasets to resolve once and a number

of processors that can run in parallel. The overall runtime is thus the maximum runtime

among all processors. We would like to assign the datasets to the processors such that the

overall runtime is minimized.

We use the List scheduling algorithm [46] for scheduling datasets to processors. When-

ever there is an available processor, we assign a dataset to that processor that start running

ER. This algorithm is guaranteed to have a runtime within (2− 1
p
) times the optimal sched-

ule time where p is the number of processors. A key advantage of the List scheduling

CHAPTER 4. JOINT ENTITY RESOLUTION 130

algorithm is that it is an “on-line” algorithm, i.e., executed while ER is running. Predicting

the runtime of ER is challenging because it may depend on how other datasets have been

resolved. While there are other scheduling work that improve on the constant bound, they

do not make significant improvements and are off-line, i.e., executed in advanced of any

actual invocations of ER algorithms.

4.3.2 Fixed-Point Set

We now resolve a fixed-point set, where we are given a number of datasets that must be

resolved at least once until convergence on parallel processors. The goals is to again min-

imize the overall runtime of the processors by scheduling the resolutions of datasets to the

processors.

We propose an on-line iterative algorithm for resolving a fixed-point set. Again, the

advantage of an on-line algorithm is that we do not have to worry about estimating the

runtime of ER. The idea is to repeatedly resolve the fixed-point set, but only the datasets

that need to be resolved according to the influence graph. Initially, all datasets need to be

resolved. However, after the first step, we only resolve the datasets that are influenced by

datasets that have changed in the previous step. For example, suppose we are resolving the

fixed-point set {R, S, T}+ where R and T influence each other while S and T influence

each other. We first resolve all three datasets using the greedy algorithm in Section 4.3.1.

Say that only R and S had new partitions. Then we only need to resolve T in the next step.

If T no longer has new partitions after its resolution, then we terminate.

Finding the optimal schedule for fixed-point sets is even more challenging than that

of resolving a concurrent set. In our example above, since T is resolved twice, we might

not have needed to resolve T during the first step. However, performing this optimization

requires a deterministic way of figuring out if T will be resolved in future steps and whether

it is indeed sufficient to resolve T just once, which are both hard to predict. We plan to study

such optimizations in future work.

In general, resolving a fixed-point set is not guaranteed to converge. In order to see

when we are guaranteed termination, we first categorize influence as either positive or

negative. A positive influence from R to S occurs when for some PR and PS there exists

CHAPTER 4. JOINT ENTITY RESOLUTION 131

two records s, s′ ∈ S that are not clustered when we run the physical execution ({S}),

but are clustered when we run the physical execution ({R}, {S}). Conversely, a negative

influence occurs when s and s′ are clustered when we run ({S}), but not clustered when

we run ({R}, {S}). Note that an influence can be both positive and negative.

We now show that, if all influences are positive, then the iterative algorithm for fixed-

point sets always returns a converged set of partitions for a fixed-point set.

Proposition 4.3.1. If all the influences among the datasets in a fixed-point set F are not

negative, then the iterative algorithm for fixed-point sets terminates and produces a set of

partitions satisfying Definition 4.2.2.

Proof. Suppose we have the fixed-point set F and repeatedly resolve the datasets that can

potentially change. If all the influences are non-negative, clusters can only merge and

never split. Since there is only a finite number of possible merges, the partitions of the

datasets eventually converge into a set of partitions {PR|R ∈ F}. In addition, since no

clusters merge anymore, ER(PR,P−R) = PR for each dataset R ∈ F . Hence, there exists

a converged result satisfying Definition 4.2.2 for the datasets in F .

In the case where both negative and positive influences occur, the fixed-point set may

not have a joint ER result. For example, say that two authors a1 and a2 merging influences

a cluster containing two papers p1 and p2 to split, but then if p1 and p2 split, a1 and a2 split

as well. Also, if a1 and a2 split, say that p1 and p2 merge, and p1 and p2 merging causes a1

and a2 to merge as well. As a result, the splits and merges continue indefinitely, and there

is no fixed-point result that satisfies Definition 4.1.2.

If negative influences prevent joint ER from terminating, we can restrict the number

of ER invocations in an execution plan L. Even if we do not have a fixed-point result

that satisfies Definition 4.1.2, we may still improve accuracy compared to the simple case

where the ER algorithms are run in isolation. For instance, if we are resolving the fixed-

point set {R, S}+ where R and S influence each other, we can limit the repetition to, say,

2. Although the physical execution ({R, S}, {R, S}) is not guaranteed to return a joint

ER result satisfying Definition 4.1.2, it may be close enough with a reasonable amount of

runtime spent. In Section 4.5.3, we show that in practice, the ER results converge quickly

(within 3 resolutions per dataset) while producing the correct joint ER result.

CHAPTER 4. JOINT ENTITY RESOLUTION 132

4.3.3 Joint ER Algorithm

We discuss how the joint ER processor uses an execution plan to generate a physical exe-

cution. Our joint ER algorithm first initializes each dataset by creating a set of singleton

clusters of the records. The algorithm then sequentially resolves each concurrent or fixed-

point set using the algorithms in Sections 4.3.1 and 4.3.2, respectively.

We show that the resulting physical execution is valid as long as it terminates.

Proposition 4.3.2. Given an execution plan L that conforms to an influence graph G of

the datasets D, if the joint ER algorithm using L terminates, then the resulting physical

execution is valid.

Proof. Suppose that we have the datasets D and an influence graph G. Given an execution

plan L that conforms to G, suppose that the joint ER algorithm terminates, producing a

physical execution T . First, the result of the basic algorithm is a set of partitions for all

the datasets in D because we start from the initial partitions of D and only use valid ER

algorithms on the partitions. Second, we show that running T produces the same partitions

as running T + [{R}] for any R ∈ D. For each dataset R, we show that, after running

T , its partition PR cannot change further by running [{R}]. Suppose PR has changed

while running [{R}]. Then there must be some dataset X that was resolved after the last

resolution of R in T and influenced the resolution of R during the execution of [{R}]. If

X was in the same concurrent set as R, we have a contradiction because X should have

been in the same fixed-point set as R by Definition 4.2.3. If X was in the same fixed-point

set as R, then since the joint ER algorithm terminates, we know that the resolved fixed-

point set satisfies Definition 4.2.2. Hence, resolving R again should not change PR further,

contradicting our assumption. Finally, X could be in a concurrent or fixed-point set other

than R’s set. Since L conforms to G, however, there must have been another resolution of

R after the resolution of X in T , which is a contradiction. Hence, T is a valid physical

execution.

4.3.4 Expander Function

We optimize a physical execution where we focus on minimizing redundant computation

as much as possible when a dataset is resolved multiple times. A key property we satisfy is

CHAPTER 4. JOINT ENTITY RESOLUTION 133

that the resulting joint ER result is the same regardless of the optimization.

A record r ∈ R refers to a record s ∈ S if r contains a pointer to s. For example, if

the paper record r contains an attribute with a label “venue” and value “ACM TODS,” and

s represents the venue ACM TODS, then r refers to s. Or the venue attribute could simply

contain s’s ID. In general, r could refer to more than one record in S. Hence, we denote the

set of S records r refers to as RS(r) where RS(r) ⊆ S. In our motivating example in the

beginning of this chapter, RP (v1) = {p1, p2} while RV (p1) = {v1}. Conversely, the set

of records in S that refer to r is denoted as R−1
S (r). In our motivating example, R−1

P (v1)

is again {p1, p2}. However, if p1 did not refer to v1, then R−1
P (v1) would be {p2} while

RP (v1) is still {p1, p2}.
Compared to the case where all datasets are resolved in isolation, joint ER has the

overhead of possibly resolving a dataset multiple times. To reduce this overhead, we would

like to narrow down the set of records influenced by a previous resolution and only run

ER on those records. For example, suppose that we have the execution plan ({R}, {S},
{R}) and have already resolved the first R and S. When resolving the second R, we would

like to avoid running ER on the entire PR. Instead, the idea is to run ER on only a small

subset of clusters O ⊆ PR and produce the same result as resolving the entire PR again.

Determining O can be done by exploiting the given ER algorithm as we describe below.

We note that the idea of avoiding resolution from scratch does not always work for all ER

algorithms. That is, certain ER algorithms may perform global operations and thus require

that all the records are resolved from the beginning. An in-depth study of the properties

that enable incremental ER can be found in reference [103].

To construct the candidate records to resolve, we first construct the set of records M

that contains R records that are referenced by records in other datasets that have changed

since the last time R was resolved. That is, if the records in c ⊆ S are newly clustered,

and the records in c refer to the records in c′ ⊆ R, then we add the records in c′ to M . We

repeat this operation for all datasets that influence R. However, resolving just R′ may not

produce a correct result. For example, suppose we want to compare the records r and r′

when resolving R the second time. However, in order to see if r and r′ are indeed the same

entity, we might have to resolve the two records along with another record r′′ because r

can only match with r′ if r′ matches and clusters with r′′. Hence, we must run ER on a

CHAPTER 4. JOINT ENTITY RESOLUTION 134

sufficiently large superset of R′ that would guarantee a correct ER result.

An expander function XR for dataset R produces this superset by receiving M and

returning a set of clusters O ⊆ PR such that running ER on O produces a result just as

if we have run ER on the entire partition PR. More formally, we define a valid expander

function as follows.

Definition 4.3.3. Given an input partition PR ofR for ER and a set of recordsM to resolve,

a valid expander function XR for the ER algorithm ER satisfies the following condition:

• ER(PR) = ER(XR(M)) ∪ (PR −XR(M))

If |XR(M)| is much smaller than |PR|, then running ER on XR(M) can be much faster

than running ER on the entire PR. We note that not all ER algorithms have a valid expander

function that returns a set XR(M) smaller than PR.

To illustrate an expander function, we use the sorted neighborhood technique [54] (SN)

as our ER algorithm. The SN algorithm first sorts the records in PR (i.e., we extract all

the records from the clusters in PR) using a certain key assuming that closer records in the

sorted list are more likely to match. For example, suppose that we have the input partition

PR = {{r1}, {r2}, {r3}} and sort the clusters by their names (which are not visible in

this example) in alphabetical order to obtain the list Z = (r1, r2, r3). The SN algorithm

then slides a fixed-sized window on the sorted list of records and compares all the pairs

of records that are inside the same window at any point. More formally, we only compare

the records r and r′ where |Rank(r, Z) − Rank(r′, Z)| < W where Rank(r) denotes

the index of r within Z while W denotes the window size. If the window size is 2 in our

example, then we compare r1 with r2 and then r2 with r3, but not r1 with r3 because they

are never in the same window. We thus produce pairs of records that match with each

other. After collecting all the pairs of records that match, we perform a transitive closure

on all the matching pairs of records to produce a partition P ′R of records. For example, if r1

matches with r2 and r2 matches with r3, then we merge r1, r2, r3 together into the output

P ′R = {{r1, r2, r3}}.
Given a previous SN result PR and a set of records M to re-resolve, we define the

expander function XR to return the set of records O =
⋃
c∈Y c where Y = {c | c ∈ PR ∧

∃r ∈ c, r′ ∈ M s.t. |Rank(r, Z) − Rank(r′, Z)| < M}. (We later prove that O correctly

CHAPTER 4. JOINT ENTITY RESOLUTION 135

contains all the records that may potentially match with records in M .) For example, if

we have the sorted list Z = (r1, r2, r3, r4) and M = {r1, r2}, then given the partition PR
= {{r1, r2}, {r3}, {r4}}, we need to resolve M ’s records with r3 because the cluster {r3}
overlaps with one of the windows (r2, r3) of r2. However, we do not have to resolve the

records of M with r4 because no window of r1 or r2 overlaps with the cluster {r4}.

Proposition 4.3.4. The function XR is a valid expander function for the SN algorithm

satisfying Definition 4.3.3.

Proof. Suppose that we are given a previous SN result PR and a set of records M to re-

resolve. Then for each r ∈ M , the SN algorithm must resolve r with any record r′ that is

within a cluster in PR that overlaps with any window of any record in M . We revisit our

example above where we have the sorted list Z = (r1, r2, r3, r4) and M = {r1, r2}. Then

given the partition PR = {{r1, r2}, {r3}, {r4}}, we need to resolve the records of M with

r3 because r2 and r3 are in the same window and might match because r2 ∈M . In general,

any record satisfying the condition above must be in the output of XR because there is a

chance of a transitive match of records r, s1, . . . , sk, r
′ where r matches with s1, s2 matches

with s3, . . ., and sk matches with r′.

We now show that if r′ does not satisfy the above condition, then r and r′ are guaranteed

not to match when SN is run on the entire PR. Since r and r′ are not within the same

window, then r and r′ are never directly compared. Also, since the cluster of r′ does not

overlap with any window of any record in M , there is no chance of a transitive match

of records r, s1, s2, . . . , sk, r
′ either. In our example above, we do not have to match the

records of M with r4 because we know that r3 and r4 did not previously match with each

other according to PR and will not match now either because both r3 and r4 are not in M .

Our definition XR(M) =
⋃
c∈Y c (where Y = {c | c ∈ PR ∧ ∃r ∈ c, r′ ∈ M s.t.

|Rank(r, Z) − Rank(r′, Z)| < M}) exactly captures the condition above. Hence, the

result of running ER only on XR(M), i.e., ER(XR(M)) ∪ (PR − XR(M)), is equivalent

to the result of running ER on PR.

We can now improve the resolution of a fixed-point set by using expander functions.

Instead of running ER(PR,P−R) for each dataset R, we run ER(XR(Cand(PR)), P−R)

CHAPTER 4. JOINT ENTITY RESOLUTION 136

where Cand(PR) returns the records in R referenced by newly-clustered records in other

datasets.

4.4 ER Algorithm Training

In a joint ER setting, training an ER algorithm may be challenging. For example, say that

we are physically executing (((R)), ((S)), ((R))). Say that we first train the ER algorithm

for R and resolve R. After resolving S, however, we may want to “re-train” the ER algo-

rithm to resolve R for the second time in order to reflect the ER result of S. In this section,

we propose a state-based training technique that can train an ER algorithm based on the

state of other datasets being resolved.

4.4.1 Match Rule

We focus on a specific type of ER algorithm that uses a match rule to decide if records

represent the same real-world entity. A match rule can be a Boolean match rule that de-

termines if two records represent the same entity, or a distance match rule that quantifies

how different (or similar) the records are. A Boolean match rule B is defined as a function

that takes two records and returns true or false. We assume that B is commutative, i.e.,

∀ri, rj, B(ri, rj) = B(rj, ri). For example, two person records may match according to B

if their names and addresses are similar. A distance match rule D is defined as a commuta-

tive distance function that returns a non-negative distance between two records instead of

a Boolean value. Alternatively, a distance can be viewed as a similarity between 0 (com-

pletely different) and 1 (identical). For example, the distance between two person records

may be the sum of the distances between their names, addresses, and phone numbers. Of

course, not all ER algorithms use match rules to resolve records, and not all ER algorithms

have parameters that can be trained. Nevertheless, there are many ER algorithms that do

use match rules whose parameters are learned.

How exactly the ER algorithm uses B (or D) to derive the output partition P ′R depends

on the specific ER algorithm. For example, say that records r and s match, s and t match,

but r and t do not match according to a Boolean match ruleB. If the ER algorithm performs

CHAPTER 4. JOINT ENTITY RESOLUTION 137

a connected component operation on the matching records, then the output is {{r, s, t}}.
On the other hand, if the ER algorithm only clusters the records that all match with each

other, then the answer may now be {{r, s}, {t}} or {{r}, {s, t}}. However, we assume

that, if two records match according to a match rule, then they are very likely to end up in

the same cluster in the ER result.

We assume that each record r ∈ R consists of a set of attributes r.A. For illustration

purposes, we can think of each attribute a ∈ r.A as a label-value pair, although this view is

not essential for our work. As an example, the following record may represent the person

Bob:

r = [name : {Bob}, address : {123Main}, age : {30})

The value of the attribute a of r is denoted as r.a. For instance, r.name = {Bob}.
We then assume that the Boolean match rule can be expressed in the following form:

B(r, s) = w0 + Σi=1,...,kwi × Simi(r, s) ≥ 0. Each similarity function Simi computes the

similarity of r and s using the attributes in r and s.

4.4.2 Training

We now train the weightsw0, . . . , wk of a Boolean match ruleB. (Training a distance match

rule can be done in a similar fashion.) For each record pair (r, s), the attribute similarities

form a “feature vector” f(r, s) = (Sim1(r, s), . . . , Simk(r, s)) that represents (r, s). We

also define the vector of weights w = (w1, . . . , wk). Using f and w, the match rule B(r, s)

can be rewritten as the following equation.

B(r, s) = w × [1, f(r, s)]T ≥ 0.

We can thus formalize the optimization problem for training w as follows:

minw0,w
1
2
||w||2 + C

∑
p∈R×R ξp

s.t. y(p)(w × f(p)T + w0) ≥ 1− ξp, p ∈ R×R
ξp ≥ 0, p ∈ R×R

CHAPTER 4. JOINT ENTITY RESOLUTION 138

The parameter C is the penalty parameter of the error term and y(r, r′) returns 1 if r and r′

are clustered in the final ER result and -1 otherwise. The weights w0, . . . , wk can be trained

using a standard SVM method using a linear kernel function [67] where the optimization

problem below is equivalent to finding the optimal margin classifier for the matching and

non-matching pairs of records according to the gold standard.

We can train on a small sample (say 10%) of the datasets in D where we know the

correct joint ER results. These samples will be our gold standard, which “represent”D in a

sense that the match rules that work well for the samples will also work well for resolving

the entire datasets in D for the entire joint ER process. Notice that for each resolution of

the dataset R, we may train a separate set of weights using our sample datasets.

The training above assumes that the given ER algorithm will most likely cluster the

records that match according to the match rule. If the given ER algorithm is more complex

and cannot be properly trained by the optimization problem above, then one could either

use a more complex optimization process to train the weights w0, . . . , wk or use a custom

training (provided by the application developer) that adjusts the parameters of the ER algo-

rithm. Notice that in the latter case, the match rule does not have to be a linear combination

of similarity values anymore and can be any black-box function.

4.4.3 State-based Training

If all the datasets are resolved in isolation, we would only need to train the ER algorithm

for each dataset once. Since we are in a joint ER environment, however, training based

on which other datasets have been resolved can be useful. For example, suppose that we

are resolving papers mostly based on their title comparison results. However, if an author

dataset that influences the paper dataset is resolved, then it might help to put more em-

phasis on the author comparison result as well. Moreover, if the papers have previously

been resolved once already, then we would actually like to give less emphasis on the title

comparison results.

We define the state of the current resolution of a dataset X to be the result of the

physical execution before resolving X . We would like to train a set of weights W used by

the ER algorithm EX for each possible state. For instance, if the entire physical execution

CHAPTER 4. JOINT ENTITY RESOLUTION 139

is (((R)), ((S)), ((R))), then we train R based on the states () and (((R)), ((S))).

In general, it is difficult to exactly predict the entire physical execution unless the joint

ER processor follows a pre-defined pattern of resolving datasets. Simply training on all

possible states is impractical if there is an infinite number of states. A reasonable assump-

tion is that the resolution of the sampled datasets used for training will generate the same

physical execution as that of the full data. In Section 4.5.3, we demonstrate that state-based

training can significantly improve the accuracy of training without states.

4.5 Experimental Results

We first evaluate our joint ER techniques on synthetic datasets and show the runtime behav-

ior of our techniques. We then evaluate the scalability and behavior of joint ER on a large

real dataset (called the Spock dataset [92]). Finally we evaluate our training techniques us-

ing another real dataset (called the Cora dataset) to demonstrate state-based training. Our

algorithms were implemented in Java, and our experiments were run on a 2.4GHz Intel(R)

Core 2 processor with 4 GB of RAM.

4.5.1 Synthetic Data Experiments

We evaluate the runtime behavior of joint ER using synthetic data. The main advantage of

synthetic data is that they are much easier to generate for different scenarios and provide

more insights into the operation of our joint ER algorithms.

Table 4.3 shows the parameters used for generating the synthetic data and the default

values for the parameters. We first create d datasets where each dataset contains records that

represent a total of s entities. For each entity, there are u records that represent that entity.

As a result, each dataset contains s×u records. While each dataset thus has 200×5 = 1, 000

records as a default, one could easily scale this data to much larger sizes. Each record r

in a dataset contains one integer value r.v. While a record may contain many attributes in

practice, we simplify our model and assume that r.v represents all the attributes of r that are

not references to records in other datasets. In addition, we later use the values to “emulate”

the match rule, i.e., if two records have values that are close, then they will more likely be

CHAPTER 4. JOINT ENTITY RESOLUTION 140

Param. Description Val.
Data Generation

d Number of datasets 15
s Number of entities per dataset 200
u Number of duplicate records per entity 5
i Value difference between consecutive entities 10
v Maximum deviation of value per entity 5

Match Rule
a Value similarity weight 0.5
t Record comparison threshold 0.5

Resource
p Number of processors 2

Table 4.3: Parameters for generating synthetic data

considered the same entity by the match rule. We assume that the entities of a dataset have

the values 0, i, 2 × i, . . ., (s − 1) × i. A record that represents an entity with a value of e

contains a value randomly selected from [e, e+v]. If a dataset R influences S, we create an

attribute in each R record that refers to an existing record in S. When assigning references,

we require that for any two records of the same entity, they can only refer to two records of

the same entity of another dataset. The set of datasets influencing the dataset S is denoted

as I(S). As defined in Section 4.3.4, the set of records in S referring to the record r is

denoted as R−1
S (r). When running joint ER, the parameter p indicates the number of CPU

processors that can resolve datasets concurrently.

The match rule B compares two records and returns true if they are similar and false

otherwise. When comparing the records r and r′, B considers two similarities: the value

similarity, which compares the values r.v and r′.v, and the reference similarity, which

compares the references of r and r′ to records in other datasets. We use the parameter a to

balance the value and reference similarities as follows:

B(r, r′) = a× 1

|r.v − r′.v|+ 1
+

(1− a)×
∑

X∈I(R) I(r, r′, X)∑
X∈I(R) I(r, r′, X) +N(R)

≥ t

CHAPTER 4. JOINT ENTITY RESOLUTION 141

where I(r, r′, X) = |R−1
X (r)∩R−1

X (r′)| and N(r, r′) = |{Y |Y ∈ I(R)∧ I(r, r′, Y) = 0}|.
That is, I(r, r′, X) is the number of records in X that refer to both r and r′, and N(R) is

the number of datasets that influence R and that do not have any records that refer to both r

and r′. The first term weighted by a is the normalized value similarity, which ranges from
1
d+1

to 1, and increases as the values of r and r′ are more similar. The second term weighted

by (1−a) is the normalized reference similarity, which ranges from 0 to 1 and increases as

more references in r and r′ overlap. B returns true if the sum of these normalized values is

larger or equal to the comparison threshold t.

For our ER algorithm we use the R-Swoosh algorithm [10], which uses a Boolean

pairwise match rule to compare records and a pairwise merge function to combine two

records that match into a composite record. When two records r and r′ are merged, the

composite record r′′ contains either r.v or r′.v as its value.

We measure the runtime in terms of the “critical” number of record comparisons. That

is, for each synchronous step of joint ER, we add the maximum number of record com-

parisons among all parallel running processors. For example, if processor 1 ran 10 com-

parisons in the first and second iterations while processor 2 ran 9 and 11 comparisons,

respectively, then the critical number of record comparisons is max{9, 10}+max{10, 11}
= 10 + 11 = 21 comparisons. Although the record comparison time itself may change, we

believe that counting the comparisons is a reasonable representation of the amount of work

done.

Influence Graph Pattern

In this section, we study how our joint ER algorithm improves over a naı̈ve implementation

of joint ER that does not exploit the influence graph. In the naı̈ve solution, all the datasets

are repeatedly resolved until all of them converge. Notice that all the datasets need to be

resolved for each step because, even if a dataset does not change in the current step, we do

not know if a change in some other dataset might influence this dataset later on. Given a set

D of datasets, the naı̈ve solution is thus the most efficient way to resolve the execution plan

({D}+) without exploiting the influence graph. We use the default settings in Table 4.3 to

construct our datasets and do not use expander functions.

When constructing the influence graph used by our joint ER algorithm, we consider

CHAPTER 4. JOINT ENTITY RESOLUTION 142

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 2 3 4 5 6 7 8

Nu
m

be
r o

f r
ec

or
d

co
m

pa
ris

on
s

(m
illi

on
)

Maximum chain length (l)

Naive
Joint ER

Figure 4.4: Linear structure results

two patterns: linear and random. In the linear model, the influence graph is a collection

of “chains” where each chain contains datasets that form a linked list of influence in one

direction. Given a maximum chain length of l, we use the first 10 datasets to create n =

b10
l
c chains of length l and one more chain of length 10 − n × l if 10 − n × l > 0. The

remaining 5 datasets neither influence nor are influenced by other datasets. In the random

model, we use a given probability c for creating a more connected structure. For any pair

R and S in the first 10 datasets, R influences S with a probability of c. The remaining 5

datasets do not influence or are influenced by other datasets.

Figure 4.4 shows how adjusting l in the linear model influences the critical number of

record comparisons. Since at least five datasets are redundantly resolved for each step, the

total work of the naı̈ve solution increases linearly for larger l values. In comparison, the

joint ER algorithm does an almost constant amount of work for any l by only resolving the

necessary datasets at each step. As a result, the joint ER algorithm outperforms the naı̈ve

solution by 2.3–4.7x.

Figure 4.5 shows how adjusting c in a random model influences the critical number of

record comparisons. If c is small, only a few datasets influence each other, so our joint ER

algorithm can avoid redundantly resolving datasets by exploiting the influence graph. If c

is larger, then the first 10 datasets are more likely to be connected with each other, and our

joint ER algorithm performs similarly to the naı̈ve solution for those 10 datasets. Notice

that, since the remaining five datasets do not influence and are not influenced by other

CHAPTER 4. JOINT ENTITY RESOLUTION 143

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Nu
m

be
r o

f r
ec

or
d

co
m

pa
ris

on
s

(m
illi

on
)

Probability of influence (c)

Naive
Joint ER

Figure 4.5: Random structure results

datasets, the joint ER algorithm outperforms the naı̈ve solution by a certain degree even if

c = 1. As a result, the joint ER algorithm outperforms the naı̈ve solution by 1.8–2.6x.

In summary, the joint ER algorithm outperforms the naı̈ve solution by exploiting the

influence graph. If the influence graph has a linear structure, then the joint ER algorithm

performs better for longer chains. If the influence graph has a random structure, then the

joint ER algorithm performs better for sparser graphs.

Number of Iterations

We study how certain parameters influence the number of iterations of the joint ER process.

In order to be able to interpret our results more clearly, we focus on a single cycle with two

datasets (called R and S) that influence each other. We then run ER alternatively on the

two datasets until both of them converge.

Figure 4.6 shows how the value similarity weight a influences the number of iterations.

We count each resolution of R or S as one iteration. For example, the resolution of R,

S, and R is viewed as three iterations. Each group of bars show the results for one a

value. The nth bar in a group shows the number of record comparisons for the nth dataset

resolved. That is, the first bar represents the result of resolving R, the second bar the result

of S, the third bar the result of R, and so on. Hence, the number of bars per group is the

number of iterations it took for resolving R and S together. For example, if a = 0.1, there

are eight iterations. As a increases, the value similarity of B becomes the dominant factor

CHAPTER 4. JOINT ENTITY RESOLUTION 144

 0
 50000

 100000
 150000
 200000
 250000
 300000
 350000
 400000
 450000
 500000

0.1 0.5 0.9

Nu
m

be
r o

f r
ec

or
d

co
m

pa
ris

on
s

Value similarity weight (a)

Figure 4.6: Value similarity weights versus iterations

when comparing records. As a result, there are fewer iterations (if a = 0.9, there are only six

iterations) because the overlap in references have less impact on the comparison of records.

Expander Function

We now study the performance of expander functions in various scenarios. We use an

expander function E that receives a record r ∈ R and returns all the records in R that

have a value within the range of [b r.v
i
c × i, b r.v

i
c × i+ v], which covers all the records that

represent the same entity as r by our construction. We prove that E is valid as long as i > v

and t ≥ a × 1
i−v+1

. Suppose that i > v. Then E returns exactly the records that refer to

the same entity as r. Also, for any two records r and r′ in R that do not represent the same

entity, |r.v − r′.v| ≥ i − v. By construction of references, r and r′ have no overlapping

references to any other dataset, so the reference similarity is always 0. Hence, the weighted

similarity of B(r, r′) is a × 1
|r.v−r.v′|+1

+ (1 − a) × 0 ≤ a × 1
i−v+1

. Hence, as long as

t > a × 1
i−v+1

, B(r, r′) is always false, and E is valid. Since E only returns the records

that represent the same entity as r, E should be viewed as an optimal expander function

that returns the best result possible. We compare the total number of critical comparisons

among three methods: the naı̈ve solution, the joint ER algorithm that does not use E, and

the joint ER algorithm that uses E. We use a random model with an influence probability

of c = 0.3 for generating the influence graph.

In Figure 4.7, we evaluate the performance of E by varying the comparison threshold

CHAPTER 4. JOINT ENTITY RESOLUTION 145

 0

 5

 10

 15

 20

0.3 0.6 0.9

Nu
m

be
r o

f r
ec

or
d

co
m

pa
ris

on
s

(m
illi

on
)

Record comparison threshold (t)

Naive
Joint ER w/o Exp.

Joint ER w/ Exp.

Figure 4.7: Threshold versus expander function performance

t. For E to be valid in our default setting, we need t to be larger than a× 1
i−v+1

= 1
60

. If t =

0.3, most records are likely to match with each other, so there are fewer record comparisons

performed because of the frequent merging of records. As t increases to 0.6, fewer records

start to match, so more record comparisons are performed with fewer merges. In addition,

more iterations are needed to completely resolve all the datasets, which further increases the

number of record comparisons. If t increases to 0.9, then very few records match, so there

are more record comparisons. However, there are fewer iterations as well, so the number

of record comparisons actually decreases for the naı̈ve solution and the joint ER solution

with expander functions. Throughout the three configurations of t, the joint ER algorithm

with E outperforms the naı̈ve solution and the joint ER algorithm without E by 4.3–4.9x

and 1.8–2.9x, respectively. Since we are experimenting on a best-case expander function,

the performance of using any other expander function should be somewhere between our

results of running joint ER with and without E.

Next in Figure 4.8, we vary the number of duplicates per entity u from 3 to 9. As u

increases, the number of record comparisons increases because there are more records to

compare. However, the number of iterations does not change for different u values. In the

three configurations of u, the joint ER algorithm with E outperforms the naı̈ve solution and

the joint ER algorithm without E by 3.8–4.4x and 1.7–1.8x, respectively.

In summary, the joint ER algorithm using expander functions can outperform the other

two techniques for various joint ER scenarios.

CHAPTER 4. JOINT ENTITY RESOLUTION 146

 0

 5

 10

 15

 20

 25

 30

3 6 9

Nu
m

be
r o

f r
ec

or
d

co
m

pa
ris

on
s

(m
illi

on
)

Number of duplicates per entity (u)

Naive
Joint ER w/o Exp.

Joint ER w/ Exp.

Figure 4.8: Number of duplicates versus expander function performance

 0

 5

 10

 15

 20

 2 4 6 8 10 12 14 16

Nu
m

be
r o

f r
ec

or
d

co
m

pa
ris

on
s

(m
illi

on
)

Number of processors

Naive
Joint ER

Figure 4.9: Number of processors versus record comparisons

Number of Processors

In Figure 4.9, we compare our joint ER algorithm with the naı̈ve solution varying the

number of processors p. Both plots are proportional to the plot y = 1
p
. If p = 1, joint ER

outperforms the naı̈ve solution by 2.1x in record comparisons. However, if p = 16, the

naı̈ve solution starts to perform relatively better (only 1.8x worse in record comparisons)

because all datasets are being resolved at the same time, making convergence faster and

thus reducing the number of iterations. Hence, our joint ER algorithms are more effective

when there are fewer processors, i.e., when the resources are more scarce.

CHAPTER 4. JOINT ENTITY RESOLUTION 147

Exploiting Semantic Knowledge

We now resolve datasets using blocking techniques and show how reducing the edges in the

influence graph by exploiting application semantics can improve the runtime performance.

We experiment on 4–16 datasets that form a random influence graph where for each pair

of datasets R and S, R influences S with probability 0.5. For half of the datasets, we

increase each size from 1,000 to 10,000 records. We assume that only 1,000 records can

be resolved in memory, so we divided each large dataset into 10 blocks of size 1,000. We

use three scenarios for influence relations among blocks. In the first scenario, we assume

a “quadratic” connection scenario where for every R that influences S, all the blocks of R

influence S as well. In the case where S itself is divided into blocks, all the blocks of R

influence each of the blocks of S. In the second scenario, we consider a “linear” connection

scenario where each block in R only influences its corresponding block in S with the same

index. In our third scenario, we consider an extreme “single” connection scenario where

only one random block of R influences the corresponding block in S with the same index.

Notice that the single connection scenario produces a best-possible influence graph that can

be generated when R influences S. For the other parameters, we use the default settings in

Table 4.3 to construct our datasets and do not use expander functions.

