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Abstract

Data mining is the application of sophisticated analysis to large amounts of data in order

to discover new knowledge in the form of patterns, trends, and associations. With the

advent of the World Wide Web, the amount of data stored and accessible electronically has

grown tremendously and the process of knowledge discovery (data mining) from this data

has become very important for the business and scienti�c-research communities alike.

This doctoral thesis introduces Query Flocks, a general framework over relational data

that enables the declarative formulation, systematic optimization, and e�cient processing

of a large class of mining queries. In Query Flocks, each mining problem is expressed as a

datalog query with parameters and a �lter condition. In the optimization phase, a query


ock is transformed into a sequence of simpler queries that can be executed e�ciently. As

a proof of concept, Query Flocks have been integrated with a conventional database system

and the thesis reports on the architectural issues and performance results.

While the Query-Flock framework is well suited for relational data, it has limited use

for semistructured data, i.e., nested data with implicit and/or irregular structure, e.g. web

pages. The lack of an explicit �xed schema makes semistructured data easy to generate or

extract but hard to browse and query. This thesis presents methods for structure discovery

in semistructured data that alleviate this problem. The discovered structure can be of

varying precision and complexity. The thesis introduces an algorithm for deriving a schema-

by-example and an algorithm for extracting an approximate schema in the form of a datalog

program.
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Chapter 1

Introduction

The amount of data stored and available electronically has been growing at an ever in-

creasing rate for the last decade. In the business community, companies collect all sorts of

information about the business process such as �nancial, payroll, and customer data. The

data is often among the most valuable assets of a business. In the scienti�c community, a

single experiment can produce terabytes of data. Subsequently, there is growing demand

for methods and tools that analyze large volumes of data. However, even storing, let alone

analyzing, such huge amounts of data presents many new obstacles and challenges. An oft

used metaphor that \we are drowning in data, and yet starving for knowledge" sums up

the situation perfectly. The �eld of data mining has emerged out of this necessity.

Data mining is broadly de�ned as the process of �nding \patterns" from large amounts

of data. The de�nition is necessarily vague because it has to encompass the vast array

of methods, techniques, and algorithms from various �elds such as databases, machine

learning, and statistics. To obfuscate things even further, data mining is often considered

to be only a step, or be it the most important one, in the knowledge discovery process. The

knowledge discovery process involves several other pre-mining and post-mining steps such

as data cleansing and data visualization. In the present thesis, the focus is on data mining

from the database perspective.

Initially, the exclusive target of data mining was well-structured data, such as relational

data. The canonical example is the discovery of correlations among goods purchased at a

large supermarket or a department store. The literature often cites the slightly amusing

discovery that people who buy diapers are likely to buy beer. Data mining of structured data

has also been successfully applied to various scienti�c disciplines ranging from astronomy

1



2 CHAPTER 1. INTRODUCTION

to genomics.

The emergence of the World Wide Web (WWW) and the integration of various hetero-

geneous data source has introduced large amounts of data with less-than rigid structure.

The database community has adopted the term semistructured data for such data. By

de�nition semistructured data has some implicit regularity but there is no explicit schema

to which that data conforms. Later in this thesis we argue that even XML data can be

considered semistructured.

Our contributions, presented in this thesis, are twofold. First we present a unifying

framework for expressing, optimizing, and processing of data mining problems over rela-

tional data. Second, we de�ne the problem of mining structure from semistructured data

and present two di�erent solutions that discover structural information of varying degrees

of precision and complexity.

1.1 Data Mining for Structured Data

The state of the art in data mining for structured data is many di�erent algorithms that

operate on limited types of data. Furthermore, most data-mining methods are at best

loosely-coupled with relational DBMS, thus not taking advantage of the existing database

technology. In this thesis, we propose a framework, called query 
ocks, that allows the

declarative formulation of a large class of data-mining queries over relational data. We

also present a method for systematic optimization and e�cient processing, called query


ock plans, of such queries. A distinctive feature of the query-
ock framework is that it

can be integrated in a tightly-coupled manner with relational DBMS. We show that, by

using query 
ock plans, we can utilize fully the query processing capabilities of relational

databases without sacri�cing performance.

1.2 Data Mining for Semistructured Data

The importance of semistructured data has been recognized in the database community and

is emphasized by the 
urry of research activities in the last several years. The emergence

of XML and its rapid adoption by the e-commerce companies has made semistructured

data equally important for the business community. However, since the proliferation of

semistructured data has been relatively recent, there is a lack of tools and methods for
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analysis of such data. Standard data-mining techniques developed for structured data are

di�cult to apply and have been shown to be ine�ective[NAM98]. In this thesis, we make

the following two contributions that address the problem of analyzing semistructured data.

First, we de�ne and motivate the problem of discovering structure information from

semistructured data. In Chapter 4 we describe a commonly accepted data model for

semistructured data based on directed labeled graph. Then we show that having an explicit

structure information has great bene�ts for browsing, querying, and storing of semistruc-

tured data.

Second, we present two methods for structure discovery for semistructured data. The

�rst method, presented in Chapter 5, is based on the determinization and minimization of

nondeterministic �nite automaton. The approach compresses the labeled graphs into the

graph with the least number of vertices that has the same set of labeled paths as the original

data. Thus, we consider the data to be perfect as the method does not allow for noise. The

second method, presented in Chapter 6 is based on datalog programs that describe the

data approximately. We introduce a model for the data noise and describe an algorithm for

deriving an approximate schema that trades accuracy for conciseness.

1.3 Thesis Organization

The rest of the thesis is organized as follows. The next chapter introduces query 
ocks

and shows that many data mining problems can be expressed in the query 
ock framework.

The problem of processing query 
ock e�ciently is addressed in Chapter 3. This chapter

introduces the systematic optimization of query 
ocks as query 
ock plans and presents

an integration with relational DBMS in a tightly-coupled fashion. Chapter 4 introduces

the problem of data ming semistructured data. Chapters 5 and 6 present two di�erent ap-

proaches to discovering structure from semistructured data. The thesis ends with Chapter 7

that presents our conclusions.



Chapter 2

Query Flocks

2.1 Introduction

Data mining, from its inception, has targeted primarily relational data. There are numer-

ous reasons that warrant this almost exclusive focus; here, we recount three of the most

important ones. Firstly, most of the business data, accumulated by companies for many

decades, is well structured and can be thought of as relations. Indeed, almost all of the

�nancial-market information, sales data, payroll data, etc., is in the form of 
at tuples with

attributes. Secondly, relational data is almost always available electronically. Companies of-

ten use relational database management systems (RDBMS) such as Oracle and Informix, to

store their data persistently. The database technology developed and deployed in RDBMS is

relatively mature. Besides e�cient storage and retrieval, this technology provides many ad-

ditional features such as concurrency control, recoverability, and high availability. Thirdly,

the rigid structure of relational data makes it amenable to complex queries and analysis

such as on-line analytical processing (OLAP), the predecessor of data mining. Furthermore,

the impact of �nding interesting patterns and trends in relational data can be very high

because the discoveries are often easy to understand and exploit in practice.

There are many di�erent techniques and algorithms for relational data that can be

classi�ed as data mining. In the current literature, there are roughly four broad classes:

clustering, classi�cation, sequence analysis, and associations. While the �rst three classes

of problems have been studied in machine learning and statistics for many decades, associa-

tions, also called association rules, have emerged relatively recently and are widely regarded

as the 
agship of data mining. Furthermore, the underlying assumption behind clustering

4



2.1. INTRODUCTION 5

and classi�cation is the a-priori existence of a model of which the actual data is just an

observed instance. Association rules, on the other hand, are data-centric, and patterns that

emerge do not have to be combined to derive a complete model. Furthermore, the amount

of data that has been subjected to association-rule mining is several orders of magnitude

larger than the amount of data normally used in classi�cation and clustering. In a nutshell,

association rules are data mining from a database perspective while classi�cation, cluster-

ing, and sequence analysis have a machine-learning bias. In this thesis, we consider data

mining for structured data from a database perspective. As a consequence, association rules

will be featured more prominently than the other three classes of mining problems.

Query 
ocks, the subject of this chapter, is an elegant framework for a large class of

data mining problems over relational data. The main features of query 
ocks are:

� Declarative formulation of a large class of mining queries.

� Systematic optimization and processing of such queries.

� Integration with relational DBMS, taking full advantage of existing capabilities.

Declarative formulation: Even within the �eld of association-rule mining, there are

many di�erent techniques and algorithms that work only with limited types of data. For

example, many association-rule algorithms assume that the data is given as a single relation

with only two attributes. With query 
ocks, on the other hand, many di�erent kinds of

mining problems can be expressed declaratively in a simple logic language. Associations are

the most natural example, but one can also express certain kinds of clustering, classi�cation,

and sequence analysis.

Systematic optimization and processing: The current state of the art in data mining

of structured data is ad-hoc optimization techniques that only apply to speci�c problems

and limited types of data. In query 
ocks, mining queries are optimized and processed

systematically in the form of query 
ock plans. Query 
ock plans generalize the a-priori

technique for a larger class of mining problems and can also be augmented with other

techniques such as hashing and partitioning.

Integration with relational DBMS: Most of the current mining systems are loosely-

coupled, at best, with a relational DBMS. Thus, they forgo the opportunity to use most
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of the existing capabilities of RDBMS. Query 
ocks, on the other hand, can be easily

integrated with a relational database. Furthermore, the integration can be tightly coupled,

meaning that the query-processing capabilities of the database are utilized fully.

This chapter is devoted to the query 
ock framework and will focus mainly on the

declarative formulation of mining problems as query 
ocks. The next chapter will detail

the systematic processing and optimization as query 
ock plans and the tightly-coupled

integration with relational DBMS.

2.1.1 Chapter Organization

The rest of this chapter is organized as follows. Section 2.2 reviews the basics of association

rules and the a-priori technique. In Section 2.3 we introduce query 
ocks expressed as

parameterized conjunctive queries augmented with arithmetic expressions and negation,

and �lter conditions. Section 2.4 considers the generalization of the a-priori technique

in query 
ocks and sets the stage to consider, in Chapter 3, the implementation of the

generalized a-priori technique as query 
ock plans. In Section 2.5, we show how di�erent

data mining problems, such as classi�cation and sequence analysis can be expressed as query


ocks. Section 2.6 concludes this chapter.

2.2 Association Rules

Association-rule mining is widely regarded as the 
agship of data mining. Since its intro-

duction in [AIS93], the problem of mining association rules from large databases has been

investigated in numerous studies. The topics range from improving the basic a-priori al-

gorithm [BMTU97], to mining generalized or multilevel rules [SA95], to parallel algorithms

[HKK97] and incremental maintenance [CHNW96]. The vast majority of these studies

share the basic a-priori technique based on levelwise pruning. Recently, however, there has

been some work on �nding di�erent kinds of association rules where the basic a-priori tech-

nique cannot be applied [MCD+00, FMU00]. In this section, we will focus on \traditional"

association rules.

Before we proceed with the formal de�nition of association rules, we highlight the in-

tuition behind them with the following example. Consider a typical supermarket where

every day thousands of shoppers come to the checkout registers with baskets of supermar-

ket items. An observant store manager may note that many customers tend to purchase
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Items: I = fbeer; bread; chips;milk; salsag
Baskets: B = ffbread;milkg; fbread; chips;milkg; fbeer; chipsg
fbeer; bread; chips; salsag; fbeer; chip; salsag; fbeer; bread;milkgg

Figure 2.1: Simple example of market basket data

several speci�c items together, e.g., bread and milk, beer, chips, and salsa, or vodka and

caviar. Furthermore, the store manager may notice that not only many people buy beer,

chips, and salsa together, but also people rarely buy just beer and chips. In other words,

customers who buy beer and chips are especially likely to buy salsa. We call such a pat-

tern an association rule. The goal of association-rule mining is to discover such patterns

automatically from large amounts of data.

Knowing the shopping patterns of their customers is extremely valuable to the store

managers and supermarket chains. Turning association rules into increased margins and

pro�ts is beyond the scope of this thesis. In order to convince the reader, however, of

the usefulness of mining association rules, we suggest some simple promotional uses of

discovered rules. Consider the rule that many customers who buy beer and chips tend to

buy salsa. A creative store manager may decide to put beer, chips, and premium salsa on

the same isle. Thus, customers who buy beer and chips from this isle will likely purchase

the pricey salsa. An alternative approach may be to put frequently purchased items, such

as bread and milk, on the opposite ends of the store so that customer will spend more time

browsing the isles and thus do more impulsive buying.

As we have seen from the example above, association rules are naturally described in

the context of a market-basket data. Formally, we de�ne market-basket data as follows:

De�nition 2.1 Let I = fi1; i2; � � � ; ikg be a set of k elements, called items. Let B =

fb1; b2; � � � ; bng be a set of n subsets of I. We call bi � I a basket of items.

In retail transaction data, the items correspond to individual products for sale, and

the baskets correspond to all products bought by a consumer during a particular shopping

trip. Figure 2.1 shows a simple example consisting of �ve items and six transactions of

supermarket data.

The abstraction of market baskets is applicable not only to retail data but also to a

variety of di�erent domains. For example, consider text data where each item corresponds
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to a word and each basket corresponds to a text document. Another example is the World

Wide Web (WWW), where the items correspond to web pages and baskets correspond to

the set of pages linked from a given page.

An association rule is intended to capture the extent of co-occurrence of two sets of

items in the given basket data. We say that the itemset P is associated with the itemset Q,

and write P ! Q, where P � I and Q � I . There are several quantities that measure the

importance of an association rule. In the original de�nition [AIS93], we have the following

two:

� support(P ! Q) =
jfbij(P [Q) � bigj

n

� confidence(P ! Q) =
jfbij(P [ Q) � bigj

jfbijP � bigj

The support is the fraction of all n baskets that contain all items from both P and

Q. The con�dence is the fraction of the baskets which contain P that also contain Q.

Note that both the con�dence and support of an association rule are real numbers in [0; 1].

In practice, we only care about association rules that have support and con�dence above

certain thresholds. These are natural restriction for the supermarket data. Recall the

supermarket example and the rule that beer and chips are associated with salsa, written

in our formal notation as fbeer; chipsg! fsalsag. For a supermarket situated in a yuppie

neighborhood, such as Palo Alto, this rule may not be very useful because the amount of

beer and chips sold is very low. Hence, the high-support requirement.

For another concrete example, consider the basket data from Figure 2.1. Suppose that

we are interested in association rules with support of at least 0.33, which translates into 2

baskets, and con�dence of at least 0.66. Table 2.1 list all such rules.

In this chapter, we will use an alternative de�nition of the market basket data as a

relational database. For simplicity, but without loss of generality, we assume that the

market-basket data is given as a relation baskets(BID,Item). This relation consists of

pairs of a basket \ID" and an item that appeared in that basket. Table 2.2 shows the

baskets relation for the example basket data from Figure 2.1.

2.2.1 The A-Priori Optimization

As the example of association rules from Table 2.1 shows, there are numerous possible

associations for any basket data. Even if we limit our search to associations of pairs of



2.2. ASSOCIATION RULES 9

Association Rule Support Con�dence

fbreadg ! fmilkg 0.5 0.75

fmilkg ! fbreadg 0.5 1.00

fbeerg ! fchipsg 0.5 0.75

fchipsg ! fbeerg 0.5 0.75

fsalsag ! fbeerg 0.33 1.00

fsalsag ! fchipsg 0.33 1.00

fbeer; chipsg! fsalsag 0.33 0.66

fbeer; salsag! fchipsg 0.33 1.00

fchips; salsag ! fbeerg 0.33 1.00

Table 2.1: Association rules with support threshold of 0.33 and con�dence threshold of 0.66.

BID Item

100 bread

100 milk

101 bread

101 chips

101 milk

102 beer

102 chips

103 beer

103 bread

103 chips

103 salsa

104 beer

104 chips

104 salsa

105 beer

105 bread

105 milk

Table 2.2: Example baskets relation.
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Algorithm 2.1

Input: I { set of k items
B { set of baskets
minSup { support threshold

Output: Fi { sets of frequent itemsets of size i = 1::k
== Initialization

C1 = I
i = 1
Fj = ; for j = 1::k

== Iterations

while Ci 6= ; do
compute support(P ) from B for all P 2 Ci

Fi = fP jP 2 Ci; support(P ) >= minSupg
Ci+1 = generate candidates(Fi)
i = i+ 1

end while
return Fj for j = 1::k

Figure 2.2: Basic a-priori algorithm.

items, such as fbreadg ! fmilkg, there are �(k2) potential rules, where k is the number

of items. There is an important optimization technique, called a-priori, that makes the

search for itemsets with high support very e�cient. The a-priori technique, introduced in

[AIS93], is one of the main reasons for the apparent success and popularity of association

rule mining.

The key idea of a-priori is to use levelwise pruning to reduce the number of itemsets

with potentially high support. From the de�nition of support, it follows immediately, that

if an itemset P has high support than any subset of P also has high support. Conditions

that obey this property are called monotone [TUC+98] (or anti-monotone in [NLHP98]).

The basic a-priori algorithm is shown in Figure 2.2

The procedure generate candidates takes the set of all frequent items of size i, Fi, and

returns the set of all candidate frequent itemsets of size i + 1. Itemset P is chosen as a

candidate i� any subset of P of size i is frequent, i.e., is in Fi.

We illustrate how Algorithm 2.1 works with the example basket data in Figure 2.1 with

minSup = 0:33.
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� In the �rst iteration, the support of all single items is computed. All of them pass the

threshold, so we have F1 = C1 = I . Then, C2 = generate candidates(F1) contains all

pairs of items in I .

� In the second iteration, the support of all itemsets in C2 is computed, so we have that

F2 = ffbread;milkg; fbread; chipsg; fbeer; chipsg; fbeer; breadg; fbeer; salsag;

fchips; salsagg. Then, C3 = ffbeer; chips; salsag; fbeer; bread; chipsgg.

� In the third iteration, we �nd that F3 = ffbeer; chips; salsagg. This is the �nal

iteration because C4 = ;.

2.3 De�nition of Query Flocks

Before we give the formal de�nition of a query 
ock, consider our running example of

supermarket data. Suppose, we are interested in �nding all frequent itemsets of size 2, i.e.,

pairs of items. In principle, we can enumerate all possible pairs and for each pair fX; Y g

ask the query \How many baskets contain both X and Y ". Then, we can check whether

the answer of each query is greater than the given support threshold. If so, we add the pair

fX; Y g to our �nal result. If we designate X and Y as parameters, then we have many

identical queries except for the values of their parameters. Hence, the idea of a 
ock of

queries, or a query 
ock. Thus, a query 
ock is the parameterized query, that represents

all possible simple queries, with instantiated parameters, and the �lter condition that we

apply to the answer of each simple query.

Formally, we de�ne a query 
ock as

1. One or more predicates that represent the given data stored as relations.

2. A set of parameters.

3. A parameterized query.

4. A �lter that speci�es conditions that the result of each instantiated query must satisfy

in order for a given assignment of values to the parameters to be acceptable.

The meaning of such a query 
ock is the set of tuples that represent the \acceptable"

assignments of values for the parameters. We determine the acceptable parameter assign-

ments by, in principle, trying all such assignments in the query, evaluating the query, and
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checking whether the result passes the �lter conditions. Of course, there are more e�cient

ways to compute the meaning of a query 
ock, and these optimizations are the subject of

the next chapter.

It is important to distinguish between parameterized queries and query 
ocks. A query


ock is a query about its parameters. The result of the 
ock is not the result of the

parameterized query that is used to specify the 
ock.

2.3.1 Our Languages for Flocks

The notion of a query with a �lter condition representing a data mining problem has been

proposed �rst in [Man97]. The key idea is to express both the query and the �lter as logic

statements. Thus, the �lter can be as complex as the query. For example, the �lter may

state that one of the items in a market basket must be bread. In query 
ocks, the role of

the �lter is limited to a condition about the result of the query. To represent the above

example �lter in query 
ocks, we would explicitly mention bread in the query part of the

query 
ock. Another proposal for a query with a �lter condition is presented in [NLHP98].

In contrast to [Man97], this proposal has very limited query form and a complex �lter

language involving set variables. However, the proposed query form is nothing more that

basic association rules which limits the type of mining problems that can be expressed.

We will use as our query language \conjunctive queries" [CM77], augmented with arith-

metic, negation, and union. The �lter condition will be expressed in a SQL-like manner

over the result of the query. We will use Datalog ([Ull88]) notation to express conjunctive

queries. Aside from being the language of choice in the database community, Datalog has

two major advantages speci�c to the query 
ock framework:

1. The notion of \safe query" for Datalog is directly applicable to query optimizations

for query 
ocks.

