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CS 245: Database System 
Principles

Notes 03: Disk Organization

Hector Garcia-Molina
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• How to lay out data on disk
• How to move it to memory

Topics for today
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What are the data items we want to store?
• a salary
• a name
• a date
• a picture
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What are the data items we want to store?
• a salary
• a name
• a date
• a picture
What we have available: Bytes

8
bits
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To represent:

• Integer (short): 2 bytes
e.g., 35 is 

00000000 00100011

• Real, floating point
n bits for mantissa, m for exponent….
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• Characters
 various coding schemes suggested,

most popular is ascii

To represent:

Example:
A:    1000001
a:     1100001
5:     0110101
LF:   0001010
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• Boolean
e.g., TRUE

FALSE
1111 1111
0000 0000

To represent:

• Application specific
e.g.,  RED  1 GREEN  3

BLUE  2    YELLOW  4  …
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• Boolean
e.g., TRUE

FALSE
1111 1111
0000 0000

To represent:

• Application specific
e.g.,  RED  1 GREEN  3

BLUE  2    YELLOW  4  …

Can we use less than 1 byte/code?
Yes, but only if desperate...
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• Dates
e.g.:  - Integer, # days since Jan 1, 1900

- 8 characters, YYYYMMDD
- 7 characters, YYYYDDD

(not YYMMDD! Why?)
• Time

e.g.   - Integer, seconds since midnight
- characters, HHMMSSFF

To represent:
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• String of characters
– Null terminated

e.g.,

– Length given
e.g.,

- Fixed length

c ta

c ta3

To represent:
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• Bag of bits

Length Bits

To represent:
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Key Point

• Fixed length items

• Variable length items
- usually length given at beginning
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• Type of an item:  Tells us how to 
interpret
(plus size if fixed)

Also
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Data Items

Records

Blocks

Files

Memory

Overview
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Record - Collection of related data
items (called FIELDS)

E.g.: Employee record:
name field,
salary field,
date-of-hire field, ...
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Types of records:

• Main choices:
– FIXED vs VARIABLE FORMAT
– FIXED vs VARIABLE LENGTH
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A SCHEMA (not record) contains
following information

- # fields
- type of each field
- order in record
- meaning of each field

Fixed format
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Example: fixed format and length

Employee record
(1) E#, 2 byte integer
(2) E.name, 10 char. Schema
(3) Dept, 2 byte code

55 s m i  t   h 02

83 j o n  e  s 01
Records
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• Record itself contains format
“Self Describing”

Variable format
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Example: variable format and length

4I52 4S DROF46

Field name codes could also be strings, i.e. TAGS
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Variable format useful for:

• “sparse” records
• repeating fields
• evolving formats

But may waste space...
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• EXAMPLE: var format record with
repeating fields

Employee   one or more   children

3 E_name: Fred Child: Sally Child: Tom
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Note: Repeating fields does not imply
- variable format, nor
- variable size

John Sailing Chess --
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Note: Repeating fields does not imply
- variable format, nor
- variable size

John Sailing Chess --

• Key is to allocate maximum number of
repeating fields (if not used   null)
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Many variants between
fixed - variable format:

Example: Include record type in record

record type  record length
tells me what
to expect
(i.e. points to schema)

5 27 . . . . 
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Record header - data at beginning
that describes record

May contain:
- record type
- record length
- time stamp
- other stuff ...

Exercise: How to store XML data?
<table>
<description> people on the fourth floor <\description>
<people>

<person>
<name> Alan <\name>
<age> 42 <\age>
<email> agb@abc.com <\email>

<\person>
<person>

<name> Sally <\name>
<age> 30 <\age>
<email> sally@abc.com <\email>

<\person>
<\people>
<\table>
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from: 
Data on the Web,
Abiteboul et al
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Other interesting issues:

• Compression
– within record - e.g. code selection
– collection of records - e.g. find common 

patterns
• Encryption
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Encrypting Records

trusted
processor

new
record

r
dbms

E(r)

E(r1)
E(r2)
E(r3)
E(r4)
...

CS 245 Notes 3 30

Encrypting Records

trusted
processor

search
F(r)=x

dbms
??