Figure 4.10 shows that, the single-connection scenario outperforms the quadratic-connection

scenario by 1.6–3.9x and the linear-connection scenario by 1.6–3.4x depending on the num-

ber of datasets resolved. The improvement is due to the better exploitation of the influence

graph by the scheduler.

4.5.2 Real Data Experiments

We now test the scalability of our joint ER algorithm on a real dataset provided by a com-

mercial people search engine called Spock [92], which collects hundreds of millions of per-

son information records from various websites such as Facebook, MySpace, and Wikipedia.

The records are then resolved to generate one profile per person. The Spock schema con-

tains various datasets that contain personal information, education, employment, addresses,

and tags of people. We obtained a subset of the entire Spock dataset that contained infor-

mation of about 70 million people whose names started with one of the characters ‘c’, ‘s’,

CHAPTER 4. JOINT ENTITY RESOLUTION 148

 0

 10

 20

 30

 40

 50

 60

 4 6 8 10 12 14 16

Nu
m

be
r o

f r
ec

or
d

co
m

pa
ris

on
s

(m
illi

on
)

Number of datasets

Single Influence
Linear Influence

Quadratic Influence

Figure 4.10: Blocking scenario versus record comparisons

or ‘k’. We chose this particular subset because relatively many people have names that start

with the three characters, increasing the chance for finding duplicates 1.

In our experiments, we used a simplified version of the Spock schema and resolve

the following types of records: persons, addresses, schools, and jobs. For our scalability

experiments, we generated subsets of the data of different sizes, as follows. First we select

a random subset (called P) of the desired size from the 70 million person records. Then we

select the addresses (called A), schools (called S), and jobs (called J) that refer to at least

one person among the randomly selected person records. The largest dataset we generated

in this fashion contains 1M people records, 0.8M addresses, 3.5K schools, and 6.6K jobs.

We also generated datasets with 0.25M, 0.5M and 0.75M people records.

Our datasets may not be representative of the Spock data in terms of the number of

duplicates per entity because we take a random sample of the entire 70 million person

records. For example, if there are 100 duplicates per entity, and we take a 10% sample of

the entire data, then there would be on average only 10 duplicates per entity in the sample

set. An alternative sampling method that preserves the number of duplicates per entity is

to take a random subset of the actual entities and collect all the records that refer to those

entities. Since we did not have a gold standard for the Spock data, however, determining

the actual entities was challenging.

Each record contains either values or references to other types of records. All the

1Spock was unable to give us all the data for legal reasons.

CHAPTER 4. JOINT ENTITY RESOLUTION 149

letters in the records were converted to lowercase. An address record in A contains a

street address, city, and state, but no attributes that refer to other types of records. A person

record in P contains a first name, last name, gender, age, city, and state, and also contains

attributes that refer to records in A, S, and J . A school record in S record contains a name

and an attribute that refers to records in P . A job record in J also contains a name and

an attribute that refers to records in P . As a result, we used the influence graph where A

influences P , P and S influence each other, and P and J influence each other. Hence, the

execution plan generated by Algorithm 8 was ({A} {P, S, J}+).

Since both A and P were too large to fit in memory, we used blocking techniques to

divide the two datasets. The blocking on A was based on the first character of the city

appended with the state for each address record. For example, if an address record has the

city “stanford” and state “ca”, then the blocking key is “sca”. For the records that did not

contain a state, there were only a few thousand of them so they were all put in a single block

containing records without states. As a result, we may miss matches between records that

have a state and those that do not have a state. For example, an address in “atlanta, ga” will

never be compared with a record in “atlanta” without a state although the two addresses

may be the same. On the other hand, the blocking prevents unnecessary matches that may

occur due to the sparse information. That is, if the second “atlanta” was in the state “tx”,

then the two addresses should not be compared even if they look similar. The blocking

on P was based on the first two characters of the last name appended with the state for

each person record. For example, if a person record has the last name “smith” and the state

“tx”, then the blocking key is “smtx”. (We used two characters of the last name instead of

one because all last names started with a ‘c’, ‘s’, or ‘k’.) The records without a state were

distributed by the first two characters of their last names into blocks containing records

without states. The S and J datasets were small enough to fit in one block each. While the

blocks containing the records were stored on disk, the influence graph and the information

of which records were clustered together was kept in memory.

We use fixed-sized extents called segments to store the blocks on disk [109]. A segment

acts as a unit of transfer for reading blocks into memory and thus cannot exceed the memory

size. We allocate a fixed number of segments consecutively on disk and then randomly

assign the blocks to the segments. The advantage of using segments is that the different

CHAPTER 4. JOINT ENTITY RESOLUTION 150

block sizes are evened out when they are randomly assigned to the segments. As a result,

we can approximately do the same amount of work for each segment processed.

We use two ER algorithms to demonstrate that our framework can use different ER

algorithms for each type of data.

• The Sorted Neighbor (SN) algorithm (see Section 4.3.4) was used for the A and P

datasets. When resolving A, we sorted the records by their cities and then used a

sliding window of size 100 for comparing the records. When comparing two address

records, we performed a string similarity comparison of the street address using the

Jaro distance function [111]. We considered the records to match if either the street

addresses were near identical or if the street addresses were similar and the states

were the same. When resolving P , we sorted the records by their last names and

then used a sliding window of size 100 for comparing the records. When comparing

two person records, we compared the appended first and last names using the Jaro

distance function. If the names were similar, we also checked if the two records had

the same age and gender or the same city and state or the same school or the same

job to determine a match.

• The R-Swoosh algorithm (see Section 4.5.1) was used for resolving the S and J

datasets. For both S and J , two records were considered to match if they either had

near-identical names or had similar names and referred to at least one common P

record.

Our setting thus illustrates the flexibility of our framework where one can plug in any

ER algorithm for each dataset resolved.

Figure 4.11 shows the runtime of joint ER as the number of person records increases.

The sizes of the other types of data are not shown in the x-axis, but increase in proportion to

the number of person records. The different plots show the results for using 1–4 concurrent

threads. For any number of threads, the joint ER runtime increases linearly to the number

of records resolved, mainly because the SN algorithm has linear scalability. As the number

of threads increases, the runtime improves in a sub-linear fashion. For example, the runtime

for resolving the Spock data with 1M person records improves by 1.4x when increasing the

CHAPTER 4. JOINT ENTITY RESOLUTION 151

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ru
nt

im
e

(h
rs

)

Number of people records (million)

1 Thread
2 Threads
3 Threads
4 Threads

Figure 4.11: Scalability results on the Spock dataset

number of threads from 1 to 2, but only improves by 1.1x when increasing the number of

threads from 2 to 4. The main reason is that the block sizes were not evenly distributed, so

the workload of record comparisons was not evenly distributed to the threads as well. If all

the blocks had the same size, then we would see runtime improvements more proportional

to the number of threads. In addition, there is a fixed cost of initially distributing the

records to the blocks on disk, which further reduces the benefit of concurrent processing.

Nevertheless, the results show that our joint ER algorithm can scale to millions of records.

Figure 4.12 shows the scalability results as above, except that the largest dataset P is

now resolved with the R-Swoosh algorithm instead of the SN algorithm. Since R-Swoosh

has a quadratic complexity, the joint ER runtime increases quadratically as the number of

person records increases. Compared to Figure 4.11, the joint ER runtimes are about an

order of magnitude larger as well. The results show that the joint ER scalability heavily

depends on performances of the specific ER algorithms plugged into the framework.

We now study the physical execution of running joint ER on the Spock data. Instead of

showing all the details of the physical execution, we summarize by showing the number of

segments that were read into memory for each dataset resolved. (Recall that a segment is

a unit of transfer for reading blocks into memory.) For example, the summarized physical

execution ((R:1), (S:2, T :3)) says that one segment containing the records of R was read

into memory for resolution, and then two segments of S and three segments of T were

read into memory for resolution. The first row of Table 4.4 shows the physical execution

CHAPTER 4. JOINT ENTITY RESOLUTION 152

 0

 1

 2

 3

 4

 5

 6

 7

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ru
nt

im
e

(h
rs

)

Number of people records (million)

1 Thread
2 Threads
3 Threads
4 Threads

Figure 4.12: Scalability results when running R-Swoosh on P

Setting Physical Execution Summary
Figure 4.11 ((A:40), (P :40,S:1,J :1), (P :26,S:1,J :1), (P :1))
Figure 4.12 ((A:40), (P :40,S:1,J :1), (P :26,S:1,J :1))

Table 4.4: Physical Execution Summary on Spock Data

using the setting of Figure 4.11 for resolving the Spock data with 1M people records using

one thread where the SN algorithm was used to resolve P . The second row shows the

execution when we use the setting of Figure 4.12 for resolving the same data using one

thread where the R-Swoosh algorithm was used to resolve P . Compared to the physical

execution in the first row, one fewer segment of P was read into memory for the second

row because R-Swoosh is more “optimistic” in matching records compared to the SN

algorithm and thus finds all the matching records early on. Both executions do not have

many iterations because there were relatively few matching records. On average, 5% of

the records in A clustered with other records for each block resolved (including repetitions

where some blocks were resolved multiple times). For the other datasets, the percentages

were 0.5–1.1%, 0.2–0.3%, and 0.4% for P , S, and J , respectively.

4.5.3 Training Accuracy

We now address the question on whether state-based training can improve the ER accuracy.

If training the match rules once already produces perfect ER results, then there is no need

to train the match rule multiple times. However, if producing correct ER results depends

CHAPTER 4. JOINT ENTITY RESOLUTION 153

Rule Definition
BP w0 + w1 × ST + w2 × SA + w3 ×OV ≥ 0
BV w0 + w1 × SN + w2 ×OP ≥ 0

Table 4.5: Cora data match rules

on the resolution of other datasets, then our techniques may help.

We evaluate state-based training using real data. We experiment on the Cora dataset,

which is a publicly available list of 1,879 papers. From the paper records, we extracted

1,879 venues into a separate list. The gold standard for resolving the papers is given within

the Cora dataset. For the venues, we manually created a gold standard by grouping the

same venues together.

Table 4.5 shows the match rules for the papers and venues. We denote the paper dataset

as P and the venue dataset as V . The paper match rule BP compares the similarity of titles

(ST), the similarity of author lists (SA), and the venue overlap (OV) between papers. The

venue match rule BV compares the similarity of names (SN) and the paper overlap (OP)

between venues. When computing the similarity for titles and names, we removed special

characters and used the Jaro measure [111] to compute a string similarity ranging from 0 to

1. When comparing the author lists, we extracted the last names of the authors, sorted and

concatenated them in alphabetical order, and used the Jaro distance to compute the string

similarity. We emphasize that our match rules are not designed to be the most accurate

rules. There are other attributes (date, publisher, volume, page numbers, etc.) that we

could have exploited and better models [82] for constructing the match rules. Hence, we

use our simple rules to clearly demonstrate how the joint training and resolution of datasets

can significantly enhance accuracy compared to resolving each dataset individually.

To measure accuracy, we compare our ER results with the gold standard. We consider

all the input records that clustered together to be identical to each other. For instance, if

records r and s clustered into {r, s} and then clustered with t, all three records r, s, t are

considered to be the same. Suppose that the set G contains the set of record pairs that

cluster in the gold standard while set S contains the matching pairs for our algorithm. Then

the precision Pr is |G∩S||S| while the recall Re is |G∩S||G| . Using Pr and Re, we compute the

F1-measure, which is defined as 2×Pr×Re
Pr+Re

, and use it as our accuracy metric.

CHAPTER 4. JOINT ENTITY RESOLUTION 154

Iter. Rule State w0 w1 w2 w3

Paper weights trained first
1 BP () -7.89 8.02 0.92 0
2 BV (P) -8.99 9.99 2.22 n/a
3 BP (P, V) -6.71 6.39 0.79 0.76
4 BV (P, V, P) -8.99 9.99 2.22 n/a

Venue weights trained first
1 BV () -8.42 9.42 0 n/a
2 BP (V) -8.1 7.73 1.36 0.83
3 BV (V, P) -8.99 9.99 2.22 n/a
4 BP (V, P, V) -6.39 5.25 1.44 0.89
5 BV (V, P, V, P) -8.99 9.99 2.22 n/a

Table 4.6: Trained weights

The weight training was done on a random 10% subset of the papers and venues using

the LIBSVM package [67]. We train the papers and venues in an alternating fashion. That

is, we train the paper weights, and then the venue weights, then the paper weights again,

and so on until all the weights converge. The top part of Table 4.6 shows the trained weights

of BP and BV where the paper weights were trained first. For each state, we have listed the

datasets resolved. Notice that after the first iteration, w3 of BP is trained to 0 because none

of the venues have been merged yet, so comparing the venues of papers does not improve

accuracy. The bottom part of Table 4.6 shows the weights when the venues are trained

first. This time, in the first iteration, the weight w2 of BV is trained to 0 because none of

the papers have been resolved and merged yet. Notice that within three resolutions of the

papers and venues, we have produced a fixed point joint ER result, which suggests that the

number of resolutions per dataset is small in practice.

Table 4.7 shows the trained weights without considering the states of resolved datasets.

When training the paper weights, since no venues have merged, the training results are

identical to the paper weights after the first iteration in the top part of Table 4.6. Similarly,

for the venues, the training results are the same as the venue weights after the first iteration

in the bottom part of Table 4.6.

Using the trained weights, we now run the Swoosh algorithm on each dataset following

the same sequence as that of the training. Hence if BP was trained first, we run ER on

CHAPTER 4. JOINT ENTITY RESOLUTION 155

Rule w0 w1 w2 w3

BP -7.89 8.02 0.92 0
BV -8.42 9.42 0 n/a

Table 4.7: Trained weights without states

Iteration Type Pr Re F1
Papers resolved first

1 P 0.83 0.92 0.87
2 V 0.69 0.88 0.78
3 P 0.83 0.96 0.89
4 V 0.69 0.88 0.78
5 P 0.83 0.96 0.89

Venues resolved first
1 V 0.94 0.54 0.69
2 P 0.83 0.96 0.89
3 V 0.84 0.89 0.86
4 P 0.83 0.96 0.89
5 V 0.84 0.89 0.86

Table 4.8: Accuracy results of training with states

the papers first, then run ER on the venues, and then on the papers, and so on until the ER

results converge. If BV was trained first, we run ER on the venues first. The top part of

Table 4.8 shows the progression of accuracy as each dataset is resolved when the papers

are resolved first. The bottom part of Table 4.8 shows the corresponding results when the

venues are resolved first. As a result, the accuracy of the resolved papers is 0.89 regardless

which dataset was resolved first while the accuracy of the resolved venues is 0.78 if the

papers were resolved first and 0.86 if the venues were resolved first.

We now compare our state-based training results with the training results without states.

Table 4.9 shows the accuracy results when the states are not considered. Notice that the

paper and venue results are identical to the first iteration results of the top and bottom

parts of Table 4.8, respectively. As a result, using the state information has improved the

accuracy of papers by 2% and that of the venues by 9–17%. The larger improvement

for venues matches our intuition because many identical venues that have significantly

different names (e.g., the names “NIPS” and “Advances in Neural Information Processing

CHAPTER 4. JOINT ENTITY RESOLUTION 156

Type Pr Re F1
P 0.83 0.92 0.87
V 0.94 0.54 0.69

Table 4.9: Accuracy results of training without states

Systems” represent the same conference) started to match once they shared many papers.

In summary, we have shown that state-based training can improve the accuracy of ER

compared to training without states. In general, state-based training does not always out-

perform training without states. For example, if training without states already produces

perfect match rules, then there is no benefit in retraining the rules. Hence, state-based train-

ing is mainly useful when references play a significant role in matching records as in our

demonstration.

4.6 Related Work

Most of the ER work [65] has focused on resolving one dataset. In contrast, our approach

attempts to resolve multiple datasets of records at the same time, which can significantly

improve the accuracy of ER. Although several recent works [109, 83] have proposed gen-

eral scalable ER algorithms for a single entity type of data, they do not discuss how to

coordinate the resolution of multiple types of records that refer to each other.

Many works have considered joint ER focusing on accuracy only. Dong et al. [31]

presents an ER method where record pairs of different datasets are resolved simultaneously.

Bhattacharya et al. [15] proposes joint ER techniques for a specific domain (citations) using

hard-coded ER algorithms. Several probabilistic models for joint ER has been proposed as

well. Culotta et al. [27, 28] uses conditional random fields to improve the propagation of

information when resolving records of multiple datasets. Domingos et al. [81] supports a

restricted version of joint ER where comparison results of basic attributes are shared when

resolving records. Markov Logic Networks [90] can also be used to specify a rich set of

constraints for joint ER. While the above approaches significantly enhance the accuracy of

joint ER, they do not scale to large datasets and do not provide a general framework for

custom ER algorithms either.

CHAPTER 4. JOINT ENTITY RESOLUTION 157

Recently, Arasu et al. [7] have proposed joint ER techniques based on a declarative

language for constraints. Unlike previous approaches, their work focuses on scalability

as well as accuracy of joint ER. A declarative set of constraints is reflected in a graph of

records with different types of edges that indicate the likelihood of two records matching.

Then a correlation clustering algorithm is used to connect records while minimizing the

number of violated constraints in the graph. In comparison, our work provides generality

where one can simply plug in her application-specific ER algorithm and get joint ER results.

In addition, our joint ER algorithm can resolve few datasets at a time based on an execution

plan, providing flexibility in resource (e.g., CPU, memory) management.

Job scheduling [18] and software pipelining [3] are related topics to our problem of as-

signing datasets to processors. The goal is to assign fixed-length jobs (in software pipelin-

ing, an instruction is a job) that may depend on each other to processors in order to mini-

mize the parallel runtime. While joint ER can also be viewed as a job scheduling problem,

a major distinction is that it is very difficult to predict the runtime of ER on each dataset

unlike job scheduling and software pipelining where each job has a fixed runtime. In ad-

dition, even if a dataset R influences S, we are not necessarily restricted to resolving S

after R unlike in job scheduling and software pipelining where jobs must be processed by

strictly following a dependence relation.

Several works have proposed training techniques for ER algorithms. Bilenko et al. [16]

provides training for the specific domain of string similarity measures. Sarawagi et al. [87]

proposes interactive learning techniques that minimize the work needed to achieve high

accuracy of ER. Bhattacharya et al. [14] proposes unsupervised learning techniques for

ER. While most of these work perform training once, we propose a state-based training

technique where an ER algorithm of a dataset may be trained multiple times based on

different resolution states of other datasets.

4.7 Conclusion

When performing entity resolution on multiple types of datasets, resolving records of one

type can impact the resolution of other types of records. In this chapter, we have ex-

plored the following two questions: Given a limited amount of resources, what is the most

CHAPTER 4. JOINT ENTITY RESOLUTION 158

efficient schedule for resolving the datasets? How do we train the ER algorithms? We

have answered the first question by proposing a flexible and modular resolution framework

where existing ER algorithms that are developed for given record types can be plugged in

and used with other ER algorithms. In our experiments, we have demonstrated that our

joint ER method can resolve large datasets efficiently by scheduling and coordinating the

individual ER algorithms. We have answered the second question by proposing a state-

based training technique where ER algorithms can be trained multiple times based on the

state of other datasets. We have demonstrated that our state-based training techniques can

indeed improve the accuracy compared to training the ER algorithms only once.

Chapter 5

Entity Resolution with Negative Rules

Until now, we have assumed that ER is a “perfect” process in the sense that it cannot

make mistakes and always correctly resolves records. In practice, however, the process

for matching and merging records in ER may be application-specific, complex, and error-

prone. The input records may contain ambiguous and not-fully specified data, and it may

be impossible to capture all the application nuances and subtleties in whatever logic is used

to decide when records match and how they should be merged. Thus, the set of resolved

records (after ER) may contain “errors” that would be apparent to a domain specialist.

For example, we may have a customer record with an address in a country we do not do

business with. Or two different company records where the expert happens to know that

one company recently acquired the other, so they are now the same entity.

An effective way to reduce ER errors is to define integrity constraints that should be

satisfied by the data [50, 35]. The constraints may be written by people different from

the application writers, to avoid making the same mistake twice. After (or while) the ap-

plication runs, the constraints are independently checked, and inconsistencies flagged. Of

course, in an ideal world, the application writers would enforce all integrity constraints per-

fectly, and integrity checking would be unnecessary. However, we do not live in an ideal

world and integrity checking represents a useful “sanity check.”

Integrity constraints tell us what data states are invalid but do not tell us how to arrive

at a valid state. In this chapter we study how to modify the ER process, in light of some

integrity constraints that we call negative rules, so that we arrive at a set of resolved records

159

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 160

Name SSN Gender
r1 Pat 999-04-1234
r2 Patricia F
r3 Pat 999-04-1234 M

Figure 5.1: A list of people

that satisfy the constraints. Furthermore, since in general there can be more than one valid

resolved set, we also discuss how a domain expert can guide the ER process to arrive at

a desirable and valid set of records using various methods for resolving records. We also

explore properties of the negative rules that make this directed ER process more efficient.

Motivating Example Consider the three people records shown in Figure 5.1, that are to

be resolved. We would like to merge records that actually refer to the same person. Suppose

the match function compares r1 and r2 first and returns a match because they have similar

names. Records r1 and r2 are thus merged into a new record r12:

r12 Pat, Patricia 999-04-1234 F

Now suppose that r12 matches with r3 since they have similar names and an identical social

security number. The result is a new record r123:

r123 Pat, Patricia 999-04-1234 M, F

In this case, r123 is the answer of the ER process.

However, it is easy to see there are problems with this solution. These problems can

be identified by “negative rules,” i.e., constraints that define inconsistent states. In this

example, say we have a rule that states that one person cannot have two genders, and hence

record r123 violates the constraint. The reader may of course wonder why this constraint

was not enforced by the merge function that combined r12 with r3. There are two reasons.

One reason is that the person writing the merge function may be unaware of this gender

constraint or enforced it incorrectly. Keep in mind that the constraints in practice will

be much more complex than what our simple example shows. For instance, the merge

function (or the negative rule) may be a complex computer program that considers many

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 161

factors in making a decision. It may have numerous “patches” added over time by different

people. Furthermore, the match and negative rules may be written by different people (as

mentioned earlier), so it is not surprising that the rules can reach conflicting decisions.

A second reason why the gender constraint was not enforced by the merge function

may be that the constraint is “fixable”. In this application it may be acceptable to have a

record with two genders during the resolution (as opposed to in the final answer), because

future merges may resolve the gender. For example, say r123 were to merge with another

record that indicated that Pat was Male. Then the merge function may eliminate the Female

gender because there is now more evidence that Pat is male. In this scenario it is okay to

temporarily generate r123 since it is useful in constructing a valid final record. However, it

is not okay to leave r123 in the final answer.

To resolve the gender inconsistency, say we unmerge r123 back into {r12, r3}. In our

example, the set {r12, r3}may still not be a valid ER answer: We may have a negative rules

stating that no two final records should have the same social security number. In our case,

the problem occurred because r1 was initially merged with r2 instead of r3.

The reader may wonder why the ER process did not first merge r1 and r3 since they are

clearly a better match than r1, r2. First, our example is simple, and in practice there may

be no obvious ordering to the merges. Furthermore, the person coding the match function

may not be aware of the SSN check that will be performed by the negative rule. Second, an

inherent feature (some would say weakness) of pairwise matching is that merge decisions

are done without global analysis, a pair of records at a time. This feature is what makes

the approach simple and appealing to some applications, but is also the feature that can

introduce problems like the one illustrated by our example. Our approach here will be to

fix these problems via the definition of negative rules.

In our simple example, we can arrive at two possible solutions that satisfy the negative

rules presented above. One solution occurs when we unmerge r12 and re-merge r1 and r3,

resulting in {r13, r2}. The other is when we simply discard r3, resulting in {r12}. Note that

{r1, r2} is not a good solution because it is not “maximal,” i.e., r1 and r2 could have been

merged without problems. The precise definition of a valid solution will be given in the

next section.

Interestingly, many inconsistencies in real-world data can be captured with negative

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 162

rules that examine one or two records at a time. For example, we can easily apply our rules

to hotel data saying that no hotel can have two different street numbers on the same street

and that no two hotels with different names can have the same street name, street number,

and phone number.

In this chapter we address precisely the identification and handling of inconsistent ER

answers.

• We start by summarizing the ER model of this chapter (Section 5.1.1).

• We then define the concept of negative rules (Section 5.1.2), both unary negative

rules that detect internal inconsistencies within one record, and binary negative rules

that detect problems involving a pair of records (as in our example).

• We formally define what is the correct ER answer in the presence of such negative

rules (Section 5.1.3).

• We define simple properties of the match, merge, and negative rules that make it

easier to find the correct solutions (Section 5.3), and we present algorithms that find

a solution based on guidance from a domain expert (Sections 5.2, 5.4).

• We experimentally evaluate our algorithms using actual comparison shopping data

from Yahoo! Shopping and hotel information data from Yahoo! Travel (Sections 5.5,

5.6).

• We discuss related work in Section 5.7 and conclude in Section 5.8.

5.1 ER-N Model

In this section, we formalize negative rules and define correct ER results based on the

negative rules. We then introduce two approaches for avoiding inconsistencies.

5.1.1 ER

We start with an instance I = {r1, ... , rn}, which is a set of records.

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 163

Match and Merge Functions A match function M determines if two records r1 and r2

refer to the same real-world entity. If the records match, M (r1, r2) = true. We denote this

as r1 ≈ r2. Otherwise, M (r1, r2) = false (r1 6≈ r2).

A merge function µ merges two records into one. The function is only defined for

matching records. The result of µ(r1, r2) is denoted as 〈r1, r2〉.
We assume two basic properties for M and µ – idempotence and commutativity. Idem-

potence says that any record matches itself, and merging a record with itself yields the same

record. Commutativity says that, if r1 matches r2, then r2 matches r1. Additionally, the

merged results of r1 and r2 should be identical regardless of the merge ordering.

• Idempotence: ∀r, r ≈ r and 〈r, r〉 = r.

• Commutativity: ∀r1, r2, r1 ≈ r2 iff r2 ≈ r1, and if r1 ≈ r2, then 〈r1, r2〉 = 〈r2, r1〉.

We believe that most match and merge functions will naturally satisfy these properties.

Even if they do not, they can easily be modified to satisfy the properties. To illustrate the

second point, suppose that idempotence does not hold because the records have very little

information (e.g., a person named John isn’t necessarily identical to another person named

John). In that case, we can be more strict in determining if two records are the same by

conducting a bitwise comparison between the records or comparing the sources from which

the records originated.

Merge Closure A merge closure R̄ contains all the possible records that can be generated

from R using M and µ.

Definition 5.1.1. The merge closure R̄ of R satisfies the following conditions:

1. R ⊆ R̄

2. ∀r1,r2 ∈ R̄ s.t. r1 ≈ r2, 〈r1, r2〉 ∈ R̄.

3. No strict subset of R̄ satisfies conditions 1,2.

We present an algorithm for computing R̄ in Algorithm 9. (It is shown in [10] that Al-

gorithm 9 is optimal in the sense that no algorithm makes fewer record comparisons in the

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 164

ALGORITHM 9: Computing the merge closure (R̄)
1: input: a set R of records
2: output: the merge closure of R, R̄
3: R̄← ∅
4: while R 6= ∅ do
5: r ← a record from R
6: remove r from R
7: for all records r′ in R̄ do
8: if r ≈ r′ then
9: merged← 〈r, r′〉

10: if merged 6∈ R ∪ R̄ ∪ {r} then
11: R← R ∪ {merged}
12: R̄← R̄ ∪ {r}
13: return R̄

worst case.) Note that the merge closure can possibly be infinite if a chain of merges pro-

duces new records indefinitely. In Section 5.3, we will present some additional properties

for M and µ that prevent this case.

Domination We now define domination between records. Record r1 is dominated by r2

if both records refer to the same entity, but r2’s information “includes” that of r1. That is,

r1 is redundant information and should be subsumed by r2. What records dominate others

is application dependent. We can assume that for a given application there is some partial

order relation (i.e., a reflexive, transitive, and anti-symmetric binary relation) that tells us

when domination exists. The domination of r1 by r2 is denoted as r1 � r2. For example,

in some application where merges simply collect all information in records, we may have

r1 � r2 whenever r2 = 〈r1, r
′〉 (for some r′). We will use this domination in our examples

unless stated otherwise. In Section 5.3, we present a canonical domination order that holds

when some additional properties for M and µ are satisfied.

Domination on records can be naturally extended to instances as follows:

Definition 5.1.2. Given two instances R1, R2, we say that R1 is dominated by R2 (denoted

as R1 � R2) if ∀r1 ∈ R1,∃r2 ∈ R2 s.t. r1 � r2.

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 165

5.1.2 Negative Rules

A negative rule is a predicate that takes an arbitrary number of records and returns either

consistent or inconsistent. Negative rules can be categorized according to their num-

bers of arguments. In our work, we consider unary and binary negative rules.

A unary negative rule N1 checks if a record r is valid by itself. If r is internally in-

consistent, N1(r) = inconsistent (denoted as r = r). Otherwise, N1(r) = consistent

(denoted as r ↔ r). An internally inconsistent record should not exist in an ER solution.

A binary negative rule N2 checks if two different records r1 and r2 can coexist. We

require r1 and r2 to be different in order to make a clean distinction between unary and

binary negative rules. If r1 and r2 are inconsistent, N2(r1, r2) = inconsistent (denoted

as r1 = r2). Otherwise, N2(r1, r2) = consistent (denoted as r1 ↔ r2). Two inconsistent

records cannot coexist in an ER solution.

Neither type of negative rules can be incorporated into the match and merge functions.

As we illustrated in the beginning of this chapter, a unary negative rule cannot be supported

by simply disallowing two records to merge into an internally inconsistent record because

inconsistencies could be fixed in the future. Binary negative rules also do not fit in the

match and merge functions for the same reason. Moreover, a match function only has a

local view of two records and cannot tell whether the merged record will generate any

new binary inconsistencies with other records “outside.” Thus, negative rules cannot be

enforced by modifying the match and merge functions.

We say that a set of records is inconsistent if there exists a single record violating a

unary negative rule or a pair of records violating a binary negative rule.

We assume the basic commutativity property for negative rules. That is, if r1 is incon-

sistent with r2, then r2 is also inconsistent with r1.

• Commutativity (Negative Rule):∀r1, r2 s.t. r1 = r2, then r2 = r1.

Finally, the negative rules are black-box functions that can be implemented in any way

as long as they satisfy commutativity.

5.1.3 ER-N

We now formally define entity resolution with negative rules.

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 166

Definition 5.1.3. Given an instance R and the merge closure, R̄, an ER-N of R is a consis-

tent set of records J that satisfies the following conditions:

1. J ⊆ R̄,

2. ∀r ∈ R̄ – J , either

• ∃r′ ∈ J s.t. r � r′ or

• J ∪ {r} is inconsistent,

3. No strict subset of J satisfies conditions 1 and 2.

4. No other instances satisfying conditions 1,2, and 3 dominate J .

Intuitively, J is a maximal consistent subset of R̄ (The first three conditions of Defini-

tion 5.1.3 imply that J is consistent; the proof can be done by contradiction). The second

condition ensures the maximality by saying that any record from R̄ that is not in J is either

dominated by a record in J or introduces an inconsistency to J . The third condition ensures

that J is consistent and has no dominated records. Lastly, the fourth condition filters out

“undesirable” solutions that are dominated by other solutions. Returning to our example in

Figure 5.1, suppose that every pair of records match and that the merge closure R̄ is {r1, r2,

r3, r12, r13, r23, r123}. The instance {r13, r2} is a valid ER-N solution because 1) {r13, r2}
is a subset of R̄; 2) any other record from R̄ (i.e., r1, r3, r12, r23, r123) is either dominated by

a record in {r13, r2} (r1 � r13, r3 � r13) or introduces an inconsistency (unary: r23 = r23,

r123 = r123; binary: r12 = r13); 3) {r13, r2} is consistent, so no records can be dropped;

and 4) {r13, r2} is not dominated by the only other solution, {r12}. The instance {r12} is

also a valid solution for the same reasoning. To clarify the role of the fourth condition (i.e.,

the first three conditions do not imply the fourth condition), notice that the instances {r1,

r2} and {r2, r3} satisfy the first three conditions, but are dominated by the solution {r13,

r2}. Hence, {r1, r2} and {r2, r3} are not valid solutions.

5.1.4 Resolving Inconsistencies

There are two general approaches for resolving records in the presence of negative rules:

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 167

• Late Approach. The merge and match functions are used to generate a set ER(R),

which is after-the-fact checked for inconsistencies. As inconsistencies are discov-

ered, appropriate “fixes” (see below) are taken, with the guidance of a domain ex-

pert. We call this domain expert the solver, to differentiate this person from that ones

writing match, merge and negative rules.

• Early Approach. With the help of a solver, we start identifying records that we want

to be in the final answer J . Even before the final answer is known, we start “fixing”

problems between the selected records in J and other records not yet selected.

In this chapter, we follow an early approach because the late approach involves back-

tracking (i.e., unmerging records), which can be very expensive. There are several ways

inconsistencies can be “fixed” with the help of the solver:

• Discard Data. When an inconsistency is detected, the solver may decide to drop

one of the records causing the problem. The dropped record will not be in the final

answer.