2. The generalization of the a-priori technique for query 
ocks and more complex opti-

mization tricks are most apparent and intuitive when expressed in Datalog.

In order to specify the query part of a query 
ock, in Datalog terminology ([Ull88]), we

need to provide the following:

1. Extensional predicates that represent the given data stored as relations.
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2. A set of parameters, which we will always denote with names beginning with $.

3. Intentional predicates expressed as conjunctive queries with added arithmetic and

negation (or union of such queries) over the extensional predicates.

For the �lter language we use SQL conditions similar to the ones in the HAVING clause

[UW97]. A condition is an equality or inequality of two expressions. Each expression can

involve the following:

1. Aggregate functions: COUNT, SUM, AVG, MIN, MAX.

2. Basic arithmetic: (+;�; �; =).

3. Standard mathematical functions such as log; sqrt; abs; etc.

4. Constants (real numbers).

5. Attributes (columns) of intentional or extensional predicates.

2.3.2 Market Basket Analysis as a Query Flock

As our �rst example, we will consider the simplest market-basket problem as a query 
ock.

We are given a relation baskets(BID,Item) as the only extensional predicate representing

the underlying data. Table 2.2 gives example contents of the baskets relation. Recall that

market basket analysis is about �nding those pairs of items $1 and $2 that appear in at

least c baskets.

Query Flock 2.1 (Basic Market Baskets)

QUERY:

answer(B) :- baskets(B,$1)

AND baskets(B,$2)

FILTER:

COUNT(answer.B) >= 20

Example 2.1 Query Flock 2.1 �nds pairs of items that appear in at least 20 baskets. For

any values of $1 and $2, the query asks for the set of baskets B in which items $1 and $2

both appear. The answer relation for this pair of items is the set of such baskets. Then, the
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$1 $2

beer diapers

diapers beer

bread milk

milk bread

� � � � � �

Table 2.3: Example result of the market-basket query 
ock.

�lter condition requires that the set of such baskets number at least 20. The result of the

query 
ock is thus the set of pairs of items ($1, $2) such that there are at least 20 baskets

containing both items $1 and $2. Table 2.3 gives an example of the 
ock result.

This query 
ock easily generalizes to �nding sets of k items that appear together for any

�xed k. Finding something more complex, however, like the set of maximal sets of items

that appear in at least c baskets (regardless of the cardinality of the set of items), is more

awkward and would be expressed as a sequence of query 
ocks with increasing cardinalities,

with each 
ock depending on the result of the previous one.

2.3.3 Multiple Intentional Predicates

The most natural query 
ocks, and indeed the 
ocks for which we have the most promising

optimization techniques, involve support as the �lter condition; Query Flock 2.1 is such a


ock. It is possible to represent con�dence, interest, and other conditions as �lters, using

our SQL-like �lter language. However, it is necessary to allow the query portion of a 
ock

to produce several relations as its result. Thus, we need multiple intentional predicates so

that we can express the �lter condition. Furthermore, we can have several di�erent �lter

conditions, e.g. high support and high con�dence.

Query Flock 2.2 (Market Baskets)

QUERY:

answer1(B) :- baskets(B,$1)

AND baskets(B,$2)

answer2(B) :- baskets(B,$1)
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FILTER:

2 * COUNT(answer2.B) >= COUNT(answer1.B) (high confidence)

COUNT(answer.B) >= 20 (high support)

Example 2.2 Suppose we want to �nd pairs of items $1 and $2 such that, in addition to

high support, the con�dence of $2 given $1 is at least 50%. The 
ock can be written as in

Query Flock 2.2. There are two intentional predicates, which we call answer1 and answer2.

The �rst counts the number of baskets containing both items, while the second counts the

number of baskets containing the �rst item. The high-con�dence condition asks that the

ratio of these counts be at least 1/2. The high-support condition is the same as before.

2.3.4 Adding Arithmetic, Union, and Negation

The market-basket problem corresponds to a very simple query 
ock. The query is a

conjunctive query with only positive subgoals. In order to express more complex mining

problems we need to add more power to our query language. The extensions to conjunctive

queries that we will allow are:

1. Negated subgoals.

2. Arithmetic subgoals, e.g., X < Y , where X and Y are variables, parameters, or

constants.

We will refer to this broader class of conjunctive queries as extended conjunctive queries.

Note that the expressions allowed in the arithmetic subgoals are somewhat di�erent than the

�lter language. In particular, there are no aggregate functions in the arithmetic subgoals.

In addition, we will allow a query that is the union of these extended CQ's. However, as

with the original CQ's, we assume that extended CQ's follow the conventional set semantics

rather than bag semantics, where duplicate tuples are allowed. Some of our claims would

not hold for bag semantics.

As a simple example of where arithmetic subgoals are useful, the original 
ock for market

baskets, Query Flock 2.1, produces each successful pair of items twice, e.g. (bread,milk)

and (milk,bread). We can restrict the result to have each pair of items appear only in

lexicographic order if we add an arithmetic condition to the query, as:



16 CHAPTER 2. QUERY FLOCKS

answer(B) :- baskets(B,$1) AND baskets(B,$2) AND $1 < $2

The next example illustrates the use of negation in the query part of a query 
ock.

Example 2.3 The following is an example of a query 
ock that searches for unexplained

side-e�ects. That is, we want to �nd symptoms $s and medicines $m such that there are

many patients (and as before, we take 20 to be the threshold of \many") that exhibit the

symptom and are taking the medicine, yet the patient's disease does not explain the symptom.

The underlying data with which we work consists of the following relations:

1. diagnoses(Patient, Disease): The patient has been diagnosed with the disease.

2. exhibits(Patient, Symptom): The patient exhibits the symptom.

3. treatments(Patient, Medicine): The medicine has been prescribed for the patient.

4. causes(Disease, Symptom): The disease is known to cause the symptom.

The query 
ock for the problem described above appears as Query Flock 2.3. Without

loss of generality, we make the assumption that each patient has one disease only. We can

handle patients with multiple diseases simultaneously by extend our query-
ocks language

to allow intermediate predicates. In particular, we need a predicate that relates patients to

the set of symptoms caused by any of their diseases.

Query Flock 2.3 (Side E�ects)

QUERY:

answer(P) :-

exhibits(P,$s) AND

treatments(P,$m) AND

diagnoses(P,D) AND

NOT causes(D,$s)

FILTER:

COUNT(answer.P) >= 20

In Query Flock 2.3, the parameterized query asks for the set of patients P that exhibit

a symptom $s, are receiving medicine $m, have disease D, and yet the disease D doesn't
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explain the symptom $s. The �lter requires that there be at least 20 patients taking

medicine $m and exhibiting unexplained symptom $s.

The next example illustrates the use of union of conjunctive queries in the query part

of a query 
ock.

Example 2.4 In this example, we are looking for web sites (domains) that are \similar"

based on their \neighborhood", i.e. the pages that they link to and from. Our formal

de�nition of \similar" web domains is based on the count of:

1. The number of di�erent domains of pages that have links to pages of both domains.

2. The number of di�erent pages that are linked to from pages of both domains.

The query 
ock that �nds pairs of similar web domains is based on the following exten-

sional predicates:

1. page(URL, Domain: The page with the given URL resides in the given Domain.

2. link(URL1, URL2): There is a hyperlink from the page with URL1 to the page with

URL2.

Query Flock 2.4 (Similar Web Domains)

QUERY:

answer(D) :-

page(U,$1) AND

page(V,$2) AND

page(W,D) AND

link(W,U) AND

link(W,V) AND

$1 < $2

answer(P) :-

page(U,$1) AND

page(V,$2) AND

page(P,X) AND

link(U,P) AND



18 CHAPTER 2. QUERY FLOCKS

link(V,P) AND

$1 < $2

FILTER:

COUNT(answer.#1) >= 20

Query Flock 2.4 shows the 
ock that �nds pairs of web domains (sites) such that there

are domains with pages pointing to pages from both domains and pages that are pointed to

from pages from both domains. In order to get every pairs of domains only once we require

that the �rst domain, $1 lexically precede the second domain, $2.

As in all of our examples in this chapter, we have taken 20 occurrences as the threshold

of signi�cance. Note that the count in the �lter is counting answers, which may be either

domains or urls. Naturally, we assume that there are no values in common between these

two types of identi�ers.

Our de�nition of similar pages may seem somewhat contrived at �rst but there are good

reasons for our choice. First, consider our choice of counting only the unique domains of

pages pointing to pairs of web sites. With this choice, we prevent intentional spamming

where any individual domain can create many pages pointing to the pair of web sites in

order to make them appear similar to the system. Second, consider our choice of using

unique pages within the pair of web sites to point to the same page. In this case, both

web sites must agree on a page that they link to, so there is no possibility of intentional

spamming.

2.4 Generalization of the A-Priori Technique

Let us start with the basic market-basket 
ock (Query Flock 2.1). The a-priori technique

for this problem translates into �nding frequent items �rst and them using the result to �nd

frequent pairs. In query 
ocks, we can �nd all frequent items with the very simple 
ock

shown below:

Query Flock 2.5 (Frequent Items)

QUERY:

answer(B) :- baskets(B,$1)

FILTER:

COUNT(answer.B) >= 20
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Note that this query 
ock is simpler than the original 
ock. In particular, the result of

its query part is a superset of the result of the query part of Query Flock 2.1. Furthermore

the result of this 
ock is a superset of the projection on its �rst attribute of Query Flock 2.1.

Thus, in query 
ocks, the a-priori technique entails �nding simpler query 
ocks which results

are supersets of the result of the original 
ock. These simpler query 
ocks, have simpler

query part and keep the same �lter.

2.4.1 Containment for Conjunctive Queries

For conjunctive queries ([CM77], [Ull89], [AHV95]), there is a straightforward way to �nd

simpler queries. The simplest way for the result of a query Q1 to be a superset of the

result of a query Q2 is for it to be provable for any database, which we write Q1 � Q2.

For conjunctive queries, this containment is decidable, using the technique of containment

mappings ([CM77]). As a corollary of the containment-mapping theorem we have that the

only way Q1 � Q1 can hold is if Q1 is constructed from Q2 by

1. choosing a subset of the subgoals of Q2, and

2. changing some variable names into new unique variable names.

Changing the variable names simply decreases the amounts of joins we have to perform

but keeps the number of predicates in the query the same. Thus the resulting query is not

simpler than the original one. Choosing a subset of the subgoals of Q2, however, reduces

the number of predicates in the query and thus, makes it simpler and less expensive to

compute. In both cases, the result of Q1 is a superset of the result of Q2. Since changing

variable names does not make the query simpler, we will only consider queries Q1 obtained

by choosing a subset of the subgoals of Q2.

2.4.2 Safe Queries

Not every subset, however, of the subgoals of a conjunctive query forms an \acceptable"

query. By acceptable, we mean a query that makes sense by producing a �nite result. An

in�nite result may occur if any of the variables that appear in the head of the query does

not appear in any of the subgoals that form the body of the query. Note that a query with
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an in�nite result means that regardless of the �lter any values of the parameters will be in

the result of the query 
ocks. Thus, the query 
ock itself will have an in�nite result which

is of no use. The condition that guarantees the �nite result of conjunctive queries is called

safety. This condition has been studied before ([Ull88]) as a way to restrict Datalog queries

to be equivalent to relational algebra. Conjunctive queries that satisfy the condition are

called safe queries.

Rule 2.1 (Safety Rule for Conjunctive Queries)

Each variable that appears in the head of the query must also appear in the body of the

query.

Example 2.5 Consider the basic market-basket Query Flock 2.1. Its query part is shown

below:

answer(B) :- baskets(B,$1) AND baskets(B,$2)

There are only two nontrivial subqueries formed by taking a nonempty, proper subset of

the subgoals,

answer(B) :- baskets(B,$1)

and

answer(B) :- baskets(B,$2)

Note that the two queries are symmetric with respect to parameters $1 and $2. Fur-

thermore, the original query is also symmetric to itself with respect to the two parameters.

Thus, we can use either of the simpler queries to prune the values for the two parameters.

Any value that is not in the result of the simpler 
ock (having the simpler query and the

same �lter) can be a value for neither $1 nor $2 in the result of the original 
ock.

Example 2.6 Our next example extends Query Flock 2.1 to �nd frequent pairs of items

where at least one of the items is \expensive". The relation expensive(Item) contains

all high-margin items. Association rules involving such items are of a particular interest

because increasing their sales results in higher pro�ts.
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Query Flock 2.6 (Expensive Market Baskets)

QUERY:

answer(B) :- baskets(B,$1)

AND baskets(B,$2)

AND expensive($1)

FILTER:

COUNT(answer.B) >= 20

There are six nontrivial subqueries of the query part of Query Flock 2.6. Using the safety

rule we can eliminate only one of them, namely answer(B) :- expensive($1), since the

head variable, B does not appear in the body of the query. Then, we have to choose which

of the remaining �ve subqueries to evaluate which is the subject of the next chapter.

We may summarize the generalization of a-priori for CQ's without negation or arith-

metic, as follows:

Rule 2.2 (General Optimization Rule for Conjunctive Queries)

Given a query 
ock that consists of a query part Q and a support �lter, consider all safe

subqueries of Q obtained by deleting one or more subgoals. The result of a query 
ock

formed by such a safe subquery and the same �lter limits the possible values of the 
ock's

parameters.

2.4.3 Safe Queries with Negation and Arithmetic

When we expand our horizon beyond conjunctive queries to the Datalog queries with nega-

tion and arithmetic that we have been using, matters get more complex in several ways.

First, the discovery of containing queries is not as easy. There are decision procedures |

[Klu82] or [ZO93] for Datalog with arithmetic, and [LS93] for Datalog with negation, in-

cluding arithmetic. However, there are some cases where the containing query cannot be

characterized as a subset of the subgoals of the contained query.

Since these cases are unusual, we propose to continue our restriction that we look only

at subsets of the subgoals of the query that de�nes the query 
ock. We then have only

to augment our search with the generalized notion of what a safe query is. There are now

three conditions that must be satis�ed ([UW97]):
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Rule 2.3 (Safety Rule for Extended Conjunctive Queries)

1. Every variable that appears in the head must appear in a nonnegated, nonarithmetic

subgoal of the body.

2. Every variable that appears in a negated subgoal of the body must appear in a non-

negated, nonarithmetic subgoal of the body.

3. Every variable that appears in an arithmetic subgoal of the body must appear in a

nonnegated, nonarithmetic subgoal of the body.

However, parameters are variables, not constants, as far as the above safety conditions

are concerned. Since they cannot appear in the head, they are not a�ected by rule (1). The

last two rules apply to parameters as well as to explicit variables.

Example 2.7 Consider Query Flock 2.3 from Example 2.3. Its query part, shown below,

contains a negated subgoal.

answer(P) :-

exhibits(P,$s) AND

treatments(P,$m) AND

diagnoses(P,D) AND

NOT causes(D,$s)

There are 14 nontrivial subqueries and we need to determine which ones are safe. First,

to satisfy condition (1) of Rule 2.3, one of the subgoals must include the head variable P .

That condition rules out only one possible subquery:

answer(P) :- NOT causes(D,$s)

Note that this query makes no sense, since it is trying to count a number of patients,

but the only information we have says that some disease D does not cause the symptom $s.

Condition (2) requires that if we pick the subgoal

NOT causes(D,$s), then since variable D and parameter $s appear in this subgoal, we

must also pick a positive subgoal that has D in it and a positive subgoal that has $s in it.
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That is, if we pick NOT causes(D,$s), then we must also pick both diagnoses(P,D) and

exhibits(P,$s), the only positive subgoals with D and $s, respectively. Thus, condition (2)

again rules out the subquery above that has only NOT causes(D,$s) in its body and also rules

out the other �ve subqueries that have this subgoal but do not have both of exhibits(P,$s)

and diagnoses(P,D).

Condition (3) is not applicable since there are no arithmetic subgoals.

The remaining eight subqueries are candidates for use in an optimization where we

use the subquery to limit the possible values for $s, $m. The next chapter details how we

choose the queries to use in the optimization. Below we outline the meaning of some likely

candidates:

1. answer(P) :- exhibits(P,$s).

At least 20 patients exhibit the symptom.

2. answer(P) :- treatments(P,$m).

At least 20 patients must have been given the medicine.

3. answer(P) :- diagnoses(P,D) AND exhibits(P,$s) AND NOT causes(D,$s).

There are at least 20 patients with a disease that does not cause a symptom they

exhibit.

4. answer(P) :- exhibits(P,$s) AND treatments(P,$m).

There are at least 20 patients taking the medicine and exhibiting the symptom.

2.4.4 Extension to Unions of Datalog Queries

Suppose a query 
ock consists of a union of Datalog queries of the type that we have

been considering. We can construct a query that provides an upper bound on the result

of the union if we take the union of queries that provide an upper bound on each query

individually. Thus, we must look for a subquery for each query in the union. Each query

must be safe, in the sense described in Section 2.4.2. If so, then the size of the result of the

union of the subqueries will be a bound on the size of the result for the original query. We

may thus use the union of subqueries to eliminate values of a parameter or parameters that

cannot possibly appear in the result of the query 
ock.

Rule 2.4 (General Optimization Rule for Unions of Conjunctive Queries)

Given a query 
ock that consists of a query part described as a union of conjunctive queries
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Q1; Q2; : : : ; Qn and a support �lter, consider all unions of safe subqueries P1; P2; : : : ; Pn

such that Pi is formed by deleting one or more subgoals from Qi, for i = 1; 2; : : : ; n. The

result of a query 
ock formed by such a union and the same �lter limits the possible values

of the 
ock's parameters.

Example 2.8 Consider the union in the query part of Query Flock 2.4 from Example 2.4.

Suppose we want to �nd a subquery that involves only one domain $1. There are several

choices for each of the two queries.

First consider the query that counts the di�erent domains:

answer(D) :- page(U,$1) AND page(V,$2) AND page(W,D) AND

link(W,U) AND link(W,V) AND $1 < $2

Any safe subquery about $1 must contain page(W,D) and page(U,$1). In the absence of

any statistics of page and link, the most promising subquery is shown below. The rationale

will be explained in details in the next chapter.

answer(D) :- page(U,$1) AND page(W,D) AND link(W,U)

Second, consider the query that counts web pages:

answer(P) :- page(U,$1) AND page(V,$2) AND page(P,X) AND

link(U,P) AND link(V,P) AND $1 < $2

Any safe subquery about $1 must contain page(U,$1) and at least of the following three

subgoals: page(P,X), link(U,P), link(V,P). The most promising safe subquery is shown

below:

answer(P) :- page(U,$1) AND link(U,P)

Thus, a web site cannot be a candidate for $1 unless the sum of the following two

quantities is at least 20:
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1. Number of domains that have at least one page pointing to a page on the given web

site.

2. Number of pages linked from the given web site.

2.5 What Can We Express with Query Flocks?

One of the main objective of query 
ocks is to allow the declarative formulation of a large

class of mining queries. Indeed, we have already seen several di�erent examples of mining

problems that can be expressed as query 
ocks. In this section we will show examples

of other typical mining problems such as classi�cation, clustering, and sequence analysis

phrased as query 
ocks.

2.5.1 Classi�cation

A typical problem in classi�cation is to �nd the best k attributes in order to predict accu-

rately the class of certain instances.Here, we consider the following modi�ed problem:

Suppose we have the following data:

� attributes(InstanceID, AttributeName, AttributeValue)

� class(InstanceID, ClassName)

We want to �nd all pair of attributes and their corresponding values such that knowing

the two values, we can predict the class of an instance, with 80% accuracy (based on the

underlying data). The following 
ock expresses this problem:

Query Flock 2.7 (Classi�cation)

QUERY:

answer1(I) :-

attributes(I,$1,$2) AND

attributes(I,$3,$4) AND

class(I,$5)

answer2(I) :-

attributes(I,$1,$2) AND
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attributes(I,$3,$4)

FILTER:

COUNT(answer1.I) >= 0.8 * COUNT(answer2.I)

The result of Query Flock 2.7 is a set of quintuples ($1,$2,$3,$4,$5). The interpre-

tation of this result is that if we know for a particular instance that the value of attributes

$1 and $2 are $3 and $4 respectively, then we can guess the class of the instance to be $5

with 80% accuracy. Of course, this accuracy is based only on the data we have seen but if

this data is representative of all possible instances our estimate will hold for any new data.