• Forced Merge. The solver decides that two inconsistent records should have been

merged and manually forces a merge. That is, it is deemed that the match function

made a mistake. For example, if two hotels Comfort Inn and Comfort Inn Milton

are the same hotels but mistakenly not matched by the match function, the negative

rule could flag an inconsistency (because the names are suspiciously similar), and the

solver could merge them.

• Override Negative Rule. The solver decides that the flagged record(s) are consis-

tent after all, i.e., the negative rule was incorrect in flagging an error. For example,

Comfort Inn and Comfort Inn Milton, which were flagged by the negative rule to

be suspiciously similar, might be different hotels after all. The records(s) are then

allowed in the final answer.

When we present our algorithms (Sections 5.2 and 5.4), we will use a Discard tech-

nique. However, after each algorithm, we summarize the changes that are necessary to

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 168

handle the other two approaches. In our experimental sections (Sections 5.5 and 5.6) we

will address the accuracy and performance of the three approaches.

Note incidentally that with the Forced Merge and the Override NR approaches, we

should also modify Definition 5.1.3 slightly, so that overridden negative rules do not count

as inconsistencies, and so that forced merges are considered valid.

5.2 The GNR Algorithm

The GNR algorithm (General algorithm for Negative Rules) assumes the basic properties

in Section 5.1 and that R̄ is finite. We also assume that a solver makes decisions when

there is a choice to be made. The solver looks at the records, and selects one that is “more

desirable” to have in the final answer. If no solver is available, the algorithm could make the

choice at random or based on heuristics (e.g., a record with more data fields is preferable

to one with fewer). With human intervention, the algorithm will be guided to one of the

possible solutions that is acceptable to the solver; without such guidance, the algorithm

will still find a valid ER-N solution, but the solution may not be the “most desirable.”

In our algorithm, the solver starts by choosing the non-dominated records from R̄. The

management of inconsistencies and domination are done by the algorithm. The algorithm

is shown in Algorithm 10. The merge closure R̄ is computed using Algorithm 9. Notice

that we can automatically choose records that are non-dominated and consistent with every

record in S because they will eventually be chosen by the solver.

To illustrate how the GNR algorithm works, we again refer to our motivating example

in Figure 5.1. Again, assume that R̄ (and thus S) is {r1, r2, r3, r12, r13, r23, r123}. Since we

assume that ri � rj whenever ri was used to generate rj , there is only one non-dominated

record in R̄, namely r123. Thus, there is really no choice for the solver but to select r123 for

the first iteration. However, r123 is internally inconsistent and is discarded (step 9). For the

second iteration, the solver has a choice among {r12, r13, r23}. Suppose the solver chooses

r13. At step 10, r13 is included in J . Then the records that are dominated by or inconsistent

with r13 are removed from S, leaving S = {r2, r23}. Choosing r2 and discarding r23 (since

r23 is internally inconsistent) results in our final solution {r13, r2}. Notice that, if the solver

had chosen r12 during the second iteration, the final solution would have been {r12}.

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 169

ALGORITHM 10: The GNR Algorithm
1: input: a set R of records
2: output: J = ER-N(R)
3: S ← R̄ /*Computed with Algorithm 9*/
4: J ← ∅
5: while S 6= ∅ do
6: ndS ← the non-dominated records in S
7: r ← a record from ndS chosen by the solver
8: S ← S�{r}
9: if r = r then continue (next iteration of loop)

10: J ← J ∪ {r}
11: for all r′ ∈ S do
12: if r′ = r or r′ � r then
13: S ← S�{r′}
14: return J

Proposition 5.2.1. The GNR algorithm returns a valid ER-N solution.

Proof. The solution J should satisfy the four conditions in Definition 5.1.3. First, J is

a subset of R̄ because we are not creating any new records. Second, each record r in R̄

that is not in J was discarded (step 9) due to an internal inconsistency or deleted from S

(step 13) because r was either inconsistent with or dominated by a record being inserted

into J . Third, no stricter subset of J satisfies the second condition because any r removed

from J is not dominated by a record in J�{r} and does not introduce an inconsistency to

J�{r}. Finally, no other solution dominates J : Suppose there exists such a solution J ′

(i.e., J � J ′). Let [rs1 ,rs2 ,...,rs|J|] be the records of J ordered by when they were added to J

by Algorithm 10. Looking at rs1 , we know that rs1 must also exist in J ′ because rs1 is a non-

dominated record in R̄ (ignoring internally inconsistent records), and there exists a record

in J ′ that dominates rs1 (i.e., the record that dominates rs1 can only be rs1). Next, define

S1 as the records in R̄ that are neither dominated by nor inconsistent with rs1 . (Note that

S1 is what remains of the original S, after the first iteration of Algorithm 10.) According

to the second condition of ER-N, no record outside S1 can be in J�{rs1} or J ′�{rs1}.
Now looking at rs2 , we can see that rs2 must also exist in J ′ because rs2 is a non-dominated

record in S1 (ignoring internally inconsistent records) and there exists a record in J ′�{rs1}
that dominates rs2 . After iterating through all the records of J in a similar fashion, we can

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 170

see that J is a subset of J ′. Moreover, J ′ cannot have more records than J according to the

third ER-N condition. Thus, we conclude that J = J ′, which contradicts the assumption

that the two instances are different. In conclusion, the GNR algorithm returns a valid ER-N

solution.

While the GNR algorithm discards records to resolve inconsistencies (see Section 5.1.4),

it can also use alternative strategies for resolving records. First, the algorithm can be ex-

tended to support forced merges. Once the solver chooses a record (step 7), that record is

compared with every record in the set S for new inconsistencies. The solver can then view

all the inconsistent pairs detected in step 12 and manually merge the records that should

have been merged. After the merges, we can re-run the merge closure to identify additional

matches that occur. While this step guarantees accuracy, it can be very expensive. An alter-

native approach is to simply continue after the forced merge without re-running the merge

closure.

Second, the GNR algorithm can also support overriding of negative rules using a simi-

lar process as for forced merges. Looking at the new inconsistencies in steps 9 and 12, the

solver can manually override the inconsistencies that are considered incorrect. The deci-

sions of the solver can be stored in a hash table along with the records involved. (Thus, two

records are inconsistent only if the binary inconsistency rule says they are, and the pair of

records is not in the override hash table.)

Finally, the solver can use a combination of all three strategies to resolve inconsisten-

cies. For unary inconsistencies in step 9, the solver can either discard the record or override

the negative rule. For binary inconsistencies in step 12, the solver can use one of the three

strategies. If the binary rule is incorrect, the solver overrides the negative rule. If the bi-

nary rule is correct but merging the two records results in an inconsistent record, the solver

discards a record. However, if the merging does not introduce an inconsistency then the

solver uses the forced merge technique.

Human Effort An important metric for the GNR algorithm is the “human effort” made

by the solver. Of course, human effort is very hard to model and is seldom quantified in

our database community. Nevertheless, because the human solver plays a key role in entity

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 171

resolution with negative rules, we feel it is important to analyze human effort, even if our

metric is far from perfect.

There are three ways the solver can be involved in the algorithm. First, the solver

must choose records from the set ndS (step 7). Second, the solver must check whether a

record is internally inconsistent during step 9 (but only if the unary negative rule returns

inconsistent). Third, the solver must check a pair of records for inconsistencies during

step 12 (only if the binary negative rule returns the result inconsistent). The effort made

for each type of effort will vary depending on the strategy used by the solver.

Since it is difficult to predict the behavior of the solver, we use the following simple

model as a surrogate of the human effort. For checking unary rules, we simply count the

number of checked records. For binary rules, we count the number of pairs checked. For

choosing records, the cost of selecting one record from a set of records ndS (step 7 in

Algorithm 10) is |ndS|. The total human cost for choosing records is then the sum of costs

for all such selections. For example, given a set of ten records with no inconsistencies or

domination relationships, the total human effort for choosing all the ten records is 10 + 9 +

...+ 2 = 54. Notice that we do not count the effort for choosing the last record.

We caution that the human effort values we present, by themselves, are not very use-

ful. The actual human effort will vary depending on the strategies we use for resolving

inconsistencies. For example, the Discard Data and Forced Merged strategies can be run

automatically and save most of the human effort while using a combination of strategies

might require a significant amount of human effort (see Section 5.5.3). However, we be-

lieve the human effort values can be helpful in comparisons. For instance, if in Scenario A

the cost is 10 times that in ScenarioB, then we can infer that the solver will be significantly

more loaded in Scenario A.

5.3 Properties for the Rules

Entity resolution is an inherently expensive operation (especially with negative rules) re-

gardless of the solution used. In general, practitioners use two types of techniques to reduce

the cost: blocking and exploiting properties.

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 172

If blocking techniques produce relatively small blocks, the GNR algorithm will be fea-

sible. Also, note that the GNR algorithm becomes more attractive in scenarios where there

are relatively few matches. (The more matches, the larger R̄ becomes.)

A second general approach to reducing cost is to exploit properties of the match and

merge functions to make it possible to find the correct solution with less effort. In this

section we present such desirable properties: two for match and merge functions, and one

for negative rules. In Section 5.4 we then use these properties to make the ER process

significantly more efficient.

Of course, note that the properties we propose will not hold in all applications. If

the properties do hold, then one will be able to achieve the improved performance. If

the properties do not naturally hold, the solver may want to modify the rule so that the

properties hold (e.g., by keeping more information in a merged record, one may be able

to achieve the representativity property defined below). Finally, if the properties below

definitely do not hold in a given application, the solver may nevertheless still want to use

the efficient algorithm of Section 5.4, in order to get an answer in a reasonable time. The

answer will not be correct because of the “wrong” algorithm we used for this case, but the

answer may be “relatively close” to the correct answer.

The bound of incorrectness depends on the portion of “problematic” records that do

not make the rules satisfy the properties. For example, the initial set of records R could

conceptually be divided into two setsX = {x1,x2, . . . , xn} and Y = {y1, y2, . . . , ym} where

the properties are satisfied when resolving the records in X while not necessarily so when

resolving the records in Y . That is, Y includes all the records that could possibly gener-

ate inconsistencies. We suspect that the “incorrectness” of the ER solution would then be

bounded by the fraction Y
X+Y

of the total records in the ER solution. In practice, the prob-

lematic record set Y is only a small fraction of the entire set of records (see Section 5.6.3).

Further research is required to refine this intuitive “incorrectness” bound.

5.3.1 Match and Merge Functions

Two desirable properties for M and µ are associativity and representativity. Associativity

says that the merge order is irrelevant. Representativity says that a merged record represents

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 173

its base records and matches with all records that match with the base records.

• Associativity: ∀r1, r2, r3 such that 〈r1, 〈r2, r3〉〉 and 〈〈r1, r2〉, r3〉 exist, 〈r1, 〈r2, r3〉〉 =

〈〈r1, r2〉, r3〉.

• Representativity: If r3 = 〈r1, r2〉 then for any r4 such that r1 ≈ r4, we also have

r3 ≈ r4.

Associativity and representativity together are somewhat strict, but powerful properties.

Combined with the two basic properties, idempotence and commutativity, they are called

the ICAR properties. It is shown in [10] that, given the ICAR properties, the merge closure

of R is always finite.

Union Class of Match and Merge Functions There is a broad class of match and merge

functions that satisfy the ICAR properties because they are based on union of values. We

call this class the Union Class. The key idea is that each record maintains all the values seen

in its base records. For example, if a record with name {John Doe} is merged with a record

with name {J. Doe}, the result would have the name {John Doe, J. Doe}. Unioning values

is convenient since we record all the variants seen for a person’s name, a hotel’s name, a

company’s phone number, and so on. Keeping the “lineage” of our records is important

in many applications, and furthermore ensures we do not miss future potential matches.

Notice that the actual presentation of this merged record to the user does not have to be a

set, but can be any string operation result on the possible values (e.g., {John Doe}). Such

a strategy is perfectly fine as long as the records only use the “underlying” set values for

matching and merging. Two records match if there exists a pair of values from the records

that match. In our example, say the match function compares a third record with name

{Johnny Doe} to the merged record obtained earlier. If the function compares names, then

it would declare a match if Johnny Doe matches either one of the two names. The match

and merge functions in this Union Class satisfy the ICAR properties as long as the match

function is reflexive and commutative (two properties that most functions have)

Beyond the Union Class, there are other rules that while not strictly in this class, also

record in some way all the values they have encountered. For example, a record may

represent the range of prices that have been seen. If the record is merged with another

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 174

record with a price outside the range, the range is expanded to cover the new value. Thus,

the range covers all previously encountered values. Instead of checking if the prices in the

records match exactly, the match function checks if price ranges overlap. It can be shown

that match and merge functions that keep all values explicitly or in ranges also satisfy the

ICAR properties.

Merge Domination If the ICAR properties are satisfied, we can use a natural domination

order called merge domination.

Definition 5.3.1. r1 is merge dominated by r2 (denoted r1 6 r2), if r1 ≈ r2 and 〈r1, r2〉 =

r2.

Reference [10] shows that merge domination is a partial order on records given the

ICAR properties. Merge domination is a natural way of ordering records and will be our

default domination order when the ICAR properties hold.

5.3.2 Negative Rules

One desirable property for negative rules is called persistence. In many applications, in-

consistencies tend to hold regardless of future merges. Persistence is defined for both unary

and binary negative rules.

Unary persistence is defined on unary negative rules. The property states that an inter-

nally inconsistent record r stays inconsistent regardless of its merging with other records.

Binary persistence is defined on binary negative rules. This time, two inconsistent

records r1 and r2 stay inconsistent regardless of their merging with other records. The only

exception is when r1 and r2 merge together, either directly or indirectly. In that case, the

binary inconsistency is resolved because the two records no longer coexist (〈r1, r2〉 could

be internally inconsistent).

• Unary Persistence: If r1 = r1 and r3 = 〈r1, r2〉, then

r3 = r3.

• Binary Persistence: If r1 = r2 and 〈r1, r3〉 6= r2, then 〈r1, r3〉= r2.

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 175

ALGORITHM 11: The ENR Algorithm
1: input: a set R of records
2: output: J = ER-N(R)
3: P ← ER(R) /*e.g., using R-Swoosh*/
4: C ← the set of connected components of inconsistent packages in P
5: for all ci ∈ C do
6: Ji ← GNR(

⋃
p∈ci b(p))

7: J = J1 ∪ ... ∪ J|C|
8: return J

We believe persistence holds in many applications. Unary persistence mostly holds if

the merge function is in the Union Class. For example, a hotel having two addresses will

still have at least two addresses after merging with other records. Binary persistence is also

reasonable – two hotels having the same address will still have the same address regardless

of their merging with other hotels.

5.4 The ENR Algorithm

The ENR algorithm (Enhanced algorithm for Negative Rules; shown in Algorithm 11) ex-

ploits the properties in Section 5.3 (i.e., the ICAR and Persistence properties) to make the

GNR algorithm efficient. Rather than looking at the entire merge closure of R, we would

like to partition R and look at the merge closure of each partition. Note that the partitions

here are different from the components produced by blocking techniques (see Section 5.3).

Specifically, we do not assume any semantic knowledge, as exploited by blocking tech-

niques. The partitioning can be done in two steps. First, we partition R into “packages”

(introduced in [72] in another context) where two records generated from different pack-

ages do not match. Next, we deal with inconsistencies by connecting “inconsistent pack-

ages” into connected components so that two records generated from different components

are always consistent with each other.

Packages partitionR such that no two records generated from different packages match.

(The two generated records may be inconsistent.) The (base) records of package p are

denoted as b(p), and the entire set of generated records (i.e., the merge closure) of p is

denoted as c(p). All the records in p can merge into a single representing record, which we

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 176

r12

r1 r2 r3

r123

r4 r5

r45

r6

p1 p2 p3

Figure 5.2: Package formation

denote as r(p).

Packages are generated by running Algorithm 9, except that when we merge two records

r and r′ (step 9), we remove r and r′ from further consideration. (Because of the ICAR

properties any future record that would have matched r or r′ will now match the merged

record.) Furthermore, we do not explicitly remove dominated records at the end; the above

optimization takes care of that. These two optimizations (plus a few other improvements)

yield what is called the R-Swoosh Algorithm, which is studied in detail in [10]. From our

point of view, the important point is that packages can be computed efficiently, given the

ICAR properties and an algorithm like R-Swoosh.

Figure 5.2 illustrates the package formation step (ignore the dotted line for now). The

bottom records are the input records, and the arrows show the merges that occur. In this

example, three packages result. For instance, the leftmost package has record r123 as rep-

resentative.

We next connect inconsistent packages together, forming connected components of in-

consistent packages. We say two packages p and p′ are inconsistent if their representing

records, r(p) and r(p′), are inconsistent. In our example in Figure 5.2, packages p2 and p3

are inconsistent because r45 and r6 are inconsistent (dotted line). As a result, package p1

forms one component by itself while packages p2 and p3 together form another component.

To give an illustration why p2 and p3 should be connected although r45 and r6 do not match,

it could be the case that the name of the same hotel was written in different languages for

r45 and r6. While the match function might have considered the two records different be-

cause of the different names, the negative rule could help fix that error by connecting p2

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 177

and p3. Proposition 5.4.1 shows that no two records generated from two consistent pack-

ages are inconsistent. Thus, there are no inconsistencies between records generated from

different components.

Proposition 5.4.1. Consider two consistent packages p, p′, i.e., r(p)↔ r(p′). Then ∀r1 ∈
c(p), r2 ∈ c(p′), r1 ↔ r2.

Proof. Suppose that r1 = r2. By the definition of packages, r1 and r2 can each merge with

other records into r(p) and r(p′), respectively. Then according to binary persistence, r(p)

= r(p′), which is a contradiction.

Finally, we run the GNR algorithm on the records of each connected component of

packages. Returning to our example in Figure 5.2, the first component contains the package

p1. Thus, we run the GNR algorithm on b(p1) = {r1,r2,r3}. Notice that the solver only has

to look at the merge closure of three records instead of the original six. Next, we run the

GNR algorithm on the records of the second component containing package p2 and p3. In

this case, we start with the set b(p2) ∪ b(p3) = {r4,r5,r6}. Combining the results of running

the GNR algorithm on the two components gives us the final ER-N solution.

Proposition 5.4.2. The ENR algorithm returns a valid ER-N solution.

Proof. It is sufficient to prove that running the ENR algorithm onR is equivalent to running

the GNR algorithm on R. Adding all the merge closures of the partitions of R produced by

the ENR algorithm results in R̄ because records generated from different components are

independent, i.e., they are consistent with each other and never match. Thus, the solver is

looking at the same R̄ for both algorithms. Rn the ENR algorithm, however, the solver is

handling one subset of R̄ at a time.

While the ENR algorithm assumes the Discard approach, it can also support alternative

strategies for resolving records. Since the ENR algorithm only plays a role in isolating

inconsistencies, the actual algorithmic changes are all done on the GNR algorithm. Hence,

the ENR algorithm does not change regardless of the strategy used.

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 178

5.5 Precision and Recall

To evaluate our GNR and ENR algorithms, there are two sets of issues to consider: accuracy

and performance. In this section we consider accuracy, i.e., how and by how much can

precision and recall of a solution be improved by using negative rules and our algorithms.

In the following section we address the performance, i.e., the human effort and system

runtime needed for resolving records with negative rules.

5.5.1 Experimental Setting

We ran our experiments on a hotel dataset provided by Yahoo! Travel. In this application,

hundreds of thousands of records arrive from different travel sources (e.g., Orbitz.com),

and must be resolved before they are shown to the users. Because of the volume of data,

we used blocking techniques (see Section 5.3) to partition the data into independent blocks

and then applied our algorithms on each block. In our experiments, we used a partition

containing hotels in the United States; we will call these U.S. hotels from now on.

To evaluate accuracy, we used a “Gold Standard” G also provided by Yahoo. Gold

standard G is a set of record pairs. If a pair (A,B) is in G, then input records A and B are

considered by a domain expert to be the same hotel. If a pair A,B is not in G, then A and

B represent different hotels. Set G turns out to be transitive, i.e., if (A,B) and (B,C) are

in G, then (A,C) is also in G.

To evaluate an ER-N solution we proceed as follows. We consider all the input records

that merged into an output record to be identical to each other. For instance, if hotels A and

B merged into 〈A,B〉 and then merged with C, all three hotels are considered to be the

same. Let S be the set of all pairs found to be equal. In our example, (A,B), (B,C) and

(A,C) are all in S. Then the precision Pr is |G∩S||S| while the recall Re is |G∩S||G| . In addition,

we also used the F1-measure, which is defined as 2×Pr×Re
Pr+Re

, as a single metric for precision

and recall.

The GNR and ENR algorithms were implemented in Java, and our experiments were

run on a 2.0GHz Intel Xeon processor with 6GB of memory. Though our server had mul-

tiple processors, we did not exploit parallelism.

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 179

5.5.2 Rules

Since we did not have access to the proprietary code in Yahoo’s match and merge functions,

we developed our own rules, based on our understanding of how hotel records are handled.

Our rules are union rules, as described in Section 5.3.1. That is, our merge function µ

retains all the distinct values of the base records.

The match function M compares two hotel records using eight attributes: name, street

address, city, state, zip, country, latitude, and longitude. When comparing two records,

we do pairwise comparisons between all the possible attribute values from each record and

look for a match. The names and street addresses are first compared using the Jaro-Winkler

similarity measure 1 [60], to which a threshold TM from 0 to 1 is applied to get a yes/no

answer. We use the same threshold TM for comparing names and addresses because they

have similar string lengths. If the names and street addresses match, M returns true if at

least one of the following holds:

• the cities, states, and countries are exactly the same.

• the zip codes and countries are exactly the same.

• the latitude and longitude values do not differ more than 0.1 degree (which corre-

sponds to approximately 11.1km).

It is easy to show that the union operation for merging and existential comparison for

matching guarantee the ICAR properties.

For our experiments we used two types of negative rules. Here we describe the first

type, and the second type is discussed later on in this section. Our initial negative rules are

based on the phone number attribute. This attribute is not as robust as say hotel name or

city and zip code for determining matches, but is useful for detecting anomalies that should

be checked by the solver.

In particular, our initial unary negative rule N1 flags a hotel with different phone num-

bers. In order to precisely compare phone numbers, we first remove non-numeric characters

(e.g., ‘(’,‘)’, and ‘-’). We then compare each digit starting from the last position until we
1The Jaro-Winkler similarity measure returns a similarity score in the 0 to 1 range base on many factors,

including the number of characters in common and the longest common substring.

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 180

have compared all the digits of either one of the phone numbers. We compare from the last

digit because some phone numbers include area codes while others do not. For example,

we consider “(650)123-4567” and “1234567” to be equal by trimming the first phone num-

ber into “6501234567” and then comparing the last seven digits. This strategy works very

well in our dataset.

Our initial binary negative rule N2 checks if two hotels have the same phone number.

That is, N2 does a pairwise phone number comparison between all the possible phones of

the two records, looking for existing matches. N2 uses the same phone number comparison

function as N1.

5.5.3 Strategies

We first resolved the records without using the negative rules, using only M and µ (i.e.,

just step 3 of the ENR Algorithm). We used as input 5,000 U.S. hotel records, and we

used various thresholds for TM . The solid line in Figure 5.3 shows the precision and recall

curve for each threshold we used (ignore the other data points for now). Among them, the

threshold that produces the highest F1-measure is 0.74, and the point using that threshold is

marked as the “Best Point.” To give an idea on how many records actually merged together

in the Best Point result, we show in Figure 5.4 the distribution of base records per output

record. While most input records did not merge with any other record, a significant portion

of the output records were formed by a merge of two input records.

Discard Strategy Next we ran the ENR Algorithm, using the negative rules and the

threshold (TM = 0.74) for the match function that yielded the Best Point. Recall that

with the Discard strategy, the solver only has to select records for the final result. Any

negative rule violations are simply corrected by removing records. When choosing records

during step 7 in Algorithm 10, we emulated the solver’s decisions by always selecting the

record containing the largest number of base records from the set ndS.

The resulting precision and recall of the Discard strategy is shown in Figure 5.3. (Note

that the dark triangle for the Discard strategy overlaps with the square for a scheme that is

described below. Both schemes have approximately the same performance.) Compared to

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 181

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

isi
on

Recall

Best Point

Match and Merge Rules
Phone (Discard)

Phone (Forced Merge)
Phone (Solver)

Match Rule using Phone

Figure 5.3: Precision and recall for different strategies

Record size Number of records
1 3477
2 725
3 21
4 0
5 2

Figure 5.4: Distribution of base records per output record

the Best Point, the precision has increased while the recall has decreased. Intuitively, dis-

carding records reduces incorrectly merged records (increasing the precision of merging),

but may also mistakenly remove correct merges (decreasing the recall).

The advantage of the Discard strategy is that the human effort is relatively small com-

pared to the Solver strategy (see below) because the human solver only needs to choose

records and does not need to do any manual unary or binary checks. As a matter of fact,

if records are selected based on size (as we did for our emulation), then the solver does no

actual work.

Automatic Forced Merge Strategy An alternative to fixing inconsistencies by discard-

ing records is to force the merge of records that violate the binary negative rule. When we

run ENR in this fashion (everything else unchanged) we get the Forced Merge data point in

Figure 5.3. We see that the Forced Merge strategy decreases the precision while increasing

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 182

the recall of the Best Point. Forcing inconsistent records to merge may create internally

inconsistent records (decreasing the precision) and also find correct matches (increasing

the recall).

The Forced Merge strategy is effective when there are many record matches that were

not identified by the match and merge functions. Since we are merging inconsistent records

automatically, without solver intervention, the solver cost is the same as for the Discard

strategy.

Solver Strategy Finally, we tested a strategy where all negative rule violations are exam-

ined by the human solver, and he decides in each case whether it is best to force a merge,

ignore the negative rule firing, or to discard a record. To emulate what a solver would do,

we rely on the Gold Standard G. When a unary inconsistency is detected in record r (step

9 of GNR), we check if any pair of base records for r is not in G. If all pairs are in G, then

we ignore the negative rule. When a binary rule violation is detected (step 12), we check

if the records can be safely merged. If the merged record would only contain base record

pairs in G, then we go ahead and force a merge. Using G to drive the algorithm is fair since

we expect the human solver to make decisions that are consistent with those made by the

domain expert who created the gold standard.

The accuracy of the solver strategy is shown in Figure 5.3. We can see that the Solver

strategy significantly outperforms any strategy both in precision and recall. However, note

that the solution is still not 100% correct. The reason is that the solver can only fix problems

flagged by the negative rules. If an incorrect merge or a missing merge is not detected by

the negative rules, then the problem is not brought to the solver’s attention. Of course, the

Solver strategy is more expensive for the solver, as he has to manually examine and resolve

all records flagged by the negative rules. Thus, it is important to design negative rules that

do not generate too many unnecessary checks.

At this point the reader may wonder, if checking phone numbers is so effective in de-

tecting problems, why were phone numbers not checked by the match function? As we

argued in the introduction, negative rules are integrity checks often developed after the

match and merge functions are implemented. It is often safer not to embed integrity checks

in the same code that is being checked. Furthermore, the match and merge functions may

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 183

be legacy code that is hard to modify, developed by programmers that did not have perfect

knowledge.

It is also important to notice that adding phone number checks to our original match

function does not give the same results as the Solver Strategy. For example, we could mod-

ify our match function so that hotels with different phone numbers do not match (effectively

incorporating our unary negative rule into the match function). Figure 5.3 (point labeled

“Match Function using Phone”) shows the result of using the new match function with the

Best Point threshold (TM = 0.74). Compared to the Best Point, the precision increased

to 0.944 while the recall dropped to 0.646. (Incidentally, the result is very similar to that

of the Discard strategy.) Hence, accuracy is much better with the solver where hotels with

questionable phone numbers are being examined by an expert, so opposed to simply not

merged.

5.5.4 Other Negative Rules

To better understand how negative rules impact accuracy, we implemented a second type

of rule. These rules, sometimes used in practice, flag “borderline cases” as suspicious so

the solver checks them out. For instance, say two hotels r and s have very similar names

and addresses, but not quite similar enough that the match function fires (or perhaps other

attributes indicate a mismatch). Then we may want the solver to look at r and s to decide

what to do.

In particular, our binary negative rule states two records are inconsistent if there exists

a pair of names, one in each record, that have a string similarity over TB, and a pair of

street addresses also have a similarity over TB. Our unary negative rule checks if the

possible names and street addresses in a record are “too far apart” to be in the same record.

Specifically, given a unary threshold TU , a record is internally inconsistent if two possible

names differ more than TU and two possible street addresses differ more than TU . We used

the Jaro-Winkler similarity measure for all string comparisons. We call these rules the

NameAddr negative rules.

Figure 5.5 shows the result of testing the NameAddr negative rules on several TU and

TB thresholds using the Solver strategy. The nine points (black squares) are produced by

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 184

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

isi
on

Recall

Best Point

Match and Merge Rules
Phone (Solver)

NameAddr (Solver)
NameAddr+Phone (Solver)

Figure 5.5: Precision and recall for various negative rules

assigning TU the values 0.8, 0.9, and 0.99 while assigning TB the values 0.75, 0.7, and 0.65.

As TU increases, precision increases, and as TB decreases, recall increases. For example,

the leftmost 3 points correspond to TB = 0.75, while the bottom 3 points correspond to

TU = 0.8. The top, rightmost point is for TU = 0.99 and TB = 0.65. These trends are as one

would expect: the unary rule detects more inconsistencies as TU increases while the binary

negative rule does so as TB decreases. And the more inconsistencies that are flagged, the

more opportunities the solver has to fix things (and of course, the more work for the solver).

Because our negative rules have parameters that let us vary how stringent they are,

we can visualize the tradeoff between accuracy and solver cost. For example, Figure 5.6

shows how recall and cost relate. The horizontal axis is the recall achieved as we vary TB
(keeping TU at its lowest value), and the vertical axis shows the solver cost. For example,

the rightmost points are obtained with TB = 0.65 and we get a recall of about 0.806.

The top most curve shows our estimate for the selection cost; the middle curve shows

the number of pairs of records manually checked by the solver for binary inconsistencies,

and the bottom curve shows the number of records checked for unary inconsistencies. We

can clearly see that achieving the higher recall comes at a price, as the solver needs to

examine more records. Note that the record selection cost can be eliminated if we automate

the record selection process, choosing the largest record as we did for our experiments

here. The analogous precision-cost graph (not presented here) shows that, unlike recall,

achieving a higher precision does not significantly increase the solver cost.

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 185

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 0.7 0.72 0.74 0.76 0.78 0.8 0.82

Hu
m

an
 E

ffo
rt

Recall

Record selection cost
Binary checks
Unary checks

Figure 5.6: Human effort versus recall

We also combined the NameAddr negative rules with the phone number negative rules

presented earlier. The combined unary (binary) negative rule returns inconsistent when

either one of the two unary (binary) negative rules returns inconsistent. (In this case we

set TU and TB to 0.99 and 0.65, respectively.) Figure 5.5 shows that the combined method

gives the highest precision and recall. Intuitively, the combined rules identify the largest

number of inconsistencies for the solver to check. However, as a result, the solver does the

most work.

In summary, the precision and recall of an ER-N solution depends on the strategy used

for resolving records as well as the negative rules. However, in general:

• The Discard strategy increases precision, but decreases recall.

• The Forced Merge strategy increases recall, but decreases precision.

• The Solver strategy lets a human decide how to fix inconsistencies on a case by case

basis. The accuracy improvement depends on how effectively the negative rules find

actual inconsistencies.

5.5.5 Choosing Negative Rules

In general, choosing the right number of negative rules that maximize the precision and

recall with a reasonable solver cost requires application knowledge about “common errors”

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 186

Negative Rule(s) Description
C No hotel can have two different cities
L No two hotels can have latitudes that differ less than 0.01

degree (i.e., 1.1km)
NA The NameAddr negative rules defined in Section 5.5.4

where TU=0.8 and TB=0.75
P The Phone negative rules defined in Section 5.5.2

Figure 5.7: List of negative rules

Combination Precision/Recall Human Effort
NA 0.7/0.89 5968

NA + C 0.7/0.91 6017
NA + L 0.87/0.91 4692245

NA + C + L 0.87/0.93 4722335
P 0.94/0.95 934

Figure 5.8: Results for various combinations of negative rules

of the match and merge functions. If the negative rules do not properly point out the errors,

then the solver might end up checking unnecessary records without improving the precision

or recall much.

Figure 5.7 shows several negative rules including the Phone and NameAddr negative

rules defined in the previous sections. Figure 5.8 shows the precision, recall, and human ef-

fort results for various combinations of the negative rules. (We experimented on the 5,000

U.S. hotel records using the Solver strategy.) Adding the City negative rule to the NameAd-

dress negative rules slightly increases the recall with a small additional human effort. The

Latitude negative rule, on the other hand, significantly increases the precision, but also

requires a much larger human effort because many different hotels can be within 1.1km

(latitude) of each other. The Phone negative rule alone already gives a better precision and

recall (while requiring a much smaller human effort) compared to previous combinations

because it effectively pinpoints the errors of the match and merge functions.

The experiments show that finding the best negative rules requires a good understanding

of the application and the match and merge functions. Carefully thought-out negative rules

(like the Phone negative rules) will be able to find most of the real inconsistencies of the

match and merge functions with little human effort. Other negative rules may either fail to

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 187

find many inconsistencies or end up increasing the human effort too much.

5.6 Performance

In this section, we address the performances of the GNR and ENR algorithms. First, we

compare the human efforts of the two algorithms and show that the ENR algorithm per-

forms significantly better than the GNR algorithm except for cases where binary incon-

sistencies occur frequently. Next, we compare the system runtimes of the algorithms by

analyzing the major runtime factors and conducting scalability tests. We also ran our ex-

periments on a comparison shopping dataset provided by Yahoo! Shopping, and the results

are analogous to those of the hotel dataset.

5.6.1 Human Effort

Record Selection Cost and Rule Checks We measured the human efforts for the two

algorithms on 1,000 to 5,000 U.S. hotel records using the phone number negative rules

and the threshold TM = 0.74. We used the Solver strategy from Section 5.5 for resolving

records.

Figure 5.9 shows that the ENR algorithm requires much less solver effort than the GNR

algorithm. The significantly larger selection cost for the GNR algorithm compared to the

ENR algorithm is due to the highly redundant records views, which can be illustrated by

the following example. Suppose that a set of initial records has a merge closure size of

100. Moreover, suppose that the initial records form ten connected components where each

component has a merge closure size of 10. For simplicity, we ignore the inconsistency and

domination relationships among records. For the GNR algorithm, the solver must view
100X
i=2

i= 5499 records; for the ENR algorithm, the solver only needs to view 10×
10X

i=2

i= 540

records, which is about one-tenth the effort of the GNR algorithm effort. Although the

merge closure is the same for both algorithms, the ENR algorithm saves a lot of redundant

views because it partitions the merge closure into many smaller independent components.

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 188

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 1000 1500 2000 2500 3000 3500 4000 4500 5000

Hu
m

an
 E

ffo
rt

Number of records

GNR selection cost
GNR unary checks
GNR binary checks
ENR selection cost
ENR unary checks
ENR binary checks

Figure 5.9: Human effort

Binary Density Impact However, the ENR algorithm does not always perform better

than the GNR algorithm. In the case where many binary inconsistencies occur, the ENR

algorithm loses the advantage of dividing the merge closure into many smaller components

and handling one component at a time. To capture the degree of binary inconsistencies, we

define the binary density measure as the ratio between the number of inconsistent record

pairs in R̄ and the number of all the possible record pairs in R̄. For example, if five records

are inconsistent with each other among ten records of R̄, the binary density is
(

5
2

)
/
(

10
2

)
= 10/45 ≈ 0.202. For our experiments, we used the NameAddr negative rules on 5,000

U.S. hotel records and varied the binary density by changing the binary threshold TB. A

lower TB results in a higher binary density because a pair of records is more likely to be

inconsistent.

Figure 5.10 shows how human effort and binary density relate. For small binary den-

sities, the ENR algorithm has a much lower record selection cost than GNR because the

component sizes are small, minimizing the time for running the GNR algorithm on each

component. As the binary density increases, however, the components get larger, and run-

ning the GNR algorithm on them takes longer. For high binary densities, the benefits of the

ENR algorithm disappear because the merge closure is no longer partitioned into smaller

components, and the selection cost of ENR becomes close to that of the GNR algorithm.

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 189

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 0.01 0.1 1

Hu
m

an
 E

ffo
rt

Binary Density (%)

GNR selection cost
GNR unary checks
GNR binary checks
ENR selection cost
ENR unary checks
ENR binary checks

Figure 5.10: Binary density impact on human effort

5.6.2 System Runtime

Runtime decomposition Figure 5.11 shows the runtime decomposition of the GNR and

ENR algorithms using the phone number negative rules on 5,000 U.S. hotel records. We

show the total runtimes and major runtime factors for each algorithm. The majority of the

GNR runtime is used for managing the domination relationships between records in the

merge closure in order to find the non-dominated records in S (step 6 of GNR). The next

longest task for GNR is invoking the binary negative rule. The major runtime factors for

the ENR algorithm are running the R-Swoosh algorithm and connecting the inconsistent

components. Comparing the total runtimes, the ENR algorithm is 2.2 to 2.5 times faster

than GNR.

Scalability We conducted scalability tests for the GNR and ENR algorithms using the

phone number negative rules on 1,000 to 27,000 records randomly selected (regardless of

the country) from the entire hotel dataset provided by Yahoo!. (The entire dataset size

was 27,049 records.) We used a slightly higher match threshold than usual (TM = 0.8)

in order to properly match non-U.S. hotels. For example, using the threshold TM = 0.74

on the French hotels resulted in many different hotels incorrectly merging with each other.

Figure 5.12 shows that the GNR algorithm cannot handle more than 17,000 records in a

reasonable time while the ENR algorithm shows a quadratic growth in runtime. As the

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 190

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1000 1500 2000 2500 3000 3500 4000 4500 5000

Ru
nt

im
e

(h
rs

)

Number of records

GNR total
GNR domination

GNR binary
ENR total

ENR connect components
ENR R-Swoosh

Figure 5.11: Runtime decomposition

 0

 2

 4

 6

 8

 10

 12

 0 5000 10000 15000 20000 25000 30000

Ru
nt

im
e

(h
rs

)

Number of records

GNR
ENR

Figure 5.12: Scalability

dataset gets larger, ENR outperforms GNR by up to 3.89 times.

In summary, although the ENR algorithm outperforms the GNR algorithm both in hu-

man effort and scalability, ER-N is an inherently expensive process and thus only relatively

small sets of records can be handled. Thus, large data sets need to be partitioned into

smaller sets (e.g., using blocking techniques) that can be resolved in detail. How large a

data set can be exhaustively resolved depends on the application. For example, in our re-

cent work on scaling ER on 2 million Yahoo! Shopping records [109], the average block

size was 124 records while the maximum block size was 6082 records. It is also possible to

distribute the ER-N computations across multiple processors, in order to handle larger data

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 191

sets. We can use techniques similar to the ones in [9] to distribute the data and computation

among processors. There are also applications that do not require an exhaustive compari-

son on the entire data set. For example, a technique called Data Dipping compares a given

record only with a small subset of candidate records that are likely to match the record.

5.6.3 Without the Properties

So far, we have only studied scenarios where the properties for the negative rules (Sec-

tion 5.3.2) hold. We now consider a scenario where the properties do not hold. (We still

assume the ICAR properties hold for the match and merge functions. See reference [10]

for an extensive study on using the R-Swoosh algorithm without the ICAR properties.) In

this case, we need to run the GNR algorithm for a correct ER-N answer. From our previ-

ous results, however, GNR can be very expensive in runtime. The alternatives are to either

modify the negative rules to satisfy the properties or run ENR even though we might not get

the correct ER-N answer. In this section, we consider the second alternative and investigate

how similar the ENR result is to the GNR result.

We use a modified version of the NameAddress negative rules (defined in Section 5.5.4)

where we only compare the longest strings. Specifically, the binary negative rule now

compares the longest names and addresses of the two records while the unary negative rule

compares the two longest names and two longest addresses of a single record. Although

the Commutativity property is satisfied, the Unary and Binary Persistence properties are not

guaranteed because the longest name and address of a record could change after a record

merge, possibly making a previously inconsistent record consistent.

Figure 5.13 shows a comparison of the GNR and ENR results when we use the modified

NameAddress negative rules and vary the TU and TB thresholds. We experimented on

the 5,000 U.S. hotel records using the Solver strategy. For each possible threshold pair,

we show the total number of records for each result (columns 2 and 3) and the Jaccard

similarity between the two results (column 4). Given a GNR solution G and ENR solution

E, the Jaccard similarity between the two results is defined as |G∩E||G∪E| . The average Jaccard

similarity is 99.41%, making the ENR result almost identical to the GNR result.

In summary, the ENR algorithm is a reasonable way to compute an ER-N result even

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 192

TB/TU GNR ENR Jaccard Similarity
0.65/0.8 4445 4445 100.0
0.65/0.9 4445 4445 100.0

0.65/0.99 4445 4445 100.0
0.70/0.8 4478 4454 99.38
0.70/0.9 4478 4454 99.38

0.70/0.99 4478 4454 99.38
0.75/0.8 4525 4475 98.85
0.75/0.9 4525 4475 98.85

0.75/0.99 4525 4475 98.85

Figure 5.13: Result sizes and similarities

when the properties for the negative rules do not hold. The experimental results show that

the incorrectness of the ENR result is very small in practice.

5.7 Related Work

Most of the ER work in the literature focuses on exploiting positive rules to improve the

accuracy of record matching. In contrast, our ER-N model provides a general framework

for both positive and negative rules where the match, merge, and negative rules are black-

box functions.

A line of work [29, 30, 89, 13, 31] has addressed the use of negative rules. Doan et

al. [29, 30] introduced constraints to perform sanity checks for object matching. Dong

et al. [31] used dependency graphs while Bhattacharya and Getoor [13] used negative re-

lational evidence to improve the accuracy of the constraints. Shen et al. [89] provided a

probabilistic interpretation of constraints and categorized them according to their seman-

tics. However, the constraints used in the work above are local in a sense that they only

prevent two records from incorrectly matching. To the best of our knowledge, our work

is the first to introduce binary negative rules, which require a global view of records for

detecting inconsistencies.

A recent work [23] uses aggregate constraints to improve the accuracy of record clus-

tering. Their goal is to partition the initial set of records such that the number of constraint

violations is minimized. The textual similarity between tuples is used to restrict the search

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 193

space of partitions. Our work complements the above work in several ways. First, we

guarantee a correct and maximal solution as opposed to using the constraints as a search

heuristic. Second, we take a pairwise approach, which is an alternative to their cluster-

ing approach. Finally, we consider record merges, which a clustering approach does not

directly support, and do integrity checks on the merged records. Record merges are impor-

tant for our pairwise approach because they naturally provide the lineage for each record

in the ER result, making it easy to view intermediate states of the ER process. Although

negative rules could also be used in clustering approaches, we would need to define the

notion of intermediate states for clusters.

A related topic to our work is maintaining integrity constraints in relational databases [50,

35]. Active database systems [110] use triggers and rules to provide mechanisms for in-

tegrity constraints. More recently, a line of research [24, 17] shows how to “repair” an

inconsistent database into a consistent one while minimizing the difference. The possi-

ble repair actions are deleting, inserting, and modifying tuples. While the motivations of

providing integrity constraints are similar to ours, the work above do not address the addi-

tional complexity of iteratively matching and merging records. Moreover, their focus is on

specific constraints such as functional dependencies and inclusion dependencies.

Another related line of work is called statistical data editing [36, 112, 38] where missing

or contradictory data is edited and imputed for intended analytic purposes. While statistical

data editing is focused on fixing the data itself, our work complements this approach by

improving the matching process of data (records) using negative rules.

An interesting analogy for negative rules can be found in a topic called non-monotonic

reasoning [41, 79, 42]. Unlike conventional logic, a non-monotonic inference can later be

retracted by contrary information. Although retracting inferences is similar to applying

negative rules, the main focus of non-monotonic reasoning is to deduce whether a single

statement is true or false. In contrast, we are trying to find all the records in the solution (in

logic terminology, the theory) efficiently. Another difference is that, while non-monotonic

reasoning does not alter its basic beliefs, an ER-N algorithm can discard base records that

have incorrect data.

CHAPTER 5. ENTITY RESOLUTION WITH NEGATIVE RULES 194

5.8 Conclusion

For the entity resolution process, unary and binary negative rules capture “sanity checks”

written by domain specialists who are different from the ones writing the match and merge

functions. As far as we know, our work is the first to formally define what correct and max-

imal entity resolution means in the context of negative rules (Section 5.1.3). Such a logical

and formal foundation is critical for developing ER-N algorithms: it is easy to develop

algorithms that apply rules in an ad-hoc fashion and give some sort of answer. However,

here we have presented two algorithms that are proven to give the correct answer. Another

aspect that is often overlooked is that entity resolution often requires human guidance to

handle unexpected situations and erroneous real-world data. Our algorithms demonstrate

how a human “solver” can guide the resolution process. One of our algorithms (GNR)

represents a generic way to solve ER-N while the other (ENR) makes the GNR algorithm

efficient by exploiting additional properties for the match, merge, and negative rules.

Neither of our solutions is perfect: the GNR algorithm can be expensive unless used

for small data sets or when there are few matching records. The ENR algorithm is only

guaranteed to return a correct solution if certain properties hold, and these properties may

not hold in some applications. However, the algorithms can be used if one is willing to

tolerate some loss in accuracy: As we discussed, one can partition the input data set and

only run ER-N on a partition (bucket) at a time. Also, one can run the ENR algorithm

when the properties do not hold, which introduces additional inaccuracies. Evaluating

such inaccuracies is beyond the scope of this thesis.

There may of course be applications where negative rules simply introduce too much

cost, even when shortcuts are taken. Entity resolution with negative rules is inherently

expensive, but we believe it is important to understand the options and their costs, so that

application developers can make informed decisions.

Chapter 6

A Model for Quantifying Information
Leakage

In Chapters 2–5, we studied a set of scalable and general solutions for ER. The flip side of

data integration, however, is that there is a danger of one’s personal information being more

exposed to the public. Nowadays Internet users are continually giving out sensitive infor-

mation [76]: a user needs to give out her credit card data in order to purchase something;

she may need to tell her drug store what drugs she needs; she needs to give her employer

(and many others) her social security number; her airline needs her passport number, and so

on. Each bit of information she releases represents a loss of privacy, and she never knows

who may end up getting her information. For instance, her store may share her information

with some advertiser; or her airline may give her passport number to some governments.

The separate information losses can become much more serious if some adversary is able

to gather and piece together the user’s information using ER.

We study two aspects of the data privacy problem. The first problem, which is the

focus of this chapter, is quantifying how leakage can increase (or decrease) as information

is pieced together. We do not wish to view privacy as all-or-nothing; rather, we wish to view

it as a continuous measure that can represent the severity of a user’s information loss. And

once we can quantify leakage, we can study strategies for reducing leakage (or increasing it

if we want to take the point of view of a law-enforcement “adversary” trying to learn about

possible criminals). The second problem is to go one step further and actually manage

195

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 196

information leakage. Chapter 7 focuses on reducing information leakage.

As a motivating example of quantifying information leakage, suppose that Alice has the

following information: her name is Alice, her address is 123 Main, her phone number is

555, her credit card number is 999, her social security number is 000. We represent Alice’s

information as the record: p = {[N, Alice], [A, 123 Main], [P, 555], [C, 999], [S, 000]}.
Suppose now that Alice buys something on the Web and gives the vendor a subset of her

information, say r = {[N, Alice], [A, 123 Main], [C, 999]}. By doing so, Alice has already

partially compromised her privacy.

We can quantify the information leakage by measuring how correct and complete the

information in r is against p. In our example, 3 out of 3 of r’s attributes were correct

while 3 out of 5 of p’s attributes were found in r. Uncertain and incorrect information

are also important factors in measuring information leakage. If an adversary Eve is not

confident about Alice’s information, then although the information itself is correct, the

leakage should be considered less than when Eve is absolutely confident about the data.

Moreover, if Eve is absolutely sure about some incorrect information about Alice, then the

information leakage should decrease in proportion to Eve’s confidence. Returning to our

example above, suppose that Alice also gives the same vendor the following information

(through another purchase): {[N, Alice], [A, 777 Main], [C, 999], [X, 111]}. As a result, the

vendor may only be half certain about Alice’s address. In addition, if [X, 111] contains false

information, the vendor now has an incorrect attribute X. Both errors should be factored in

when computing the leakage.

The information leakage may also be affected by any data analysis performed by ad-

versary Eve. For example, Eve may run an entity resolution (ER) operation to identify

which pieces of information refer to the same person. To illustrate, Figure 6.1 shows the

records of five people: r = {[N, Alice], [P, 123]}, s = {[N, Alice], [C, 999]}, t = {[N, Alice],

[P, 987]}, u = {[N, Bob], [P, 333]}, and v = {[N, Carol], [S, 000]}. The record p above the

line represents Alice’s full information. Assuming that the name is a strong identifier for

people, Eve may conclude that r, s, and t refer to the same person and merge their contents

into 〈r, s, t〉 = {[N, Alice], [P, 123], [C, 999], [P, 987]} (denoted as the dotted lines con-

necting r, s, and t). As a result, Eve may obtain better information about Alice. However,

the analysis itself may be costly if the data to resolve is very large and Eve does not have

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 197

r

s

u

t v

p

Figure 6.1: Information Leakage with Entity Resolution

sufficient resources to perform the analysis.

In summary, our contributions in this chapter are as follows:

• We formalize information leakage as a general measure of privacy. Our measure reflects

the following factors: the correctness and completeness of the leaked data, the adver-

sary’s confidence on the data, and the adversary’s analysis on the data (Section 6.1).

• We compare our information leakage model with two related privacy models in data

publishing: k-anonymity and l-diversity (Section 6.2).

• We formulate various problems for managing information leakage that can be solved

using our framework (Section 6.3).

• We propose efficient exact and approximate algorithms for computing information leak-

age (Section 6.4).

• We experimentally evaluate leakage in a synthetic environment, both to check that the

model matches our intuition, as well as to test the scalability of the exact and approxi-

mate leakage algorithms. (Section 6.5).

6.1 Information Leakage Measure

We consider a scenario where the adversary Eve has one record r pertaining to Alice,

which could be a piece of information collected from a social network profile, a homepage,

or even a tweet. Record r contains a set of attributes, and each attribute consists of a label

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 198

and value. As an example, the following record may represent Alice:

r = {[N,Alice], [A, 20], [A, 30], [Z, 94305]}

Each attribute a ∈ r is surrounded by square brackets and consists of one label a.l and one

value a.v. Notice that there are two ages for Alice. We consider [A, 20] and [A, 30] to be

two separate pieces of information, even if they have the same label. Multiple label-value

pairs with identical labels can occur when two records merge and the label-value pairs are

simply collected. In our example, Alice may have reported her age to be 20 in one case, but

30 in another. (Equivalently, year of birth can be used instead of age.) Although we cannot

express the fact that Alice has only one age (either 20 or 30), the confidences we introduce

in Section 6.1.3 can be used to indicate the likelihood of each value.

In addition, each attribute label l has an weight wl that reflects the relative importance

of an attribute with label l. These weights will be used below to compute leakage, so that

attributes with highly weighted labels will contribute more than those with lower weights.

In our example, we may give the credit card label C a weight of wC = 3 and the zip code

label a weight of wZ =1, to reflect that Alice considers her credit card number three times

more important than her zip code. The absolute values of the weights are not important,

only their relative sizes. Thus, if there are only three labels, giving them the weights 1, 2,

and 3 is equivalent to giving them the weights 2, 4, and 6. We emphasize that the weights

are assigned to labels and not on the individual attributes. We believe this simplification is

useful, since giving weights to every possible attribute is not practical.

In our model we assume that different attributes are not correlated. However, in some

cases the values for some attributes may depend on each other. For example, the birth

date of a person depends on the age of a person because the birth date can be used to

compute the age. In this case, if both the date of birth and the age are discovered by

Eve, we do not want to account for the loss twice. We get around this problem by simply

assuming that our model contains only one of the dependent attributes, e.g., either date of

birth or age. In other cases, attributes may be correlated, but not equivalent. For example,

phone number and address may be correlated: if we know the phone number we may be

able to narrow down the possible addresses, and vice versa. We can model this situation

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 199

by assuming there are three attributes: J contains the “joint information,” A contains the

remaining address information, and P the remaining phone information. If Eve discovers

Alice’s phone number, she has values for J and P; if she discovers the address, she gets J

and A, and if she has both address and phone, Eve has J, A and P. Now we can provide

weights for the J, A and P labels, and not double count the correlated knowledge.

We also assume a reference record p that contains Alice’s complete information. An

interesting question is how much of Alice’s information has been revealed by exposing the

record r? One might say that even if one attribute is leaked, a privacy breach has occurred,

so Alice has no privacy. On the other extreme, however, one may say that, since not all of

Alice’s information has been leaked, the privacy has not been breached. In order to capture

the amount of information that has been leaked, we define the record leakage of the record r

as its similarity against the reference record p (see Definition 6.1.1). Also given a database

R (which is a set of records), we define the information leakage of R to be its similarity

against p after the “data analysis” of the adversary (see Definition 6.1.2).

In the following sections, we discuss the main components of our measure and formally

define record leakage and information leakage.

6.1.1 Correctness

The correctness measure of a record r reflects the portion of r’s information that is correct

according to p. We adapt the definition of precision from the information retrieval liter-

ature [70] to define correctness. The precision of the record r against the reference p is

defined as follows:

Pr(r, p) =
Σa∈r∩pwa.l
Σa∈rwa.l

If Σa∈rwa.l = 0, we define Pr to be 0. Suppose that p = {[N, Alice], [A, 20], [P, 123], [Z,

94305]} and r = {[N, Alice], [A, 20], [P, 111]}. Also say that wN = 2 while the weights for

all other labels are 1. Then the precision of r against p is 2+1
2+1+1

= 3
4
.

There are several ways to extend our definition of Pr. First, we can reflect the degree of

error in computing information leakage where more correct information implies more leak-

age. For example, suppose that Alice is 30 years old. Then the information leakage when

Eve guesses that Alice is 31 years old should be higher than the leakage when Eve suspects

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 200

Alice is 80 years old. Second, we can take into account the statistical background knowl-

edge of the adversary when measuring the leakage. For instance, if knowing that someone

has an average age may be less leakage than knowing that someone has an exceptional age.

6.1.2 Completeness

Even if the correctness of r is very high, r may not be significant if only a small fraction

of p has been discovered. Hence, we also define the notion of how much of p is found by

r, which we call the completeness of r. This time, we adapt the definition of recall from

the information retrieval literature. In general, one could use any other measure to capture

how much correct information was found by the record r.

We define the recall of r against p as follows.

Re(r, p) =
Σa∈r∩pwa.l
Σa∈pwa.l

If Σa∈pwa.l = 0, we define Re to be 0. In our example, the recall of r against p is 2+1
2+1+1+1

= 3
5
.

The information retrieval literature suggests the harmonic mean as one way of com-

bining correctness and completeness. Given the correctness Pr and completeness Re, the

weighted harmonic mean is defined as F = 1
α/Pr+(1−α)/Re

= (β2+1)×Pr×Re
β2×Pr+Re where β2 = 1−α

α
.

The F1 measure sets β to 1 and thus gives equal weight to precision and recall. In

information retrieval, the F1 measure captures how relevant a search result is against a given

query. In comparison, the information leakage measure quantifies the relevance of a record

r against the correct answer p. We can combine the precision and recall to produce a single

record leakage measure L0 where the “0” superscript indicates the leakage computation

without confidences.

L0(r, p) = F1(Pr(r, p), Re(r, p)) =
2× Pr(r, p)×Re(r, p)
Pr(r, p) +Re(r, p)

In our example, the F1 value is 2×3/4×3/5
3/4+3/5

= 2
3
.

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 201

6.1.3 Adversary Confidence

As mentioned earlier, the confidence that adversary Eve has on her data plays a role in

computing leakage. For example, Eve may have gotten some information of r from an

unreliable website. Or Eve may have heard rumors of the subject indirectly from someone

else. If Eve is not so confident about r, then even if r has a high accuracy against p, the

information leakage should be less than when Eve is more confident. Also, if Eve is highly

confident about information that is not accurate, then the information leakage should be

considered less than when Eve is not so confident about the inaccurate information.

To reflect the confidence of Eve, we extend our data model to have per-attribute con-

fidence values. As a result, a record r consists of a set of attributes, and each attribute

contains a label, a value, and a confidence (from 0 to 1) that captures the uncertainty of

the attribute from Eve’s point of view (the more Eve knows about Alice, the higher the

confidence values). Any attribute that does not exist in r is assumed to have a confidence

of 0. As an example, the following record may represent Alice:

r = {[N,Alice, 1], [A, 20, 0.5], [A, 30, 0.4], [Z, 94305, 0.3]}

That is, Eve is certain about Alice’s name, but is only 50% confident about Alice being 30

years old, 40% confident in Alice being 30 years old, and 30% confident about Alice’s zip

code 94305. For each attribute a ∈ r, we can access a’s label a.l, a single value a.v, and

confidence a.c. We assume that attributes in the reference p always have a confidence of 1

and omit the confidence values. No two attributes in the same record may have the same

label and value pair.

The confidences within the same record are independent of each other and reflect

“alternate worlds” for Eve’s belief of the correct information of Alice. For example, if

we have r = {[name, Alice, 1], [age, 20, 0.4], [phone, 123, 0.5]}, in Eve’s view then

there are four possible worlds: {[name, Alice], [age, 20], [phone, 123]} with probability

0.4× 0.5 = 0.2, {[name, Alice], [age, 20]} with probability 0.4× (1− 0.5) = 0.2, {[name,

Alice], [phone, 123]} with probability (1 − 0.4) × 0.5 = 0.3, and {[name, Alice]} with

probability (1− 0.4)× (1− 0.5) = 0.3. We denote the possible worlds of a record r as the

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 202

set of records without confidences

W (r) = {{[a.l, a.v]|a ∈ r′}|r′ ∈ 2r}

where 2r is the power set of r.

To help in our definition of leakage, we define the function p(a, r) that simply gives the

confidence of attribute a in record r:

p(a, r) =

{
b.c ∃b ∈ r s.t. a.l = b.l ∧ a.v = b.v

0 o.w.

We now extend our information leakage measure in the previous section to use confi-

dences. Since, the confidence values of the attributes in r are independent, we can define

the record leakage of r against the reference p as follows. (In Section 6.4, we show how to

compute the record leakage efficiently.)

Definition 6.1.1. Given confidence values, the record leakage of record r against the ref-

erence p is

L(r, p) = E[L0(r̄, p)]

=
∑

r′∈W (r)

(
∏
a∈r′

p(a, r))(
∏
a6∈r′

1− p(a, r))L0(r′, p)

where r̄ is a random variable of r’s possible worlds.

That is, we are computing the expected value of the F1 value between a possible world

and p. For example, suppose that p = {[N, Alice], [A, 20], [P, 123]} and r = {[N, Alice,

0.5], [A, 20, 1]}. Also say that wN = 2 while all the other weights have a value of 1.

There are two possible values for r̄: r1 = {[A, 20]} and r2 = {[N, Alice], [A, 20]}. We

then compute L0(r1, p) = 2×1/1×1/3
1/1+1/3

= 1
2

and L0(r2, p) = 2×2/2×2/3
2/2+2/3

= 4
5
. Thus L(r, p) =

1
2
× L0(r1, p) + 1

2
× L0(r2, p) = 1

2
× 1

2
+ 1

2
× 4

5
= 13

20
. Notice that L receives a record with

confidences as its first input and a record without confidences as its second input. One

can also define the precision and recall metrics using confidences by replacing L0(r′, p) in

Definition 6.1.1 with Pr(r′, p) and Re(r′, p), respectively.

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 203

L(r, p) quantifies leakage when Eve has a single record r in her possession. What

happens if Eve has a set of records R? There is no simple answer in this case, but we take

a “conservative” approach and define leakage as the worst leakage that may occur when

Eve looks at any one of her R records. That is, L0(R, p) = maxr∈RL(r, p). Note that we

are overloading the symbol L: if the first parameter is a set, it refers to set leakage; if the

first parameter is a single record, then it is record leakage. We use the “0” superscript to

distinguish this basic set leakage from leakage after the adversary analyzes and possibly

combines records (next subsection).

6.1.4 Adversary Effort on Data Analysis

In order to increase the information leakage, the adversary Eve may further improve the

quality of the database by fixing errors, adding more information, or removing duplicates.

We illustrate three possible data analysis operations below.

• Error Correction: The adversary Eve identifies and corrects erroneous data. For exam-

ple, Eve may fix misspellings of words in the database.

• Augment Information: Eve fills in missing data either by inferring the data or copying

the data from other sources. For example, if Eve knows the addresses of people, then

she could fill in their zip codes automatically.

• Entity Resolution [105, 34]: Eve can identify the records that refer to the same real-

world entity and merge them into composite records. For example, if Eve has the three

records r, s, and t in the database and know that r and s both refer to the same person,

then she can merge r and s by combining the information of the two records into a

single record 〈r, s〉, resulting in a database with two records: 〈r, s〉 and t. An ER

operation can also use background information when resolving the records.

Among the operations, we will focus on the entity resolution (ER) operation. To il-

lustrate how a data analysis operation can improve information leakage, say that we are

running the ER function E on the database R = {r = {[N, Alice, 1], [P, 123, 1]}, s =

{[N, Alice, 1], [C, 999, 1]}, t = {[N, Bob, 1], [P, 987, 1]}}. (Notice that we have set all

the confidence values to 1 for simplicity.) Also suppose we have the reference record p

= {[N, Alice], [P, 123], [C, 999], [Z, 111]}. Before running E, the information leakage is

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 204

L0(R, p) = maxr∈RL(r, p) = max{2×2/2×2/4
2/2+2/4

, 2×2/2×2/4
2/2+2/4

, 0} = 2
3
. While running E, sup-

pose we conclude that r and s are the same person and produce the merged record 〈r, s〉 =

{[N, Alice, 1], [P, 123, 1], [C, 999, 1]}. Then the new database E(R) = {〈r, s〉, t} has the

information leakage L0(E(R), p) = maxr∈E(R)L(r, p) = max{2×3/3×3/4
3/3+3/4

, 0} = 6
7
. Hence,

by applying E, Eve has increased the information leakage of R from 2
3

to 6
7
.

We can abstract any combination of data analysis operations as a function E, which

receives the database R and returns another database E(R) that may increase information

leakage. For example, one can augment information to the database and then perform entity

resolution.

While the above operations are powerful and may enhance information leakage, they

require computation effort on Eve’s side. For example, if a sophisticated ER algorithm

takes quadratic time to run, then it may not be feasible to run the algorithm on all the

hundreds of millions of people on the Web. If Eve uses a more relaxed and faster algorithm,

then more records can be resolved.

To incorporate the adversary effort into our model, we define the cost function C that

receives the adversary operation E and the database R, and returns the “cost” required

to run E on R. The cost could be measured in computation steps, run time, or even in

dollars. For instance, if has O(n2) complexity for resolving n records, then C(E,R) could

be c× |R|2 for some constant c.

Using the basic definition of information leakage and the data analysis operation E, we

now define our information leakage measure as follows.

Definition 6.1.2. Given an adversary operator E, the information leakage of R against p

is L(R, p, E) = L0(E(R), p) with the cost C(E,R).

For example, say that there are 1000 records in the databaseR, and L0(R, p) = 0.3. Also

say that C(E,R) = c × |R|2 where c = 1
1000

. Now suppose that the operator E improves

the information leakage where L0(E(R), p) = 0.9. Hence, the data analysis using E has

revealed an additional information of 0.9−0.3 = 0.6 using a cost of 1
1000
× 10002 = 1000.

Notice that if E is an identity function where E(R) = R, then L(R, p, E) reduces to the

basic information leakage definition L0(R, p) = maxr∈RL(r, p).

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 205

We can extend our model to a scenario where Eve not just has a database of records

R, but also has a “query” of interest. For example, Eve may be focusing on a person with

name Alice who is 30 years old. In this case, Eve’s query is q = {[name, Alice, 1], [age,

30, 1]}. Eve can then look in R for records that are “related” to this Alice, thus expanding

her information on this Alice. That is, starting with q, Eve may use ER to merge records

in the database that refer to the same entity as q. Given an ER function E, we define the

dipping result of q, D(R,E, q), as the record r ∈ E(R∪{q}) such that r is a merged result

of q. For example, suppose we have the database R = {r = {[N, Alice, 1], [P, 123, 1]}, s =

{[N, Alice, 1], [C, 999, 1]}, t = {[N, Bob, 1], [P, 987, 1]}}. Also say that the ER function

E merges all the records that have the same name. Given the query q = {[N, Alice, 1]},
we then obtain a dipping result 〈r, s, q〉 = {[N, Alice, 1], [C, 999, 1], [P, 123, 1]} because

both r and s have the same name as q. The information leakage of q can be defined as

L(D(R,E, q), p). (Reference [105] provides more details on ER and computing dipping

results.)

6.2 Relationship to Other Measures

In this section, we compare our information leakage measure with two popular privacy

models in data publishing. We first provide a detailed comparison of information leakage

and the k-anonymity model [94]. Next, we briefly discuss how our measure relates to the

l-diversity model [68]. Both models take an all-or-nothing approach where either all the

records in a database are equally “safe” or none of the records are safe at all. In comparison,

our information leakage model can be used to quantify various notions of privacy, e.g., the

information leakage of an individual record within a database. Obviously, it is impossible

to compare our model with every existing privacy model. For example, we do not directly

compare our work with the t-closeness [66] or Differential Privacy [32] models. However,

the same argument holds where information leakage can quantify various notions of privacy

while the two existing models either deem the entire database safe or not safe.

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 206

Name Zip Age Disease
Alice 111 30 Heart
Bob 112 31 Breast

Carol 115 33 Cancer
Dave 222 50 Hair
Pat 299 70 Flu
Zoe 241 60 Flu

Table 6.1: Database of Patients (R)

6.2.1 k-anonymity

In data publishing, the k-anonymity model [94] prevents the identity disclosure of indi-

viduals within a database. More formally, a database R satisfies k-anonymity if for every

record r ∈ R, there exist k − 1 other records in R that have the same “quasi-identifiers.”