2.5.2 Clustering

Consider the following simple clustering problem. We are given a set of two dimensional

points and we want to divide them into four regions, using one horizontal and one vertical

line, such that each of the four regions contains at least 1/5 of all points. The points are

given as the following relation:

� points(x,y)

Query Flock 2.8 expresses the problem of choosing a horizontal line at Y = $2 and

vertical line at X = $1.

Query Flock 2.8 (Cluster Centers)

QUERY:

answer1(P,Q) :- points(P,Q) AND P<=$1 AND Q<$2

answer2(P,Q) :- points(P,Q) AND P>$1 AND Q<=$2

answer3(P,Q) :- points(P,Q) AND P>=$1 AND Q>$2

answer4(P,Q) :- points(P,Q) AND P<$1 AND Q>=$2

FILTER:

COUNT(answer1(*) >= COUNT(points(*)/5

COUNT(answer2(*) >= COUNT(points(*)/5

COUNT(answer3(*) >= COUNT(points(*)/5

COUNT(answer4(*) >= COUNT(points(*)/5
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2.5.3 Sequence Analysis

One of the basic problems in sequence analysis is to identify a subsequence that occurs

frequently in a given sequence of events.We model this problem with the following example.

Example 2.9 Suppose we have a relation events that has information about some events

and the sequence in which they occur:

� events(SequenceNumber, EventType)

The problem is to �nd a frequent subsequence of event types $1, $2, $3 such that $2 occurs

within two events after $1, and $3 occurs within two events after $2. Query Flock 2.9

expresses this problem, again taking frequent to mean at least 20 occurrences.

Query Flock 2.9 (Frequent Subsequence)

QUERY:

answer(L) :-

events(L, $1) AND

events(M, $2) AND

events(N, $3) AND

L >= M-2 AND M >= N-2

L < M AND M < N

FILTER:

COUNT(answer.L) >= 20

2.6 Concluding Remarks

In this chapter, we introduced the query 
ock framework for mining relational data. Query


ocks allow a declarative formulation of large class of data mining queries. We presented ex-

ample ranging form generalization of association rules, to clustering and classi�cation. The

next chapter details the other two features of query 
ocks, namely systematic optimization

and integration with relational DBMS.



Chapter 3

Query Flock Plans

3.1 Introduction

As we showed in the last chapter, the query 
ock framework allows the declarative formu-

lation of a large class of data mining problems. The present chapter is devoted to the other

two main features of query 
ocks | systematic optimization and processing of data-mining

queries and the integration of query 
ocks with relational DBMS.

The methods of optimization and processing are expressed as Query Flock Plans (QFP).

The key idea of QFP is to transform a complex query 
ock into an equivalent sequence of

simpler queries such that each individual query can be processed e�ciently. Thus, when

query 
ocks are integrated with relational DBMS, the simpler queries are translated into

SQL and executed at the DBMS.

In this chapter, we show how to �nd \good" query 
ock plans for a given query


ock. The search for \good" QFP is akin to the search for logical query plans in query

optimization[GMUW00] and consequently, in this thesis, we adapt and employ standard

query optimization techniques such rule-based algebraic transformations[Gra87].

It is important to note that the bulk of the optimization techniques presented in this

chapter apply directly to query 
ocks with certain types of �lter conditions, called mono-

tone conditions. The problem of optimizing and processing an arbitrary query 
ock with

an arbitrary �lter condition remains open. Indeed, we expect that, similar to standard

query optimization, the problem of �nding an optimal query 
ock plan for a query 
ock is

intractable in the general case.

28
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3.1.1 Chapter Organization

The rest of this chapter is organized as follows. In Section 3.2 we formally de�ne query


ock plans. Section 3.3 presents several optimization algorithms for generating \good"

query 
ock plans. In Section 3.4 we describe the tightly-coupled integration of the query


ock framework with relational DBMS and the implementation of query 
ock plans in SQL.

Section 3.5 presents some experimental results. Section 3.6 concludes the chapter.

3.2 De�nition of Query Flock Plans

In this section we present our de�nition of query 
ock plans. We begin by de�ning auxiliary

relations, which are the most important ingredients of QFP. Then, we de�ne the three types

of steps that are the building blocks of query 
ock plans.

3.2.1 Auxiliary Relations

An auxiliary relation is a relation over a subset of the parameters of a query 
ock and

contains candidate values for the given subset of parameters. The main property of aux-

iliary relations is that all parameter values that satisfy the �lter condition are contained

in the auxiliary relations. In other words, any value that is not in an auxiliary relation is

guaranteed not satisfy the �lter condition. Throughout the examples in this chapter we

only consider �lter conditions of the form COUNT (ans) >= X . However, our results and

algorithms are valid for a larger class of �lter conditions called monotone in [TUC+98] or

anti-monotone in [NLHP98]. For this class of �lter conditions, according to Rule 2.2, the

auxiliary relations can be de�ned with a subset of the goals in the query part of the query


ock. For a concrete example, consider Query Flock 2.3 from Example 2.3:

Example 3.1 An auxiliary relation ok m for parameter $m can be de�ned as the result of

the following query 
ock:

Query Flock 3.1 (Common Medicines)

QUERY:

answer(P) :- treatments(P, $m)

FILTER:

COUNT(ans) >= 20
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The result of this 
ock consists of all medicines such that for each medicine there are

at least 20 patients treated with it. In order to illustrate the use of the auxiliary relation

okm consider the result of Query Flock 2.3. The result consists of pairs of a medicine and

a symptom such that there are at least 20 patients treated with the medicine, exhibiting

the symptom, and not having symptom caused by their disease. Then, any medicine that

appears in the result must appear in the okm. Thus, the auxiliary relation is a superset of

the result of the original query 
ock projected on the parameters of the auxiliary relation..

3.2.2 Query Flock Plans

Intuitively, a query 
ock plan represents the transformation of a complex query 
ock into a

sequence of simpler steps. This sequence of simpler steps represent the way a query 
ock is

executed at the underlying RDBMS. In principal, we can translate any query 
ock directly

in SQL and then execute it at the RDBMS. However, due to limitations of the current

query optimizers, such an implementation will be very slow and ine�cient. Thus, using

query 
ock plans we can e�ectively pre-optimize complex mining queries and then feed the

sequence of smaller, simpler queries to the query optimizer at the DBMS.

A query 
ock plan is a (partially ordered) sequence of operations of the following 3

types:

Type 1 Materialization of an auxiliary relation

Type 2 Reduction of a base relation

Type 3 Computation of the �nal result

The last operation of any query 
ock plan is always of type 3 and is also the only one

of type 3.

Materialization of an auxiliary relation: This type of operation is actually a query


ock that is meant to be executed directly at the RDBMS. The query part of this query


ock is formed by choosing a safe subquery [Ull88] of the original query. The �lter condition

is the same as in the original query 
ock. Of course, there are many di�erent ways to choose

a safe subquery for a given subset of the parameters. We investigate several ways to choose

safe subqueries according to some rule-based heuristics later in the chapter. This type of

operation is translated into an SQL query with aggregation and �lter condition.
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For an example of a step of type 1, recall the query 
ock that materializes an auxiliary

relation for $m from Example 3.1. This materialization step can be translated directly into

SQL as follows:

ok_m(Medicine) AS

SELECT Medicine

FROM treatments

GROUP BY Medicine

HAVING COUNT(Patient) >= 20

Reduction of a base relation: This type of operation is a semijoin of a base relation

with one or more previously materialized auxiliary relations. The result replaces the original

base relation. In general, when a base relation is reduced we have a choice between several

reducers. Later in this chapter, we describes how to choose \good" reducers.

For an example of a step of type 2, consider the materialized auxiliary relation ok m.

Using ok m we can reduce the base relation treatments as follows:

treatments 1(P) :- treatments(P,$m) AND ok m($m)

This query can be translated directly into SQL as follows:

treatments_1(Patient,Medicine) AS

SELECT b.Patient, b.Medicine

FROM treatments b, ok_m r

WHERE b.Medicine = r.Medicine

Computation of the �nal result: The last step of every query 
ock plan is a compu-

tation of the �nal result. This step is essentially a query 
ock with a query part formed

by the reduced base relations from the original query 
ock. The �lter is the same as in the

original query 
ock.

For an example of a step of type 3, consider Query Flock 2.3 with the treatments

predicate replaced by the reduced base relation treatments 1:

Query Flock 3.2 (Side E�ects with reduced diagnoses)
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QUERY:

answer(P) :-

exhibits(P,$s) AND

treatments 1(P,$m) AND

diagnoses(P,D) AND

NOT causes(D,$s)

FILTER:

COUNT(answer.P) >= 20

This 
ock can be translated directly into SQL as follows:

result(Medicine,Symptom) AS

SELECT t.Medicine,e.Symptom

FROM exhibits e, treatments_1 t, diagnoses d

WHERE e.Patient = t.Patient

AND e.Patient = d.Patient

AND e.Symptom NOT IN

(SELECT c.Symptom

FROM causes c

WHERE c.Disease = d.Disease)

GROUP BY t.Medicine,e.Symptom

HAVING COUNT(Patient) >= 20

3.3 Optimization Algorithms

In this section we present algorithms that generate e�cient query 
ock plans. Recall that

in our tightly-coupled mining architecture these plans are meant to be translated in SQL

and then executed directly at the underlying RDBMS. Thus, we call a query 
ock plan

e�cient if its execution at the RDBMS is e�cient. There are two main approaches to

evaluate the e�ciency of a given query plan: cost-based and rule-based. A cost-based

approach involves developing an appropriate cost model and methods for gathering and

using statistics. In contrast, a rule-based approach relies on heuristics based on general

principles, such as applying �lter conditions as early as possible. In this chapter, we focus
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on the rule-based approach to generating e�cient query 
ock plans. The development of a

cost-based approach is a topic of future research.

The presentation of our rule-based algorithms is organized as follows. First, we describe

a general nondeterministic algorithm that can generate all possible query 
ock plans un-

der the framework described in Section 3.2.2. The balance of this section is devoted to

the development of appropriate heuristics, and the intuition behind them, that make the

nondeterministic parts of the general algorithm deterministic. At the end of this section

we discuss the limitations of conventional query optimizers and show how the query 
ock

plans generated by our algorithm overcome these limitations.

3.3.1 General Nondeterministic Algorithm

The general nondeterministic algorithm can produce any query 
ock plan in our framework.

Recall that a valid plan consists of a sequence of steps of types 1 and 2 followed by a �nal

step of type 3. One can also think of the plan as being a sequence of two alternating phases:

materialization of auxiliary relations and reduction of base relations. In the materialization

phase we choose what auxiliary relations to materialize one by one. Then we move to the

reduction phase or, if no new auxiliary relations have been materialized, to the computation

of the �nal result. In the reduction phase we choose the base relations to reduce one by one

and then go back to the materialization phase.

Before we described the nondeterministic algorithm in details we introduce the following

two helper functions.

MaterializeAuxRel(Params, De�nition) takes a subset of the parameters of the orig-

inal query 
ock and a subset of the base relations. This subset forms the body of the

safe subquery de�ning an auxiliary relation for the given parameters. The function

assigns a unique name to the materialized auxiliary relation and produces a step of

type 1.

ReduceBaseRel(BaseRel, Reducer) takes a base relation and a set of auxiliary rela-

tions. This set forms the reducer for the given base relation. The function assigns a

unique name to the reduced base relation and produces a step of type 2.

We also assume the existence of functions add and replace, with their usual meanings,

for sets and the function append for ordered sets. The nondeterministic algorithm is shown

in Fig. 3.1
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Algorithm 3.1

Input: Query 
ock QF
Parameters { set of parameters of QF
Predicates { set of predicates in the body of the query part of QF

Output: Query 
ock plan QFPlan
== Initialization

BaseRels = Predicates
AuxRels = ;
QFPlan = ;

== Iterative Generation of Query Flock Plan

while(true) do
(Q1) choose NextStepType from fMATERIALIZE, REDUCE, FINALg

case NextStepType:
MATERIALIZE: == Materialization of Auxiliary Relation

(Q2) choose subset S of Parameters
(Q3) choose subset D of BaseRels

Step =MaterializeAuxRel(S;D)
QFPlan:append(Step)
AuxRels:add(Step:ResultRel)

REDUCE: == Reduction of Base Relation

(Q4) choose element B from BaseRels

(Q5) choose subset R of AuxRels
Step = ReduceBaseRel(B;R)
QFPlan:append(Step)
BaseRels:replace(B; Step:ResultRel)

FINAL: == Computation of Final Result

Step =MaterializeAuxRel(Parameters; BaseRels)
QFPlan:append(Step)
return QFPlan

end case
end while

Figure 3.1: General nondeterministic algorithm.
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The number of query 
ock plans that this nondeterministic algorithm can generate is

rather large. Infact, with no additional restrictions, the number of syntactically di�erent

query 
ock plans that can be produced by Algorithm 3.1 is in�nite. Even if we restrict the

algorithm to materializing only one auxiliary relation for a given subset of parameters, the

number of query 
ock plans is more than double exponential in the size of the original query.

Thus, we have to choose a subspace that will be tractable and also contains query 
ock plans

that work well empirically. To do so e�ectively we need to answer several questions about

the space of potential query 
ock plans. We have denoted these questions in Algorithm 3.1

with (Q1) - (Q5).

(Q1) How to sequence the steps of type 1 and 2?

(Q2) What auxiliary relations to materialize?

(Q3) What de�nition to choose for a given auxiliary relation?

(Q4) What base relations to reduce?

(Q5) What reducer to choose for a given base relation?

There are two main approaches to answering (Q1) - (Q5). The �rst one involves using

a cost model similar to the one used by the query optimizer within the RDBMS. The second

approach is to use rule-based optimizations. As we noted earlier, in this chapter we focus

on the second approach.

In order to illustrate Algorithm 3.1, consider Query Flock 2.3.

Example 3.2 In this example, we describe one possible query 
ock plan that can be gener-

ated by Algorithm 3.1 for the above query 
ock. The inputs are:

� Parameters = f$M; $Sg

� Predicates = fexhibits(P; $S); treatments(P; $M); diagnoses(P;D);

NOT causes(D; $S)g

The initialization phase assigns the following values:

� BaseRels = fexhibits(P; $S); treatment(P; $M); diagnoses(P;D);

NOT causes(D; $S)g
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� AuxRels = ;

� QFPlan = ;

Then, we choose (Q1) the �rst step of the plan to be MATERIALIZE. Next we choose (Q2)

a subset of parameters S for which to materialize an auxiliary relation.

� S = f$Sg

We also choose a subset of the base relations D that forms a safe subquery that de�nes

an auxiliary relation for $S.

� D = fexhibits(P; $S)g

Then, we add a step to the query 
ock plan that materializes the auxiliary relation for

the chosen parameter with the chosen de�nition. We also add the auxiliary relation to the

set of auxiliary relations. Thus, at the end of the �rst iteration we have:

� BaseRels = fexhibits(P; $S); treatment(P; $M); diagnoses(P;D);

NOT causes(D; $S)g

� AuxRels = foks($S)g

� QFPlan = fMaterializeAuxRel(f$Sg; fexhibits(P; $S)gg

Then, we go back to (Q1) and this time we choose the type of the next step to be

REDUCE. In (Q4), we choose a base relation B to reduce.

� B = fexhibits(P; $S)g

We also choose, in (Q5), a reducer R for exhibits(P; $S) from the auxiliary relations.

� R = fok s($S)g

Thus, at the end of the second iteration we have:

� BaseRels = fe 1(P; $S); treatment(P; $M); diagnoses(P;D);NOT causes(D; $S)g

� AuxRels = fok s($S)g
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Table 3.1: Example of a query 
ock plan produced by Algorithm 3.1.

Step Type Result QUERY FILTER

(1) 1 ok s($S) ans 1(P) :- exhibits(P,$S) COUNT(ans 1) >= 20

(2) 2 c 1(D,$S) c 1(D,$S) :- causes(D,$S) -
AND ok s($S)

(3) 2 e 1(P,$S) e 1(P,$S) :- exhibits(P,$S) -
AND ok s($S)

(4) 3 res($M,$S) ans(P) :- e 1(P,$S) COUNT(ans) >= 20

AND treatment(P,$M)

AND diagnoses(P,D)

AND NOT c 1(D,$S)

� QFPlan = fMaterializeAuxRel(f$Sg; fexhibits(P; $S)g);

ReduceBaseRel(fexhibits(P; $S)g; fok s($S)g)g

For the third iteration we choose REDUCE and reduce the base relation causes(D; $S).

For the fourth and �nal iteration, we choose FINAL and compute the �nal result. The state

of the global variables for Algorithm 3.1 is shown below:

� BaseRels = fe 1(P; $S); treatment(P; $M); diagnoses(P;D);NOT c 1(D; $S)g

� AuxRels = fok s($S)g

� QFPlan = fMaterializeAuxRel(f$Sg; fexhibits(P; $S)g);

ReduceBaseRel(fexhibits(P; $S)g; fok s($S)g);

ReduceBaseRel(fcauses(P; $S)g; fok s($S)g);

MaterializeAuxRel(f$S; $Mg;

fe1(P; $S); treatment(P; $M); diagnoses(P;D);NOT c1(D; $S)g)g

Table 3.1 shows the example query 
ock plan in a concise table format.

3.3.2 Levelwise Heuristic

First, we address the question how to sequence the steps of types 1 and 2 ((Q1)) along

with the questions what auxiliary relations to materialize ((Q2)) and what base relations

to reduce ((Q4)). The levelwise heuristic that we propose is loosely fashioned after the
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highly successful a-priori trick [AIS93]. The idea is to materialize the auxiliary relations

for all parameter subsets of size up to and including k in a levelwise manner reducing

base relations after each level is materialized. So, starting at level 1, we materializing

an auxiliary relations for every parameter. Then we reduce the base relations with the

materialized auxiliary relations. At level 2, we materialize the auxiliary relations for all

pairs of parameters, and so on. The general levelwise algorithm is formally described in

Fig. 3.2.

The levelwise heuristic has also some important implications on the choice of de�nitions

of auxiliary relations and the choice of reducer for base relations discussed in the next two

section.

3.3.3 Choosing De�nitions of Auxiliary Relations

When choosing de�nitions of auxliary relations ((Q3)) there are two main approaches single

and group. In the single approach, we choose a de�nition for a single auxiliary relation with-

out regard to any other choices. In the group approach, in contrast, we choose de�nitions

for several auxiliary relations at the same time. Thus, we can exploit existing symmetries

among the parameters or equivalences among syntactically di�erent de�nitions. Regardless

of the particular approach we only consider de�nitions that form minimal safe subquesies,

not involving a cartesian product. The subquesies are minimal in a sense that eliminating

any subgoal will either make the subquery unsafe or will turn it into a cartesian product.

The already chosen levelwise heuristic dictates the use of the group approach in our

algorithm. We can take advantage of the fact that we are choosing de�nitions for all

auxiliary relations for a given level simultaneously. Thus, it is rather straightforward to use

symmetries among parameters and equivalences among subqueries to choose the smallest

the number of de�nitions that cover all auxliary relations. We refer to this strategy as the

least-cover heuristic.

3.3.4 Choosing Reducers of Base Relations

When choosing a reducer for a given base relation we can employ two strategies. The �rst

strategy is to semijoin it with the join of all auxliary relations that have parameters in

common with the base relation. The second strategy is to semijoin it with all auxiliary

relations that only have parameters appearing in the given base relation. With the second
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Algorithm 3.2

Input: Query 
ock QF; K { max level
Parameters { set of parameters of QF
Predicates { set of predicates in the body of the query part of QF

Output: Query 
ock plan QFPlan
== Initialization

BaseRels = Predicates

QFPlan = ;
== Levelwise Generation of Query Flock Plan

for i = 1 to K do
AuxRelsi = ;

== Materialization of Auxiliary Relations

for all S � Parameters with j S j= i do
(Q3) choose subset D of BaseRels

Step =MaterializeAuxRel(S;D)
QFPlan:append(Step)
AuxRelsi:add(Step:ResultRel)

end for
== Reduction of Base Relations

for all B 2 BaseRels

(Q5) choose subset R of AuxRelsi
Step = ReduceBaseRel(B;R)
QFPlan:append(Step)
BaseRels:replace(B; Step:ResultRel)

end for
end for

== Computation of Final Result

Step =MaterializeAuxRel(Parameters; BaseRels)
QFPlan:append(Step)
return QFPlan

Figure 3.2: General levelwise algorithm.
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strategy we minimize the number of relations in the reduction joins while keeping the

selectivity as high as possible. Again the use of the levelwise heuristic dictates our strategy

choice. At the end of each level we have materialized auxiliary relations for all parameter

subsets of the given size. Thus, the �rst strategy yields unnecessarily large reducers for

every base relation at almost every level. Therefore, in our algorithm, we employ the

second strategy.