The quasi-identifiers are attributes that can be linked with external data to uniquely iden-

tify individuals in the database. For example, suppose that all the records in R have three

attributes: zip code, age, and disease. Given external information, if a person in R can

be identified by looking at her zip code and age, then the quasi-identifiers are zip code and

age. Also, a sensitive attribute is an attribute whose value for any particular individual must

be kept secret from people who have no direct access to R. In our example, we consider

the disease attribute as sensitive.

Table 6.1 illustrates a database R that contains the name, zip code, age, and disease

information of patients. For example, patient 1 has the name Alice, zip code 111, an age of

30, and a heart disease. Table 6.2 shows the 3-anonymous version of R (called Ra) without

the names. In order to anonymize a database, we “suppress” each quasi-identifier value by

either replacing a number with a range of numbers or replacing one or more characters in

a string with the same number of wild card characters. (A wild card character is denoted

as ‘*’ and represents any character.) For example, Dave’s age 50 was suppressed to ≥ 50

while Alice’s zip code 111 was suppressed to 1**. For any patient, there are two other

patients that have the same zip code and age information. Each set of records that have the

same quasi-identifiers form one equivalence class. We assume that the adversary Eve can

view Table 6.2, but not Table 6.1.

The k-anonymity model takes an all-or-nothing approach where either all the records

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 207

Zip Age Disease
11* 3* Heart
11* 3* Breast
11* 3* Cancer
2** ≥50 Hair
2** ≥50 Flu
2** ≥50 Flu

Table 6.2: 3-Anonymous Version of Table 6.1 (Ra)

satisfy k-anonymity or not. That is, if each record is indistinguishable from k − 1 other

records in terms of quasi-identifiers, the released database is considered “safe.” Otherwise,

the database is not safe. In comparison, the information leakage model is more general and

can quantify a wider range of privacy settings.

First, we can study the information leakage for individuals. For example, suppose that

we compare the information leakage of Alice and Zoe. (For simplicity, we assume all

attribute weights have the same value 1.) Say that we first run an ER algorithm E that

merges all the records in Table 6.2 that have the same zip code and age. As a result, there

are two merged records: r1: {[Zip, 11*, 1], [Age, 3*, 1], [Disease, Heart, 1], [Disease,

Breast, 1], [Disease, Cancer, 1]} and r2: {[Zip, 2**, 1], [Age, ≥50, 1], [Disease, Hair, 1],

[Disease, Flu, 1]}. If the reference record of Alice is pa = {[Name, Alice], [Zip, 111],

[Age, 30], [Disease, Heart]}, the information leakage of Alice is max{L(r1, pa), L(r2, pa)}
= max{2×3/5×3/4

3/5+3/4
, 0} = 2

3
. Here, we have made the simplification that a suppressed value

(e.g., 1**) is equal to its non-suppressed version (e.g., 111). In practice, one could view

a suppressed value as the original value with a reduced confidence value. If the reference

record of Zoe is pb = {[Name, Zoe], [Zip, 241], [Age, 60], [Disease, Flu]}, then the infor-

mation leakage of Zoe is max{L(r1, pb), L(r2, pb)} = max{0, 2×3/4×3/4
3/4+3/4

} = 3
4
. Again, we

have simplified the comparison and considered a suppressed value (e.g, ≥50) to be equal

to its unsuppressed version (e.g., 60). As a result, the information leakage of Zoe, 3
4
, is

higher than that of Alice, 2
3
, although k-anonymity considers the records of both people to

be equally safe.

Second, we can quantify the impact of background information on privacy. For exam-

ple, say that the adversary knows additional information about Alice as shown in Table 6.2.

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 208

Name Zip Age
Alice 111 30

Table 6.3: Background Information (Rb)

The adversary can then combine the databaseRb in Table 6.3 with Table 6.2 to measure Al-

ice’s information leakage. Using the same ER algorithm E as above, we now generate the

two records r′1: {[Name, Alice, 1], [Zip, 11*, 1], [Age, 3*, 1], [Disease, Heart, 1], [Disease,

Breast, 1], [Disease, Cancer, 1]} and r2: {[Zip, 2**, 1], [Age, ≥50, 1], [Disease, Hair, 1],

[Disease, Flu, 1]}. The information leakage of Alice is thus max{L(r′1, pa), L(r2, pa)} =

max{2×4/6×4/4
4/6+4/4

, 0} = 4
5
. Hence, in the presence of the background information Rb, Alice’s

information leakage has increased from 2
3

to 4
5
.

6.2.2 l-diversity

The l-diversity model [68] enhances the k-anonymity model by ensuring that the sensitive

attributes of each equivalence class have at least l “well-represented” values. For example,

in Table 6.2, the first equivalence class contains 3 distinct diseases while the second equiv-

alence class has 2 distinct diseases. If l = 3, then we would like to enforce each equivalence

class to have at least 3 distinct diseases. Suppose that we change Zoe’s disease in Table 6.2

from Flu to Influenza. Then the modified database R′a satisfies 3-diversity because each

equivalence class has at least 3 different diseases.

Although R′a is considered safe by l-diversity, the fact that Influenza is semantically

similar to the Flu may result in less privacy for Zoe. We now illustrate how the informa-

tion leakage model can quantify this change in privacy. First suppose that E considers

the diseases Flu and Influenza to be different. Then using the ER algorithm E defined

above, we generate the two records r1: {[Zip, 11*, 1], [Age, 3*, 1], [Disease, Heart, 1],

[Disease, Breast, 1], [Disease, Cancer, 1]} and r′2: {[Zip, 2**, 1], [Age, ≥50, 1], [Disease,

Hair, 1], [Disease, Flu, 1], [Disease, Influenza, 1]}. Thus the information leakage of Zoe

is max{L(r1, pb), L(r′2, pb)} = max{0, 2×3/5×3/4
3/5+3/4

} = 2
3
. Now suppose that the operation

E ′ is equivalent to E, but considers Influenza to be the same disease as the Flu and re-

places all the occurrences of Influenza with Flu when merging records. In this case, the

generated record r′2 is now r′′2 : {[Zip, 2**, 1], [Age, ≥50, 1], [Disease, Hair, 1], [Disease,

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 209

Flu, 1]}. As a result, the information leakage of Zoe becomes max{L(r1, pb), L(r′′2 , pb)}
= max{0, 2×3/4×3/4

3/4+3/4
} = 3

4
. Hence, by exploiting the application semantics, the information

leakage of Zoe has increased from 2
3

to 3
4
. Notice that this measurement could not be done

using the l-diversity model, which cannot capture the usage of application semantics.

6.3 Applications

Our information leakage framework can be used to answer a variety of questions as we

show in the following sections. As we use our framework, it is important to keep in mind

“who knows what”. In particular, if Alice is studying leakage of her information, she

needs to make assumptions as to what her adversary Eve knows (database R) and how she

operates (the data analysis function E Eve uses). These types of assumptions are common

in privacy work, where one must guess the sophistication and compute power of Eve. On

the other hand, if Eve is studying leakage she will not have Alice’s reference information

p. However, she may use a “training data set” for known individuals in order to tune her

data analysis operations, or say estimate how much she really knows about Alice. In the

following sections, we formalize problems in information leakage both in Alice’s point of

view and in Eve’s point of view.

6.3.1 Releasing Critical Information

In this section, we formalize problems for managing Alice’s information leakage. Suppose

that Alice tracksR, the information she has given out in the past. She now wants to release a

new record r (e.g., her credit card information) which may fall in the hands of the adversary

who might use the ER function E to resolve other records with r. Alice can compute the

direct leakage involved in releasing the record r, i.e., L(R ∪ {r}, p, E). However, we may

want to capture the information leaked by r only instead of computing the entire leakage

of the database. We thus define the incremental leakage of r as follows.

I(R, p, E, r) = L(R ∪ {r}, p, E)− L(R, p, E)

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 210

Since r may make it possible for Eve to piece together big chunks of information about

Alice, the incremental leakage may be large, even if r contains relatively little data.

To illustrate incremental leakage for a critical piece of information, say that Alice wants

to purchase a cellphone app from an online store and is wondering which credit card c1 or

c2 she uses will lead to a smaller loss of her privacy. Each purchase requires Alice to submit

her name, credit card number, and phone number. Due to Alice’s previous purchases, the

store already has some information about Alice.

In particular:

• Alice’s reference information is p = {[N, n1], [C, c1], [C, c2], [P, p1], [A, a1]} where N

stands for name, C for credit card number, P for phone, and A for address.

• The online store has two previous records R = {s = {[N, n1, 1], [C, c1, 1], [P, p1, 1]}, t
= {[N, n1, 1], [C, c2, 1]}}. (We omit the app information in any record for brevity.)

• The store accepts one of the two records u = {[N, n1, 1], [C, c1, 1], [P, p1, 1]} or v = {[N,

n1, 1], [C, c2, 1], [P, p1, 1]} for the cellphone app purchase. Since Alice is purchasing

an app, again no shipping address is required.

Suppose that two records refer to the same entity (or match) if their names and credit card

numbers are the same or their names and phone numbers are the same, and that merging

records simply performs a union of attributes. Also say that all weights w have the same

value 1.

Then the information leakage of Alice before her purchase isL(R, p) =maxr∈E(R)L(r, p)

= maxr∈{s,t}L(r, p) = max{2×3/3×3/5
3/3+3/5

, 2×2/2×2/5
2/2+2/5

} = max{3
4
, 4

7
} = 3

4
. If Alice uses c1 and

releases u to the store, then the information leakage is still L(r, p) = 2×3/3×3/5
3/3+3/5

= 3
4

because

u and s are identical and merge together, but not with t. If Alice uses c2 and releases v

instead, all three records merge together because v matches with both s and t. Hence the

information leakage is L(s + t + v, p) = 2×4/4×4/5
4/4+4/5

= 8
9
. To compare Alice’s two choices,

we compute the incremental leakage values, i.e., the change in leakage values due to the

app purchase. In our example, the incremental leakage of releasing u is 3
4
− 3

4
= 0 while the

incremental leakage of releasing v is 8
9
− 3

4
= 5

36
. Thus, in this case Alice should use the

credit card c1 to buy her app because it preserves more of her privacy.

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 211

6.3.2 Releasing Disinformation

Releasing disinformation can be an effective way to reduce information leakage. Given

previously released information R, Alice may want to release either a single record or

multiple records that can decrease the information leakage. We call records that are used to

decrease the leakage disinformation records. Of course, Alice can reduce the information

leakage by releasing arbitrarily large disinformation. However, disinformation itself has a

cost. For instance, adding a new social network profile would require the cost for registering

information. As another example, longer records could require more cost and effort to

construct. We use C(r) to denote the entire cost of creating r.

We define the problem of minimizing the information leakage using one or more dis-

information records. Given one data analysis operator E, a set of disinformation records

S and a maximum budget of Cmax, the optimal disinformation problem can be stated as

follows:
minimize L(R ∪ S, p, E)

subject to Σr∈SC(r) ≤ Cmax

The set of records S that minimizes the information leakage within our budget Cmax is

called an optimal disinformation.

We study the problem of releasing disinformation. Figure 6.2 shows a database R =

{r, s, t, u, v} where r and s refer to the entity p while t, u, and v refer to an entity other

than p. The disinformation record can reduce the database leakage in two ways. First,

a disinformation record can perform self disinformation by acting as disinformation itself

and add its irrelevant information to a correct record. In our example, the disinformation

record d1 snaps with the correct record r and adds its own information to r. Second, a disin-

formation record can perform linkage disinformation by reducing the database leakage by

linking irrelevant records in R to a correct record. For example, the disinformation record

d2 is linking the irrelevant record v to the correct record r and thus adding v’s information

to r. Using these two basic disinformation strategies, one can perform a combination of

self and linkage disinformation as well.

When creating a record, we use a user-defined function calledCreate(S, L) that creates

a new minimal record that has a size less or equal to L and is guaranteed to match all the

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 212

r

s

u

t v

d1 d2

p

Figure 6.2: Self and Linkage Disinformation

records in the set S. If there is no record r such that |r| ≤ L and all records in S match

with r, the Create function returns the empty record {}. A reasonable assumption is that

the size of the record produced by Create is proportional to |S| when L > |S|. We also

assume a function calledAdd(r) that appends a new attribute to r. The new attribute should

be “incorrect but believable” (i.e., bogus) information. We assume that if two records r and

s match, they will still match even if Add appends bogus attributes to either r or s. The

Create function is assumed to have a time complexity of O(|S|) while the Add function

O(|r|). Reference [105] provides more detail how to use the Create and Add functions to

generate the optimal disinformation.

6.3.3 Enhancing a Composite Record

From the adversary Eve’s point of view, there may also be interesting “optimization” ques-

tions to ask. Since Eve does not know Alice’s full record p, the questions cannot be phrased

in terms of p. Consider a composite record rc that Eve has inferred from a set of facts in

a set R. For whatever reason, Eve is very interested in rc, but unfortunately there is some

uncertainty in the attributes in rc. We define rp to be the same as rc except that all confi-

dences in rc are set to 1 and omitted from the record. L(rc, rp) is a measure of how certain

rc is: the closer L(rc, rp) is to 1, the more certain Eve is of the information in rc.

To improve L(rc, rp) (i.e., make it closer to 1), Eve can try to increase her confidence

in the attributes in R. For any given attribute a = [l, v, c] in some ri ∈ R, Eve can improve

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 213

the confidence of a by doing more research, bribing someone, issuing a subpoena, etc. The

increase in the confidence of a will clearly have a cost associated with it. There are again

many ways to model the cost, but for simplicity let us assume that the cost in changing the

confidence from its current value of c to 1 is C(a) = 1− c.
Now the question is, what is the most cost effective way to increase Eve’s confidence

in rc. If Eve only wants to verify one attribute, then we want the one a ∈ ri that maximizes

L(r′c, rp)− L(rc, rp)

C(a)

where r′c is the composite record Eve can infer when the confidence in a is increased to 1.

For example, suppose that we have the database R = {r1= {[N, Alice, 1], [A, 20, 1]},
r2= {[N, Alice, 0.9], [P, 123, 0.5], [C, 987, 1]}} where N stands for name, A stands for age,

P stands for phone, and C stands for credit card number. We assume that all weights w have

the value 1. Suppose that r1 and r2 merges into rc = {[N, Alice, 1], [A, 20, 1], [P, 123, 0.5],

[C, 987, 1]} where we take the maximum confidence value when merging two attributes

with the same label and value pair. Then rp = {[N, Alice], [A, 20], [P, 123], [C, 987]}. If

we enhance the name in r2 to have a confidence of 1, then r′c = {[N, Alice, 1], [A, 20, 1],

[P, 123, 0.5], [C, 987, 1]} (which is identical to rc), and C([N,Alice, 0.9]) = 1− 0.9 = 0.1.

Then L(r′c,rp)−L(rc,rp)

C([N,Alice,0.9])
= 0

0.1
= 0. On the other hand, if we enhance the phone number of r2,

then r′c = {[N, Alice, 1], [A, 20, 1], [P, 123, 1], [C, 987, 1]} with the cost C([P, 123, 0.5]) =

1− 0.5 = 0.5. Then L(r′c,rp)−L(rc,rp)

C([P,123,0.5])
= (2×4/4×4/4

4/4+4/4
− (1

2
× 2×4/4×4/4

4/4+4/4
+ 1

2
× 2×4/4×3/4

4/4+3/4
))/0.5 =

1−(1/2+3/7)
0.5

= 1
28

. Hence, verifying the phone number in r2 results in a better enhancement

of rc than verifying the name of r2.

6.4 Computation

Computing information leakage efficiently is important because the amount of information

(i.e., the number of attributes) within a record can be large in practice. Given a database

R and a data analysis operation E, the information leakage (see Definition 6.1.2) can be

computed by running E(R), and then computing the maximum record leakage by iter-

ating each record r in E(R) and computing L(r, p). (Since in general we do not have

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 214

any E(R) prior knowledge, the only strategy is to iterate through the resulting E(R)

records.) Given that computing the record leakage L(r, p) takes f(|r|, |p|) time and run-

ning E on R takes g(|R|) time, the total complexity of computing the information leakage

is O(g(|R|) +
∑

r∈E(R) f(|r|, |p|)).

A naı̈ve approach for computing the record leakage is to iterate through all possible

worlds of r and add the record leakage values (without confidences) multiplied by their

probabilities as shown in Definition 6.1.1. This solution has an exponential complexity

of O(2|r| × |r|). In the following sections, we propose efficient solutions for computing

the record leakage. We first propose a O(|p|× |r|2)-time algorithm that computes the exact

value of information leakage and assumes constant weights. We then propose aO(|p|×|r|)-

time approximate solution that works for arbitrary weights.

6.4.1 Exact Solution using Constant Weights

We now show how to compute record leakage in polynomial time given that all the weights

have a constant value w. We first re-write L(r, p) as follows. First, equations (1) and (2)

result from the definitions of L0, Pr, and Re.

L(r, p) = E

[
2× Pr(r̄, p)×Re(r̄, p)
Pr(r̄, p) +Re(r̄, p)

]
(6.1)

= E

[
2×

∑
a∈r̄∩pwa.l∑

a∈r̄ wa.l +
∑

a∈pwa.l

]
(6.2)

Equation (3) uses the linearity of expectation and sums the record leakage for each attribute

in p. The notation r̄\{b} indicates the possible world of r without the attribute b.

= 2×
∑
b∈p

p(b, r)× (6.3)

E

[
wb.l∑

a∈r̄\{b}wa.l + wb.l +
∑

a∈pwa.l

]

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 215

Equation (4) simplifies equation (3) using the assumption that all the weights have an equal

value.

= 2×
∑
b∈p

p(b, r)× E
[

1

|r̄\{b}|+ 1 + |p|

]
(6.4)

Equation (5) converts the expression 1
X

to
∫ 1

0
tX−1dt and pushes the expectation operator

within the integral.

= 2×
∑
b∈p

p(b, r)×
∫ 1

0

E
[
t|r̄\{b}|+|p|

]
dt (6.5)

Equation (6) uses the fact that all the attributes in r are independent and convertsE
[
t|r̄\{b}|

]
into

∏
a∈z E

[
tXa
]

whereXa is a random variable that is 1 if a appears in r̄ and 0 otherwise.

We also remove any attribute in r that has the same label and value as b by iterating the

attributes in z = {[c.l, c.v]|c ∈ r ∧ (c.l 6= b.l ∨ c.v 6= b.v)}.

= 2×
∑
b∈p

p(b, r)×
∫ 1

0

t|p|
∏
a∈z

E
[
tXa
]
dt (6.6)

Finally, equation (7) computes the expected value of tXa as p(a, r)× t+ (1− p(a, r)).

= 2×
∑
b∈p

p(b, r)× (6.7)

∫ 1

0

t|p|
∏
a∈z

(p(a, r)× t+ (1− p(a, r)))dt

Algorithm 12 numerically evaluates equation (7). Steps 3–12 convert the innermost

product into an expression of the form Y0 × tn + Y1 × tn−1 + ...Yn, where n is the number

of attributes in z. The coefficients Y0, ...Yn are stored in list Y in the algorithm. (List Z is

an auxiliary list used to compute the Y values.) Steps 13 and 14 evaluate equation (7). The

integral is applied to each p(b, r)×t|p|×Yx×tn−x term in turn, yielding p(b, r)× Yx

|p|+n−x+1
.

(Note that |Y | = n+ 1.)

As an illustration of Algorithm 12, suppose that p = {[A, 1], [B, 2]} and r = {[A,

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 216

ALGORITHM 12: Record Leakage using Constant Weights
input : the records r, p
output: the record leakage L(r, p)

1 L← 0;
2 for b ∈ p do
3 Y ← (1.0);
4 for a ∈ r do
5 Z ← ();
6 if a.l = b.l ∧ a.v = b.v then
7 continue to next loop;

8 Z.Add(Y.Get(0)× p(a, r));
9 for x = 0, . . . , |Y | − 1 do

10 Z.Add(Y.Get(x)× (1− p(a, r)) + Y.Get(x + 1)× p(a, r));

11 Z.Add(Y.Get(|Y | − 1)× (1− p(a, r)));
12 Y ← Z;

13 for x = 0, . . . , |Y | − 1 do
14 L← L + 2× p(b, r)× Y.Get(x)

|p|+|Y |−x ;

15 return L;

1, 0.1], [B, 3, 0.2]}. Also say that all the attribute weights have a value of 1. We first

assign b = [A, 1] in Step 2 and set Z = (0.2, (1 − 0.2)) = (0.2, 0.8) in Steps 8–11. We

then set Y = (0.2, 0.8) in Step 12 and continue to Steps 13–14 where we compute L =

2 × 0.1 × 0.2
2+2−1+1

+ 2 × 0.1 × 0.8
2+2−2+1

= 19
300

. Next, we set b = [B, 2] in Step 2 and set

Z = (0.1×0.2, 0.1×(1−0.2)+(1−0.1)×0.2, (1−0.1)×(1−0.2)) = (0.02, 0.26, 0.72) in

Steps 8–10. However, we add 0 to L in Steps 13–14 because p(b, r) = 0. Hence, we return

L = 19
300

. Notice that we have the same result as computing L(p, r) using the brute-force

naı̈ve approach: 0.1×0.2× 2×1/2×1/2
1/2+1/2

+ 0.1×0.8× 2×1×1/2
1+1/2

+ 0.9×0.2×0 + 0.9×0.8×0

= 19
300

.

The complexity of the algorithm above is O(|p| × |r|2) time because for each record in

p, we dynamically construct the coefficients of tX , which takes O(|r|2) time.

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 217

6.4.2 Approximation using Arbitrary Weights

We now show how to compute an approximation of L(r, p) efficiently where the weights

can be assigned different values. We can use the Taylor series of F (X) about the point

E[X] to approximate F (X) as follows.

F (X) = F (E[X]) +
F ′(E[X])

1!
× (X − E[X])

+
F ′′(E[X])

2!
× (X − E[X])2 + . . .

If we only take the second order approximation (i.e., the Taylor series visible in the above

equation) and compute the expected value of F (X), we have

E[F (X)] ≈ F (E[X]) +
F ′′(E[X])

2!
× V ar[X]

Hence, we can derive the following approximation by starting from equation (3) and

setting Y =
∑

a∈r̄\{b}wa.l.

L(r, p) = 2×
∑
b∈p

p(b, r)× E

[
wb.l

Y + wb.l +
∑

a∈pwa.l

]
(where Y =

∑
a∈r̄\{b}

wa.l)

≈ 2×
∑
b∈p

p(b, r)× (
wb.l

E [Y] + wb.l +
∑

a∈pwa.l
+

wb.l
(E [Y] + wb.l +

∑
a∈pwa.l)

3
× V ar [Y])

We can also compute the expected value and variance of Y as follows.

E[Y] =
∑
a∈z

wa.l × a.c

V ar[Y] =
∑
a∈z

w2
a.l × a.c− (wa.l × a.c)2

where z = {c|c ∈ r ∧ (c.l 6= b.l ∨ c.v 6= b.v)}.

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 218

Par. Description Basic
n Size of the gold standard p 100
|R| Number of records to generate 10,000
pc Probability of copying attribute from p to r 0.5
pp Probability of perturbing a copied attribute 0.5
pb Probability of adding bogus attribute to r 0.5
m Maximum confidence value 0.5
w Weights are constant (C) or random (R) C

Table 6.4: Parameters for Data Generation

Hence, an approximation of the record leakage can be computed in O(|p| × |r|) time.

One can extend the Taylor series above to produce an even more accurate solution. How-

ever, we show in Section 6.5.2 that our approximation based on the second order series is

already quite accurate.

6.5 Experiments

We run experiments on synthetic data in order to observe trends and to study the scalability

of our algorithms. Table 6.4 shows the configuration used. We first generate the reference

record p by creating a set of n random attributes. We then generate a record r ∈ R by

iterating over each attribute in p and copying it with a probability pc. However, each time

there is a copy, we perturb the attribute with probability pp into a new attribute. In addition,

for each attribute in p we also add a new bogus attribute to r with probability pb. The

confidence value for each attribute generated was a random number between 0 and m, the

maximum possible confidence. If w = C, then we set all the weights to 1, and if w =

R, we randomly generated random real numbers between 0 and 1 for the weights. We

repeated the generation of a record |R| times. The last column of Table 6.4 shows the basic

values of the parameters. Our base case does not represent any particular application or

scenario; it is simply a convenient starting point from which to explore a wide range of

parameter settings. Our algorithms were implemented in Java, and our experiments were

run in memory on a 2.4GHz Intel(R) Core 2 processor with 4 GB of RAM.

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 219

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3

 0 0.2 0.4 0.6 0.8 1

In
fo

rm
at

io
n

Le
ak

ag
e

Probability of copying

Alg. 1

(a) Copy

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3

 0 0.2 0.4 0.6 0.8 1

In
fo

rm
at

io
n

Le
ak

ag
e

Probability of perturbation

Alg. 1

(b) Perturbation

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3

 0 0.2 0.4 0.6 0.8 1

In
fo

rm
at

io
n

Le
ak

ag
e

Maximum confidence

Alg. 1

(c) Confidence

 0
 100
 200
 300
 400
 500
 600
 700
 800

 1 10 100 1000 10000

Ru
nt

im
e

(s
)

Number of attributes in p

Naive
Alg. 1

Approx.

(d) Scalability

Figure 6.3: Trends and Scalability

6.5.1 Trends

We plot the information leakage while varying the parameters pc, pp, and m. Any param-

eter that was not varied was set to its basic value in Table 6.4. Figure 6.3(a) shows the

leakage when varying pc from 0 to 1. As pc increases, more of p’s attributes are copied to

r, increasing the recall and thus the information leakage as well. Figure 6.3(b) shows the

leakage when varying pp from 0 to 1. This time, the more frequent the perturbation of an

attributed being copied, the lower the precision and thus the information leakage becomes

as well. Finally, Figure 6.3(c) shows the leakage when varying m from 0 to 1. As the

average confidence increases, there are two competing factors that determine the informa-

tion leakage: the higher confidence of correct information increases the leakage while the

higher confidence of incorrect information decreases the leakage. In our setting, the correct

information dominates and leakage increases as confidence increases.

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 220

n pc pp b m w Exact Approx.
100 0.5 0.5 0.5 0.5 C 0.1740179 0.1740178
200 0.5 0.5 0.5 0.5 C 0.1374662 0.1374661
100 1.0 0.5 0.5 0.5 C 0.2752435 0.2752431
100 0.5 1.0 0.5 0.5 C 0.0 0.0
100 0.5 0.5 1.0 0.5 C 0.1581138 0.1581135
100 0.5 0.5 0.5 1.0 C 0.2625473 0.2625469
100 0.5 0.5 0.5 0.5 R 0.4047125 0.4046881

Table 6.5: Information Leakage Comparison

6.5.2 Accuracy of Approximate Algorithm

We now evaluate the accuracy of the approximate algorithm in Section 6.4.2. Table 6.5

shows the leakage values for Algorithm 12 and the approximation algorithm while varying

the parameters n, pc, pp, b, m, and w. If w = C, we generated |R| = 10, 000 records with

constant weights and ran Algorithm 12 to compute the exact leakage. If w = R, we can

only compute the exact leakage with the naı̈ve algorithm (which is not scalable as shown in

Section 6.5.3). Thus, we limited ourselves to records with only 10 attributes (|p| = 10), and

gave each attribute a random weight ranging from 0 to 1. As we can see in Table 6.5, in all

scenarios the exact and approximate leakage values are nearly identical, with a maximum

error rate of 0.006%. We conclude that our approximate algorithm is highly accurate.

6.5.3 Runtime Performance

We compare the scalability of Algorithm 12 and the approximate algorithm against the

naı̈ve implementation defined in the beginning of Section 6.5. We varied the parameter n

and used constant weights while using the basic values for the other parameters as defined

in Table 6.4. Figure 6.3(d) shows that the naı̈ve algorithm only handle up to 12 attributes. In

comparison, Algorithm 12 scales to 250 attributes, and the approximation algorithm scales

to more than 2,000 attributes, demonstrating the scalability of our algorithms.

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 221

6.6 Related Work

Many works have proposed privacy schemes [94, 68, 84, 32, 113]. The k-anonymity

[94, 93] model guarantees that linkage attacks on certain attributes cannot succeed. Sub-

sequent work such as the l-diversity [68] and t-closeness [66] models has improved the

k-anonymity model. Rastogi et al. [84] shows the tradeoff between privacy and utility in

data publishing in the context of maintaining the accuracy of counting queries. A recent

line of work [32, 33] studies differential privacy, which ensures that a removal or addition

of a single database item does not (substantially) affect the outcome of any analysis on

the database. In comparison, our information leakage measure focuses on quantifying the

privacy of an individual against a given database and has the following features. First, we

assume that some of our data is already public (i.e., out of our control) and that there can be

a wide range of scenarios where we need to measure privacy. Second, our information leak-

age reflects the four different factors of privacy: the correctness and completeness of the

leaked database, the adversary’s confidence on the database, and the adversary’s analysis

on the database.

A closely-related framework to ours is P4P [2], which seeks to contain illegitimate use

of personal information that has already been released to an external (possibly adversar-

ial) entity. For different types of information, general-purpose mechanisms are proposed

to retain control of the data. More recently, a startup called ReputationDefender [85] has

started using disinformation techniques for managing the reputation of individuals focusing

on improving search engine results (e.g., adding to the web positive or neutral information

about its customers by either creating new web pages or by multiplying links to existing

ones). The focus of ReputationDefender is to make one’s correct information clearly visi-

ble. Hence, the disinformation is being used to maximize the information leakage. Track-

MeNot [98] is a browser extension that helps protect web searchers from surveillance and

data-profiling by search engines using noise and obfuscation. Finally, ICorrect [56] is a

web site that allows one to clarify his/her misinformation on the Web. We believe that the

work above show a clear need for using information leakage as a measure of privacy.

The information theoretic metric of entropy [86] is often used in the context of commu-

nication privacy and quantifies the amount of information an attacker is missing in verifying

CHAPTER 6. A MODEL FOR QUANTIFYING INFORMATION LEAKAGE 222

a hypothesis within a confidence interval. In comparison, the information leakage model

focuses on capturing the intuitive notion of leakage: correctness, completeness, and the

adversary confidence. In addition, our model incorporates the data analysis operations of

the adversary and the costs for performing the operations.

Information retrieval [70] searches for relevant information within documents. Many

different measures for evaluating the performance of information retrieval have been pro-

posed. The notions of precision were first proposed by Kent et al.[64]. The F measure was

introduced by van Rijsbergen [99]. Information leakage adopts these measures in a pri-

vacy setting. In addition, our measure reflects the adversary confidence and data analysis.

Compared to probabilistic information retrieval [70] where documents are probabilistically

ranked, our work probabilistically computes the information leakage itself using possible

worlds semantics.

6.7 Conclusion

We have proposed a framework using information leakage as a measure for data privacy. In

many applications, an important observation is that privacy is no longer an all-or-nothing

concept because one’s data may inevitably become public through various interactions

(e.g., buying a product from a vendor online). Our information leakage measure reflects

four important factors of privacy: the correctness and completeness of the leaked data, the

adversary’s confidence on the data, and the adversary’s data analysis. The adversary may

perform ER for his data analysis. The better the adversary performs ER, the more informa-

tion is leaked. We have compared our information leakage model with the k-anonymity and

l-diversity models. We have described several challenges in managing information leakage

that can be posed by our framework. We have proposed efficient algorithms for computing

the exact and approximate values of information leakage. Finally, we have shown through

extensive experiments on synthetic data that the information leakage measure indeed cap-

tures the important factors of privacy, and that our information leakage algorithms can scale

to large data.

Chapter 7

Disinformation Techniques for Entity
Resolution

In Chapter 6, we studied the problem of quantifying information leakage where we mea-

sured how much one’s personal information can be exposed to the public. The information

loss can become more serious if the adversary performs ER to gather and piece together

the person’s information. While the quantification of information leakage is important to

understand the danger of exposing information, we would also like a way to manage the

amount of information leakage in order to protect one’s privacy.

In this chapter, we thus study how to actually lower information leakage. We study a

specific technique called disinformation, which is a well-known strategy used to perturb

known information by adding false information. A classic example is the Normandy land-

ing during World War II, where the Allied forces used disinformation to make the Germans

believe an attack was imminent on Pas de Calais instead of Normandy. As a result, the

German forces were concentrated in Pas de Calais, which made the Normandy landing one

of the turning points in the war.

Disinformation can be viewed as a tool for safeguarding sensitive information that for

one or another reason may have “leaked”. That is, an adversary may obtain some sensitive

information, e.g., preparations for the real Normandy invasion. The disinformation (Calais

invasion) causes the adversary either to disregard the true information, or at least to have

less confidence in it. Thus, in a way the sensitive information is protected.

223

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 224

Disinformation and this type of information protection are closely related to entity res-

olution. In the invasion example, resolution was done by humans, combining evidence

records (e.g., intercepted messages, shipping activity, etc.) to form the adversary’s best

guess for the invasion. In the absence of disinformation, the better the adversary is at

ER, the better he will be at “connecting the dots” and learning one’s sensitive information.