3.3.5 K-Levelwise Deterministic Algorithm

Choosing the least-cover heuristic for (Q3) and the strategy outlined in Section 3.3.4 for

(Q5) we �nalize our algorithm that generates query 
ock plans. The formal description of

the k-levelwise deterministic algorithm is shown in Fig.3.3.
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Table 3.2: Query 
ock plan produced by Algorithm 3.3 with K = 1.

Step Type Result QUERY FILTER

(1) 1 ok s($S) ans 1(P) :- exhibits(P,$S) COUNT(ans 1) >= 20

(2) 1 ok m($M) ans 2(P) :- treatment(P,$M) COUNT(ans 2) >= 20

(3) 2 c 1(D,$S) c 1(D,$S) :- causes(D,$S) -
AND ok s($S)

(4) 2 e 1(P,$S) e 1(P,$S) :- exhibits(P,$S) -
AND ok s($S)

(5) 2 t 1(P,$M) t 1(P,$M) :- treatment(P,$M) -
AND ok m($M)

(6) 3 res($M,$S) ans(P) :- e 1(P,$S) COUNT(ans) >= 20

AND t 1(P,$M)

AND diagnoses(P,D)

AND NOT c 1(D,$S)

The k-levelwise deterministic algorithm uses the following three helper functions.

GetMinDefs(Params,Preds) takes a set of parameters and a set a of predicates (query).

The function returns a tuple where the �rst element is the set of parameters and the

second element is the set of all minimal de�nitions (subqueries) for the auxiliary

relation for the given set of parameters.

GetLeastCover(Set of (Params,Defs)) takes a set of tuples composed of a set of pa-

rameters and a set of de�nitions. The function returns the smallest set of de�nitions

that covers all sets of parameters using equivalences among syntactically di�erent

de�nitions.

GetParams(Pred) takes a predicate and returns the set of parameters that appear in the

given predicate.

The query 
ock plan produced by Algorithm 3.3 with k = 1 for the query 
ock from

Example 2.3 is shown in Table 3.2.

3.3.6 Comparison with Conventional Query Optimizers

Recall that we use query 
ock plans to insure the e�cient execution of query 
ocks at

the underlying RDBMS. The shortcomings, with respect to query 
ocks, of conventional
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Algorithm 3.3

Input: Query 
ock QF; K { max level
Parameters { set of parameters of QF
Predicates { set of predicates in the body of the query part of QF

Output: Query 
ock plan QFPlan
== Initialization

BaseRels = Predicates;QFPlan = ;
== Levelwise Generation of Query Flock Plan, up to level K

for i = 1 to K do
AuxRelsi = ;; MinDefsi = ;

== find all minimal definitions of auxiliary relations

for all S � Parameters with j S j= i do
MinDefsi:add(GetMinDefs(S;BaseRels))

end for
== choose least cover of minimal definitions

Coveri = GetLeastCover(MinDefsi)
== for each definition in the cover add corresponding

== auxiliary relations for all covered parameter subsets

for all hDef; CoveredParamSetsi 2 Coveri do
for all S 2 CoveredParamSets do

Step =MaterializeAuxRel(S;Def)
AuxRelsi:add(Step:ResultRel)

end for
== materialize the shared definition only once

QFPlan:append(Step)
end for

== Reduction of Base Relations

for all B 2 BaseRels do
R = ;

== choose reducer for base relation

for all A 2 AuxRelsi do
if GetParams(A) � GetParams(B) then

R:add(A)
end for
Step = ReduceBaseRel(B;R)
QFPlan:append(Step)
BaseRels:replace(B; Step:ResultRel)

end for
end for

== Computation of Final Result

Step =MaterializeAuxRel(Parameters; BaseRels)
QFPlan:append(Step)
return QFPlan

Figure 3.3: K-Levelwise deterministic algorithm.



3.4. INTEGRATION WITH RELATIONAL DBMS 43

query optimizers are the �xed shape (left-deep trees) of their query plans and the fact that

aggregation is usually done last. Query 
ock plans rectify these problems by using reduction

of base relations to circumvent the shape of the query plan and auxiliary relations to use

aggregation on partial results as early as possible

The problem of including aggregation in query optimization is studied in [YL95, CS96,

CS94]. In these papers, aggregation is pushed down, (or sometimes up), the query plan tree.

The key di�erence with our work is that we use aggregation on a subset of the original query

and the result is used to reduce the size of intermediate steps. Eventually the aggregation

must be performed again but we have gained e�ciency by having much smaller intermediate

results.

3.4 Integration with Relational DBMS

There are three di�erent ways in which data mining systems use relational DBMS. They

may not use a database at all, be loosely coupled, or be tightly coupled. We have chosen

the tightly-coupled approach that does (almost) all of the data processing at the database.

Before we justify our choice, we discuss the major advantages and drawback of the the other

two approaches.

Most current data mining systems do not use a relational DBMS. Instead they pro-

vide their own memory and storage management. This approach has its advantages and

disadvantages. The main advantage is the ability to �ne-tune the memory management

algorithms with respect to the speci�c data mining task. Thus, the data mining systems

can achieve optimal performance. The downside of this database-less approach is the lost

opportunity to leverage the existing relational database technology developed in the last

couple of decades. Indeed, conventional DBMS provide various extra features, apart from

good memory management, that can greatly bene�t the data mining process. For example,

the recovery and logging mechanisms, provided by most DBMS, can make the results of long

computations durable. Furthermore, concurrency control can allow many di�erent users to

utilize the same copy of the data and run data mining queries simultaneously.

Some data mining systems use a DBMS but only to store and retrieve the data. This

loosely-coupled approach does not use the querying capability provided by the database

which constitutes both its main advantage and disadvantage. Since the data processing is

done by specialized algorithms their performance can be optimized. On the other hand,
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there is still the requirement for at least temporary storage of the data once it leaves the

database. Therefore, this approach also does not use the full services o�ered by the DBMS.

The tightly-coupled approach, in contrast, takes full advantage of the database technol-

ogy. The data are stored in the database and all query processing is done locally (at the

database). The downside of this approach is the limitations of the current query optimizers.

In was shown in [STA98] that performance su�ers greatly if we leave the data mining queries

entirely in the hands of the current query optimizers. Therefore, we need to perform some

optimizations before we send the queries to the database, taking into account the capabil-

ities of the current optimizers. To achieve this, we use the algorithms that generate query


ock plans as an external optimizer that sits on top of the DBMS. The external optimizer

e�ectively breaks a complex data mining query into a sequence of smaller queries that can

be executed e�ciently at the database. This architecture is shown in Fig. 3.4.

Translator

Optimizer
External

Query Flock Plan

RDBMS

Sequence of

Simple Queries

(in SQL)

Query Flock Compiler

Complex DM Query

(Query Flock)

via ODBC or JDBC

Figure 3.4: Tightly-coupled integration of data mining and DBMS.

The external optimizer can be a part of larger system for formulating data mining

queries such as query 
ocks. The communication between this system and the database can

be carried out in ODBC or JDBC.

3.5 Experimental Results

Our experiments are based on real-life health-care data. Below we describe a representative

problem and the performance results.
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Consider a relation Diagnoses(PatientID,StayCode,Diagnose) that contains the di-

agnoses information for patients during their stays at some hospital. Another relation,

Observe(PatientID,StayCode), contains the pairs of PatientID and StayCode for pa-

tients that are kept for observations for less than 24 hours. The rest of the patients are

admitted to the hospital. Consider the following problem.

Find all pairs of diagnoses such that:

1. There are at least N patients diagnosed with the pair of diagnoses

2. At least one of them is an observation patient

We can express this problem naturally as a query 
ock:

QUERY:

ans(P,S) :- Diagnoses(P,S,$D1) AND

Diagnoses(P,S,$D2) AND

Diagnoses(Q,T,$D1) AND

Diagnoses(Q,T,$D2) AND

Observe(Q,T) AND

$D1 < $D2

FILTER:

COUNT(ans) >= N

This problem is important to the hospital management because the reimbursement pro-

cedures and amounts for admitted and observation patients are di�erent. Thus, manage-

ment would like to identify some exceptions to the general trends, �nd their causes, and

investigate them further for possible malpractice or fraud.

The Diagnoses relation contains more than 100,000 tuples, while the Observe relation

contains about 8,000 tuples. We compared the performance of the 1-levelwise and 2-levelwise

algorithms as well as the direct approach where the query 
ock is directly translated into

SQL. We used a standard installation of ORACLE 8.0 running under Windows NT. The

results are shown in Fig. 3.5.

For this dataset, the 2-levelwise algorithm outperforms the 1-levelwise algorithm more

than 3 times. This result is somewhat surprising because the two parameters $D1 and $D2
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Figure 3.5: Performance results on health-care data.

are symmetric (excluding the inequality) and thus, only one relation is materialized at level

1. However, the reduced base relation Diagnoses after level 1 is still rather large and the

computation of the �nal result at this stage is much slower than materializing the auxiliary

relation for the pair of parameters.

As expected, both algorithms perform much better than the direct approach where we

translate the query 
ock directly in SQL. Infact, the actual translation did not �nish execut-

ing in a reasonable amount of time. Thus, we had to augment the direct translation, hence

direct+, with a preliminary step where we joined the Observe and Diagnoses relations.

This step had the e�ect of reducing the size of the relations for two of the four Diagnoses

predicates and eliminating the Observe predicate.

3.6 Concluding Remarks

In this chapter, we introduced query 
ock plans that transform a complex query 
ock into

an equivalent sequence of simpler queries that can be executed e�ciently as a unit. We also

showed that query 
ock plans can be integrated with relational DBMS in a tightly coupled

manner.



Chapter 4

Mining Semistructured Data

4.1 Introduction

The advent of the Internet and its rapid proliferation are making an ever increasing number

of information sources available electronically to the casual user. These sources export data

in a variety of formats with widely varying degrees of structure, regularity, and consistency.

While the data can rarely �t the rigid requirements of the relational model, it often has

some underlying, implicit structure. We call such data semistructured.

The World Wide Web (WWW) provides a perfect example of semistructured data.

Consider the home pages of students at some university. Most of these pages will have the

names and addresses of their respective owners. Some pages will have links to the home

pages of other students, university clubs and organizations, home towns, favorite sports

teams, etc. Certainly, these pages will not conform to some prede�ned �xed schema in

the relational sense. Furthermore, they are interconnected via hyperlinks. And yet, there

is some inherent structure that underlines these pages. The common structure may come

about by way of students sharing page templates, being in the same environment, having

common interests, etc.

Of course, we cannot expect to �nd only one kind of student home pages. There are

bound to be many di�erent kinds corresponding to the di�erent types of students. Further-

more, most students will belong to several di�erent types. For example, consider a European

engineering graduate student (such as the author). The home page of this student might

have some soccer links (as European), links to the pages of his advisor and research group

(as an engineering student), as well as a link to his undergraduate college (as a graduate

47
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student).

Another source of semistructured data is information integration [CGMH+94]. Consider

the increasingly popular idea of comparison shopping across many di�erent vendors on the

Internet. Even if we assume that each individual shopping site has a regular structure,

the data, resulting from the integration of several thousands of them, will certainly be

somewhat irregular. On the one hand, di�erent shopping sites present di�erent kinds of

information about the same product. On the other hand, each product is sold on a di�erent

set of shopping sites. Thus, in the integrated data each product may have di�erent kinds

of information, unlike that of any other product. However, we can also expect that similar

products will have similar, but not identical, kinds of information. Identifying such similar

products and their common information is of great value to the integrators. Using the mined

common information, the integrators, can present a common set of features for each of the

di�erent product categories. Thus, customers can search and compare similar products

e�ectively across many di�erent vendors.

These two examples illustrate the importance of discovering the implicit structure of

semistructured data. In fact, structure discovery is the most important application of

data mining for semistructured data. Because of the nature of semistructured data, the

discovered structure may be imprecise or approximate. There is a tradeo� between the

precision of the discovered structure and its conciseness. This tradeo� depends on the

particular application as well as the actual semistructured data. For example, if we group

together all products sold on the web, they will have very few common features (such as

name and price). On the other hand, computers will have a lot more common features such

as processor and memory.

Recently, the emerging eXtensible Markup Language (XML) has come into prominence

for describing and exchanging certain types of data. Most of the XML data can arguably be

considered semistructured even though it has a corresponding Data Type De�nition (DTD).

The main reason is that a DTD encodes all possible instances, often in�nitely many, of a

particular type of data whereas any given data instance has only some of the characteristics

de�ned by the DTD. Thus, it is not uncommon for a DTD to be much larger in size than the

actual data instances. In a sense, a DTD serves as grammar, whereas the data instances are

the actual words and sentences. Thus, it makes sense to identify di�erent kinds of similar

sentences even though they all share the same grammar.
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4.1.1 Chapter Organization

The rest of this chapter is organized as follows. Section 4.2 elaborates our de�nition of

semistructured data and presents several data models. Section 4.3 describes the main goal of

data mining semistructured data which is the discovery of its implicit structure. This section

also gives an overview of our research contributions which are detailed in Chapters 5 and 6.

Related work is discussed in Section 4.4. Section 4.5 concludes this chapter.

4.2 Semistructured Data De�ned

There is a plethora of data available on the web, ranging in structure from rigid relational

form to just plain text. A great portion of the data, however, falls somewhere in between.

Recently, the term semistructured data has emerged to described such data. This is not a

precise de�nition and the distinction between structured, semistructured, and unstructured

data are often blurred and somewhat arbitrary. The consensus of the literature [ABS99,

Abi97, Bun97], is that semistructured data has one or more of the following characteristics:

� no �xed schema known in advance;

� implicit structure that is irregular, incomplete, or partial;

� heterogeneous;

� hierarchical (nested);

Figure 4.1 shows a simple example of semistructured data about three students at United

University. The data model will be explained in details in the next section; for now, it su�ces

to say that circles with text inside correspond to objects and their unique identi�ers, arrows

with text connected to labeled links between objects, and text below circles corresponds to

object values.

The data, shown in Figure 4.1, exhibits all of the characteristics of semistructured data.

Certainly, it does not conform to any �xed schema since each of the three Student objects

has a di�erent set of incoming and outgoing links. However, there is some implicit structure

because each Student object has links to Name and Address objects as well as a link to

another Student object. On the other hand, this structure is only partial because two

Student objects have a Friend links, while the third one has a Roommate link. The data
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United University

Student
Student

"Spice Boy""Beckham""David"

Last

First

Name

&1 &2

Name

"Old Trafford 11"

Address

Friend

"Old Trafford 7"
Nickname

AddressAddress

Roommate
&3

&0

&11 &12 &13 &14 &15

&23&22&21

Student

Friend

"Ryan Giggs" "Paul Scholes"

Name

Figure 4.1: Simple example of semistructured data

is heterogeneous because two of the three Name objects have only text values whereas the

third one has links to other objects. Finally, the data is nested because of the links among

objects.

4.2.1 Data Models

The nature of semistructured data dictates that its data models should be lightweight and

self-describing. We use the term lightweight to indicate that there is no explicit schema or

typing information in the data model. The lack of schema and types makes it possible to

handle data from newly discovered sources, which is often the case on the Web [Abi97], where

new data source appear everyday and existing ones change their format. The semistructured

data models need to incorporate implicitly the partial, incomplete, or irregular structure of

the data and thus are self-describing.

Most semistructured data models follow a minimalistic approach that is consistent with

being lightweight and self-describing. The majority of the literature follows one of the two

independent, but similar, proposals that are based on labeled directed graphs [AQM+96,
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BDHS96].

The Object Exchange Model (OEM) The model consists of a directed graph with

labeled edges. An earlier version of OEM put the labels on the vertices [PGMW95] which

resulted in decreased 
exibility of the model. In the \new" OEM [AQM+96] vertices corre-

spond to objects and edges along with their respective labels correspond to object references.

Each object has a unique object identi�er. There two kinds of objects in OEM: atomic and

complex. Atomic objects take on a value from one of the basic atomic types such as string,

integer, html, etc. The value of a complex object is the set of its object references. An

example of semistructured data represented in OEM is shown in Figure 4.1. Consider the

object with object identi�er &1. It is a complex object and its value is the set of three

object references: fhName;&11i; hAddress;&12i; hFriend;&2ig. The object with object

identi�er &11 is an atomic object and its value is the string Ryan Giggs.

The Data Model of UnQL The model is based on rooted, labeled graphs. There are

two main di�erences between this data model [BDHS96] and OEM. The UnQL data model

puts all labels on the edges, i.e. vertices have no values associated with them. Thus, an

atomic value is represented as a label to a leaf node in this model. The second di�erence is

that there are no object identities in the UnQL data model. Tree markers and bisimulation

are used instead. Regardless of these two di�erence the UnQL data model is very similar

to OEM.

The eXtensible Markup Language (XML) Technically, XML is not a data model.

Rather, it is a textual language, based on nested tagged elements [XML98], for representing

and exchanging data on the Web. Nevertheless, semistructured data is the primary target

of XML. There are several substantial di�erences between XML and the two data model

presented above. Firstly, XML imposes an ordering on the object references that is absent

from the graph-based models. Secondly, there is a distinction in XML between attributes,

subobjects, and object references. In the graph-based models all of them will be considered

as object references. Thirdly, an XML data can be accompanied by a DTD that serves

as a schema for the data. A detailed discussion of these di�erences appears in [GMW99].

Figure 4.2 shows one possible XML representation of the semistructured data shown in

Figure 4.1.
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<?xml version="1.0" standalone="yes"?>

<University name="United University" id="&0">

<Student id="&1">

<Name id="&11">Ryan Giggs</Name>

<Address id="&12">Old Trafford 11</Address>

<Friend idref="&2"/>

</Student>

<Student id="&2">

<Name id="&13">

<First id="&21">David</First>

<Last id="&22">Beckham</Last>

<Nickname id="&23">Spice Boy</Nickname>

</Name>

<Address id="&14">Old Trafford 7</Address>

<Friend idref="&3"/>

</Student>

<Student id="&3">

<Name id="&15">Paul Scholes</Name>

<Roommate idref="&2"/>

<Address idref="&14"/>

</Student>

</University>

Figure 4.2: A simple example of semistructured data in XML.

4.3 Mining for Structure

The lack of explicit schema in semistructured data makes it easy to generate, collect, and

maintain but hard to store e�ciently, browse, and query. Consider the example data about

United University from Figure 4.1. Anyone who uses this data will �rst need to know what

kinds of information are provided about students. In particular, users need to know that

the data contains the names, addresses, and friends of students but not their emails or

telephone numbers. In a relational or object-oriented database this meta-information can

be discerned from the schema of the data. In semistructured data, however, the only way

to discover all the di�erent kinds of information in the database, is to examine each and

every piece of data.

Furthermore, suppose that a user is interested in �nding information about a particular
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student, say \David Beckham." In order to write this query, the user needs to know how

the names of the students are being represented. In the absence of a schema, the user may

start by examining a few student objects. If the user happens to come across objects with

identi�ers &1 and &3 �rst, and decides that the name is stored as a Name subobject, then

the result of the user's query will be empty because the name \David Beckham" is stored

di�erently.

The point is that in semistructured data objects do not have to conform to any schema,

and there is no way of knowing their structure unless we examine all of them. Therefore,

having some kind of a structural summary will be of a great value to browsing and querying

semistructured data.

There are many bene�ts of having explicit structure for semistructured data:

� Data Browsing: Before users decide to query a particular semistructured database,

they need to know whether the database contains any information relevant to their

particular query. An explicit structure will serve as a summary or a table of contents

of the database.

� Query Writing: When querying semistructured data, users need to express paths

through the data that meet certain conditions. The use of wild-cards in such queries

is inevitable, but having an explicit structure can help users minimize the wild-cards

and, thus focus their search more e�ectively.

� Query Optimization: Executing queries over semistructured data without any other

information may result in examining the whole database for every query. An explicit

structure will allow more e�cient execution as well as indexing.

� E�cient Storage: In order to cluster objects that tend to be accessed together the

system needs to know something about the structure of the data. Having an explicit

structure will allow the system to identify \similar" objects and store them together.

4.3.1 Our Research Contributions

We propose two di�erent approaches to discovering the inherent structure of semistruc-

tured data. Both methods have their respective advantages and disadvantages for certain

applications.
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Our �rst approach is based on the concept of a representative object for a semistruc-

tured data source. The main property of a representative object (RO) is that it accurately

describes all objects within the given data source. Thus, the RO is very similar to a DTD

for an XML data source. However, unlike a DTD, which is given apriori, a RO is derived

from the data source. Representative objects are implemented in the Lore DBMS [QRS+95]

as DataGuides [GW97]. Chapter 5 is devoted entirely to the representative object concept

and details several di�erent methods of constructing a RO for a given semistructured data

source.

The major disadvantage of the RO approach is the implicit assumption of perfect data.

Since no errors are allowed, a single misspelling of a label may result in a doubling of

the size of the RO. Our second approach, detailed in Chapter 6, recti�es this problem

by discovering an approximate schema for a semistructured data source. In particular,

we consider the tradeo� between precision and conciseness and conjecture that for many

data sources with inherent structure there is a natural schema or a small range of natural

schemas. Another distinguishing feature of our approach is that it allows objects to reside

in incomparable types. We view this as an essential requirement because of the very nature

of semistructured data.

4.4 Related Work

The rapid proliferation of the World Wide Web has spurred a 
urry of research activities

focused on semistructured data. The research topics range from novel query languages

[AQM+97, BDHS96, FFLS97, BK94] to specialized database management systems designed

for semistructured data [QRS+95, BCK+94, FFLS97]. There have been several di�erent

approaches to mining structure from semistructured data.

The problem of �nding frequent common substructures for a collection of semistructured

objects is considered in [WL97] and [WL00]. The treatment of this problem is fashioned

after �nding large itemsets for market basket data [AIS93]. The common substructures

(corresponding to itemsets in the market basket problem) are called tree-expressions. They

are, in fact, labeled, directed trees augmented with a wild-card label that matches any

label. The size of a tree-expression is measured by its number of leaf nodes. The mining

algorithm in the paper employs level-wise pruning techniques to e�ciently generate all

frequent tree-expressions. Thus, smaller frequent tree-expressions are combined to form the



4.5. CONCLUDING REMARKS 55

larger frequent-candidate tree-expressions. This approach works well only when the objects

in the semistructured database are layered, have relatively shallow depth, and contain no

cycles. For many real datasets, however, these condition do not hold. Furthermore, the use

of absolute support to determine common substructures has been shown in [NAM97] not

to be appropriate for semistructured data.

[GM99] considers the problem of �nding the common structure of HTML pages using

a model based on tuples and sets. The paper introduces the concept of mark-up encodings

which describes mappings from data trees to (HTML) strings. The proposed approach

is appropriate only for fairly well-structured data. Another limitation of this approach is

the requirement that the HTML pages conform to a single schema. Thus, having several

di�erent types of web pages will likely result in �nding a trivial common structure. The

assumption of well-structured data is also made in [Ade98, AD99] which uses user interaction

and guidance to mine common substructures of semistructured objects.

Another approach [BDFS97] picks a logic language that can be used for algebraic query

optimization and transformations but does not account for possible errors in the data.

The implementation of the representative object concept as DataGuides in the context

of the Lore DBMS is discussed in [GW97]. The paper also shows how to incorporate sample

values and other statistical information in the DataGuides and use this information in query

optimization. The DataGuides are also used in Lore as a backend of a query-by-example

GUI. The notion of approximate DataGuides is discussed in [GW99]. The main idea is to

allow certain kinds of inaccuracies in order to decrease the size of the DataGuide. However,

the paper does not consider the tradeo� between the amount of introduced inaccuracies and

the corresponding saving in the size of the DataGuide.

4.5 Concluding Remarks

In this chapter, we introduced the concept of semistructured data which is hierarchical data

that has no �xed schema, known apriori, but has implicit structure that is irregular or

incomplete. We motivated the problem of mining structure or schema form semistructured

data and proposed several practical uses of the discovered structure in storing, browsing,

and querying semistructured data. We gave an overview of our research contribution to this

topic which are detailed in the next two chapters. We also discussed related work.



Chapter 5

Representative Objects

5.1 Introduction

This chapter presents the concept of a representative object, which is a tool that facilitates

querying and browsing of semistructured data. The lack of external schema information

currently makes browsing and querying semistructured data sources ine�cient at best, and

impossible at worst. For instance, a user �nding a \person" object in a traditional object-

oriented system would know the structure of its subobjects or �elds. As an example, the

class declaration for the object might tell us that each person-object has two subobjects:

�rst-name and last-name. In a semistructured world, some person-objects might have sub-

objects with �rst name and last name. Other person-objects might have a single subobject

with a single name as value, or a single \name" subobject that itself has subobjects �rst- and

last-name. Yet another person-object might have a middle-name subobject, while others

have no name at all or have two name subobjects, one of which is a nickname or alias.

There are several ways to deal with the lack of �xed schema. If the semistructured data

is somewhat regular but incomplete, then an object-oriented or relational schema can be

used (along with null values) to represent the data. This approach fails, however, if the

semistructured data is very irregular. Then, trying to �t the data into a traditional database

form will either introduce too many nulls or discard most of the information [Ull88].

In this chapter we introduce the representative object concept. The representative object

allows browsers to uncover the inherent schema(s) in semistructured data. Representative

objects are implemented in the Lore DBMS as DataGuides [GW97]. Representative objects

provide not only a concise description of the structure of the data but also a convenient

56
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way of querying it. The next subsection describes the primary uses of the representative

objects.

5.1.1 Motivating applications

� Schema discovery: To formulate any meaningful query for a semistructured data

source we need �rst to discover something about how the information is represented

in the source. Only then can we pose queries that will match some of the source's

structure. Representative objects give us the needed knowledge of the source's struc-

ture.

� Path queries: When querying semistructured data, we often need to express paths

through the semistructured objects that meet certain conditions, e.g., the path ends

in a \name" object, perhaps going through one or more other objects. Expressing

such paths requires \wild cards" | symbols that stand for any sequence of objects

or objects whose class names (which we call \labels") match a certain pattern. How-

ever, when queries have wild-card symbols in them, searching the entire structure for

matches is infeasible. The representative object can signi�cantly reduce the search.

� Query Optimization: We can optimize some queries or subqueries by noticing from

the representative object that their results must be empty.

5.1.2 Chapter Organization

In Section 5.2, we introduce our data model and de�ne several terms and functions regarding

the semistructured nature of the data, including the OEM (Object-Exchange Model) used

in the Tsimmis and Lore projects at Stanford. Then in Section 5.3, we de�ne both full

representative objects (FROs), which provide a description of the global structure of the

data, and the degree-k representative objects (k-ROs), which provide a description of the

local aspects of the data, considering only paths (in the object-subobject graph) of length

k. Section 5.4 describes an implementation of FROs as objects in OEM and an algorithm

for extracting the relevant information from them. We also consider minimal FROs, which

allow us to answer schema queries most e�ciently. In Section 5.5, we present a method based

on determinization and minimization of nondeterministic �nite automata for construction

of a minimal FRO in OEM. Section 5.6 describes the construction and use of the simplest
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k-RO, the case k = 1. Section 5.7 present an automaton-based approach to building a k-RO

for k > 1. Section 5.8 concludes this chapter.

5.2 Preliminaries

In this section we describe the data model used in this chapter. The object-exchange model

(OEM) [AQM+96] is designed speci�cally for representing semistructured data for which

the representative objects are most applicable and useful. The OEM described in [AQM+96]

that we use is a modi�cation of the original OEM introduced in [PGMW95]. We then de�ne

several terms that are related to the structure of the objects in OEM. We also de�ne two

functions that form the basis of the representative object de�nitions.

5.2.1 The Object-Exchange Model

Our data model, OEM, is a simple, self-describing object model with nesting and identity.

Every object in OEM consists of an identi�er and a value. The identi�er uniquely identi�es

the object. The value is either an atomic quantity, such as an integer or a string, or a set

of object references, denoted as a set of hlabel; idi pairs. The label is a string that describes

the meaning of the relationship between the object and its subobject with an identi�er id.

Objects that have atomic values are called atomic objects and objects that have set values

are called complex objects. We can view OEM as a graph where the vertices are the objects

and the labels are on the edges (object references).

Figure 5.1 shows a segment of information about the top soccer league (The Premiership)

in England. Each circle along with the text inside it represents an object and its identi�er.

The arrows and their labels represent object references.

We will use the notations identifier(o) and value(o) to denote the identi�er and value

of the object o. We will also use the notation object(id) (or obj(id) for short) to denote the

unique object with an identi�er id.

5.2.2 Simple Path Expressions and Data Paths

Intuitively, a simple path expression is a sequence of labels. A data path is a sequence of

alternating objects and labels that starts and ends with an object. This sequence has the

property that for every two consecutive objects the value of the �rst object contains an
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Figure 5.1: The premiership object.

object reference to the second object, labeled with the label that is between the two objects

in the given sequence. Formally, we have the following two de�nitions:

De�nition 5.1 Let li be a label (of object references) for i = 1 � � �n; n � 1. Then pe =

l1:l2 � � � ln is a simple path expression of length n. The special symbol � denotes a path

expression of length 0.

De�nition 5.2 Let oi be an object for i = 0::n and li be a label for i = 1 � � �n such that we

have hli; identifier(oi)i 2 value(oi�1) for i = 1 � � �n; n � 0. Then p = o0; l1; o1; l2 � � � ln; on

is a data path, of length n.

We introduce the following terminology regarding simple path expressions and data

paths.
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� A data path p = o0; l1 � � � ln; on originates from or is rooted at the object o0.

� An object o1 is within an object o if 9 a data path originating from o and ending with

o1.

� A data path p is within an object o if p originates from an object within o.

� A data path p = o0; l1 � � � ln; on is an instance of the simple path expression pe =

l1:l2 � � � ln.

Remark 5.1 Note that we allow data paths of length 0. Any data path of length 0 consists

of a single object and is an instance of �, the path expression of length 0.

Example 5.1 To illustrate the above terms consider the premiership object from Figure 5.1.

� The simple path expression Player.Number has two instance data paths within the

premiership object:

{ obj(&1),Player,obj(&5),Number,obj(&13)

{ obj(&1),Player,obj(&14),Number,obj(&18)

� The simple path expression Name.First has two instance data paths within the pre-

miership object:

{ obj(&5),Name,obj(&6),First,obj(&7)

{ obj(&14),Name,obj(&15),First,obj(&16)

� Consider the following two data paths

{ obj(&1),Player,obj(&14),FormerClub,obj(&24)

{ obj(&24),Player,obj(&28),FormerClub,obj(&1)

From the existence of the �rst path we have that obj(&1) is within obj(&24). The

existence of the second path means that obj(&24) is within obj(&1), Thus, there is a

cycle within the premiership object.

On the other hand, obj(&20) is not within obj(&1) because there is no path that

originates at obj(&1) and ends in obj(&20).
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5.2.3 Continuations

Continuation functions form the basis of the representative object de�nitions presented

in the next section. However, they arise naturally when we consider schema discovery of

semistructured data. We brie
y describe the schema discovery process before we give the

formal de�nitions of the continuation functions.

Consider a semistructured object o represented in OEM. Suppose that we are interested

in the structure (schema) of the object, i.e., we want to perform schema discovery. By

schema discovery we mean exploring o by moving (navigating) from an object to its subob-

jects and keeping track of the labels of the object references that we traverse. By following

a given sequence of labels (a simple path expression) we can get, in general, to zero, one,

or more objects within o. At this point we want to know the labels of the links we could

immediately traverse if we continue our navigation. We also want to know if we might not

be able to continue navigating, i.e., we have reached an atomic object, but we are not (yet)

interested in the speci�c value of the atomic object. These observations motivate to the

following de�nition.

De�nition 5.3 Let o be an object in OEM and pe = l1:l2 � � � ln a simple path expression,

n � 0. We de�ne continuation(o; pe) as follows.

� continuation(o; pe) � fl j 9 a data path p = o; l1; o1 � � � ln; on; l; on+1 that is an instance

of pe:lg.

� continuation(o; pe) � f? j 9 a data path p = o; l1; o1 � � � ln; on that is an instance of

pe and on is an atomic objectg.

� continuation(o; pe) contains nothing else.

If we view OEM as a graph, De�nition 5.3 translates into the following. The continuation

of o and the simple path expression � is the set of the labels on all outgoing edges from

o. The continuation of o and a simple path expression pe of length n � 1 is obtained as

follows. First, we traverse all possible paths of length n + 1 starting at o, such that at the

ith step, 1 � i � n, we pick an edge labeled with the ith label in pe. At the last, n+1st step

we pick any edge. The continuation of o and pe is the set of all labels on the edges that we

picked last plus ? if in any of the traversals we made the �rst n steps but could not make

the n+1st step because we ended up at a vertex with no outgoing edges (corresponding to

an atomic object).
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Example 5.2 Consider the premiership object from Figure 5.1. The following examples

illustrate De�nition 5.3.

� continuation(premiership; �) = fClubg

� continuation(premiership, Club) = fName, Player, Stadium, Captaing

� continuation(premiership, Club.Name) = fO�cial, Nickname, ? g

� continuation(premiership, Club.Player.Name) = fFirst, Last, Nickname, ?g

� continuation(obj(&1), Player.Name) = fFirst, Last, Nicknameg

� continuation(obj(&24), Club) = fg

Note that in De�nition 5.3 we only consider data paths originating from the object that

is the �rst argument of the continuation function. By partially removing this restriction,

allowing the data paths to be within the given object, and imposing a limit on the length

of the simple path expression that is the second argument of the continuation function we

arrive at the following de�nition.

De�nition 5.4 Let o be an object, k � 1, and let pe be a simple path expression of length

n, 0 � n � k. Then we de�ne continuationk(o; pe) as follows.

� If n = k then

{ continuationk(o; pe) � fl j 9 a data path p within o, not necessarily rooted at o,

that is an instance of pe:lg.

{ continuationk(o; pe) � f? j 9 a data path p = o0; l1; o1 � � � ln; on, within o, that

is an instance of pe and on is an atomic objectg.

{ continuationk(o; pe) contains nothing else.

� Otherwise (if n < k) continuationk(o; pe) = continuation(o; pe).

De�nition 5.4 translates into the following. Given an object o and a number k, we

compute k-continuations for any simple path expression of length less than k as before.

However, for path expressions of length precisely k we allow the data paths to be rooted at

not only the given object o but also any object within o.
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Example 5.3 Consider the premiership object in Figure 5.1. The following examples il-

lustrate De�nition 5.4.

� continuation1(premiership, Name) = fO�cial, Nickname, First, Last, ?g

� continuation2(premiership, Club) = fName, Player, Stadium, Captaing

� continuation2(premiership, Player.Name) = fFirst, Last, Nickname, ?g

� continuation3(premiership, Player.FormerClub.Player) = fName, FormerClub, Na-

tionality, Numberg

The next lemma characterizes the relationship between the functions continuation and

continuationk .

Lemma 5.2 Let o be an object, k � 1, and pe a simple path expression of length n, 0 �

n � k. Then we have:

� continuationk(o; pe) = continuation(o; pe) for n < k

� continuationk(o; pe) � continuation(o; pe) for n = k

� if n = k, pe begins with l, where hl; idi 2 value(o), and l is unique within o, then

continuationk(o; pe) = continuation(o; pe).

Proof: The �rst part of the lemma follows directly from De�nition 5.4. The second

part of the lemma follows from the fact that all data paths rooted at o are also within

o. Therefore, for the same object o and simple path expression pe, the set of data paths

considered in De�nition 5.3 is a subset of the set of data paths considered in De�nition 5.4.

The third part of the lemma is a consequence of the fact that any instance data path of

pe must be rooted at o because no object references within o, other than the one coming

from o, has label l. Thus, in De�nition 5.4 only the data paths rooted at o are e�ectively

considered, which is the the set of data paths considered in De�nition 5.3.

Example 5.4 The following examples illustrate the three di�erent cases in Lemma 5.2.

Consider obj(&1) that is within the premiership object from Figure 5.1. Let us call this

object reds. Then we have:
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� continuation(reds, Player) = continuation2(reds, Player) = fName, Number, Na-

tionality, FormerClubg.

� continuation2(reds, Name.Nickname) = fEnglish, French, ? g � continuation(reds,

Name.Nickname) = f?g

� continuation(reds, Captain.Name) = continuation2(reds, Captain.Name) = fFirst,

Last, Nicknameg.

5.3 Representative-Object De�nitions

A representative object for a semistructured object o in OEM is any implementation of the

continuation function for o. We refer to these implementations as representative objects

because they are implemented in practice as objects in OEM. However, as discussed in

later sections of this chapter, there are many di�erent ways to represent the continuation

function, and not all are objects in the usual sense. For instance, we discuss automaton-

based representations.

In this section we de�ne two di�erent kinds of representative objects. First, we de�ne the

concept of a full representative object (FRO) for an object in OEM and justify this de�nition

by describing how a FRO supports the motivating applications from Section 5.1.1. Then we

de�ne the concept of a degree-k representative object (k-RO) for an object in OEM. k-ROs

are often less complex than FROs and can be used to approximate FROs. We also discuss

the extent to which the motivating applications are supported by k-ROs.

5.3.1 Full Representative Objects

The full representative object is an implementation of the continuation function, restricted

to a particular object. Formally.

De�nition 5.5 Let o be a semistructured object. Then the function continuationo(pe) =

continuation(o; pe), where pe is a simple path expression, is a full representative object

(FRO) for o.

In order to justify this de�nition, we show how a FRO supports the motivating appli-

cations from Section 5.1.1.
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Schema discovery

This application is the primary motivation for investigating representative objects. Recall

that by schema discovery we mean navigating through a given object and keeping track

of the labels of the object references that we traverse. By using the FRO of an object we

can perform schema discovery very quickly and e�ciently. We illustrate the point with an

example of exploration of the premiership object in Figure 5.1. This approach to exploration

has been implemented in the DataGuide feature of Lore, a database system using the OEM,

as discussed in [GW97].

Example 5.5 Suppose we start at the root object which is the premiership object. If we ask

the query continuationpremiership(�) we get the labels of links leading from the root. In this

case, the only label is Club. The query continuationpremiership(Club) then lets us see all

the labels of links leading from Club objects within the premiership. These labels are Name,

Player, Captain, and Stadium. Suppose we are interested in players. Then we may explore

from Player by asking the query continuationpremiership(Club:P layer), whereupon we �nd

that links out of Player objects can be labeled Name, Number, Nationality, or FormerClub.

In the Lore DataGuide, the queries are submitted by clicking on the node we wish to ex-

pand, and after the sequence of queries described above, the presentation of (part of) the

representative object would be as it appears in Figure 5.2.

Player

Name Number Nationality FormerClub

Club

Premiership

Name Stadium Captain

Figure 5.2: Displaying part of the FRO for the premiership object.

Path queries

Many interesting queries over semistructured data necessarily involve wild cards, because

the schema of the data is not known in advance or may change often. The FROs can
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be used to answer e�ciently such queries by �nding all simple path expressions that have

instance data paths within a given object and also match the wild-card pattern in a query.

We illustrate the point with an example. The wild-card pattern syntax used in the example

is described in [AQM+96] and the path expressions expressible in it are called general path

expressions. In our example we use only \?", which denotes an optional label and \%",

which matches any number of characters of one label.

Example 5.6 Consider the following pattern gpe = Club(.Player)?.(Na%) and the pre-

miership object in Figure 5.1. In other words, we are looking for simple path expressions

that have instance data paths within the premiership object and start with Club followed

optionally by Player and end with a label beginning with \Na".

� First we �nd continuationpremiership(�) = fClubg.

� The label Club matches the head of gpe, the tail of gpe is (Player.)?(Na%).

� Then we �nd continuationpremiership(Club) = fName;Player;Captain; Stadiumg.

� Only the label Player matches the head of (Player.)?(Na%), but because the head is an

optional label, we have two simple path expressions that match gpe so far: Club, and

Club.Player. The remaining tail is Na%.

� continuationpremiership(Club:Player) = fName;Nationality;Number;FormerClubg.

� Both Name and Nationality match Na% so we have three simple path expressions that

match gpe completely: Club.Name, Club.Player.Name, and Club.Player.Nationality.

Query optimization

In order to �nd whether a simple path expression pe has any instance data paths origi-

nating from an object o we compute continuationo(pe). Recall that continuation(o; pe)

is de�ned to be nonempty if pe has an instance data path originating from o. Since

continuationo(pe) = continuation(o; pe) then an empty result means that pe does not

have any instance data paths originating from o. If the result is not empty, then pe has at

least one instance data path originating from o.
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5.3.2 Degree-k Representative Objects

Degree-k representative objects (k-RO) are de�ned similarly to full representative objects

(FRO) but using the continuationk function instead of continuation. Formally.