Disinformation is a direct attack on the ER process, confusing its results, and protecting

information. While we only studied the quantification of information leakage in Chapter 6,

we now study how disinformation can be used to lower information leakage.

To present a more modern example, consider the way life insurers are predicting the

life spans of their customers by piecing together health-related personal information on

the Web [100]. Here the customers cannot prevent the sensitive information from leak-

ing, as they need to give it out piecemeal to purchase items, interact with their friends,

get jobs, etc. However, disinformation could be used to protect sensitive information by

preventing the ER algorithm used by the insurance companies from identifying with cer-

tainty the customer’s say habits or genes. As another example, people search engines like

Spock.com [92] resolve hundreds of millions of records crawled from the Web to create

one profile per person. Again, it is very hard to remove what is already on the Web, but it is

possible to confuse the ER algorithm. For instance, by creating a fake Web page with per-

son X’s name and person Y ’s address and phone number, we may cause the ER algorithm

to combine person X and Y into a single output profile, thus muddling what is published.

We are definitely not advocating that everyone should generate disinformation (and as

we will discuss, there are also drawbacks to generating disinformation). However, we do

believe that anyone using ER needs to understand disinformation attacks. That is, if we now

take the role of the “adversary”, and we have a choice of ER algorithms, we should prefer

the one that is more robust against disinformation, i.e., the one that is less easily fooled by

disinformation. In this chapter we will present a model for disinformation attacks, study

the implications for ER, and will illustrate robustness comparisons among ER algorithms.

Motivating Example To further motivate our work, let us consider yet another example,

in simplified fashion. Say that a camera manufacturer called Cakon is working on its latest

camera called the C300X. Cakon needs to keep its new camera secret, for once customers

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 225

Record Model Pixels (M) Price (K)
r “C300X” 30 8
s “C300” 20 7
t “C200” 10 5
u “C100” 10 1
v “C100” 10 1

Table 7.1: Camera Rumor Records
know with certainty the details, they are much less likely to buy the older models (and

the new model will not be available for purchase for months). Furthermore, Cakon does

not want its competitors to know exactly what they are releasing. However, information

about the camera will leak to the public by early testers, component suppliers, or insiders

eager to brag. Indeed, there are multiple rumor Web sites that specialize in gathering leaks

about upcoming cameras, manually doing ER, and predicting the new models. As in our

previous example, Cakon is unable to eliminate leaked information about the C300X, but

it may be able to generate disinformation, e.g., by sending out prototypes with different

specifications to testers, or by asking a printer to design a pamphlet with incorrect details.

To be more concrete, say a rumors site (the adversary in this case) has collected five

rumor records r, s, t, u, and v as shown in Table 7.1. Each record provides the anticipated

camera model, number of megapixels (MP), and price. Say the ER algorithm identifies

records that refer to the same real-world entity (camera) by computing the similarity in

model names, MP counts, and prices. In this case, say all cameras look dissimilar except

for u and v. Thus, the ER result is E1 = {{r}, {s}, {t}, {u, v}}. Here, we use curly

brackets to cluster the records that refer to the same entity.

We call the camera manufacturer the agent, and say its sensitive information is record

{r}. That is, the new camera model is C300X, with 30M pixels and will sell for 8K dollars.

The agent can reduce what is known about the C300X by generating a record that would

make the adversary confuse the clusters {r} and {s}. Generating the disinformation record

would involve creating a model number that is similar to both C300X and C300 and then

taking some realistic number of pixels between 20M and 30M and a price between 7K and

8K dollars. Suppose that the agent has generated the disinformation record d1: {[Model,

“C300X”], [Pixels, 20], [Price, 7]}. As a result, when the adversary runs ER, d1 may match

with r because they have the same model name. The ER algorithm can conceptually merge

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 226

the two records into 〈r, d1〉 : {[Model, “C300X”], [Pixels, 20], [Pixels, 30], [Price, 7], [Price,

8]}. Now 〈r, d1〉 and s are now similar and might match with each other because they have

the same number of pixels and price. As a result, 〈r, d1〉 and s may merge to produce

the new ER result E2 = {{r, s, d1}, {t}, {u, v}}. While r and s were considered different

entities in E1, they are now considered the same entity in E2 due to the disinformation

record d1.

As a result of the disinformation, the adversary is confused about the upcoming C300X:

Will it have 20M or 30M pixels? Will it sell for 7K or 8K dollars? With all the uncertainty,

the adversary may be even less confident that the C300X is a real upcoming product. (In

Section 7.4.1 we define a concrete metric for confusion.)

The agent can further increase confusion by causing the target cluster to merge with

even more clusters. For example, if the agent generates disinformation record d2 = {[Model,

“C300”], [Pixels, 10], [Price, 5]} to Table 7.1, then the ER result may now consider the C300

and C200 to be the same model as well, leading to an ER result of E3 = {{r, s, d1, d2, t},
{u, v}} where r, s, and t have all merged together.

Our example has illustrated the effects of disinformation, but disinformation also has a

cost for the agent. The disinformation must be “believable” so as discussed earlier it may

require creating Web sites or prototype cameras. Thus, one of the problems we will address

is how to maximize the “confusion” around an entity as much as possible using a total cost

for creating the disinformation records within a fixed budget.

As mentioned earlier, one of the main uses of our model and work is as a framework

for evaluating the robustness of ER algorithms. Note that in our example, whether r and

s and d merge is very dependent on the ER algorithm in use. Some ER algorithms may

be more susceptible to merging unrelated records while others may be more robust to a

disinformation attack. The robustness may also depend on the comparison threshold used

for matching records. For example, an ER algorithm with a more relaxed comparison

threshold is more likely to mistakenly merge records compared to the same ER algorithm

with a stricter comparison threshold. We will use our disinformation techniques to evaluate

how sensitive each ER algorithm and threshold combination is to various attacks.

In summary, the main contributions of this chapter are:

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 227

• We formalize the notion of disinformation in an ER setting. We also define a disin-

formation optimization problem that maximizes confusion for a given disinformation

budget. We analyze the hardness of this problem and propose a desirable ER property

that makes disinformation more effective (Section 7.1).

• We propose efficient exact and approximate algorithms for a restricted version of the

disinformation problem. We then propose heuristics for the general disinformation

problem (Section 7.2).

• We propose several techniques for generating the values of disinformation records

based on the values of existing records (Section 7.3).

• We experiment on synthetic and real data to demonstrate the effectiveness of disin-

formation and compare the robustness of existing ER algorithms (Section 7.4).

7.1 Framework

In this section, we formalize ER and the disinformation problem. We use the ER model

from Section 6.1. We then introduce a pairwise approach for evaluating the cost of merging

clusters in a partition of records. Next, we define the benefit obtained by merging clusters

of records and develop a global strategy for generating disinformation. Finally, we identify

a desirable property of ER algorithms that makes our pairwise approach effective.

7.1.1 ER Model

We use the ER model from Section 6.1. We assume the ER algorithm used by the adversary

is known to the agent, but cannot be modified. This assumption is common where one must

guess the sophistication and compute power of an adversary. For instance, Cakon may

know all the possible websites containing rumors of Cakon products and may have an idea

on how an adversary might piece together the rumors from the websites. (In Section 7.4.1

we discuss what happens when the agent does not know the adversary’s ER algorithm.) In

addition, we assume the agent cannot delete or modify records in the database R.

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 228

7.1.2 Pairwise Approach for Merging Clusters

To generate disinformation, we first take a pairwise approach of analyzing the costs of

merging clusters. We assume that inducing the merge of two clusters ci and cj has a

well-defined cost function D(ci, cj) that is positive and commutative. The cost function

measures the agent’s effort to generate disinformation records that would merge ci and cj .

In addition, we assume a function PLAN(ci, cj) that specifies the steps for actually gen-

erating the disinformation records in order to merge ci and cj . The definitions of the two

functions depend on the ER algorithm and the records as we illustrate below.

The cost functionD can reflect the amount of disinformation that needs to be generated.

For example, suppose that all the records are in a Euclidean space, and the ER algorithm

always clusters records that are within a Euclidean distance of 1. If there are two singleton

clusters c1 and c2 that have a Euclidean distance of 10, then we need to generate at least 9

records between c1 and c2 that have a distance of 1 between each other and with c1 and c2.

If the cost of creating the records is estimated as the number of disinformation records that

need to be created, then D(c1, c2) = 9 and PLAN(c1, c2) provides the steps for actually

creating the 9 disinformation records.

A more sophisticated cost function may also reflect the effort needed to create the spe-

cific disinformation values. For example, creating a new public camera record would re-

quire some person to post a rumor about the camera on a public website or blog, and the

effort may vary depending on the contents of the rumor. A rumor about a camera with

unrealistically-high specs may actually damage the reputation of Cakon and can be viewed

as a costly disinformation value to create. The result of PLAN(ci, cj) may now include

instructions for logging into the website and posting the rumor.

In the case where there is no way to induce the merge of ci and cj (e.g., due to the ER

algorithm or restrictions in the records that can be generated), then the distance D(ci, cj)

is given as∞. In general, the more different ci and cj are, the costlier it is to generate the

disinformation needed to merge the clusters.

For the optimization problem we define next, we assume that the merging costs for

different pairs of clusters are independent of each other. That is, the value of D(ci, cj) is

fixed and not affected by whether other clusters were merged. For example, ifD(c1, c2) = 5

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 229

and D(c1, c3) = 4, then the cost of merging c1 and c2 is always 5 regardless of whether

we will merge c1 and c3. In reality, however, the costs may not be independent because

the merging of multiple pairs of clusters may be affected by the same disinformation. For

instance, if the disinformation record d is in the middle of the clusters c1 and c2 as well as

the clusters c3 and c4, then by adding d, we may end up merging c1 and c2 as well as c3

and c4 at the same time. Hence, once c1 and c2 are merged, the merging cost of c3 and c4

reduces to 0. Note that when we evaluate our disinformation strategies in Section 7.4, we

do not enforce this assumption for the actual ER algorithms. In Section 7.4.2, we show that

even without the independence assumption, our techniques work well in practice.

7.1.3 Disinformation Problem

We consider the problem of maximizing the “confusion” of one entity e, which we call

the target entity. Given an ER algorithm E and a database R, we call the cluster c0 ∈
E(R) that represents the information of e the target cluster. Intuitively, by merging other

clusters in E(R) to the target cluster, we can dilute the information in the target cluster and

thus increase the confusion. In our motivating example, the camera company Cakon was

increasing the confusion on the target entity C300X by merging the C300 cluster {s} to the

target cluster {r}. If there are multiple clusters that represent e, we choose the cluster that

“best” represents e and set it as the target cluster c0. For example, we could define the best

cluster as the one that contains the largest number of records that refer to e.

The confusion of an entity is an application-specific measure. For example, we can

define the confusion of e as the number of incorrect attributes of e minus the number of

correct attributes of e where we count duplicate attributes. The amount of confusion we

gain whenever we merge a cluster ci ∈ E(R) with the target cluster c0 can be captured as

the benefit of ci, which is computed as N(ci) using a benefit function N . In our example

above, we can define the benefit of ci to be the number of incorrect attributes in ci about

e. Suppose that e can be represented as the record r = {[Model, “C300X”], [Pixels, 30]}.
Then a cluster c containing the records s = {[Model, “C300”], [Pixels, 20]} and t = {[Model,

“C200”], [Pixels, 20]} has one correct attribute (i.e., [Model, “C300X”]) and three incorrect

attributes (i.e., one [Model, “C200”] and two [Pixels, 20]’s). As a result, the benefit of c

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 230

{r}

{t}

{s} {u,v}

0

10 10

10

1

2

4
4

4

4

Figure 7.1: Cost Graph

is 3. As a default, we always define the benefit N(c0) to be 0 because c0 does not need to

merge with itself. In Section 7.4.1 we define a concrete metric for confusion.

Given our knowledge on the ER algorithm E, database R, cost function D, and the

benefit function N , we now define an optimization problem of producing the best set of

pairwise cluster merges that can maximize the total benefit while using a total cost for

merging clusters within a fixed budget. We first draw an undirected cost graph G among

the clusters in E(R) where each edge between the clusters ci and cj (denoted as ci–cj) has

a weight of D(ci, cj). We denote the set of vertices in G as G.V and the set of edges as

G.E. For example, suppose that E(R) = {{r}, {s}, {t}, {u, v}} and the target cluster c0

= {r}. Also suppose that D({r}, {s}) = 1, D({s}, {t}) = 2, and the rest of the edges have

the weight 4. In this example, we also assume that the benefits for all clusters have the

value 10, except for c0, which has a benefit of 0. The resulting cost graph G is shown in

Figure 7.1 (ignore the double lines for now).

We view any subtree J in G that has the target cluster c0 as its root a disinformation

plan of the entity e that specifies which pairs of clusters should be merged together through

disinformation. Just like in G, we denote the set of vertices in J as J.V and the set of edges

in J as J.E. The cost of merging the clusters connected by J is then
∑

(ci,cj)∈J.E D(ci, cj).

Continuing our example above, suppose the subtree J of G connects the three clusters

{r}, {s}, and {t} with the two edges {r}–{s} and {s}–{t}. Here, the plan is to add

disinformation records between {r} and {s}, and between {s} and {t} to merge the three

clusters. As a result, the total merging cost of J is 1 + 2 = 3, and the total benefit obtained is

0 + 10 + 10 = 20. Figure 7.1 depicts the plan J by drawing double lines for the edges in J .

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 231

If the subtree J instead contained the edges {r}–{s} and {r}–{t}, then the total merging

cost would be 1 + 4 = 5 (but the benefit would be the same, i.e., 20).

Given a budget B that limits the total cost of generating disinformation, we define the

optimal disinformation plan of e as follows.

Definition 7.1.1. Given a cost graphG, a target cluster c0, a cost functionD, a benefit func-

tionN , and a cost budgetB, the optimal disinformation plan J is the subtree ofG that con-

tains c0 and has the maximum total benefit
∑

ci∈J.V N(ci) subject to
∑

(ci,cj)∈J.E D(ci, cj) ≤
B.

Using the cost graph in Figure 7.1, suppose that c0 = {r} and the cost budget B = 3.

As a result, the subtree J with the largest benefit connects the clusters {r}, {s}, and {t}
with the edges {r}–{s} and {s}–{t} and has a total benefit of 0 + 10 + 10 = 20 and a total

merging cost of D({r}, {s}) + D({s}, {t}) = 1 + 2 = 3 ≤ B. Merging {u, v} to c0 will

require a total merging cost of 4, which exceeds B.

A disinformation plan provides a guideline for creating disinformation. Since we as-

sume that all the merging costs are independent of each other, a disinformation plan sat-

isfying Definition 7.1.1 does not necessarily lead to an optimal disinformation in the case

where the costs are not independent. However, the independence assumption allows us to

efficiently find out which clusters should be merged in order to increase the confusion sig-

nificantly. In Section 7.4 we will study the effectiveness of disinformation plans based on

the independence assumption in scenarios where the merging costs are not independent.

In general, the total benefit of the merged clusters may not be expressible as a linear sum

of fixed benefits and may depend on the specific combination of clusters. The new problem

can be stated by replacing the sum
∑

ci∈J.V N(ci) in Definition 7.1.1 with some general

function F (J.V) that reflects the total benefit. While this generalization may capture more

notions of confusion, there is less opportunity for an efficient computation of the optimal

plan.

We now show that the disinformation problem is NP-hard in the strong sense [39],

which means that the problem remains NP-hard even when all of its numerical parameters

are bounded by a polynomial in the length of the input. In addition, it is proven that a

problem that is NP-hard in the strong sense has no fully polynomial-time approximation

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 232

scheme unless P = NP.

Proposition 7.1.2. Finding the optimal disinformation plan (Definition 7.1.1) is NP-hard

in the strong sense.

Proof. The decision version of the disinformation problem is to determine whether there

exists a disinformation plan J that has a total benefit larger or equal to a given budget

B while satisfying the constraints in Definition 7.1.1. We show that the decision version

of the disinformation problem is NP-complete in the strong sense, which means that the

problem remains NP-complete even when all of its numerical parameters are bounded by

a polynomial in the length of the input. First, the decision version of the disinformation

problem is in NP because we can verify any solution by comparing the total benefits and

weights with the budgets in linear time. Next, we reduce the decision version of the Set

Cover problem, which is known to be NP-complete in the strong sense, to the decision

version of the disinformation problem. The Set Cover problem has a finite set U , a family

C of subsets of U , and k ∈ N. The question is whether there is a cover D of U in C with at

most k sets. Let U = {a1, . . . , an} and C = {s1, . . . , sm}. We can construct an instance of

the decision version of the disinformation problem as follows. We first create a vertex v0

for c0 with benefit 0. We then create m vertices x1, . . . , xm with benefit 0, each of which

has an edge from v0 with weight 1. Finally, we create n vertices y1, . . . , yn with benefit 1.

Also, each vertex yi has an edge from each vertex xj with a weight of k + 1 if ai ∈ sj .

As a result, there is a cover of U in C with at most k sets if and only if the graph G has a

subtree J that contains v0 such that the total benefit of J is at least n and the total weight of

J is at most k + n× (k + 1). Hence, the decision version of the disinformation problem is

NP-complete in the strong sense, which makes the optimization version in Definition 7.1.1

NP-hard in the strong sense.

Given that the disinformation problem is NP-hard in the strong sense, we now consider

a more restricted version of the disinformation problem where we only consider disinfor-

mation plans that have heights of at most h. Here, we define the height of a tree as the

length of the longest path from the root to the deepest node in the tree. For example, if

a tree has a root node and two child nodes, the height is 1. We can prove that even if h

= 2, the disinformation problem is still NP-hard in the strong sense. However, if h = 1

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 233

where all the clusters other than c0 can only be directly connected to c0 in a disinformation

plan, the disinformation problem is NP-hard in the weak sense [39] where there exists a

pseudo-polynomial algorithm that returns the optimal disinformation plan.

Proposition 7.1.3. Finding the optimal disinformation plan (Definition 7.1.1) with h = 1

is NP-hard in the weak sense.

Proof. We first prove that the disinformation problem with h = 1 is NP-hard by showing

a reduction from the 0–1 Knapsack optimization problem, which is known to be NP-hard

in the weak sense. Suppose there are n items i1, . . . , in with the weights w1, . . . , wn and

values v1, . . . , vn. Given a capacity C, the 0–1 Knapsack problem tries to find the subset of

items that have a total weight within C, but with a maximal total value. We can reduce this

problem to a disinformation problem by first creating a cluster c0 with a benefit of N(c0) =

0. We then create for each item ij a cluster cj whereD(cj, c0) = wj andN(cj) = vj . For any

subtree J in G, the merge cost is
∑

ci∈J.V�{c0}wi while the total benefit is
∑

ci∈J.V�{c0} vi.

Hence, if we find the optimal disinformation S, the optimal solution for the Knapsack

problem is {ij|cj ∈ J.V�{c0}}. Next, we prove that the disinformation problem with h

= 1 is NP-hard in the weak sense by reducing it to the 0–1 Knapsack problem. For any

instance of the restricted disinformation problem with h = 1, we can create an instance

of the 0–1 Knapsack problem by creating for each cluster cj 6= c0 an item ij that has the

value vj = N(cj) and weight wj = D(cj, c0). Since the 0–1 Knapsack problem is NP-hard

in the weak sense, the disinformation problem with h = 1 is NP-hard in the weak sense as

well.

The disinformation problem with h = 1 is interesting because it captures the natural

strategy of comparing the target entity ewith one other entity at a time, making it a practical

approach for disinformation. In Section 7.2, we show there are an exact pseudo-polynomial

algorithm and an approximate polynomial-time algorithm for the h = 1 problem. In Sec-

tion 7.4, we show that disinformation plans with h = 1 perform just as good as general

disinformation plans in terms of maximizing the confusion of e while taking much less

time to generate.

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 234

7.1.4 Monotonicity

We now define a property of an ER algorithm that makes our disinformation techniques

more effective.

Definition 7.1.4. An ER algorithm E is monotonic if for any database R and disinforma-

tion record d, ∀ci ∈ E(R), ∃cj ∈ E(R ∪ {d}) where ci ⊆ cj .

For example, say that the ER algorithmE is monotonic andE(R) = {{r, s}, {t}}. Then

if we add a disinformation record d and compute E(R∪{d}), the records r and s can never

split. Thus a possible ER result would be {{r, s, d}, {t}}, but not {{r, d}, {s}, {t}}.
The monotonicity property is helpful in the agent’s point of view because we do not

have to worry about the ER algorithm splitting any clusters when we are trying to merge

two clusters. As a result, the analysis of the cost graph is accurate, and the agent can better

predict how the ER result would change if we add disinformation records according to the

optimal disinformation plan.

In this chapter, we use the SN algorithm (see Section 2.2.2) and theHCS algorithm (see

Section 2.3.2) for evaluating our disinformation techniques. We show which ER algorithms

satisfy the monotonicity property.

Proposition 7.1.5. The HCS algorithm is monotonic, but the SN algorithm is not mono-

tonic.

Proof. We first prove that the HCS algorithm is monotonic. According to the algorithm,

two records r and s merge with each other if there exists a sequence of records [r1(=

r), . . . , rn(= s)] where for each pair (ri, ri+1) in the path, D(ri, ri+1) ≤ T . Thus, even

if we add a new record d to R, the records r and s that used to merge will have the same

sequence of records that can merge them together. We now prove that the SN algorithm is

not monotonic by providing a counter example. Suppose the database is R = {r, s} where

r and s match with each other. If the window size W is 2 and the sorted list of records is [r,

s], the SN algorithm will compare r and s in the same window and cluster them together.

Say that we add a disinformation record d that does not match with either r or s, but has

a key value between those of r and s. As a result, the SN algorithm will not be able to

compare r and s within the same window and thus will not cluster them together.

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 235

Notice that if the window size is at least |R| (i.e., the total number of records), then

the SN algorithm does satisfies monotonicity because the algorithm reduces to a pairwise

comparison of all records followed by a transitive closure.

The monotonicity property is desirable because the disinformation we generate (see

Section 7.3 for details) is more likely to merge clusters according to the disinformation

plan without any clusters splitting in the process.

7.2 Planning Algorithms

We start by proposing an algorithm that returns an optimal disinformation plan (Defini-

tion 7.1.1) where h = 1. Restricting h to 1 gives us the insight for solving the general

problem later on. We propose a pseudo-polynomial algorithm that uses dynamic program-

ming and runs in O(|G.V | × B) time, which is polynomial to the numerical value of the

budget B, but still exponential to the length of the binary representation of B. We assume

that B is an integer and that all the edges in the cost graph G have integer values. Next,

we propose a 2-approximate greedy algorithm that runs in O(|G.V | × log(|G.V |)) time.

Finally, we propose two heuristics for the general disinformation problem based on the first

two algorithms for the restricted problem.

7.2.1 Exact Algorithm for 1-Level Plans

Algorithm 13 is an exact algorithm that uses dynamic programming to solve the disinfor-

mation problem where h = 1. This algorithm is similar to a dynamic algorithm used to

solve the 0–1 Knapsack problem. Given the cost graph G, the root node c0 ∈ G.V , the cost

function D, the benefit function N , and the budget B, we first assign sequential ids starting

from 1 to the vertices other than c0 in G. Each subproblem in {(i, t)| i = 0, . . . , |G.V | − 1

and t = 0, . . . , B} is defined as solving the disinformation problem for a subgraph of G

that contains all the vertices up to the id i along with the edges among those vertices while

using the cost budget t. We use a 2-dimensional array m where m[i, t] contains the max-

imum benefit for each subproblem (i, t). In addition, we store the clusters in the optimal

disinformation plan for each subproblem in the array s. After running the algorithm, the

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 236

ALGORITHM 13: Exact algorithm for 1-level plans
input : the cost graph G, the root node c0, the cost function D, the benefit function N , the cost

budget B, the array of the optimal benefits m, the array of the optimal disinformation
plans s

output: the optimal disinformation plan J
1 for t = 0, . . . , B do
2 m[0, t] = 0;
3 s[0, t] = {c0};
4 for i = 0, . . . , |G.V | − 1 do
5 m[i, 0] = 0;
6 s[i, 0] = {c0};
7 for i = 1, . . . , |G.V | − 1 do
8 for t = 1, . . . , B do
9 if D(c0, ci) ≤ t ∧m[i− 1, t−D(c0, ci)] + N(ci) > m[i− 1, t] then

10 m[i, t] = m[i− 1, t−D(c0, ci)] + N(ci);
11 s[i, t] = s[i− 1, t−D(c0, ci)] ∪ {ci};
12 else
13 m[i, t] = m[i− 1, t];
14 s[i, t] = s[i− 1, t];

15 J.V ← s[|G.V | − 1, B];
16 J.E ← {c0–ci|ci ∈ s[|G.V | − 1, B]�{c0}};
17 return J ;

optimal disinformation plan J has a total benefit of m[|G.V | − 1, B].

To illustrate Algorithm 13, suppose we have a cost graph G that contains the vertices

c0, c1, c2 and edges with the weights D(c0, c1) = 1, D(c0, c2) = 2, and D(c1, c2) =∞. Also,

suppose that N(c1) = N(c2) = 1, and the cost budget B = 1. In Steps 1–6, we initialize

the arrays m and s when either the first or second index is 0. We then solve the remaining

subproblems in Steps 7–14. In Steps 7–8, we set i = 1 and t = 1. In Step 9, D(c0, c1) =

1 ≤ t = 1, so we check the second condition. Since m[i − 1, t − D(c0, ci)] + N(c1) =

m[0, 0] + 1 = 1 > m[i− 1, t] = m[0, 1] = 0, we set m[1, 1] = 1 and s[1, 1] = {c0, c1}. We

then continue to Steps 7–8 and set i = 2 and t = 1. In Step 9, D(c0, c2) = 2 > t = 1, so we

set m[2, 1] = m[1, 1] = 1 and s[2, 1] = {c0, c1}. Finally, we continue to Steps 15–17 and

construct the optimal disinformation plan J by setting J.V = s[2, 1] = {c0, c1} and J.E =

{c0–c1} and then return J . The optimal benefit is m[2, 1] = 1.

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 237

Proposition 7.2.1. Algorithm 13 generates the optimal disinformation plan with h = 1.

Proof. We prove by induction. In the base case, if either i or t is 0, then the only possible

disinformation plan is {c0}. Now suppose neither i nor t are 0. We need to decide whether

to add ci to the disinformation plan or not. As long asD(c0, ci) > t, we can compute the op-

timal benefit including ci by adding the optimal benefit of the subproblem (i, t−D(c0, ci))

andN(ci). The only other option is to compute the optimal benefit of the subproblem (i−1,

t). The larger benefit is clearly the optimal benefit for the subproblem (i, t). Hence, we can

derive the optimal benefit and disinformation plan for all subproblems.

Proposition 7.2.2. The time complexity of Algorithm 13 is O(|G.V | × B), and the space

complexity is O(|G.V |2 ×T).

Proof. The time complexity of Algorithm 13 is O(|G.V | × B) because the double loop

in Steps 7–14 iterates (|G.V | − 1) × B times. The space complexity of Algorithm 13 is

O(|G.V |2×T) because we need to store the optimal disinformation plan for each entry in s.

Although not shown in the algorithm, the space complexity can be reduced toO(|G.V |×B)

if we only store the incremental changes in the disinformation plan for each subproblem.

7.2.2 Approximate Algorithm for 1-Level Plans

We now propose a 2-approximate greedy algorithm that runs in polynomial time. The algo-

rithm is similar to a 2-approximation algorithm that solves the 0–1 Knapsack problem. We

first add c0 to the disinformation plan. We then select the clusters where D(c0, ci) ≤ B and

sort them by the benefit-per-cost ratio N(ci)
D(c0,ci)

in decreasing order into the list [c′1, . . . , c
′
n].

We then iterate through the sorted list of clusters and add each cluster to the disinformation

plan J until the current total cost exceeds B. Suppose that we have added the sequence

of clusters [c′1, . . . , c
′
k] where k ≤ n. If k = n or

∑
i=1,...,kN(ci) > N(ck+1), we return

the disinformation plan J where J.V = {c0, c
′
1 . . . , c

′
k} and J.E = {c0–c′i|i = 1, . . . , k}.

Otherwise, we return the plan J where J.V = {c0, c
′
k+1} and J.E = {c0–c′k+1}.

For example, suppose we have a cost graphG that contains the vertices c0, c1, c2, and c3

with edges that have the weights D(c0, c1) = 1, D(c0, c2) = 2, D(c0, c3) = 3, and D(c0, c4)

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 238

= 6. (The other weights are not needed to solve the problem.) Also say that the benefits

are N(c1) = 3, N(c2) = 6, N(c3) = 6, N(c4) = 12, and the budget B = 5. We first sort the

clusters other than c0 that have a cost D(c0, ci) ≤ B by their N(ci)
D(c0,ci)

values in decreasing

order. The benefit-per-cost ratios of c1, c2, c3, c4 are 3, 3, 2, 2, respectively. Since c4 cannot

be in the list because D(c0, c4) = 6 > B = 5, we obtain the sorted list [c1, c2, c3]. We then

scan the sorted list and add each cluster to the disinformation plan J until the total cost

exceeds B. Since N(c1) + N(c2) = 9 > N(c3) = 6, we have J.V = {c0, c1, c2} and J.E =

{c0–c1, c0–c2} with a total benefit of 3 + 6 = 9. The optimal solution turns out to be J.V =

{c0, c2, c3} and J.E = {c0–c2, c0–c3} with a benefit of 6 + 6 = 12, demonstrating that the

greedy algorithm is not an optimal algorithm.

Proposition 7.2.3. The greedy algorithm generates a 2-approximate optimal disinforma-

tion plan with h = 1.

Proof. Let d =
∑

j=1...kD(c0, cj) and b =
∑

j=1...kN(cj). Since d + D(c0, ck+1) > B

and all the clusters are sorted by their N(ci)
D(c0,ci)

ratios, we conclude that the optimal benefit

OPT < b + N(ck+1). The greedy algorithm returns a total benefit of max{b,N(ck+1)}
when k < n (if k = n, all the clusters are included in the plan, so the greedy algorithm is

optimal). Hence, OPT < b+N(ck+1) ≤ 2×max{b,N(ck+1)}, which makes the solution

of the greedy algorithm 2-approximate.

Proposition 7.2.4. The time complexity of the greedy algorithm isO(|G.V |2×log(|G.V |)),

and the space complexity is O(|G.V |).

Proof. Since the greedy algorithm first needs to sort the clusters inG.V , it takesO(|G.V |2×
log(|G.V |)) time to run. The space complexity is O(|G.V |) since we only need to store the

sorted information of clusters.

7.2.3 Heuristics for General Plans

Since the general disinformation problem (Definition 7.1.1) is NP-hard in the strong sense,

there is no exact pseudo-polynomial algorithm or approximate polynomial algorithm for the

problem. Instead, we propose two heuristics that extend the algorithms in Sections 7.2.1

and 7.2.2 to produce disinformation plans with no restriction in the heights.

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 239

Algorithm 14 (called EG) is a heuristic that repeatedly runs Algorithm 13 for con-

structing each level of the disinformation plan. As a result, Algorithm 14 always returns a

disinformation plan that is at least as good as the 1-level plan generated by Algorithm 13.

To illustrate Algorithm 14, suppose we are using the cost graph G in Figure 7.1 and set B

= 3. In Steps 1–2, we initialize the disinformation plan J by setting J.V = {{r}} and J.E =

{}. In Steps 3–5, we set c = {r}, G′ = G, and B′ = 3. In Step 7, we run Algorithm 13 to de-

rive the best 1-level plan for G′ and B′. In our example, the result is J ′ where J ′.V = {{r},
{s}} and J ′.E = {{r}–{s}}. Since |J ′.V | = 2 > 1 in Step 8, we continue to Steps 10–20

where we merge the clusters {r} and {s} within G′ and update the edges accordingly. In

Step 10, we update the budget B′ to 3−1 = 2. In Steps 11–12, we update J by setting J.E

to {{r}–{s}} and J.V to {{r}, {s}}. In Step 13, we updated c to the newly merged cluster

{r, s}. In Steps 14–15, we update G′.V to {{r, s}, {t}, {u, v}}. In Step 16, we remove the

unnecessary edges in G′ by setting G′.E to {{t}–{u, v}}. In Steps 17–20, we add the new

edges connecting c to the vertices in G′ and update the cost function D accordingly. As

a result, G′.E becomes {{t}–{u, v}, {r, s}–{t}, {r, s}–{u, v}} and the following weights

are updated: D({r, s}, {t}) = D({t}, {r, s}) = min{D({r}, {t}), D({s}, {t})} = 2 and

D({r, s}, {u, v}) = D({u, v}, {r, s}) = min{D({r}, {u, v}), D({s}, {u, v})} = 4. We

now repeat the loop in Steps 6–20 with the updated B′, G′, and c values. This time, we

merge {t} to {r, s} and get the results T ′ = 0, G′.V = {{r, s, t}, {u, v}}, G′.E = {{r, s, t}–
{u, v}}, and c = {r, s, t}. In the next loop, {u, v} cannot merge with {r, s, t} because B′

= 0, so we break the while loop at Step 9 and return J in Step 21 where J.V = {{r}, {s},
{t}} and J.E = {{r}–{s}, {s}–{t}}.