De�nition 5.6 Let o be a semistructured object. Then the function continuationko(pe) =

continuationk(o; pe), where k � 1 and pe is a simple path expression, is a degree-k repre-

sentative object (k-RO) for o.

While k-ROs, in general, only approximately support the motivating applications from

Section 5.1.1, they take less space (usually) than FROs and may be faster to construct.

Before we show the extent to which k-ROs support the motivating applications, we describe

a method of computing continuationko(pe), an approximation of continuationo(pe), from a

k-RO.

Let o be an object, Rk a degree-k representative object for o, and pe = l1:l2 � � � ln a

simple path expression. We consider the following three cases.

� If we have that n < k then by using Rk we can �nd continuationko(pe) and because

continuationk(o; pe) = continuationo(pe) we get the exact value of continuationo(pe).

� If n = k we can �nd continuationko(pe) and by Lemma 5.2 the result is a superset of

continuationo(pe).

� If we have that n > k then we �nd continuationko(ln�k+1:ln�k+2 � � � ln). The result is a

superset of continuationo(pe). We can check if li+k 2 continuationko(li:li+1 � � � li+k�1)

for i = 1::n � k. If any of these conditions does not hold then continuationo(pe) is

empty and thus we have its exact value.

Consider the motivating applications from Section 5.1.1. We describe how they are

supported by a k-RO, using the approximation of continuationo(pe) provided by the k-RO.

Schema discovery

As in the FRO case we start at the root object. As long as the length of the simple

path expression pe that we have followed is less than k we can compute the exact value of

continuationo(pe) and thus the k-RO provides the same support as a FRO. If the length of

the pe is at least k then we have to use the approximation of continuationo(pe) provided by
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the k-RO. The consequence is that the discovered schema will contain the actual schema,

but may also have some paths that do not exist within o.

The next example illustrates the di�erence between using a full representative object

and a degree-k representative object for schema discovery.

Example 5.7 The setup is identical to Example 5.5 with the exception that we use a 1-

RO instead of a FRO. Again we discover the schema of the premiership object but using

continuation1 instead of continuation. We start at the premiership and ask the query

continuation1premiership(�) we get the labels of links leading from the root. Since the length

of the path expression � is 0 which is less than 1, we get continuationpremiership(�) =

fClubg. The next query, continuation1premiership(Club), in principle, can give a superset

of continuationpremiership(Club). However, in this case, it yields the same result, namely

fName; P layer; Captain; Stadiumg. Suppose we are interested in Names. Thus, we would

like to ask continuation1premiership(Club:Name), but this expression is not legal because the

length of the path expression is 2, which is greater than the degree of the continuation func-

tion. We can only ask continuation1premiership(Name), which yields the following result:

fOfficial; Nickname; First; Last;?g. Note that this result contains one label that is not

in the \real" result. Indeed First and Last are not in the continuation of Club.Name for

the premiership object but is introduced because of the use of 1-RO instead of FRO. The

situation is depicted in Figure 5.3.

Club

Premiership

Stadium Captain

Official Nickname First Last

Player Name

Figure 5.3: Displaying part of the 1-RO for the premiership object.
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Path queries

The procedure described in the FRO case remains the same. When we compute contin-

uations of simple path expressions of length at least k we have to use the approximation

instead of the actual value. Thus, the �nal set of matched simple path expressions will be

a superset of the actual set, and therefore each simple path expression of length at least k

in the set should be veri�ed.

Query optimization

If the approximation of the continuation of the given simple path expression pe is empty then

pe has no instance data paths originating from the given object. If the result is nonempty,

however, pe may or may not have instance data paths originating from the given object.

5.4 Implementation of FROs in OEM

In this section we describe one particular implementation of FROs in OEM. In fact this is

how we have implemented FROs (called DataGuides) in the Lore DBMS [AQM+96, GW97].

A FRO, implemented in OEM, consists of an object Ro (in OEM) and an algorithm for

computing the function continuationo from Ro, where o is the represented object. By

implementing FROs in OEM we gain the advantage of storing and querying the object part

of the FROs in the same way as ordinary objects in OEM. We also de�ne minimal FROs

(in OEM) that allow computing the continuation function very e�ciently.

Before we describe the implementation of FROs in OEM, we present Algorithm 5.1

that, for a given object o, computes the continuation of a simple path expression pe. The

algorithm �rst explores o for instance data paths of pe, originating from o, in a breadth-

�rst manner. For every such data path, only the last object in the data path is considered.

Then the continuation of pe is the set of all the di�erent labels of object references of those

objects, plus ? if any of those objects is atomic.

Let o be an object and pe = l1:l2 � � � ln, n � 0, a simple path expression. The algorithm

in Figure 5.4 computes continuationo(pe).

Then we de�ne the implementation of FROs in OEM as follows.

De�nition 5.7 Let o1 and o2 be objects in OEM. Then o1, along with Algorithm 5.1, is

a full representative object in OEM for o2 if for any simple path expression pe we have
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Algorithm 5.1
Input: semistructured object o in OEM

simple path expression pe = l1:l2 � � � ln; n � 0
Output: continuationo(pe)
== Initialization

C0 = fog
== Iteration

== at iteration i find all instance data paths of l1:l2 � � � li rooted at o
for i = 1::n do

Ci = ;
for s 2 Ci�1 do

for each hli; idi 2 value(s) do
add object(id) to Ci

end for
end for
if Ci == ; then
== no instance data paths for l1:l2 � � � li rooted at o

return ;
end for

== Continuation computation

C = ;
for s 2 Cn do

if s is atomic then
add ? to C

else
for each hl; idi 2 value(s)

add label l to C
end for

end for
return C

Figure 5.4: Algorithm for computing continuationo(pe) from o.
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continuationo1(pe) = continuationo2(pe).

From De�nition 5.7 it follows that if o1 is a FRO in OEM for o2 then o2 is a FRO in

OEM for o1. Also any object o is a FRO in OEM for itself.

Remark 5.3 Formally, when we talk about FROs in OEM we always have to include Al-

gorithm 5.1 or another algorithm that computes the continuation function from an object

in OEM. In this section we only consider FROs in OEM so we will omit Algorithm 5.1 and

refer to the object part as the full representative object.

5.4.1 Minimal FROs

Form De�nition 5.7 it follows that there are many FROs (in OEM) for a given object,

including the object itself. Ideally, we want to choose the one that allows Algorithm 5.1 to

compute the continuation function fastest. Each iteration of the �rst part Algorithm 5.1

takes time proportional to the size of Ci. Thus, the FRO for which the size of Ci at

each iteration is smallest allows the fastest computation. The next de�nition describes a

particular kind of FROs (in OEM) for which Ci always contains at most one complex object

and at most one atomic object.

Theorem 5.4 Let Ro be a FRO (in OEM) for o. Then Ro is a minimal FRO if any simple

path expression pe = l1:l2 � � � ln; n � 0, has at most one instance data path originating from

Ro and ending with a complex object and at most one instance data path originating from

Ro and ending with an atomic object.

We prove Theorem 5.4 by showing that at each iteration of the �rst part (breadth-�rst

exploration) of Algorithm 5.1 for Ro Ci contains at most one complex and one atomic

object for any simple path expression. Before the �rst iteration, the size of C0 is 1. Thus,

for a simple path expression of length 0 (�) the assertion holds since the iteration part of

Algorithm 5.1 is not executed. Let pe = l1:l2 � � � ln; n � 1 be a simple path expression. Let

n � k > 0 be the smallest k for which after the kth iteration Ck contains more than one

atomic object or more than one complex object. Then we can construct at least two data

paths that are instances of the same simple path expression and end with objects of the

same kind (atomic or complex). Let the sole complex object in Ci after the ith iteration be

oi, for i = 1 � � �k� 1. At the kth iteration Ck contains at least two di�erent objects ok and
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o0k of the same kind. Consider the data paths Ro; l1 � � �ok�1; lk; ok and Ro; l1 � � �ok�1; lk; o0k.

Both data paths originate from Ro, end with objects of the same kind, and are instances

of the simple path expression l1:l2 � � � lk. So, we have a contradiction of De�nition 5.4, and

thus the assertion holds in all cases.

We will use the assertion proved above to calculate the running time of Algorithm 5.1

for a minimal FRO (in OEM) Ro for o and a simple path expression pe of length n. The

number of iterations of the �rst part of Algorithm 5.1 for Ro is n. The size of S before each

iteration is at most 2. Thus, if we can retrieve the object references that have a particular

label for a given object in constant time then each iteration takes constant time. The second

part of Algorithm 5.1 takes time proportional to the size of continuationo(pe). Thus, the

computation of the continuation of a simple path expression for an object given a minimal

FRO (in OEM) for this object takes linear time with respect to the length of the simple

path expression and the number of di�erent labels in the computed continuation.

5.5 Construction of Minimal FROs

In this section we present a method for constructing minimal FROs in OEM. The method

consists of three major steps: construction of a nondeterministic �nite automaton (NFA)

from a given object, determinization of this NFA and minimization of the resulting deter-

ministic �nite automaton (DFA) that yields another DFA, and construction of a minimal

FRO from this DFA. We also prove the correctness of this method.

5.5.1 Finite automata

Finite automata are used in many areas of computer science and are studied extensively.

A detailed study is given in [HU79]. A �nite automaton (Q;�; �; q0; F ) consists of a �nite

set of states Q, a �nite alphabet �, and transitions from one state to another on a letter

of the alphabet (� : Q � � 7! Q). One state, q0, is designated as the start state and

there are one or more end (accepting) states F . All the words formed by the sequences of

letters on transitions from the start state to an end state form the language accepted by

the automaton.
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5.5.2 Construction of a NFA from an object in OEM

Every object in OEM can be viewed as a NFA in a straightforward manner. The objects

correspond to states and the object references and their labels correspond to transitions and

their respective letters. Before we show formally how we construct the NFA corresponding

to an object o in OEM, we introduce the function state that maps every object within o

to a unique automaton state corresponding to it. We extend this function to map a set of

objects within o to the set of the automaton states corresponding to them. We also de�ne

the following terms that characterize the object o in OEM. Let A be the set of all atomic

objects within o, C the set of all complex objects within o, and D the set of all objects within

o. Note that D = A [ C. Let also L be the set of all di�erent labels of object references

within o. The NFA (Q;�; �; q0; F ) corresponding to o is constructed as follows.

� Q = state(D) [ fendg

� � = L [ f?g

� �(state(c); l) = state(object(id)) for 8c 2 C and 8hl; idi 2 value(c)

� �(state(a);?) = end for 8a 2 A

� q0 = state(o)

� F = Q

The next example illustrates the construction of a NFA from an object in OEM.

a

c

o

c
c

b

"abc"

&0

&1 &2

&3 &4

"cde"

b

Figure 5.5: Graph representation of the example object o.
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Example 5.8 Consider the object o represented as a graph in Figure 5.5. The NFA con-

structed from o is shown in Figure. 5.6. The starting state q0 corresponds to o, i.e.,

q0 = state(o). We also have qi = state(oi) for i = 1::4. All six states are accepting. Since

o3 and o4 are atomic objects we have transitions on ? from their corresponding states, q3

and q4, to end. The rest of the transitions correspond to the object references within o.

a b

c
c

c

b
q0

q1 q2

q3 q4

end

Figure 5.6: A NFA constructed from the example object o.

5.5.3 Determinization and minimization of a NFA

The determinization (conversion to a DFA) and minimization of a NFA is a very well

studied problem. The determinization of a NFA can take exponential time with respect

to its number of states [HU79]. If, however, the NFA has a tree structure, i.e, every state

has only one incoming transition and there are no cycles, then the determinization takes

linear time. The best algorithm for minimization of a DFA takes n logn time where n is

the number of states of the DFA [Hop71].

5.5.4 Construction of a minimal FRO from a DFA

The transformation from a DFA to an object in OEM is straightforward except for the

treatment of some states with which we associate two di�erent objects, one atomic and one

complex. With the rest of the states we associate a unique object. We also associate an

object reference with each letter transition. Before we formally describe the construction

of a minimal FRO from the DFA (Q;�; �; Q0; F ) we introduce two functions, atomic obj

that maps a state to its corresponding atomic object (if any) and complex obj that maps a



5.5. CONSTRUCTION OF MINIMAL FROS 75

state to its corresponding complex object (if any). The minimal FRO corresponding to the

DFA is constructed as follows.

� Let Sa = fq j q 2 Q; �(q;?) = endg.

� Let Sc = fq j q 2 Q; 9l; r such that l 2 �; l 6= ?; r 2 Q and �(q; l) = rg, i.e. Sc is all

states with a non-? transition out.

� For 8q 2 Sa atomic obj(q) is a unique atomic object.

� For 8q 2 Sc complex obj(q) is a unique complex object and value(complex obj(q)) =

fhidentifier(atomic obj(p)); li j �(q; l) = p and atomic obj(q) is de�nedg [

fhidentifier(complex obj(p)); li j �(q; l) = p and complex obj(q) is de�nedg.

� If complex obj(Qo) is de�ned then the minimal FRO, Ro, is complex obj(Qo). Oth-

erwise Ro = atomic obj(Qo).

Example 5.9 The DFA that we get after the determinization and minimization of the NFA

in Figure 5.6 is shown in Figure 5.7.

Q0

Q1

Q2

c

ba

end

Figure 5.7: A minimized DFA.

We construct the minimal FRO in OEM for o, shown in Figure 5.8, from this DFA by

creating the following three objects.

� Ro = object(&10) = complex obj(Q0); value(R0) = fh&11; Big.

� object(&11) = complex obj(Q1); value(object(&11)) = fh&10; Ai; h&12; Cig.
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� object(&12) = atomic obj(Q2).

c

ba

&12

&11

&10
R o

Figure 5.8: A minimal FRO constructed from a DFA.

Example 5.10 As an illustration of the method described in this section, Figure 5.9 shows

the minimal FRO in OEM for the premiership object in Figure 5.1. Note that there are two

links labeled \Name" coming from the same \Club" object. Having two links with the same

label from the same object does not contradict De�nition 5.4, because one of the \Name"

subobjects is atomic and the other one is complex.

5.5.5 Correctness proof

In order to prove that the method we present is correct we have to show that the object

constructed in the third step of the method is indeed a minimal FRO in OEM for the

original object.

Let o be an object, No the NFA constructed from o as described in Section 5.5.2, Do

the DFA obtained after the determinization and minimization of No, and Ro the object

constructed from Do as described in Section 5.5.4. We will show that continuationo(pe) =

continuationRo
(pe) for any simple path expression pe by showing that continuationo(pe) �

continuationRo
(pe) and continuationo(pe) � continuationRo

(pe).

Let pe = l1:l2 � � � ln; n � 0, be a simple path expression and l 2 continuationo(pe). Then

pe has an instance data path p = o; l1; o1; l2 � � �on. From the construction of No we have:

� �(state(o); l1) = state(o1).

� �(state(oi�1); li) = state(oi), for i = 2 � � �n.
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Club

Name
Name

Nickname Official

Stadium

Name

Captain

Nationality
Number

Name

Player

Name

First Last Nickname

English French

FormerClub

Number
Nationality

R premiership

Figure 5.9: The minimal FRO for the premiership object.

There are two possible cases for l, l = ? and l 6= ?. In the �rst case, l = ?, we

have that on is atomic and thus �(state(on);?) = end. In the second case, l 6= ? we have

that on has an object reference to an object on+1 labeled with l and thus �(state(on); l) =

state(on+1). Therefore, in both cases the word l1l2 � � � lnl is accepted by No. The DFA

Do is equivalent to No by construction and therefore Do and No accept the same lan-

guage. Thus, the word l1l2 � � � lnl is accepted by Do. Then there are states Qi in Do

for i = 0::n + 1, such that �(Qi�1; li) = Qi for i = 1::n, �(Qn; l) = Qn+1, Q0 is the

start state of Do, and Qn+1 is an accepting state. Then from the construction of Ro we

have that hidentifier(complex obj(Qi)); lii 2 value(complex obj(Qi�1)) for i = 1::n � 1.

Thus, the data path P = Ro; l1 � � � ln�1; complex obj(Qn�1) exists. If l = ? we have that

Qn 2 Sa and thus, atomic obj(Qn) is de�ned. Therefore, ? 2 continuationRo
(pe) be-

cause of the data path P; ln; atomic obj(Qn). If l 6= ? we have that Qn 2 Sc and thus

complex obj(Qn) is de�ned. Therefore, l 2 continuationRo
(pe) because of the data path
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P; ln; complex obj(Qn); l; obj where obj is either complex obj(Qn+1) or atomic obj(Qn+1),

whichever is de�ned. Therefore we proved that continuationo(pe) � continuationRo
(pe).

Similarly we can show that if l 2 continuationRo
(pe) then the word l1l2 � � � lnl is accepted

by Do and thus by No. Then we can show that l 2 continuationo(pe) and therefore

continuationo(pe) � continuationRo
(pe). We can also show that Ro is a minimal FRO

from its construction from Do and the fact that Do is a DFA. With this we conclude the

proof of correctness of the minimal-FRO construction method.

5.6 Construction of a 1-RO

The simplest representative object to construct is the 1-RO. While the 1-RO only guarantees

that its paths of length 2 exist within the represented object, it nonetheless indicates the

set of possible labels that may succeed an individual label. Furthermore, the 1-RO provides

a very compact description of the represented object, is easy to construct, and easy to

comprehend. We can represent the 1-RO as a graph with the nodes corresponding to labels.

Intuitively, the 1-RO contains each unique label exactly once, and contains an edge between

two labels if the simple path expression consisting of the two labels has an instance data path

within the given object. For example, Figure 5.11 shows the 1-RO for the semistructured

object s shown in Figure 5.10. In this section, we describe an algorithm for constructing

the 1-RO for an object in OEM in one physical, sequential scan of all objects within the

given object.

5.6.1 1-RO Algorithm

The goal is to �nd all pairs of labels (l1; l2) such that there is a data path o0; l1; o1; l2; o2

within the given object. Each object oi contains pairs of identi�ers and labels (object

references) but does not contain the labels of incoming links. Thus we must must ex-

amine all objects that have links to oi. For all complex objects we remember all triples

(identifier(oi); li+1; identifier(oi+1)) in the id table. For the root object r we remember

a special triple (null; �; identifier(r)). For each atomic object a we remember a special

triple (identifier(a);?; null). Then we join the id table with itself on identifer(oi+1) =

identifer(oi) to produce (li+1; li+2) pairs. Note that the null values do not join.

The id table can be built in one scan of the objects (in any order). The cost of computing

the pairs of labels then depends on the size of the id table. If it �ts in memory, then an
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&1

&2 &3

&4

&5

&6

s

b

b

a a

a

a

b

c

Figure 5.10: An example semistructured object s.

in-memory join is performed for no extra I/O cost. Otherwise, the additional I/O cost is

that of a join, which is 2 � size(id table) for a two-pass hash (self-)join.

The result table, called label table, is then indexed by l1 so that lookups are e�cient.

Duplicate label pairs are discarded. The id table and the label table for the object in

Figure 5.10 are shown in Table 5.1.

5.6.2 Computing 1-continuations

Using the 1-RO we can �nd the continuation of a simple path expression consisting of a

single label l or �, the path expression of length 0. We lookup all pairs (l; l2) in the label

table; the set of all such l2 is the 1-continuation of l. The time required is the cost of an

index lookup: O(1) if the label table index �ts in memory and nothing if the label table

itself �ts in memory.

5.7 Construction of k-ROs

In this section, we present a construction method for k-representative objects based on �nite

automata. We treat simple path expressions as strings over the alphabet of OEM labels.

Consider the set of simple path expressions of length up to k + 1 that have instance data



80 CHAPTER 5. REPRESENTATIVE OBJECTS

a

c b

ε

Figure 5.11: Graph representation of the 1-RO for the semistructured object s.

identi�er1 label identi�er2

nil � &1

&1 a &2

&1 a &3

&2 b &5

&3 c &4

&4 b &5

&5 a &3

&5 a &6

&6 b &5

label1 label2

� a

a b

b a

c b

a c

Table 5.1: The id and label tables for the semistructured object s.

paths within the represented object. The automaton that accepts the language represented

by this set serves as a k-RO.

5.7.1 Constructing an automaton that serves as a k-RO

We assume that we have computed the set P of all simple path expressions of length up to

k + 1 that appear in the object o being represented. Consider an alphabet V consisting of

the labels in o. Then P represents a �nite, and hence regular, language over the alphabet V .

Using standard techniques [HU79], we construct a �nite automaton A that recognizes the

language P . (We assume that the automaton A is minimized using the subset construction

method [HU79].)

Consider the semistructured object shown in Figure 5.10. Table 5.2 shows the 3-paths of
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�:�:a

�:a:b

�:a:c

a:c:b

a:b:a

b:a:b

b:a:c

c:b:a

Table 5.2: Simple path expressions of length 3 with instance data paths within object s.

that object, that is, the set P above for k = 2. A �nite automaton that accepts the language

suggested by P (interpreting simple path expressions as strings) is shown in Figure 5.12.

The initial state is marked with a short arrow, and the accepting states are circled.

a

b

c

ε
ε

a

a

a
b

b

c

b,c

b

Figure 5.12: Finite-automaton-based 2-RO for the example object.

5.7.2 Computing k-continuations

Having an automaton-based representation of the k-representative object as described above

allows us to compute k-continuation as follows. Suppose we wish to know the continuation

of the simple path expression l1:l2 � � � lk. We start in the initial state of the automaton and

follow the transition with label li for i = 1 � � �k to reach a state sk. (If, at some stage, we

are in a state with no transition with the desired label, the continuation is empty.) Let A

be the set of transitions that go from sk to an accepting state. The set of labels in A is the

continuation of the given simple path expression.

If we use an index to represent the transitions out of each state in the automaton,

�nding the next state requires at most O(logl) time, where l is the number of labels in
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the represented object. Finding the state sk therefore requires at most O(klogl) time. If

there are c labels in the continuation of the given simple path expression, we can retrieve

the labels on the transitions out of sk in no more than O(c) time. (Note that all these

transitions must lead to accepting states, since every path of length k+1 in the automaton

leads to an accepting state.) Thus, the total time required to compute the k-continuation

is O(klogl+ c). In practice, we can achieve a running time close to O(k + c), so the time

required to �nd the k-continuation is bounded by O(klogl+ c).

5.8 Concluding Remarks

In this chapter we have introduced the representative object concept that provides a con-

cise representation of the inherent schema of a semistructured data source. We made the

case that representative objects are very useful for semistructured data and show some of

their primary uses in data browsing, query formulation, and query optimization. We also

described an implementation of full representative objects (FROs) in OEM that has the ad-

vantage that the data part of the FRO can be stored and queried as an object in OEM. We

presented a construction method for an important class of FROs: minimal FROs. Minimal

FROs allow e�cient querying of the schema of the represented data. Since constructing

minimal FROs may potentially have very high complexity we described several alternative

approaches to constructing k-ROs that are approximations of an FRO. In many case, even

a 1-RO provides a good approximation of an FRO.



Chapter 6

Extracting Schema From

Semistructured Data

6.1 Introduction

In this chapter, we present an approach to discovering an approximate schema for semistruc-

tured data using the greatest �xpoint semantics of monadic datalog programs. The implicit

structure in a particular semistructured data set may be of varying regularity. Indeed, we

should not expect in general to be able to type a data set perfectly. The size of a perfect

typing (a notion that we will study) may be quite large, e.g., be roughly of the order of

the size of the data set, which would prohibit its use for query optimization and render it

impractical for graphical query interfaces. Thus, we consider approximate typings, i.e., an

object does not have to �t its type de�nition precisely, but on average, objects should be

\close". We study the trade-o� between the quality of a typing and its compactness. More

precisely, the typing problem and its trade-o� can be formulated as follows. Suppose we

have selected a type description language and a measure for type sizes, as well as a distance

function over data sets. The problem then is: given a data set I , �nd a typing � and a

data set J of typing � , such that the size of � is smaller than a certain threshold, and the

distance between I and J is minimized. In other words, we want to �nd a � that is small

enough and such that I presents as few inconsistencies as possible with respect to � . (The

dual problem is the minimization of the size of � for a given upper bound on the distance

between I and J .)

The �rst key issue is the choice of a description language for types. Our typing is

83
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inspired by the typing found in object databases [Cat94], although it is more general since

we allow objects to live in many incomparable classes, i.e., have multiple roles [ABGO93].

This aspect is also a clear departure from previously proposed typings for semistructured

data [GW97, NUWC97, BDFS97, Suc96]. We believe, backed by our experiments, that

multiple roles are essential when the data is fairly irregular. We de�ne a typing in terms

of a monadic datalog program. The intensional relations correspond to object classes, and

the rules describe the inner structure of objects in classes. The greatest �xpoint semantics

of the program de�nes the class extents.

We �rst consider the issue of computing perfect typings. The basis is an obvious perfect

typing that consists of having one class for each distinct object. This typing is transformed

into the initial monadic datalog program. A run of this program on the data set will

naturally group similar objects and thus provide a (possibly much) coarser classi�cation of

objects that yields a (possibly much) more compact perfect typing. In fact, this typing is

the coarsest possible if we insist on exact �t.

This perfect typing may still be much too large, unless the data is extremely regular.

Therefore, we present a technique for computing an approximate typing of an appropriate

size. Our technique allows the data set to be imperfect with respect to the typing. It may

present extra information (edges not required by the typing are present in objects) or lack

some information (edges required by the typing are missing in some objects). We will see

that extra edges are easily handled with a greatest �xpoint approach, whereas missing edges

are much more di�cult to deal with. The crux of our technique is to merge similar classes

so as to decrease the size of the typing. To this end, we employ a clustering algorithm

[KPR98, Hoc82] on the classes. Intuitively, until the typing is of acceptable size (for some

application-dependent notion of \acceptable size"), we perform class merges that introduce

a minimal error. We consider various optimization strategies to compute this approximation

and issues such as the choice of the distance function.

For a concrete example, Figure 6.1 shows the approximate typing produced by our

method for the DBG dataset consisting of information about the members of the Data Base

Group at Stanford. The exact notation will be explained later in this chapter. For this

example, it su�ces to say that each label with an arrow and superscript corresponds to a

link to or from a type. This typing has only 6 types and provides very good summary of the

actual contents of the DBG dataset. In contrast, the perfect typing for this dataset consists

of 53 di�erent types. Note that we have also given the intuitive meaning before each of the
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project : �1 =
 �

Project
3

;
 �

Project
4

;
 �

Project
5

;
�!

Project Member
3

;
�!

Name
0

;
�!

Project Member
4

;
�!

HomePage
0

publication : �2 =
 �

Publication
3

;
 �

Publication
5

;
�!

Author
3

;
�!

Name
0

;
�!

Conference
0

;
�!

Postscript
0

db-person : �3 =
 �

Project Member
1

;
 �

Group Member
5

;
�!

Y ears At Stanford
0

;
�!

Project
1

;
�!

Birthday
5

;
�!

Degree
6

;
�!

Email
0

;
�!

Home Page
0

;
�!

Original Home
0

;
�!

Personal Interest
0

;
�!

Research Interest
0

;
�!

Title
0

;
�!

Name
0

student : �4 =
 �

Project Member
1

;
 �

Student
4

;
 �

Group Member
5

;
�!

Project
1

;
�!

Advisor
4

;
�!

Email
0

;
�!

Title
0

;
�!

Home Page
0

;
�!

Name
0

;
�!

Nickname
0

birthday : �5 =
 �

Birthday
3

;
�!

Namex
0

;
�!

Month
0

;
�!

Day
0

;
�!

Y ear
0

degree : �6 =
 �

Degree
3

;
�!

Major
0

;
�!

School
0

;
�!

Name
0

;
�!

Y ear
0

Figure 6.1: Optimal typing program for DBG data set.

6 types.

In contrast to our work, previous proposals on typing semistructured data [GW97,

NUWC97, BDFS97] have focused on perfect typing and implicitly assumed that each object

has a unique role. We have already mentioned some motivation for approximate typing and

will later discuss further motivations for multiple roles.

We also present some some experimental results. The focus of our experiments is the

quality of the typing results rather than the time performance.

The rest of this chapter is organized as follows. Section 6.2 introduces our notation and

provides the intuition for choosing the speci�c form of typing. Section 6.3 gives a summary

of our method for extracting the typing from the data. Section 6.4 deals with perfect

typing and Section 6.5 with the issue of computing an approximate typing. Section 6.6

addresses recasting the original data within the approximate typing. Section 6.7 provides

some experimental results. Section 6.8 concludes this chapter.
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6.2 The Typing

In this chapter, we model semistructured data somewhat di�erently than in the previous

two chapters. The underlying model is still based on directed labeled graphs, as detailed in

Section 4.2.1, but we represent the information symbolically as the following two relations:

link(FromObj, ToObj, Label): Relation link contains all the edge information. Pre-

cisely, link(o1; o2; `) corresponds to an edge labeled ` from object o1 to o2. Note that

there may be more that one edge from o1 to o2, but, in our model, for a particular `,

there is at most one such edge labeled `.

atomic(Obj,Value): This relation contains value information. The fact atomic(o; v) cor-

responds to object o being atomic and having value v.

We also require that (i) each atomic object has exactly one value, i.e. Obj is a key in

relation atomic, and (ii) each atomic object has no outgoing edges, i.e., the �rst projections

of link and atomic are disjoint.

The link and atomic relations are related to the Object Exchange Model, de�ned in

4.2.1 as follows:

� link(o1; o2; `) i� o1 is a complex object and h`; o2i 2 value(o1).

� atomic(o; v) i� o is an atomic object and v = value(o).

In the following, we consider that the data comes in as an instance over link and atomic

satisfying these two restrictions. We use the term database here for such a data set. An

example of a database is given in Figure 6.2. The same database is shown as a directed

labeled graph in Figure 6.3. Note that this data happens to be very regular.

In this chapter, we consider that a typing is speci�ed by a datalog program of a speci�c

form (to be described shortly). The only two extensional relations (EDB's) of the typing

program are link and atomic. The intensional relations (IDB's) are all monadic and cor-

respond to the various types de�ned by the program. For instance, we can consider the
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FromObj ToObj Label

g m is-manager-of

j a is-manager-of

m g is-managed-by

a j is-managed-by

g gn name

j jn name

m mn name

a an name

Obj Value

gn "Gates"

jn "Jobs"

mn "Microsoft"

an "Apple"

Figure 6.2: The link and atomic relations.

is-manager-of

is-managed-by

name name

is-manager-of

is-managed-by

name name

"Jobs" "Apple" "Gates" "Microsoft"

g
m

aj

anjn gn mn

Figure 6.3: Example database as a graph.

following typing program P0 for the database of Figure 6.2:

person(X) :- link(X; Y; is-manager-of) & company(Y ) &

link(X; Y 0; name) & atomic(Y 0; Z)

company(X) :- link(X; Y; is-managed-by) & person(Y ) &

link(X; Y 0; name) & atomic(Y 0; Z)

The intuition is that g; j are persons, m; a are companies and the other objects are atomic.
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6.2.1 Syntax

Typing programs are more precisely de�ned as follows. The extensional database (EDB)

relations are link and atomic. The intentional database (IDB) relations are all monadic.

Furthermore, each IDB relation is de�ned by a single rule of the form:

c(X) :- A1 & ::: & Ap

for some p, where the Ai, called the typed links, are de�ned as follows. Each typed link

has one of the following forms:

1. link(Y;X; `) & c0(Y )

2. link(X; Y; `) & c0(Y )

3. link(X; Y; `) & atomic(Y; Z)

where ` is some constant (a label), X is the variable in the head of the rule and Y; Z are

variables not occurring in any other typed link of the rule. We will discuss some limitations

introduced by this typing further on.

6.2.2 Notation

Suppose that the types (IDB's) of the program are type1 � � � typen. Think of the atomic

objects as belonging to type0. The following notation for typed links greatly simpli�es our

presentation and will be used throughout the chapter:

� link(Y;X; c) & typej(Y ) is denoted by
 

c
j
.

� link(X; Y; c) & typej(Y ) is denoted by
!

c
j
.

� link(X; Y; c) & atomic(Y; Z) is denoted by
!

c
0

.

The direction of the arrow over the label denotes whether the edge is incoming (left) or

outgoing (right). The superscript denotes the type of the object at the other end of the

edge.
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6.2.3 Semantics

The semantics of a datalog program P of the form described above for a database D is

de�ned as the greatest �xpoint of P for D. (See, e.g., [Apt91].) More precisely, let M be an

instance over the schema of P such that M coincides with D on flink; atomicg. Then M

is a �xpoint of P for D, if for each IDB c, P(M)(c) =M(c). It is the greatest �xpoint, if it

contains any other �xpoint of P for D.

Note that this de�nition is correct because for a given databaseD and a datalog program

P , there is unique greatest �xpoint of P for D [Apt91]. For the data of Figure 6.2, and for

the program P0, the greatest �xpoint is fperson(g); person(j); company(a); company(m)g,

which is as expected. Note that for this program, a least �xpoint semantics would fail to

classify any object. The intuition behind the choice of the greatest �xpoint semantics is

that we want to classify consistently as many objects as possible. The choice of a �xpoint

indicates that the type of an object is justi�ed by the types of objects connected to it.

Justi�cations of the above de�nition are also as follows. First, consider some relational

data represented with link and atomic in the natural way: the entries of the tables are rep-

resented by atomic objects, the tuples by complex objects, and the labels are the attributes

of relations. Consider the typing program corresponding to this schema also in a natural

manner: one type is used for each relation. Then the previous typing would correctly clas-

sify the tuples. (We assume that no two relations have the same set of attributes for, in

that case, their tuples would become indistinguishable.) Observe that for relational data,

(i) the typing program is not recursive and thus the greatest �xpoint and the least �xpoint

coincide and (ii) the data graph is bipartite in the sense that edges only go from complex

objects to atomic ones.

For a second justi�cation, consider some ODMG data [Cat94] (ignoring collections such

as lists or bags that are beyond our framework). For the natural representation of this data

with link and atomic, the natural typing program would correctly classify the objects.

Observe that the typed links allow us to describe locally the structure of the objects

in a class c. With typed links, one can state that there is some edge labeled ` going to

(coming from) an object in some other class c0 or going to (coming from) an atomic object.

Note also that the language is quite restricted. For instance, it is straightforward to see

that the typing rules can be expressed in �rst-order logic with 2 variables (FO2) which is a

very restricted subset of �rst-order logic. For instance, the rule for person can be rewritten



90 CHAPTER 6. EXTRACTING SCHEMA FROM SEMISTRUCTURED DATA

equivalently as:

person(X) , 9 Y (link(X; Y; is-manager-of) ^ company(Y )) ^

9 Y (link(X; Y; name) ^ 9X(atomic(Y;X)))

that uses only two distinct variables. The fact that we limit ourselves to a framework

such as the FO2 logic may be an asset, since that logic has nice properties [BGG97]; e.g.,

satisfaction is decidable for FO2. On the other hand, observe that there is natural \typing"

information that falls outside our scope. For instance, one cannot express in FO2 some

simple restrictions on the cardinality of certain kinds of links, e.g., that companies have

a unique name, and therefore such restrictions cannot be expressed in our rule language.

Also, observe that even some rules that use only two variables are not allowed in our typing

programs, e.g., the rule

person(X) :- link(X; Y; is-manager-of) & company(Y ) & link(X; Y 0; name) &

link(Y;X; is-managed-by) & atomic(Y 0; Z)

can be expressed using two variables only, as shown below, but is outside our framework.

person(X) , 9 Y (link(X; Y; is-manager-of) ^ link(Y;X; is-managed-by) ^

company(Y )) ^ 9 Y (link(X; Y; name) ^ 9X(atomic(Y;X)))

Clearly, one could consider richer typing languages, and in particular, unrestricted

monadic datalog programs. In the present chapter, we focus on the previously de�ned

simple types based on typed links.

Note that in this presentation we ignore the value of the atomic objects and assign all

of them to the same type. In practice, however, it is often easy to separate the atomic

values into di�erent sorts, e.g., integer, string, gif, wav, etc. Indeed, one can also apply

(application speci�c) analysis techniques to enrich the world of atomic types with domains

such as names, dates or addresses. It is straightforward to extend the framework to handle

multiple atomic types.

A more di�cult extension to our framework would be to consider some apriori knowledge

of the typing. Such apriori knowledge often exists in practice, e.g. when we integrate data

with a known structure to semistructured data discovered on the net.
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Finally, one may want to use in the typing, speci�c atomic values or ranges of atomic

values. For instance, we can classify di�erently objects with values "Male" or "Female" in

a gender subobject. These are interesting extensions that should be considered in future

work.

6.2.4 Defect: Excess and De�cit

In the case of relational and object data that are very regular and with the proper typing

program, we obtain a perfect classi�cation of the objects. In general, one should not expect

such precision. Suppose we have a program P that proposes a typing for a database D. We

need a measure of how well P types D.

A �rst measure is the number of ground facts in D that are not used to validate the

type of any object. We call this measure the excess, since it captures the number of facts

that are in excess. More precisely, let M be the greatest �xpoint of P for D. A ground

fact link(o; o0; `) in D is in excess if there exist no classes c and c0, such that o is in M(c),

o0 in M(c0) and the de�nition of c or c0 stipulates that there is an `-link from c to c0. The

number of such ground facts is the excess.

Excess is rather easy to capture with our datalog programs and the greatest �xpoint

semantics. The de�cit, i.e., some information that may be missing, is much less so. To

de�ne the de�cit, we need also to be given a typing assignment � in addition to a program

P and a database D, that associates a set of objects to each type. The de�cit of � is the

minimum number of ground facts that must be added to D (invented) in order to make all

type derivations in � possible. (A subtlety is that � does not have to be a typing since the

addition of these facts may bring some objects to more classes than speci�ed by � .)

Example 6.1 Suppose we are given the database shown in Figure 6.4 and the following

typing program:

type1 =
!

a
2

type2 =
 

a
1

;
!

b
0

;
!

c
0

type3 =
!

b
0

;
!

d
0

Consider two type assignments, �1 and �2, that both map oi to typei, for i = 1; 2; 3. They

di�er in that �1 maps o4 to type2 and �2 maps o4 to type3. Then the defect of �1 with respect

to the given database and program is 2 because we have to \invent" one base fact, namely

link(o1; a; o4) and have to disregard link(o4; d; o0). Thus, the excess is 1 and the de�cit is
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3O O4

b bd dc

O1

2O

a

b d

Figure 6.4: Example database

1 adding up to a defect of 2. For �2, we have no de�cit and excess of 1 because we have to

disregard link(o4; c; o0). Thus, the defect is 1.

6.3 Method Summary

The goal of this work is to be able to type approximately a large collection of semistructured

data e�ciently. We are therefore led to making simplifying assumptions and introducing

heuristics to be able to process this large collection in an e�ective way. In this section,

we present the technique in rather general terms. The various steps are detailed in the

following sections.

Our method for the approximate typing of semistructured data consists of three stages.

As we shall see, there are several alternatives to be considered at each of the three stages.

In order to decide which choices are most appropriate for a given database, we need some

information about the data. It should be stressed that these choices remain primarily em-

pirical and that the general process should entail user feedback and adapting the technique

to the particular application domain.

The gist of the �rst stage is to assign every object to a single home type. We use the

minimum number of home types such that every object �ts its home type perfectly (with

no defect). The process of partitioning objects into a collection of home types is similar in

spirit to bisimulation [Mil89]. (However, some of the possible variations for this stage yield

collections that di�er signi�cantly. For example, we could decide to have 'selected' objects

with multiple home types.)

In the second stage, we address the optimization problem of reducing the number of
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types, and thus having objects that �t their home types with some defect, while incurring the

lowest cumulative defect. This stage is the hardest both computationally and conceptually.

We show that the general optimization problem is NP-hard even for a simple class of

semistructured data corresponding to bipartite graphs. There are, however, techniques and

heuristics adapted from k-clustering [KPR98, Hoc82] that allow e�cient and near-optimal

treatment of the problem. We also discuss the sensitivity of the solution with respect to

the �nal number of types.

The third and �nal stage of our method is about recasting the original data within the

chosen types. Ideally, the greatest �xpoint semantics of the typing program (consisting of

the chosen types) should be employed. However, some of the techniques described in the

second stage do not mix well with the �xpoint semantics. For example, some objects may

be assigned to more than one particular home type. Such objects don't have all typed

links required by their home types. We present ways of resolving the incompatibilities and

discuss some additional variations.

6.4 Stage 1: Minimal perfect typing

In this section, we present an algorithm for deriving a perfect (with no defect) typing

program from semistructured data. In this program, every complex object has a type

that is based on its local picture. The resulting object partitioning of the minimal perfect

typing program is related to the partition obtained through bisimulation. We discuss this

relationship towards the end of this section.

6.4.1 Assuming a unique role

In this section, we assume that each object lives in a unique class. We will remove this

restriction later.