Proposition 7.2.5. The time complexity of Algorithm 14 is O(|G.V |2 ×B + |G.V |3), and

the space complexity is O(|G.V |2 ×B).

Proof. Algorithm 14 has a time complexity ofO(|G.V |2×log(|G.V |)) because each time a

cluster with the highest benefit per cost ratio is merged to c0, we re-sort the list of remaining

clusters. The space complexity is O(|G.V |) because we only need to store a sorted list of

clusters in G.

Our second heuristic (called AG) extends the greedy algorithm in Section 7.2.2. Again,

we first sort the clusters other than c0 that have a cost D(c0, ci) ≤ B by their N(ci)
D(c0,ci)

values

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 240

ALGORITHM 14: Heuristic using Algorithm 13 for general plans
input : the budget B, the cost graph G, the root node c0, the cost function D, and the benefit

function N
output: a disinformation plan J

1 J.V ← {c0};
2 J.E ← {};
3 c← c0;
4 G′ ← G;
5 B′ ← B;
6 while B′ > 0 do
7 J ′ ← Alg. 13(B′, G′, D, N, c, [], []);
8 if |J ′.V | = 1 then
9 break;

10 B′ ← B′ −
∑

(ci,cj)∈J ′.E D(ci, cj);
11 J.E ← J.E ∪ {ci–cj |ci ∈ J ′.V�{c} and cj = argmind∈J.V D(d, ci)};
12 J.V ← J.V ∪ (J ′.V�{c});
13 c←

⋃
d∈J.V d;

14 G′.V ← G′.V�J ′.V ;
15 G′.V ← G′.V ∪ {c};
16 G′.E ← G′.E�{(ci, cj)|(ci, cj) ∈ G′.E ∧ (ci ∈ J ′.V ∨ cj ∈ J ′.V });
17 for d ∈ G′.V�{c} do
18 G′.E ← G′.E ∪ {c–d};
19 D(d, c)← mine∈J ′.V D(d, e);
20 D(c, d)← D(d, c);

21 return J ;

in decreasing order. The algorithm then only merges the cluster with the highest benefit-

per-cost ratio to the closest cluster in the current plan and updates the edges and the budget

just like in the EG algorithm. We also update the disinformation plan J by setting J.E =

J.E ∪ {ci–cj|cj = argminc∈J.VD(c, ci)} and then J.V = J.V ∪ {ci}. (The ordering of the

updates is important.) We repeat the process of sorting the remaining clusters and merging

the best one with the closest cluster in the plan until no cluster can be merged without

costing more than the budget.

To illustrate AG, suppose we again use the cost graph G in Figure 7.1 and set B

= 3. We first sort the clusters by their benefit per cost ratio. As a result, we get the

sorted list [{s}, {t}] where {u, v} is not in the sorted list because its cost 4 already

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 241

exceeds the budget B. We then merge {s} with {r} and create the edges {r, s}–{t}
and {r, s}–{u, v} with the weights D({r, s}, {t}) = D({t}, {r, s}) = min{2, 4} = 2 and

D({r, s}, {u, v}) = D({u, v}, {r, s}) = min{4, 4} = 4, respectively. We then re-sort the

remaining clusters according to their benefit per cost ratio. This time, we get the sorted list

[{t}] where {u, v} again has a cost of 4, which exceeds the current budget 2. We then merge

{t} with {r, s} and create the edge {r, s, t}–{u, v} with the weight D({r, s, t}, {u, v}) =

D({u, v}, {r, s, t}) = 4. Since no cluster can now merge with {r, s, t}, we terminate and

return the plan J where J.V = {{r}, {s}, {t}} and J.E = {{r}–{s}, {s}–{t}}.

Proposition 7.2.6. The time complexity of the AG algorithm is O(|G.V |2 × log(|G.V |)),

and the space complexity is O(|G.V |).

Proof. The AG algorithm has a time complexity of O(|G.V |2 × log(|G.V |)) because each

time a cluster with the highest benefit per cost ratio is merged to c0, we re-sort the list of

remaining clusters. The space complexity is O(|G.V |) because we only need to store a

sorted list of clusters in G.

7.3 Creating New Records

In this section, we discuss how to create new records for disinformation based on existing

records. At first, we assume that the records are in a Euclidean space. We then propose

various strategies for generating disinformation when the records are not in a Euclidean

space.

7.3.1 Euclidean Space

Suppose the agent is inducing a merge between two clusters ci and cj in a Euclidean space

by creating disinformation records in between. One method is to find the centroids ri and

rj of ci and cj , respectively, by averaging the values of the records for each cluster, and

then creating new records on the straight line connecting ri and rj . For example, if there

are two clusters c1: {{[X, 20], [Y, 7]}} and c2: {{[X, 30], [Y, 8]}, {[X, 50], [Y, 8]}}, then

the agent first generates the centroids r1: {[X, 20], [Y, 7]} and r2: {[X, 40], [Y, 8]}. If

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 242

the agent wants to generate a point exactly in the middle of r1 and r2 according to the

Euclidean space, she can create the record t: {[X, 30], [Y, 7.5]} by averaging the values

for each attribute. If generating one disinformation record is not enough, the agent can

further generate disinformation records that are between r1 and t and between r2 and t. In

our example, the agent can create the disinformation records {[X, 25], [Y, 7.25]} and {[X,

35], [Y, 7.75]}. Hence, the agent can easily create disinformation records based on existing

values in a Euclidean space.

7.3.2 Non-Euclidean Space

Suppose that the clusters to merge – ci and cj – are in a non-Euclidean space, but the agent

can still compute the pairwise distances between records. (An ER algorithm computes

distances or similarities between records.) Again, the idea is to find the records ri and rj
that represent ci and cj , respectively, and then create disinformation records between ri and

rj . Since the two clusters are not in a Euclidean space, however, the agent can no longer

compute the centroids of the clusters. An alternative way to choose ri and rj is to identify

the clustroids of ci and cj based on the pairwise distances between records. Intuitively, a

clustroid of a cluster c is the record r ∈ c that is “closest” to the other points in c. For

example, r may have the smallest average distance to the other points in c. Thus if the

cluster is c: {{[X, “abc”]}, {[X, “bcd”]}, {[X, “cde”]}}, and the distance between two

records is computed by taking the edit distance of their string values, the clustroid is {[X,

“bcd”]}. The agent can also choose the records ri ∈ ci and rj ∈ cj that are closest to (or

furthest from) each other.

The agent can create disinformation records between ri and rj by mapping them into

more restricted spaces (e.g., a Euclidean space). For each attribute, say that the agent wants

to find the middle point vm of two values v1 and v2 such that the distances d(v1, vm) and

d(v2, vm) are approximately the same in the non-Euclidean space. We assume there is a

mapping function M for each attribute of a record that converts the values v1 and v2 into

the values u1 and u2 in the restricted space. Once the agent operates in the restricted space,

she can more easily find the mid-point um where the distance d′(u1, um) is the same as

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 243

d′(u2, um). The agent can then use an inverse function M−1 to map um back into a non-

Euclidean value, which becomes the desired midpoint vm.

Suppose the agent is using a Euclidean space as the restricted space, and there are

two records containing strings: r: {[X, “C300X”]} and s: {[X, “C300”]}. The agent can

convert each string into a real number that reflects the string’s rank in the alphabetically

sorted list of all possible strings. Here, we assume that strings are matched based on their

closeness in alphabetical order and not by other measures such as edit distance. Once the

agent computes the average value of M (“C300X”) and M (“C300”) and converts that value

back into a string using M−1, she obtains the string “C300LMM. . .”, so the new record is

{[X, “C300LMM. . .”]}.
The agent can also create disinformation records in a non-Euclidean space using a to-

tal order of values in a dictionary as the restricted space. This mapping is useful if the

agent wants to make sure the values in a disinformation record are realistic. In our example

above, the agent created the camera model “C300LMM. . .”. However, if the adversary is

knowledgeable in camera products, she could easily distinguish the disinformation records

from the real ones. The solution is to only use values in a dictionary that contains a se-

quence of all the possible realistic values in the non-Euclidean space. For instance, if the

dictionary is all the valid camera models in alphabetical order, then the model that is clos-

est to “C300LMM. . .” could be “C300S”, so the agent can create the disinformation record

{[X, “C300S”]}.
If the values of existing records cannot be mapped to a total ordering of values in a

dictionary, the agent can use a partial ordering of values that form a lattice instead. For

example, say that the agent has two records containing sets: r: {[X, {1, 2}]} and s: {[X,

{2, 3}]}. Also say the agent uses the Jaccard similarity when measuring the distances

between sets. As a result, the similarity between r and s is 1
3
. Since sets of elements form a

lattice, the agent can assign the common ancestor of the two sets (i.e., the union of the two

sets {1, 2, 3}) as the value of the new record. The resulting disinformation record {[X, {1,

2, 3}]} has a distance of 2
3

from each record.

Finally, if the agent cannot create new values at all, she can still create new records by

only using the values in existing records. For example, if r = {[X, “C300”], [Y, 20]} and s

= {[X, “C300X”], [Y, 30]}, then she can create the disinformation record {[X, “C300”], [Y,

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 244

30]}.
In general, the more restrictive the mapping space is, the costlier it is to create disinfor-

mation records.

7.4 Experiments

We evaluate the disinformation planning algorithms in Section 7.2 on synthetic data (Sec-

tion 7.4.1) and then on real data (Section 7.4.2). We compare the robustness of the SN and

HCS algorithms. Our algorithms were implemented in Java, and our experiments were run

in memory on a 2.4GHz Intel(R) Core 2 processor with 4 GB of RAM.

7.4.1 Synthetic Data Experiments

We first evaluate our disinformation techniques using synthetic data. The main advantage

of synthetic data is that they are much easier to generate for different scenarios and provide

more insights into the operation of our disinformation planning algorithms.

In general, there are two types of attributes in records: attributes used for matching

records and ones that contain additional properties. For our synthetic data, we only create

attributes needed for record matching and do not model the additional properties. We

consider a scenario where records in a non-Euclidean space are converted to records in

a Euclidean space using a mapping function M (see Section 7.3.2). As a result, all the

converted records contain real numbers in their attributes. We then run ER and generate the

disinformation records in the Euclidean space. The disinformation records could then be

converted back into the non-Euclidean space using the inverse mapping function M−1. We

do not actually use the functions M and M−1, but directly generate the mapped synthetic

records in the Euclidean space.

Table 7.2 shows the parameters used for generating the synthetic database R and the

default values for the parameters. There are s entities in the dataset that are distributed on

a d-dimensional Euclidean space. For each dimension, we randomly assign the values in

the list [0, i, 2 × i, . . . , (s − 1) × i] to the s entities. As a result, any two entities have a

distance of at least i from each other for any dimension. For each entity e, the data set

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 245

Par. Description Val.
Data Generation

s Number of entities 100
u Avg. number of duplicate records per entity 10
f Zipfian exponent number of # duplicates 1.0
d Number of attributes (dimensions) per record 2
i Minimum value difference between entities 50
v Maximum deviation of value per entity 50
g Zipfian exponent number of deviation 1.0

Match Rule
t Record comparison threshold 50

Table 7.2: Parameters for generating synthetic data

contains an average of u records that represent that entity, where the number of duplicates

form a Zipfian distribution with an exponent of f . Each record r generated for the entity

e contains d attributes. For each attribute a, r contains a value selected from a Zipfian

distribution with an exponent of g within the range of [x, x + v] where x is the a value of

e and v is the maximum deviation of a duplicate record’s value from its entity value.

ER Algorithms We experiment on the HCS and SN algorithms. The HCS algorithm

repeatedly merges the closest clusters together until the closest-cluster distance exceeds the

comparison threshold t = 50. The default value for t was set to be equal to the minimum

value difference parameter i. When comparing two records r and s across clusters, the

match function computes the Euclidean distance between the two records and checks if the

distance is within t. For example, if r = {[v1, 1], [v2, 1]} and s = {[v1, 2], [v2, 3]}, then the

Euclidean distance is
√

(2− 1)2 + (3− 1)2 =
√

5, which is smaller than t = 50. The SN

algorithm sorts the records according to their first dimension value (of course, there are

other ways to sort the records) and then uses a sliding window of size W to compare the

records using a Boolean match function that returns true if the Euclidean distance of two

records is within t and false otherwise. The smaller the window size W , the fewer records

are compared. However, a window size that is too small will prevent SN from properly

resolving the records. In our experiments, we set a window size of W = 20 so that SN was

efficient and yet had nearly identical ER results as the HCS algorithm when resolving R.

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 246

Confusion Metric We define a confusion metric C for a cluster c. In the motivating

example in the beginning of this chapter, the adversary was confused into whether the

records in the cluster c = {r, s} (excluding the disinformation record) represented the same

camera model C300X. However, the correct information of the target entity e = C300X was

{r}. We first define the precision Pr of c as the fraction of non-disinformation records in

c that refer to e. In our example, Pr = 1
2
. We also define the recall Re of c as the fraction

of non-disinformation records that refer to e that are also found in c. Since there is only

one record that refers to the C300X, Re = 1
1
. The F1 score [70] represents the overall

accuracy of the information in c and is defined as 2×Pr×Re
Pr+Re

. In our example, the F1 score

of c is 2× 1
2
× 1

1
1
2

+ 1
1

= 2
3
. Finally, we define the confusion C of c as 1− F1 where we capture the

notion that the lower the accuracy, the higher the confusion the adversary has on c. In our

example, the confusion of c is C(c) = 1− 2
3

= 1
3
.

Target Entity and Cluster Before generating the disinformation, we choose one entity as

the target entity e and then choose the cluster in the agent’s ER result that “best” represents

e as the target cluster c0. There may be several clusters that contain records of e when

the ER algorithm does not properly cluster the records that refer to e. In this case, we set

the cluster with the lowest confusion as the target cluster. For example, suppose that the

agent’s ER result of R is {{r1, r2, s1}, {r3, s2}} where each record ri refers to the entity e1

and each record si refers to the entity e2. If e1 is our target entity, the confusion values of

the two clusters are 1− 2×2/3×2/3
2/3+2/3

= 1
3

and 1− 2×1/2×1/3
1/2+1/3

= 3
5
, respectively. Since 1

3
< 3

5
, we

set {r1, r2, s1} as the target cluster c0.

As a default, we choose the entity with the largest number of duplicates to be the target

entity e. According to our data generation method, there is only one entity that has the most

duplicates because of the Zipfian distribution of the number of duplicates per entity. Notice

that we are using a worst-case scenario where the many duplicates of e makes it difficult to

dilute e’s information by merging clusters.

Benefit and Cost Functions We define the benefit function N to return the size |c| of

each cluster c. If we use the plan J for generating disinformation, we obtain a total benefit

of
∑

c∈J.V |c| and a confusion of C(c0 ∪
⋃
c∈J.V c). While maximizing

∑
c∈J.V |c| does not

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 247

Algorithm Description
E2 Exact algorithm for 1-level plans
EG Heuristic extending E2 for general plans
A2 Greedy algorithm for 1-level plans
AG Heuristic extending A2 for general plans

Table 7.3: Disinformation Plan Algorithms

necessarily maximizeC(c0∪
⋃
c∈J.V c), we will see that we can still obtain a high confusion

in practice. In the special case where the recall Re of the target cluster c0 is 1, we can show

that maximizing C(c0 ∪
⋃
c∈J.V c) is in fact equivalent to maximizing

∑
c∈J.V |c|.

We define the cost function D to return the number of disinformation records that need

to be created when merging two clusters. For example, if we need to generate two disinfor-

mation records d1 and d2 to merge the clusters {r} and {s}, then D({r}, {s}) = 2. Notice

that the budget B thus specifies the maximum number of disinformation records that can

be generated.

Disinformation Generation When creating disinformation records to merge the two

clusters ci and cj , we first measure the distance between the centroids of the clusters. We

then create disinformation records along the straight line in the Euclidean space connecting

the two centroids with an interval of at most t so that any two consecutive records along the

line are guaranteed to match with each other. For example, if c1 = {r : {[v, 1]}, s : {[v, 3]}}
and if c2 = {t : {[v, 7]}}, then the centroid of c1 is {[v, 2]}, and the centroid of c2 is {[v, 7]}.
If the distance threshold t = 2, the merging cost is d7−2

2
e− 1 = 2, and we can create the two

disinformation records {[v, 4]} and {[v, 6]}. In our experiments, we use the four disinfor-

mation planning algorithms defined in Section 7.2, which are summarized in Table 7.3.

ER Algorithm Robustness

We compare the robustness of the HCS and SN algorithms against the E2 planning algo-

rithm. (Using any other planning algorithm produces similar results.) We vary the budget

B from 100 to 400 records and see the increase in confusion as we generate more disin-

formation records. Since we choose the target entity as the one with the largest number

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 248

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

Co
nf

us
io

n
(C

)

Budget (B)

HC
SN

Figure 7.2: Robustness of the HCS and SN algorithms

of duplicates, it takes many disinformation records to significantly increase the confusion.

For target entities with fewer duplicates, the increase of confusion is much more rapid (see

Section 7.4.1).

Figure 7.2 shows that the overall confusion results for the SN algorithm are lower

than those of the HCS algorithm. Initially, the ER results without the disinformation were

nearly the same where the SN algorithm produced 105 clusters with the largest cluster of

size 195 while the HCS algorithm produced 104 clusters with the largest cluster of size

196. However, as we add disinformation records, the SN algorithm shows a much slower

increase in confusion, demonstrating that it is more robust to disinformation than the HCS
algorithm. The main reason is that HCS satisfies monotonicity, so clusters are guaranteed

to merge by adding disinformation whereas the SN algorithm may not properly merge the

same clusters despite the disinformation.

Figure 7.3 compares the four planning algorithms using the SN algorithm. We can

observe in the figure that the EG, E2, and A2 algorithms have similar confusion results.

Interestingly, theAG algorithm performs consistently worse than the other three algorithms

when the budget exceeds 100. The reason is that the AG algorithm was generating disin-

formation plans with large heights (e.g., the optimal plan when B = 200 had a height of

8), but the SN algorithm was not able to merge all the clusters connected by the plan due

to the limited sliding window size. For example, even if two clusters c1 and c2 were con-

nected with a straight line of disinformation records, the records of some other cluster c3

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 249

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

Co
nf

us
io

n
(C

)

Budget (B)

E2
EG
A2
AG

Figure 7.3: Comparison of disinformation algorithms

were preventing some of the records connecting c1 and c2 from being compared within the

same sliding window.

Another observation is that the confusion plots do not necessarily increase as the budget

increases. For example, the confusion of the A2 algorithm decreases when B increases

from 50 to 100. Again, the reason is that the disinformation was not merging clusters as

planned due to the random intervention of other existing clusters. The frequency of failing

to merge clusters strongly depends on the data and sliding window size. That is, if we

were to use a database other than R, then the AG algorithm could have different confusion

results compared to the one shown in the graph. We conclude that the 1-level planning

algorithms can actually perform better than the general planning algorithms when using

the SN algorithm.

To see the relation between the sliding window size of the SN algorithm and the in-

crease of confusion, we vary the window size from 10 to 50 and observe the confusion of

the SN algorithm against the E2 disinformation planning algorithm using a budget of B =

200 records. As the window size increases, the confusion increases because the disinfor-

mation records have a higher chance of merging the clusters they connect.

We now test the robustness of the HCS algorithm against the four disinformation plan-

ning algorithms. We vary the budget B from 100–400 records and see the increase in con-

fusion as we generate more disinformation records. Figure 7.5 shows that all four planning

algorithms have smoothly increasing plots where the confusion initially increases rapidly

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 250

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45 50

Co
nf

us
io

n
(C

)

Sliding Window Size (W)

SN

Figure 7.4: Window size impact on confusion for SN

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

Co
nf

us
io

n
(C

)

Budget (B)

E2
EG
A2
AG

Figure 7.5: Robustness of the HCS algorithm

and then slows down as merging large clusters to the target cluster becomes more difficult.

The EG algorithm performs slightly better than the E2 algorithm while the A2 algorithm

performs slightly worse than the E2 algorithm. The AG algorithm consistently outper-

forms the three other algorithms by up to a confusion difference of 0.11. Nonetheless, the

results suggest that the 1-level plan algorithms have confusion performances comparable

to the general plan algorithms using the HCS algorithm.

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 251

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Co
nf

us
io

n
(C

)

Minimum Entity Distance (i)

SN
HC

Figure 7.6: Entity distance impact on confusion

Entity Distance Impact

We investigate how the distances among entities influence the confusion results. Figure 7.6

shows how the accuracies of the SN and HCS algorithms change depending on the mini-

mum value difference i between entities using a budget of B = 200 records. The closer the

entities are with each other (i.e., as i decreases), the more likely the ER algorithm will mis-

takenly merge different clusters, which leads to a higher confusion. The HCS algorithm

plot clearly shows this trend. The only exception is when i decreases from 10 to 0. The

confusion happens to slightly decrease because some of the records that were newly merged

with the target cluster were actually correct records that referred to e. The SN algorithm

plot becomes increasingly unpredictable as i decreases. The reason is that when merging

two clusters with disinformation, there is a higher chance for other clusters to randomly

interfere with the disinformation.

Universality of Disinformation

In practice, the agent may not be able to tell which ER algorithm the adversary will use

on her database. Hence, it is important for our disinformation techniques to be universal

in a sense that the disinformation records generated from the agent’s ER algorithm should

increase the confusion of the target entity even if the adversary uses any other ER algo-

rithm. We claim that, as long as the ER algorithm used for generating the disinformation

“correctly” clusters the records in the database, the optimal disinformation generated by

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 252

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

Co
nf

us
io

n
(C

)

Budget (B)

Agent: SN, Adversary: SN
Agent: HC, Adversary: SN
Agent: HC, Adversary: HC
Agent: SN, Adversary: HC

Figure 7.7: Universal disinformation

using the agent’s ER algorithm are indeed applicable when the adversary uses a different

ER algorithm.

Figure 7.7 shows the results of using the disinformation generated when the agent as-

sumes the SN (HCS) algorithm while the adversary actually uses the HCS (SN) algo-

rithm. We observe that there is almost no change in the confusion results compared to

when the agent and adversary use the same ER algorithms. The reason is that the SN and

HCS algorithms identified nearly the same entities when resolvingR, so the disinformation

that was generated were nearly the same as well.

In a worst-case scenario, the ER algorithms of the agent and adversary may produce

very different ER results forR, leading to different disinformation results as well. However,

the different ER results means that one (or both) of the ER algorithms must have incorrectly

resolved R. Suppose that the agent’s ER algorithm clustered the records correctly and the

disinformation was generated using that ER algorithm. Then although the disinformation

may not significantly increase the confusion of the adversary’s (incorrect) ER algorithm,

the adversary’s ER algorithm produced a high confusion in the first place, so it is natural

that the disinformation cannot further increase the confusion. Thus, as long as we generate

the disinformation records from correct ER results, the records can be universally applied

to any other correctly running ER algorithm.

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 253

Table 7.4: Decrease in confusion (%) with sampling
Sampling Rate Budget

50 100 150 200 250 300 350 400
20 15.6 14.1 12.1 13.4 9.6 9.5 10.6 8.2
40 7 10.3 11.8 10.5 9.8 10.2 9.2 8.3
60 3.5 5.4 5 7.2 6.9 6.6 7 7.1
80 0 3.9 3.5 3.4 2.8 2.2 2.6 3

Partial Knowledge

Until now, we have assumed the agent to have a complete knowledge of the database R. In

reality, the agent may not know all the information in the public. For example, Cakon may

not know every single rumor of its new camera model on the Web. Hence, we investigate

how the agent only having a partial knowledge of the database influences the confusion

results. We first compute the ER result of the HCS algorithm on R and select the target

cluster. We then take a random sample of the clusters in the ER result (without the tar-

get cluster) and add them to the partial information. We then generate the disinformation

records based on the target cluster and partial information.

Table 7.4 shows the decrease in confusion (%) relative to the confusion using the full

information without sampling. We vary the sampling rate from 20 to 80%. As the sam-

pling rate goes up, the closer the confusion values are to those of the full information.

For example, if we use a budget of 200 records, a sampling rate of 20% decreases the

full-information confusion by 13.4% while a sampling rate of 80% only decreases the con-

fusion by 3.4%. Nevertheless, we conclude that the disinformation generated from partial

information is still effective.

Restricted Values

We explore how restrictions in creating values can influence the confusion results. When

creating disinformation records, one may need to create values that are realistic to the

adversary. For example, when creating fake camera models, the agent may only be able to

use a valid model name. In our experiments, we simulate this restriction by only allowing

an attribute value of a disinformation record to be multiples of an integer, which we call the

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 254

Table 7.5: Decrease in confusion (%) with restrictions
Granularity Budget

50 100 150 200 250 300 350 400
20 13.1 -2.3 3.8 1.6 3.5 2.3 2.7 2.3
40 26.7 15.8 9.9 8.7 6.8 5.8 5.3 5.2

granularity. If the granularity is 2, then the disinformation record {[v1, 0], [v2, 2]} is valid,

but {[v1, 0], [v2, 3]} is not valid.

When generating disinformation records that connect two centroids r and s, we start

from one of the centroids (say r) and create the disinformation record d that satisfies the

granularity constraint and has the shortest Euclidean distance to s while being within a

Euclidean distance of the comparison threshold t from r. We then repeat the same search

starting from d and continue creating disinformation records until the current disinforma-

tion record is within a Euclidean distance of t from s. For example, suppose that r =

{[v1, 0], [v2, 0]} and s = {[v1, 5], [v2, 3]}. Suppose that we only allow the attribute values of

disinformation records to be multiples of 2. If the comparison threshold t = 2
√

2 and we

start from r, then we create the disinformation record d1 = {[v1, 2], [v2, 2]}, which is the

closest record to s that has a distance within 2
√

2 from r. We then create the next disinfor-

mation record d2 = {[v1, 4], [v2, 2]}. Alternatively, we could have created the record {[v1, 4],

[v2, 4]}. Since d2 is within a distance of
√

2 from s, we return the two records {d1, d2} as

the final disinformation. Table 7.5 shows the difference in confusion as we increase the

granularity from 20 to 40 when we use the HCS algorithm. Any granularity larger than

the comparison threshold t = 50 is not feasible because there is no way to create two disin-

formation records that match with each other. As the granularity increases, the confusion

values decrease as well for the same budget because it takes more disinformation records to

merge clusters. When B = 100, setting the granularity to 20 temporarily results in a higher

confusion than the result without restrictions because there were relatively more disinfor-

mation records that were being generated, and these records were merging more clusters to

the target cluster beyond what was planned. We conclude that the disinformation generated

with value restrictions is still effective unless the restrictions make it absolutely infeasible

to create disinformation.

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 255

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

Co
nf

us
io

n
(C

)

Budget (B)

1 Dimension
2 Dimensions
4 Dimensions
8 Dimensions

Figure 7.8: Number of dimensions impact on confusion

Number of Dimensions

In practice, records may contain more than two attributes and thus be in high-dimensional

spaces. To see how our disinformation planning algorithms work for high-dimensional

data, we increase the number of dimensions d of the synthetic data. The other parameters

in Table 7.2 were set to their default values. We also increased the comparison threshold t

in proportion to
√
d. For example, if t was the threshold used in a 2-dimension space, we

use the threshold
√

3√
2
t in a 3-dimensional space.

Figure 7.8 shows the confusion results when we use theHCS algorithm and increase the

number of dimensions from 1 to 8. As a result, the confusion values decrease as d increases,

but converge for large dimensions. The reason that the confusion values decrease is because

the average distance between entities increases slightly faster than the comparison threshold

t. As a result, fewer clusters are merged together, so the confusion decreases. For example,

suppose that we create three entities in an n-dimensional space. If n = 1, then according

to our construction method, the three entities have the values 0, i, and 2i. The average

entity distance is always 4i
3

. Now if we create three entities on a 2-dimensional space, we

can show that the average entity distance for any assignment of entities is at least
√

24i
3

.

For example, one possible assignment of the values could be (0, 2i), (i, 0), and (2i, i). In

this case, the average entity distance is (2
√

5+
√

2)i
3

, which is larger than
√

24i
3

. Since t only

increases by
√

2, the entities are now relatively further away from each other.

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 256

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

Co
nf

us
io

n
(C

)

Budget (B)

1st
10th
20th
30th
40th
50th

Figure 7.9: Entities with fewer duplicates

Target Entities with Fewer Duplicates

In this section, we consider target entities that have fewer duplicates and observe how

their confusion values increase against disinformation. The fewer the duplicates, the more

rapidly the confusion increases as a result of merging clusters. For example, suppose that

Cakon has made an official announcement of a new camera model. With a lot of press

coverage (i.e., there are many duplicate records about the model), it is hard to confuse the

adversary of this information even with many false rumors. However, if Cakon has not

made any announcements, and there are only speculations about the new model (i.e., there

are few duplicate records), then it is much easier to confuse the adversary by adding just a

few false rumors.

Figure 7.9 shows the confusion results when we use the entities with the k-th most

duplicates as the target entities where k varied from 1 to 50. (Recall there is a total of s =

100 entities.) For each entity, we measure its confusion against disinformation generated

by the E2 algorithm using a budget B of at most 10. The other parameters in Table 7.2

were set to their default values. As a result, the entities with fewer duplicates tend to have

a more rapid increase in confusion against the same budget. For example, we only need

to generate 3 disinformation records to increase the confusion of the entity with the 50-

th largest number of duplicates to 0.53. Our results show that it is easier to confuse the

adversary on entities with fewer duplicates.

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 257

 0

 5

 10

 15

 20

 25

 30

 0 2000 4000 6000 8000 10000 12000 14000 16000

Ru
nt

im
e

(m
in

ut
es

)

Number of entities (s)

E2
EG
A2
AG

Figure 7.10: Scalability of disinformation generation

Scalability

We now test the scalability of our techniques on large numbers of entities. Figure 7.10

shows the runtime increase of the planning algorithms as the number of entities increases

from 1,000 to 16,000. The target entity and other parameters in Table 7.2 were set to their

default values. We used the SN algorithm with a window size of 20 as the ER algorithm

and set the budget B to 200. As a result, the EG and AG algorithms are 2 to 6x slower

than the E2 and A2 algorithms because of the time to generate the general plans. All the

runtimes increase in a quadratic fashion against the number of entities. We conclude that

the 1-level plans are practical because they are just as effective as the general plans and can

also be generated more efficiently.

7.4.2 Real Data Experiments

We evaluate our disinformation techniques on real data to see how disinformation works in

two domains where records are not necessarily in a Euclidean space.

Hotel data results

Suppose that a celebrity wants to hold an event in a secret location without letting the public

know. She might want to confuse the adversary by creating false information about loca-

tions. Using this scenario, we experimented on a hotel database where the hotel records

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 258

simulate possible locations for the secret event. The hotel data was provided by Yahoo!

Travel where tens of thousands of records arrive from different travel sources (e.g., Or-

bitz.com), and must be resolved before they are shown to the users. Each hotel record

contains a name, street address, city, state, zip code, and latitude/longitude coordinates.

We experimented on a random subset of 5,000 hotel records located in the United States.

Resolving hotel records involves the comparison of multiple non-Euclidean values.

In particular, the match function BH compares two hotel records and first checks if two

records differ by their state+city combinations, zip codes, or latitude+longitude combina-

tions. If there is no difference, then BH computes the string similarities between the names

and street addresses of the two records using the Jaro distance [111], which ranges from

0 to 1 and is higher for closer strings. If the two hotel names have a Jaro distance of at

least 0.7 while the two street addresses have a distance of 0.95, BH returns true. Or if the

two records have the exact same phone numbers, BH also returns true. Otherwise, BH re-

turns false. We use the HCS algorithm for resolving records while using a Boolean match

function as the distance function. That is, two records have a distance of 0 if they match

according to the match function and 1 otherwise. We set the comparison threshold to be

0.5.

Creating the disinformation now involves the generation of non-Euclidean values as

well. When inducing a merge between two clusters ci and cj with disinformation, we first

choose the records r ∈ ci and s ∈ cj that require the fewest disinformation records to

merge r and s together. We then create a series of disinformation records between r and s

where the names and street addresses first resemble r and then gradually resemble s. For

the attributes other than the name and street address, we simply add the union of the values

to all the disinformation records.

When creating the names and street addresses for the disinformation records between r

and s, it is hard to directly generate the strings using the Jaro distance on the non-Euclidean

space. Instead, we use a mapping function M (see Section 7.3.2) that converts the records

into a partial order space where strings are related to each other based on character inserts,

deletes, and updates. During the conversion, M does not actually change the strings them-

selves. In addition, we implicitly use an identity function as the inverted mapping function

M−1.

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 259

To generate the names and street addresses, we first compute the Levenshtein distance

ln between the names of r and s, which is the minimum number of character inserts, deletes,

and updates to convert r’s name to s’s name. In addition, we set the maximum possible

number of edits dn between consecutive names. We then set d’s name as the string that

has an edit distance of min{ln, dn} from r’s name and ln − min{ln, dn} from s’s name.

Similarly, we create d’s street address using the Levenshtein distance la between the street

addresses of r and s and the maximum possible number of edits da between consecutive

street addresses. For example, suppose that r = {[name, “Hyatt”], [street address, “111

Main”], [phone, 123]} and s = {[name, “Hilton”], [street address, “222 Main”], [phone,

456]}. The Levenshtein distances for the names and street addresses are ln = 4 and la =

2, respectively. If we set dn = 2 and da = 1, we can create the disinformation record d =

{{[name, “Hyaton”], [street address, “122 Main”], [phone, 123], [phone, 456]}. In general,

we need to generatemax{d ln
dn
e−1, d la

da
e−1, 0} disinformation records. In our experiments,

we set dn = 37 and da = 1.

We set the target entity eh for the hotel data to be the one with the largest number of

duplicates, which is a worst-case scenario where increasing the confusion of eh is difficult.

The maximum number of duplicates per entity turns out to be 3 because the hotel data was

collected from only a few data sources that did not contain duplicates within themselves.

In Figure 7.11, we evaluate the four disinformation planning algorithms on the hotel

records. Since the target cluster only had a size of 3, the confusion of the target entity

was sensitive to even a few records merging with the target cluster. For example, using

10 disinformation records, the confusion of the target entity increased to 0.4. The four

planning algorithms produce identical confusion results as the budget increases because the

cluster sizes were very uniform, so there was little incentive to use multi-level plans so that

“far away” clusters would merge with the target cluster. The results show that, even if we

generate disinformation on a partial order space, we were still able to significantly increase

the confusion for an adversary ER algorithm that uses the Jaro distance for comparing the

names and street addresses of hotels.

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 260

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

Co
nf

us
io

n
(C

)

Budget (B)

E2
EG
A2
AG

Figure 7.11: Hotel data confusion results

Shopping data results

We also experimented on a comparison shopping database that simulates our Cakon sce-

nario in the beginning of this chapter where there are various rumors of items on the Web,

and the agent wants to hide the information about a specific product by introducing disin-

formation. The shopping data was provided by Yahoo! Shopping where millions of records

arrive on a regular basis from different online stores and must be resolved before they are

used to answer customer queries. Each record contains attributes including the title, price,

and category of an item. We experimented on a random subset of 5,000 shopping records

that had the string “iPod” in their titles.

The match function BS compares two shopping records and checks if the two records

have similar titles, prices, and categories. When comparing the titles, BS checks if the

Jaro distance is at least 0.85. When comparing the prices, BS checks if the smaller price

is within 33% of the larger price. For the categories, BS performs an equality check. If

one of the three values are not similar enough, then BS returns false. Again, we use the

HCS algorithm for resolving records while using a Boolean match function as the distance

function.

When creating the first disinformation record d between two shopping records r and s,

we first make sure r’s price r.p is higher than or equal to s’s price s.p. If not, we swap

r and s. We then create a new title as we do for hotel names based on the Levenshtein

distance lt between the titles of r and s and the maximum possible number of edits dt

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 261

between consecutive titles. We also create a new price that is X% smaller than r.p unless

s.p is already within X% of r.p. Finally, we union the categories of r and s and add

them to d. For example, suppose that r = {[title, “iPod Pink”], [price, 100], [category,

electronics]} and s = {[title, “iPod Purple”], [price, 20], [category, mp3]}. If dt = 2 and

X = 50, then we can create the disinformation records d1 = {[title, “iPod Pinkle”], [price,

50], [category, electronics], [category, mp3]} and d2 = {[title, “iPod Pirple”], [price, 25],

[category, electronics], [category, mp3]}. In general, we need to generate max{d lt
dt
e −

1, dlogX r.p
s.p
e − 1, 0} disinformation records. For our experiments, we set dt = 1 and X =

50.

For the shopping data, we unfortunately did not have a gold standard, so we could not

select the target entity based on its number of true duplicates. Instead, we simply assumed

that the initial ER result of the shopping data (without any disinformation) was the gold

standard. That is, each cluster in the ER result is assumed to contain the exact set of

records that refer to a certain entity. We set the target entity es for the shopping data to be

the one represented by the 10th largest cluster in the ER result, which had a size of 20.

The titles of the shopping records are on average shorter than the names and street

addresses of the hotel data, so it was more difficult to create disinformation records that

guaranteed the merge of two clusters. In fact, there were cases where two disinformation

records could not merge even if they had titles that differed by only one character edit be-

cause the titles still did not have a Jaro distance that exceeded the comparison threshold.

As a result, the disinformation records occasionally failed to merge clusters, which is il-

lustrated by the decrease of confusion in Figure 7.12 when the budget increases from 10

to 11. However, the confusion of the target entity eventually increases to high values for

larger budgets as shown in the figure. All the four planning algorithms show near-identical

performances.

In conclusion, we have shown that our disinformation techniques are effective for two

real-world applications where the comparisons of records is sophisticated and involves

multiple types of non-Euclidean data. In addition, the 1-level plans perform just as well as

the general plans regardless of the application.

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 262

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

Co
nf

us
io

n
(C

)

Budget (B)

E2
EG
A2
AG

Figure 7.12: Shopping data confusion results

7.5 Related Work

Most ER work in the literature focuses on improving the ER quality or scalability. In

contrast, our approach is to dilute the information of ER results by adding disinformation

records. Our techniques can be useful when sensitive information has leaked to the public

and cannot be deleted.

The problem of managing sensitive information in the public has been addressed in

several works. The P4P framework [2] seeks to contain illegitimate use of personal infor-

mation that has already been released to an adversary. For different types of information,

general-purpose mechanisms are proposed to retain control of the data. Measures based on

ER [105] have been proposed to quantify the amount of sensitive information that has been

released to the public. Reference [63] defines the leakage of information in a general data

mining context and provides detection and prevention techniques for leakage. In compari-

son, our work models the adversary as an ER operator and maximizes the confusion of the

target entity.

A recent line of work uses disinformation for managing sensitive information in the

public. Reference [80] uses disinformation while distributing data to detect if any infor-

mation has leaked and to tell who was the culprit. A startup called Reputation.com [85]

uses disinformation techniques for managing the reputation of individuals on the Web. For

instance, Reputation.com suppresses negative information of individuals in search engine

results by creating new web pages or by multiplying links to existing ones. TrackMeNot

CHAPTER 7. DISINFORMATION TECHNIQUES FOR ENTITY RESOLUTION 263

[98] is a browser extension that helps protect web searchers from surveillance and data-

profiling by search engines using noise and obfuscation. In comparison, our work uses

disinformation against an ER algorithm to increase the confusion of the target entity.

Clustering techniques that are robust against noise have been studied extensively in the

past [11, 114]. Most of these work proposes clustering algorithms that find the right clusters

in the presence of unnecessary noise. In contrast, we take an opposite approach where our

goal is to intentionally confuse the ER algorithm for the target entity as much as possible.

The disinformation records we generate can thus be viewed as an extreme case of noise

where the ER algorithm is forced to produce incorrect results.

7.6 Conclusion

Disinformation is an effective strategy for an agent to prevent an adversary from piecing to-

gether sensitive information. We have formalized the disinformation problem by modeling

the adversary as an Entity Resolution process and proposed efficient algorithms for gener-

ating disinformation that induces the target cluster to merge with other clusters. Our ex-

periments on synthetic data show that the optimal disinformation can significantly increase

the confusion of the target entity, especially if the ER algorithm satisfies monotonicity. We

have shown that the optimal disinformation generated from correct ER results can be ap-

plied when the adversary uses a different (but correct) ER algorithm. Our disinformation

techniques perform reasonably well even with partial information on the ER results. We

have compared the scalability of our disinformation planning algorithms and have shown

that 1-level plans can be generated quickly while having confusion results comparable to

those of general plans. Finally, we have demonstrated with real data that our disinformation

techniques are effective even when the records are not in a Euclidean space and the match

functions are complex.

Chapter 8

Conclusion

8.1 Summary

With data analytics, data is integrated from different sources and analyzed in order to dis-

cover useful information. With the unprecedented explosion of data around us, there are

new opportunities for discovering useful information on a large scale. At the same time, the

sheer amount of data poses non-trivial challenges for combining and analyzing the data.

In this thesis, we studied two closely-related problems within analytics: data integra-

tion and data privacy. For both problems, we used a fundamental operation called entity

resolution (ER), which identifies and merges records that refer to the same real-world en-

tity. In data integration, ER plays a key role in avoiding duplicates when combining data

as well as in consolidating data on the same entity. The flip side of data integration is the

danger of one’s personal information being exposed to the public. Hence, in data privacy,

ER becomes an operation that the adversary uses to discover more information.

We first proposed scalable ER techniques that can be used on large datasets. Our tech-

niques are general because they consider either the entire ER process or the functions for

matching and merging records as a black-box operation and can thus be used in a wide

range of ER applications. In Chapter 2, we proposed a pay-as-you-go approach for ER

where given a limit in resources (e.g., work, runtime) we attempt to make the maximum

progress possible. We introduced the novel concept of hints, which can guide an ER al-

gorithm to focus on resolving the more likely matching records first. Our techniques are

264

CHAPTER 8. CONCLUSION 265

effective when there are either too many records to resolve within a reasonable amount of

time or when there is a time limit (e.g., in real-time systems). We proposed three types of

hints as well as various methods for ER algorithms to use these hints. Our experimental

results evaluated the overhead of constructing hints as well as the runtime benefits for using

hints.

We also considered several new functionalities for ER that have not been studied in the

past. ER may not be a one-time process, but is constantly improved as the data, schema, and

application are better understood. Hence in Chapter 3, we addressed the problem of keeping

the ER result up-to-date when the ER logic evolves frequently. A naı̈ve approach that re-

runs ER from scratch may not be tolerable for resolving large datasets. We showed when

and how we could instead exploit previous “materialized” ER results to save redundant

work with evolved logic.

Next, we addressed the problem of running ER on multiple types of data. Often, records

of different types (e.g. authors, publications, institutions, venues) are involved in resolu-

tion, and resolving one type of records can impact the resolution of other types of records.

Thus in Chapter 4, we proposed a flexible, modular resolution framework where existing

ER algorithms developed for a given record type can be plugged in and used in concert

with other ER algorithms for resolving multiple types of records. Our approach also made

it possible to run ER on subsets of similar records at a time, important when the full data is

too large to resolve together. We studied the scheduling and coordination of the individual

ER algorithms in order to resolve the full data set. We evaluated our joint ER techniques

on synthetic and real data and showed the scalability of our approach.

Finally, we studied the problem of ER with negative rules. In practice, ER results

may contain inconsistencies, either due to mistakes by the match and merge functions or

changes in the application semantics. Hence in Chapter 5, we formalized the problem of

Entity Resolution with inconsistencies (ER-N). The unary and binary negative rules we in-

troduced capture “sanity checks” written by domain specialists who are different from the

ones writing the match and merge functions used for resolution. We provided two algo-

rithms that return an ER-N solution based on guidance from a “solver” domain expert. The

GNR algorithm is a generic way to solve ER-N while the ENR algorithm makes the GNR

algorithm efficient by exploiting additional properties for the match, merge, and negative

CHAPTER 8. CONCLUSION 266

rules.

Our ER work in data integration inspired us to study the problem of data privacy as

well. As more sensitive data gets exposed to a variety of merchants, health care providers,

employers, social sites and so on, there is a higher chance that an adversary can use ER to

piece together information, leading to even more loss of privacy.

We first studied in Chapter 6 the problem of quantifying information leakage. Our

information leakage measure reflects four important factors of privacy: the correctness and

completeness of the leaked data, the adversary’s confidence on the data, and the adversary’s

data analysis. We compared our information leakage model with existing privacy models

in the literature and proposed efficient algorithms for computing the exact and approximate

values of information leakage. We demonstrated that our information leakage measure

captures the main factors of privacy and can be computed on large data.

We also studied the problem of managing information leakage. In Chapter 7, we pro-

posed disinformation techniques for lowering information leakage. We formalized the dis-

information problem by modeling the adversary as an ER process and proposed efficient

algorithms for generating disinformation that induces the target cluster to merge with other

clusters. Our experiments show that our disinformation techniques can significantly in-

crease the confusion of a target entity. We showed that disinformation generated from

correct ER results can be universally applied to other (correct) ER algorithms as well. Our

techniques also work in the presence of partial information and can scale to large datasets.

In general, our disinformation techniques can be used as a framework for evaluating ER

robustness.

8.2 Future Work

In this thesis, we have made several contributions to data integration and data privacy using

entity resolution. Our problems are by no means solved, and there are many interesting

avenues for future work.

Finding the Best Hint In Chapter 2, we studied three types of hints and showed how ER

algorithms can benefit from one of these hints. However, we had to manually figure out

CHAPTER 8. CONCLUSION 267

which type of hint was good for which ER algorithm. It will be useful to perform a more

formal analysis of different types of hints and provide general guidance for constructing

and updating the best hint for any given ER algorithm.

Incremental ER on Data In Chapter 3, we focused on incrementally updating an ER

result when the match rule changes frequently. Another important problem is updating an

ER result when new records are added to the dataset. For example, search engines perform

ER on their data and are also constantly crawling new information from the Web. As a

result, the new records need to be efficiently resolved against the existing records. We have

already defined the General Incremental property (see Definition 3.1.6) that characterizes

ER algorithms that support incremental resolution. An interesting future step is to extend

our evolving rules framework so that ER results can be efficiently updated both for new

rules and new records.

Information Leakage on Real Applications In Chapter 6, we defined an information

leakage measure that was evaluated on synthetic data. The next step is to evaluate the mea-

sure on real-world ER applications. Compared to other measures that assume privacy to be

an all-or-nothing concept, our leakage measure can capture fine-grained notions of privacy.

For example, our measure can quantify the additional leakage of a person’s information in

the presence of more sophisticated ER algorithms.

Robustness of ER Algorithms In Chapter 7, we presented preliminary results on eval-

uating the robustness of two ER algorithms against disinformation. We also demonstrated

how the monotonicity property (Definition 7.1.4) prevents a cluster from splitting unnec-

essarily. An interesting future step is to survey all the ER algorithms in the literature and

see which ER algorithms are more likely to make mistakes when we create more noise. We

can then identify the key properties (like monotonicity) of robust ER algorithms.

Specializing on Data Types In Chapter 1.1, we assumed our datasets contain records

of any format. As a result, our general ER techniques may not perform as well as ER

algorithms specialized for certain data types. For example, running ER on graph data can be

CHAPTER 8. CONCLUSION 268

optimized further if we exploit the structure and statistics of the graph. It will be interesting

to see how our general ER techniques can scale better by tailoring them to different formats

of data.

Combining Scalability with Privacy Chapters 2–5 covered scalable and general tech-

niques for ER while Chapters 6 and 7 studied privacy against ER. A natural extension is to

combine the two goals and provide scalable ER techniques that also minimize unnecessary

information leakage. For example, we may be performing ER on data from multiple com-

panies that are unwilling to share all of their confidential data with others. The more strict

the companies are on sharing information, the harder it is to scale ER. Hence, an interesting

question is to find a “middle point” between scalability and privacy.

Beyond Machines Throughout this thesis, we have assumed that ER is performed by

machines. With the advent of platforms for human computation [4, 26], it is now possible to

augment challenging computation with the wisdom of the crowd. Compared to machines,

humans are better at solving difficult AI problems such as labeling images, digitizing books,

and transcribing audios. Within ER, humans can help in various ER stages. For example, if

we are resolving records using a given ER algorithm, then the humans can help compare the

records. Or if we are verifying an ER result, then the humans can check if the records were

merged correctly. On the other hand, humans may be slow, expensive, and error prone.

Accommodating this human behavior is the key challenge in using humans for ER.

Bibliography

[1] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. A framework for

clustering evolving data streams. In VLDB, pages 81–92, 2003.

[2] Gagan Aggarwal, Mayank Bawa, Prasanna Ganesan, Hector Garcia-Molina, Kr-

ishnaram Kenthapadi, Nina Mishra, Rajeev Motwani, Utkarsh Srivastava, Dilys

Thomas, Jennifer Widom, and Ying Xu. Vision paper: Enabling privacy for the

paranoids. In VLDB, pages 708–719, 2004.

[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools (2nd Edition). Addison Wesley, August 2006.

[4] Amazon mechanical turk. https://www.mturk.com.

[5] Rohit Ananthakrishna, Surajit Chaudhuri, and Venkatesh Ganti. Eliminating fuzzy

duplicates in data warehouses. In Proc. of VLDB, pages 586–597, 2002.

[6] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. Efficient exact set-similarity

joins. In VLDB, pages 918–929, 2006.

[7] Arvind Arasu, Christopher Ré, and Dan Suciu. Large-scale deduplication with con-

straints using dedupalog. In ICDE, pages 952–963, 2009.

[8] Rohan Baxter, Peter Christen, and Tim Churches. A comparison of fast blocking

methods for record linkage. In Proc. of ACM SIGKDD Workshop on Data Cleaning,

Record Linkage, and Object Consolidation, 2003.

269

BIBLIOGRAPHY 270

[9] Omar Benjelloun, Hector Garcia-Molina, Hideki Kawai, Tait E. Larson, David Men-

estrina, and Suthipong Thavisomboon. D-swoosh: A family of algorithms for

generic, distributed entity resolution. In ICDCS, 2007.

[10] Omar Benjelloun, Hector Garcia-Molina, David Menestrina, Qi Su, Steven E.

Whang, and Jennifer Widom. Swoosh: a generic approach to entity resolution.

VLDB J., 18(1):255–276, 2009.

[11] Michael Berthold and David J. Hand, editors. Intelligent Data Analysis: An Intro-

duction. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1st edition, 1999.

[12] Indrajit Bhattacharya and Lise Getoor. Iterative record linkage for cleaning and

integration. In DMKD, 2004.

[13] Indrajit Bhattacharya and Lise Getoor. Relational clustering for multi-type entity

resolution. In MRDM ’05: Proceedings of the 4th international workshop on Multi-

relational mining, pages 3–12, New York, NY, USA, 2005. ACM Press.

[14] Indrajit Bhattacharya and Lise Getoor. A latent dirichlet model for unsupervised

entity resolution. In SDM, 2006.

[15] Indrajit Bhattacharya and Lise Getoor. Collective entity resolution in relational data.

TKDD, 1(1), 2007.

[16] Mikhail Bilenko and Raymond J. Mooney. Adaptive duplicate detection using learn-

able string similarity measures. In KDD, pages 39–48, 2003.

[17] Philip Bohannon, Michael Flaster, Wenfei Fan, and Rajeev Rastogi. A cost-based

model and effective heuristic for repairing constraints by value modification. In

SIGMOD Conference, pages 143–154, 2005.

[18] Peter Brucker. Scheduling algorithms (4. ed.). Springer, 2004.

[19] Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental

clustering and dynamic information retrieval. In STOC, pages 626–635, 1997.

BIBLIOGRAPHY 271

[20] Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and Rajeev Motwani. Robust

and efficient fuzzy match for online data cleaning. In SIGMOD Conference, pages

313–324, 2003.

[21] Surajit Chaudhuri, Venkatesh Ganti, and Rajeev Motwani. Robust identification of

fuzzy duplicates. In Proc. of ICDE, Tokyo, Japan, 2005.

[22] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and Kyuseok Shim.

Optimizing queries with materialized views. In ICDE, pages 190–200, 1995.

[23] Surajit Chaudhuri, Anish Das Sarma, Venkatesh Ganti, and Raghav Kaushik. Lever-

aging aggregate constraints for deduplication. In SIGMOD ’07: Proceedings of the

2007 ACM SIGMOD international conference on Management of data, pages 437–

448, New York, NY, USA, 2007. ACM Press.

[24] Jan Chomicki and Jerzy Marcinkowski. On the computational complexity of

minimal-change integrity maintenance in relational databases. In Inconsistency Tol-

erance, pages 119–150, 2005.

[25] William W. Cohen. Data integration using similarity joins and a word-based infor-

mation representation language. ACM Trans. Inf. Syst., 18(3):288–321, 2000.

[26] Crowdflower. http://crowdflower.com.

[27] Aron Culotta and Andrew Mccallum. A conditional model of deduplication for

multi-type relational data. Technical report, Univ. of Massachusetts, 2005.

[28] Aron Culotta and Andrew McCallum. Joint deduplication of multiple record types

in relational data. In CIKM, pages 257–258, 2005.

[29] AnHai Doan, Ying Lu, Yoonkyong Lee, and Jiawei Han. Object matching for infor-

mation integration: A profiler-based approach. In IIWeb, pages 53–58, 2003.

[30] AnHai Doan, Ying Lu, Yoonkyong Lee, and Jiawei Han. Profile-based object match-

ing for information integration. IEEE Intelligent Systems, 18(5):54–59, 2003.

BIBLIOGRAPHY 272

[31] Xin Dong, Alon Y. Halevy, and Jayant Madhavan. Reference reconciliation in com-

plex information spaces. In SIGMOD Conference, pages 85–96, 2005.

[32] Cynthia Dwork. Differential privacy. In ICALP (2), pages 1–12, 2006.

[33] Cynthia Dwork. Differential privacy: A survey of results. In TAMC, pages 1–19,

2008.

[34] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Duplicate

record detection: A survey. IEEE Trans. Knowl. Data Eng., 19(1):1–16, 2007.

[35] Kapali P. Eswaran and Donald D. Chamberlin. Functional specifications of subsys-

tem for database integrity. In VLDB, pages 48–68, 1975.

[36] Ivan P. Fellegi and David Holt. A systematic approach to automatic edit and impu-

tation. Journal of the American Statistical Association, 71(353):17–35, 1976.

[37] Ivan P. Fellegi and Alan B. Sunter. A theory for record linkage. Journal of the

American Statistical Association, 64(328):1183–1210, 1969.

[38] Enrico Franconi, Antonio Laureti Palma, Nicola Leone, Simona Perri, and

Francesco Scarcello. Census data repair: a challenging application of disjunctive

logic programming. In LPAR ’01: Proceedings of the Artificial Intelligence on Logic

for Programming, pages 561–578, London, UK, 2001. Springer-Verlag.

[39] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to

the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[40] Michael R. Garey, David S. Johnson, and Ravi Sethi. The complexity of flowshop

and jobshop scheduling. Mathematics of Operations Research, 1:117–129, 1976.

[41] Michael R. Genesereth and Nils J. Nilsson. Logical Foundations of Artificial Intelli-

gence. Morgan Kaufmann, Palo Alto, CA, 1988.

[42] Matthew L. Ginsberg. Readings in Nonmonotonic Reasoning. Morgan Kaufmann,

Los Altos, CA, 1987.

BIBLIOGRAPHY 273

[43] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimen-

sions via hashing. In VLDB, pages 518–529, 1999.

[44] Jonathan Goldstein and Per-Åke Larson. Optimizing queries using materialized

views: A practical, scalable solution. In SIGMOD Conference, pages 331–342,

2001.

[45] J. C. Gower and G. J. S. Ross. Minimum spanning trees and single linkage cluster

analysis. Applied Statistics, 18(1):54–64, 1969.

[46] Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on

Applied Mathematics, 17:416–429, 1969.

[47] Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas, S. Muthukrish-

nan, and Divesh Srivastava. Approximate string joins in a database (almost) for free.

In VLDB, pages 491–500, 2001.

[48] Lifang Gu, Rohan Baxter, Deanne Vickers, and Chris Rainsford. Record linkage:

Current practice and future directions. Technical Report 03/83, CSIRO Mathemati-

cal and Information Sciences, 2003.

[49] Laura M. Haas, Martin Hentschel, Donald Kossmann, and Renée J. Miller. Schema

and data: A holistic approach to mapping, resolution and fusion in information inte-

gration. In ER, pages 27–40, 2009.

[50] Michael Hammer and Dennis McLeod. Semantic integrity in a relational data base

system. In VLDB, pages 25–47, 1975.

[51] Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. Implementing data

cubes efficiently. In SIGMOD Conference, pages 205–216, 1996.

[52] Oktie Hassanzadeh, Fei Chiang, Renée J. Miller, and Hyun Chul Lee. Framework

for evaluating clustering algorithms in duplicate detection. PVLDB, 2(1):1282–1293,

2009.

BIBLIOGRAPHY 274

[53] Oktie Hassanzadeh and Renée J. Miller. Creating probabilistic databases from du-

plicated data. VLDB J., 18(5):1141–1166, 2009.

[54] Mauricio A. Hernández and Salvatore J. Stolfo. The merge/purge problem for large

databases. In SIGMOD Conference, pages 127–138, 1995.

[55] Mauricio A. Hernández and Salvatore J. Stolfo. Real-world data is dirty: Data

cleansing and the merge/purge problem. Data Min. Knowl. Discov., 2(1):9–37, 1998.

[56] ICorrect. http://http://www.icorrect.com/.

[57] Piotr Indyk. A small approximately min-wise independent family of hash functions.

J. Algorithms, 38(1):84–90, 2001.

[58] Anil K. Jain. Data clustering: 50 years beyond k-means. In ECML/PKDD (1), pages

3–4, 2008.

[59] Anil K. Jain, M. Narasimha Murty, and Patrick J. Flynn. Data clustering: A review.

ACM Comput. Surv., 31(3):264–323, 1999.

[60] Matthew A. Jaro. Advances in record-linkage methodology as applied to matching

the 1985 census of tampa, florida. Journal of the American Statistical Association,

84(406):414–420, 1989.

[61] Shawn R. Jeffery, Michael J. Franklin, and Alon Y. Halevy. Pay-as-you-go user

feedback for dataspace systems. In SIGMOD Conference, pages 847–860, 2008.

[62] Liang Jin, Chen Li, and Sharad Mehrotra. Efficient record linkage in large data sets.

In Proc. of Intl. Conf. on Database Systems for Advanced Applications, pages 137–,

2003.

[63] Shachar Kaufman, Saharon Rosset, and Claudia Perlich. Leakage in data mining:

formulation, detection, and avoidance. In KDD, pages 556–563, 2011.

[64] Allen Kent, Madeline M. Berry, Fred U. Luehrs, Jr., and J. W. Perry. Machine litera-

ture searching VIII. Operational criteria for designing information retrieval systems.

American Documentation, 6(2):93–101, 1955.

BIBLIOGRAPHY 275

[65] Hanna Köpcke, Andreas Thor, and Erhard Rahm. Evaluation of entity resolution

approaches on real-world match problems. PVLDB, 3(1):484–493, 2010.

[66] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-closeness: Privacy

beyond k-anonymity and l-diversity. In ICDE, pages 106–115, 2007.

[67] Libsvm. http://www.csie.ntu.edu.tw/ cjlin/libsvm/.

[68] Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthuramakrishnan

Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. In ICDE, page 24,

2006.

[69] Jayant Madhavan, Shirley Cohen, Xin Luna Dong, Alon Y. Halevy, Shawn R. Jef-

fery, David Ko, and Cong Yu. Web-scale data integration: You can afford to pay as

you go. In CIDR, pages 342–350, 2007.

[70] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. Introduction to

Information Retrieval. Cambridge University Press, New York, NY, USA, 2008.

[71] Andrew K. McCallum, Kamal Nigam, and Lyle Ungar. Efficient clustering of high-

dimensional data sets with application to reference matching. In Proc. of KDD,

pages 169–178, Boston, MA, 2000.

[72] David Menestrina, Omar Benjelloun, and Hector Garcia-Molina. Generic En-

tity Resolution with Data Confidences. In First Int’l VLDB Workshop on Clean

Databases, Seoul, Korea, 2006.

[73] David Menestrina, Steven E. Whang, and Hector Garcia-Molina. Evaluating entity

resolution results. PVLDB, 3(1):208–219, 2010.

[74] Alvaro E. Monge and Charles Elkan. An efficient domain-independent algorithm for

detecting approximately duplicate database records. In DMKD, pages 23–29, 1997.

[75] Amihai Motro and Philipp Anokhin. Fusionplex: resolution of data inconsisten-

cies in the integration of heterogeneous information sources. Information Fusion,

7(2):176–196, 2006.

BIBLIOGRAPHY 276

[76] New York Times. How to muddy your tracks on the internet, 2012.

[77] Howard B. Newcombe and James M. Kennedy. Record linkage: making maxi-

mum use of the discriminating power of identifying information. Commun. ACM,

5(11):563–566, 1962.

[78] Howard B. Newcombe, James M. Kennedy, S. J. Axford, and A. P. James. Automatic

linkage of vital records. Science, 130(3381):954–959, 1959.

[79] Nils J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kaufmann, San

Francisco, CA, 1998.

[80] Panagiotis Papadimitriou and Hector Garcia-Molina. Data leakage detection. IEEE

Trans. Knowl. Data Eng., 23(1):51–63, 2011.

[81] Parag and Pedro Domingos. Multi-relational record linkage. In In Proceedings of

the KDD-2004 Workshop on Multi-Relational Data Mining, pages 31–48, 2004.

[82] Hoifung Poon and Pedro Domingos. Joint inference in information extraction. In

AAAI, pages 913–918, 2007.

[83] Vibhor Rastogi, Nilesh N. Dalvi, and Minos N. Garofalakis. Large-scale collective

entity matching. PVLDB, 4(4):208–218, 2011.

[84] Vibhor Rastogi, Sungho Hong, and Dan Suciu. The boundary between privacy and

utility in data publishing. In VLDB, pages 531–542, 2007.

[85] Reputation.com. http://www.reputation.com.

[86] Fazlollah M. Reza. An Introduction to Information Theory. Dover Publications,

September 1994.

[87] Sunita Sarawagi and Anuradha Bhamidipaty. Interactive deduplication using active

learning. In KDD, pages 269–278, 2002.

[88] Eike Schallehn, Kai-Uwe Sattler, and Gunter Saake. Extensible and similarity-based

grouping for data integration. In ICDE, page 277, 2002.

BIBLIOGRAPHY 277

[89] Warren Shen, Xin Li, and AnHai Doan. Constraint-based entity matching. In AAAI,

pages 862–867, 2005.

[90] Parag Singla and Pedro Domingos. Entity resolution with markov logic. In ICDM,

pages 572–582, 2006.

[91] Temple F. Smith and Michael S. Waterman. Identification of common molecular

subsequences. Journal of Molecular Biology, 147:195–197, 1981.

[92] Spock. http://spock.com.

[93] Latanya Sweeney. Achieving k-anonymity privacy protection using generalization

and suppression. International Journal of Uncertainty, Fuzziness and Knowledge-

Based Systems, 10(5):571–588, 2002.

[94] Latanya Sweeney. k-anonymity: A model for protecting privacy. International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570,

2002.

[95] Robert E. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM,

22(2):215–225, 1975.

[96] Robert E. Tarjan. Edge-disjoint spanning trees and depth-first search. Acta Inf.,

6:171–185, 1976.

[97] Sheila Tejada, Craig A. Knoblock, and Steven Minton. Learning object identifica-

tion rules for information integration. Information Systems Journal, 26(8):635–656,

2001.

[98] TrackMeNot. http://cs.nyu.edu/trackmenot.

[99] Cornelis Joost van Rijsbergen. Information Retrieval. Butterworths, London, 2nd

edition, 1979.

[100] Wall Street Journal. Insurers test data profiles to identify risky clients, 2011.

BIBLIOGRAPHY 278

[101] Melanie Weis and Felix Naumann. Detecting duplicates in complex xml data. In

ICDE, page 109, 2006.

[102] Steven E. Whang, Omar Benjelloun, and Hector Garcia-Molina. Generic entity res-

olution with negative rules. VLDB J., 18(6):1261–1277, 2009.

[103] Steven E. Whang and Hector Garcia-Molina. Entity resolution with evolving rules.

PVLDB, 3(1):1326–1337, 2010.

[104] Steven E. Whang and Hector Garcia-Molina. Disinformation techniques for entity

resolution. Technical report, Stanford University, 2011.

[105] Steven E. Whang and Hector Garcia-Molina. Managing information leakage. In

CIDR, pages 79–84, 2011.

[106] Steven E. Whang and Hector Garcia-Molina. A model for quantifying information

leakage. Technical report, Stanford University, 2011.

[107] Steven E. Whang and Hector Garcia-Molina. Joint entity resolution. In ICDE, 2012.

[108] Steven E. Whang, David Marmaros, and Hector Garcia-Molina. Pay-as-you-go en-

tity resolution. IEEE Trans. Knowl. Data Eng., 2012.

[109] Steven E. Whang, David Menestrina, Georgia Koutrika, Martin Theobald, and Hec-

tor Garcia-Molina. Entity resolution with iterative blocking. In SIGMOD Confer-

ence, pages 219–232, 2009.

[110] Jennifer Widom and Stefano Ceri, editors. Active Database Systems: Triggers and

Rules For Advanced Database Processing. Morgan Kaufmann, 1996.

[111] William Winkler. Overview of record linkage and current research directions. Tech-

nical report, Statistical Research Division, U.S. Bureau of the Census, Washington,

DC, 2006.

[112] William E. Winkler. State of statistical data editing and current research problems.

In UN/ECE Work Session on Statistical Data Editing, Working Paper n.29, pages

2–4, 1999.

BIBLIOGRAPHY 279

[113] Xiaokui Xiao and Yufei Tao. Personalized privacy preservation. In SIGMOD Con-

ference, pages 229–240, 2006.

[114] Rui Xu and Donald Wunsch. Survey of clustering algorithms. IEEE Transactions

on Neural Networks, 16(3):645–678, 2005.

[115] William Yancey. Bigmatch: A program for extracting probable matches from a large

file for record linkage. Technical report, US Bureau of the Census, 2002.

[116] Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal Batko. Similarity

Search: The Metric Space Approach (Advances in Database Systems). Springer,

2005.