Given some database D, the minimal perfect typing program PD is constructed as

follows:

1. First construct a program QD as follows. Let o1 : : : oN be the complex objects. For

each complex objects ok, assign a unique type predicate typek . The rule for typek

will contain
 

`
i
i� there is an edge labeled ` from oi to ok , and

!

`
i
if there is an edge

labeled ` from ok to oi. The rule for typek will also contain
!

`
0

i� there is an edge

labeled ` from oi to some atomic object.
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2. Compute the greatest �xpoint M of QD for D. Let � be the equivalence relation on

the types ftypek j k 2 [1::N ]g de�ned by typei � typej if M(typei) = M(typej). The

types of PD will be the equivalence classes of �, say �1 : : : �n.

3. The new program PD is obtained by choosing for each �i, a type typek in �i and

replacing, in the rule r for typek , each type typej by its equivalence class [typej ]

according to �. The home type of ok becomes [typek].

Lemma 6.1 The following property is useful in �nding the equivalence classes of types

(Step 2 above):

typei � typej i� oj 2M(typei) ^ oi 2M(typej)

The following example illustrates the algorithm for �nding the minimal perfect typing

program.

o1

b b

o o6

o3o2

a a
a

b c

o

o4

5 7

Figure 6.5: Simple semistructured database D.

Example 6.2 Consider the simple database D in Figure 6.5. This database contains 4

complex and 3 atomic objects. The program QD constructed in (1) of the algorithm is:

type1 =
!

a
2

;
!

a
3

;
!

a
4

type2 =
 

a
1

;
!

b
0

type3 =
 

a
1

;
!

b
0

type4 =
 

a
1

;
!

b
0

;
!

c
0
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The greatest �xpoint M for QD obtained in (2) is:

M(type1) = fo1g;M(type2) =M(type3) = fo2; o3; o4g;M(type4) = fo4g:

Let [type1] = �1, [type2] = [type3] = �2 and [type4] = �3. The program PD is:

�1 =
!

a
3

;
!

a
2

�2 =
 

a
1

;
!

b
0

;
!

c
0

�3 =
 

a
1

;
!

b
0

The home type object partition for this program is:

� �1 is the home type for o1.

� �2 is the home type for o2 and o3.

� �3 is the home type for o4.

Note also that for recursive datalog programs the greatest �xpoint semantics is needed

to derive the intuitively correct classi�cation. In the above program the least �xpoint will

be empty. For nonrecursive datalog programs the greatest and the least �xpoints coincide.

There is a straightforward method for computing the greatest �xpoint for a program

P . First, assign every type to every object and call this database Mall. Then compute

P(Mall [ link [ atomic). Keep applying P to the result of the last application until no

change occurs.

The partition of the objects at this stage is a specialization of the partition induced

by bisimulation [BDHS96, Suc96, Mil89]. Intuitively, two nodes are bisimilar if after the

(possibly in�nite) unfolding from each vertex and after duplicate elimination for subtrees,

the two resulting (possibly in�nite) regular trees are identical. A subtlety is that we do

consider here both incoming and outgoing edges, which leads also to introducing edges

corresponding to incoming edges when unfolding a vertex. Bisimulation turns out to be

relatively easy to compute. First, we consider that all objects are in a unique class c0. At

some stage, suppose that the objects are separated in a partition �1; :::; �m. If for some

classes �i; �j and some label `, there are objects in �i that have ` edge going to objects in

�j and some that do not, one can split �i in two. (Similarly, if some objects in �i have
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incoming ` edges from �j and some that do not.) This yields a more re�ned partition.

Ultimately, this provides a partition of the set of objects and a type based on this partition.

6.4.2 Multiple roles

As the result of the minimal perfect typing so far, each object has its home type based on the

object's local picture. Note however that the types de�ned by the minimal perfect typing

program may still overlap. The reason is that the program does not contain negation. Thus,

objects that have more typed links than required for a given type will also be assigned to

that type, even though it is not their home type. Such assignments are the style of ODMG

inheritance but somewhat richer, since our description of the locality of an object includes

not only its outgoing edges (as in ODMG) but its incoming edges as well.

In the context of semistructured data, it seems often compulsory to remove the home

type assumption that states that, for each object, there is a type that fully describes it.

Objects may have multiple roles, and each role may come equipped with a set of possibly

overlapping attributes. For example a person may be an employee, a soccer player, a

foreigner, a friend, etc., and each of its possible roles may come equipped with a pattern of

incoming and outgoing edges. We want to avoid the combinatorial explosion of introducing

employee-soccer-player-foreigner, employee-foreigner-friend, etc. Indeed, forcing each object

to be in a single type would arti�cially increase the number of types or the error of the typing.

At this stage, we can identify complex types that can be expressed as a conjunction

of several simpler types. By simpler we mean having fewer typed links in their de�nition.

The home objects for the complex types can then be assigned to each of the simpler types

that cover the complex one. Thus, at the end of this operation we will have an overlapping

collection of types. The following example illustrates the main idea.

Example 6.3 Consider the database in Figure 6.6. Its natural perfect typing program is:

type1 =
�!

Name
0

;
�!

Country
0

;
�!

Team
0

type2 =
�!

Name
0

;
�!

Country
0

;
�!

Team
0

;
�!

Movie
0

type3 =
�!

Name
0

;
�!

Country
0

;
�!

Movie
0

In the greatest �xpoint, type1 contains o1 and o2; type2 contains o2; type3 contains o2 and

o3. Thus, even if we delete type2 every object will still be assigned to at least one type. In
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Country

France
BleuCantona

Country

Scholes

England

Name

Man Utd

Team

Team Name

Le Bonheur...

Movie

Country

Binoche Damage

Name

Movie Movie

O 2 O 31O

Figure 6.6: Soccer and movie stars.

that case, o2 will loose its original home type but will be assigned two home types, namely

type1 and type3.

It should be observed that although the introduction of new very general types may

sometimes be useful, overdoing it may lead to some \atomization" of the information.

Intuitively, one would like to avoid describing a person as some object that is in a class

has-name and in a class has-address and in a class has-spouse.

However, the decision whether to eliminate some complex types covered by several

simpler ones can be deferred to the next stage of our method | the clustering of types. In

the clustering stage, types with many typed links and few home-type objects will tend be

coalesced with simpler types.

6.5 Stage 2: Clustering

In most cases, the minimal perfect typing program will have too many types to be useful

as a summary of the data set. There will be many 'similar' types that intuitively can be

collapsed into one thus dramatically reducing the size and complexity of the typing program.

In this section, we outline how to transform the typing program to reduce the number of

types while keeping the defect (excess + de�cit) low.

6.5.1 The general problem

The optimization problem that we consider in this stage is similar to k-clustering [Hoc82].

Every home type along with its weight (the number of objects having this type as their

home type) is a point on a hypercube. The dimensions of the hypercube are the di�erent
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typed links found in the minimal program from Stage 1. The general form of the problem,

however, is more complex than k-clustering, because deciding to coalesce several types has

the e�ect of projecting all points on the hypercube on several of its diagonals and thereby

reducing the dimensions. Consider the following example.

Example 6.4 Consider the following four rather similar types:

�1 :-
!

a
0

;
!

b
3

�2 :-
!

a
0

;
!

b
4

�3 :-
!

a
0

;
 

b
1

�4 :-
!

a
0

;
 

b
2

Initially, all 4 types are di�erent. However, if we coalesce either �1 and �2 or �3 and �4, the

remaining two types become identical. Of course, in this case, it doesn't matter which pair

is chosen �rst. However, there are situations where the order of coalescing has a signi�cant

e�ect on the quality of the result.

6.5.2 Distance function between types

There are many ways to de�ne the distance between two types. We argue that while the

�ne tuning of the parameters of a speci�c function is very domain speci�c, the general

properties of the distance function are universal.

Consider two types �1 and �2 and their de�nitions. The simplest and most natural

distance function seems to be the Manhattan path between the two type points on the

binary hypercube de�ned by the typed links in their de�nitions. In simpler terms, the

distance is the number of typed links in the symmetric di�erence between the bodies of

their rule de�nitions. We denote this distance, which is the basis of more complex functions

considered later, by d(�1; �2).

Example 6.5 Consider the following three types:

�1 :-
!

a
0

;
!

b
2

�2 :-
!

a
0

;
 

b
1

�3 :-
!

b
2

;
 

b
1

;
 

b
3

:

For �1; �2, the symmetric di�erence consists of f
!

b
2

;
 

b
1

g, so d(�1; �2) = 2. For �1; �3, the

symmetric di�erence consists of f
!

a
0

;
 

b
1

;
 

b
3

g, so d(�1; �3) = 3. And d(�2; �3) is also 3.
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Although this simple distance function appears to be very natural, it does not take

into account the weight of the types (the number of objects having the type as their home

type). We need to use a more complex weighted distance � that should be a function of the

Manhattan distance d, and the weights of the two types w1 and w2. The distance � is not

symmetric because �(w1; w2; d) measures the cost of moving type objects of type �2 to �1.

It seems desirable to have the following properties for such a distance:

increasing in d This property is based on the intuition that it is better to collapse 'similar'

types, i.e., such that there are very few typed links in one and not in the other.

decreasing in w1 This is based on the intuition that the expected noise around some class

of object should be proportional to the number of objects in the class. In other words,

if the class has a very large extent, we may expect a lot of objects that almost �t in

it but not quite and should be willing to correct them.

increasing in w2 The intuition behind this last property is that large collections of similar

objects are likely to form types and thus should not be moved to other types (unless

the other type is much bigger and thus the previous property kicks in).

These three properties are clearly related to the overall goal of minimizing the defect.

There are several possible functions that seem reasonable choices even though some of

them don't satisfy all three properties listed above:

�1(w1; w2; d) = d � w2 �2(w1; w2; d) = Ld=(w1 � w2)

�3(w1; w2; d) = (w1 � w2)
1=d �4(w1; w2; d) = (w2=w1)

1=d

�5(w1; w2; d) = Ld � w2

where L is the total number of di�erent typed links in the typing program obtained at the

end of Stage 1. Clearly, the choice of a distance function seriously a�ects the results of the

typing. The following example shows that deciding on the particular parameters for a given

function is domain speci�c.

Example 6.6 Suppose at the end of Stage 1 there are only three types.

� 100000 objects of type �1 =
!

a
0!

b
0

� 1000 objects of type �2 =
!

a
0!

b
0!
c
0
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� 100 objects of type �3 =
!

a
0!

b
0!

`1
0

: : :
!

`k
0

Suppose that we want to end up with only two types at the end of Stage 2. We implicitly

assume that one extra type will be the empty set allowing us to chose not to type some objects

by assigning them to the empty set type. For k = 1, the best solution will be to move �3 to

�1. Similarly, for a big k, e.g., k > 15, the best solution is to move �2 to �1. In between,

there is a range for k such that the best solution is to move �3 to the empty set type, i.e,

to not classify those 100 objects with a home type �3. The two cut-o� points depend on the

distance function that is chosen and are clearly application dependent.

Note that the distance function �1 resembles our de�nition of defect introduced in Sec-

tion 6.2. While it measure the defect exactly for a single coalescing, when we have a series

of coalescing of types it only provides an upper bound on the defect of the �nal program.

Clustering algorithm Since �nding the optimal k types is NP-hard we have to employ

heuristics in order to solve the problem. In our experiments we used a greedy algorithm

because of it lower time complexity and implementation ease. Furthermore, under certain

assumptions, the greedy algorithm gives an O(logn)-approximation of the best solution

[Hoc82].

To conclude this section, we consider a special case that is somewhat easier and an

alternative to the clustering in general.

Bipartite graphs An important special case is when all typed links point to atomic

objects which happens when the graph is bipartite. Bipartite graphs result from relational

data or when the data comes from a �le of records. Then each type is de�ned by the set

of labels on the outgoing links, i.e. the attributes in the relational case. The problem is

much simpler. However, even in this simple case, one can show that �nding the best typing

with k types (for some �xed k), where \best" is de�ned by minimizing the defect, is still

NP-hard.

Variation to k-clustering A di�erent approach is �rst to consider the types after Stage

1 without their weights. Using some measure of the relative importance of an attribute

within a set of attributes (e.g. the jump function [NAM97]) we can �nd the best k clusters

of the types and only use the weights within a cluster to determine its type de�nition



6.6. STAGE 3: RECASTING 101

corresponding to its center. However, this approach may run into problems if there are

many outliers and the hypercube is densely populated.

6.6 Stage 3: Recasting

In the third stage we allow objects to be in types other than their home type(s) if they

satisfy the appropriate type predicates. At this stage however we do not account for the

excess or de�cit. Thus, at the end of the third stage we have typed approximately all objects

with k types at some defect cost. Note that the �rst stage is independent of the choice of k.

Thus, we can support a sliding scale mechanism where the scale is k and the result is the

best k types and the corresponding defect. In fact, our experiments suggest that using this

approach yields better results and provides additional insight into the data. We present

more detailed discussion of this approach in Section 6.7.

When we allow objects to be assigned to types other than their home type(s) we actually

have several options depending on whether we only classify objects based on their actual

typed links or the ones suggested by their home type assigned at the end of Stage 2.

The typing rules for objects that have not been used to derive the typing program are

rather simple. First we assign a new object to all types that it satis�es completely. If the

object cannot be assigned any type precisely, then we assign it to the closest type to it, in

terms of the simple distance function d. Of course, if we have many new objects we may

wish to reconsider the the current typing program. Deciding how many new objects is too

many and recomputing e�ciently the typing program are open problems.

6.7 Experimental results

In this section we present our experimental results. While performance (in terms of time)

is an important consideration in our work, the main focus of the experiments was the

quality of the results. Indeed, understanding when the various options in our algorithm

work best and how is a prerequisite for designing e�cient data structures and optimization.

In this performance study we used extensively synthetic data. We also show some results

on a operational data set. Note the using synthetic data is attractive for the purpose of

evaluating the quality of the typing in several ways. First, we are able to compare the types

produced by our algorithm with the intended type in the data speci�cation. Second, we are
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FromObj ToObj Label

C1 A1 a

C1 A5 b

C2 A3 a

C3 C1 c

C3 A2 b

C4 A1 b

C5 C2 c

Figure 6.7: Example of synthetic data.

able to measure the e�ects of various perturbation of the data on the the typing results.

6.7.1 Generating Synthetic Data

The main idea behind the synthetic data is to use type de�nition with probability attached

to their typed links and then produced random instances according to those probabilities.

The following example illustrate the data generation process.

Example 6.7 Consider the following type speci�cation. There are two types in addition to

the standard atomic type. In order to simulate imperfect data we generate objects in the

following probabilistic manner. Objects of the �rst type have a link labeled 'a' to an atomic

object with probability 0.9 and a link labeled 'b' to an atomic object with probability 0.5.

Objects of the second type have a link labeled 'c' to an object of the �rst type with probability

0.8 and a link labeled 'b' to an atomic object with probability 0.9. Figure 6.7 gives a small

database that might be generated from this type speci�cation.

The results of running our typing algorithm for several synthetic data sets are captured

in Table 6.1. The distance function used in the clustering stage is the weighted Manhattan

distance. The clustering is done by a greedy algorithm.

We run experiments on 4 di�erent synthetic datasets (DB Nos. 1,3,5,7). For each dataset

we denote whether its corresponding graph is bipartite and whether the intended types are

overlapping, i.e, have typed links in common. We also consider a slight perturbation of each

dataset (DB Nos. 2,4,6,8) where we delete randomly a few links in the graph and then add

some randomly labeled links.
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Synthetic Data Typing

DB Bi Overlap Perturb Intended Objects Links Perfect Optimal Defect
No ? ? ? Types Types Types

1 Y N N 10 1500 2909 30 10 225

2 Y N Y 10 1500 2958 52 10 307

3 Y Y N 6 950 2409 19 6 239

4 Y Y Y 6 950 2442 35 6 283

5 N N N 5 400 726 317 5 181

6 N N Y 5 400 749 341 5 310

7 N Y N 5 400 775 375 5 291

8 N Y Y 5 400 795 381 5 333

Table 6.1: Synthetic data results.

The main observation from the results is that slight perturbation of the dataset results

in a dramatic increase of the number of perfect types, while the e�ect on the optimal

approximate typing is relatively small. Another observation is that datasets with bipartite

graphs are much easier to handle compared to regular graphs.

6.7.2 Sensitivity Analysis

There is clearly a trade-o� between the defect and the simplicity of the typing program. For

example, the minimal perfect typing program has no defect but has too many types. On

the other side of the scale, if we choose to have only one type the defect will be huge unless

we are dealing with very regular data. We conjecture that for non-random semistructured

data there is usually an optimal number (or a small range) of types. Figure 6.8 show

the defect and the total distance used in our typing method as a function of the number of

types in the approximate typing. The distance function is the weighted Manhattan distance

between the types. As expected, there is a small range of types (6-10) that yields optimal

tradeo� between number of types and defect. The optimal typing with 6 types is shown in

Figure 6.1.

The existence of optimal range of number of types suggests that an interactive approach

to typing semistructured data will work best. Instead of deciding in advance on a �xed

number of types in the approximate typing it is better to explore several di�erent values,

ranging from as many as in the minimal perfect typing to perhaps just 1. Note that the
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Figure 6.8: Sensitivity graph for DBG data set.

algorithm can be adapted such that the we �nd sequentially the best �t with k types starting

from the number of types in the perfect typing. Thus, the algorithm can �nd the optimal

tradeo� point and suggest a \natural" typing (or a small set). If the results are unsatisfying

because of too much defect or too many types, the algorithm can keep reducing the number

of types or revert to a typing with more types but less defect. However, we feel that having

hard limits on the number of types or the defect, without having knowledge of the data is

unreasonable.

6.8 Concluding Remarks

In this chapter, we presented a method for extracting schema from semistructured data.

The schema is in the form of a monadic datalog program with each intensional predicate

de�ning a separate type. We asserted that in the context of semistructured data it is

imperative to allow for some defect when objects are typed. This assertions was supported

by the experimental results on both operational and synthetic data. The perfect typing

(with no defect) was shown to be much bigger than the approximate typing produced by

our method. Indeed, in some cases the perfect typing was of roughly the same size as the

data which precludes its practical use. In contrast, the size of the approximate typing can

always be reduced to a desired range. Our experiments suggest that even better results can
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be obtained by considering the defect as a function of the number of types in approximate

typing and choosing an optimal range.



Chapter 7

Conclusions

Data mining | the application of methods to analyze very large volumes of data in order

to discover new knowledge | is rapidly �nding its way into mainstream computing and

becoming commonplace in such environments as �nance and retail, in which large volumes of

cash register data are routinely analyzed for user buying patterns of goods, shopping habits

of individual users, e�ciency of marketing strategies for services and other information. In

this thesis, we presented data mining techniques that contribute towards a comprehensive

solution for both structured and semistructured data.

The contributions of this thesis for data mining of structured data include:

� Framework, called query 
ocks, for declarative formulation of a large class of data

mining queries in a uniform manner.

� Methods, called query 
ock plans, for systematic optimization and e�cient processing

of query 
ocks with monotone �lters.

� Architecture for tightly-coupled integration of query 
ocks and query 
ock plans with

relational DBMS.

The contribution of this thesis for data mining of semistructured data include:

� De�nition of the problem of discovering structure from semistructured data.

� Methods for mining precise structural summaries from semistructured data.

� Methods for mining approximate schemas in the form of datalog programs that ac-

count for noisy data.

106
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7.1 Future Work

The are several directions for future work. In Chapter 3 we showed that our optimization

methods work for query 
ocks that consist of a single conjunctive query and a monotone

�lter condition. We plan to expand the techniques to cover other types of �lters such as

the high-con�dence-without-high-support condition [FMU00, MCD+00]. Such expansion

will involve adopting some form of hashing, perhaps similar to [FSGM+98], and allowing

multiple auxiliary relations for the same set of parameters. We also plan to consider the

optimization issues for query 
ocks that include unions of conjunctive queries.

An orthogonal avenue of future research is to consider cost-based optimization tech-

niques. Such undertaking necessarily involves devising novel methods for collecting and

using statistics that can be used to estimate results of aggregations. These new methods

must be combined with the existing techniques in standard query optimization and perhaps

augmented with dynamic query plans.

In Chapter 6 we mentioned that our methods for structure discovery can bene�t from

incorporating existing information about the explicit partial structure of semistructured

data. In the context of XML, it is an interesting and important problem to consider adapting

our algorithms to the particularities of XML and then consider using the information about

the explicit schema of the data provided by the DTD to accelerate our algorithms.
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