E(r1)
E(r2)
E(r3)
E(r4)
...
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Search Key in the Clear

trusted
processor

search
k=2

dbms
Q: k=2

[1, E(b1)]
[2, E(b2)]
[3, E(b3)]
[4, E(b4)]

...
• each record is [k,b]
• store [k, E(b)]
• can search for records with k=x

A: [2, E(b2)]
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Encrypt Key

trusted
processor

search
k=2

dbms
Q: k’=E(2)

[E(1), E(b1)]
[E(2), E(b2)]
[E(3), E(b3)]
[E(4), E(b4)]

...
• each record is [k,b]
• store [E(k), E(b)]
• can search for records with k=E(x)

A: [E(2), E(b2)]
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Issues

• Hard to do range queries
• Encryption not good
• Better to use encryption that does not 

always generate same cyphertext

E
k

D
E(k, random) k

simplification
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How Do We Search Now?

trusted
processor

search
k=2

dbms
Q: k’=E(2)

[E(1, abc), E(b1)]
[E(2, dhe), E(b2)]
[E(3, nft), E(b3)]
[E(2, lkz), E(b4)]

...
• each record is [k,b]
• store [E(k, rand), E(b)]
• can search for records with k=E(x,???)?

A: [E(2,dhe), E(b2)]
[E(2, lkz), E(b4)]

???
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Solution?
• Develop new decryption function:

D(f(k1), E(k2, rand)) is true if k1=k2
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Solution?
• Develop new decryption function:

D(f(k1), E(k2, rand)) is true if k1=k2

trusted
processor

search
k=2

dbms

Q: check if D(f(2),*) true

[E(1, abc), E(b1)]
[E(2, dhe), E(b2)]
[E(3, nft), E(b3)]
[E(2, lkz), E(b4)]

...

A: [E(2,dhe), E(b2)]
[E(2, lkz), E(b4)]
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Issues?
• Cannot do non-equality predicates
• Hard to build indexes

What are choices/issues with 
data compression?

• Leaving search keys uncompressed not as 
bad

• Larger compression units:
– better for compression efficiency
– worse for decompression overhead

• Similar data compresses better 
– compress columns?
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Next: placing records into blocks

blocks ...

a file
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Next: placing records into blocks

blocks ...

a file

assume fixed
length blocks

assume a single file (for now)
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(1) separating records
(2) spanned vs. unspanned
(3) sequencing
(4) indirection

Options for storing records in blocks:
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Block

(a) no need to separate - fixed size recs.
(b) special marker
(c) give record lengths (or offsets)

- within each record
- in block header

(1) Separating records

R2R1 R3
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• Unspanned: records must be within one 
block

block 1 block 2
...

• Spanned
block 1 block 2

...

(2) Spanned vs. Unspanned

R1 R2

R1

R3 R4 R5

R2 R3
(a)

R3
(b) R6R5R4 R7

(a)
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need indication need indication
of partial record of continuation
“pointer” to rest (+ from where?)

R1 R2 R3
(a)

R3
(b) R6R5R4 R7

(a)

With spanned records:
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• Unspanned is much simpler, but may 
waste space…

• Spanned essential if 
record size > block size

Spanned vs. unspanned:
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• Ordering records in file (and block) by 
some key value

Sequential file (   sequenced)

(3) Sequencing
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Why sequencing?

Typically to make it possible to efficiently 
read records in order
(e.g., to do a merge-join  — discussed later)
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Sequencing Options

(a) Next record physically contiguous
...

(b) Linked

Next (R1)R1

R1 Next (R1)
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(c) Overflow area

Records
in sequence

R1
R2
R3
R4
R5

Sequencing Options
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(c) Overflow area

Records
in sequence

R1
R2
R3
R4
R5

Sequencing Options

header

R2.1
R1.3
R4.7
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• How does one refer to records?

(4) Indirection

Rx
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• How does one refer to records?

(4) Indirection

Rx

Many options:
Physical Indirect
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Purely Physical

Device ID
E.g.,  Record Cylinder #

Address = Track #
or ID Block #

Offset in block

Block ID
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Fully Indirect
E.g.,  Record ID is arbitrary bit string

map
rec ID

r address
a

Physical
addr.Rec ID
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Tradeoff

Flexibility           Cost
to move records of indirection
(for deletions, insertions)
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Physical Indirect

Many options
in between …
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Example: Indirection in block
Header

A block: Free space

R3

R4
R1 R2
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Block header - data at beginning that
describes block

May contain:
- File ID (or RELATION or DB ID)
- This block ID
- Record directory
- Pointer to free space
- Type of block (e.g. contains recs type 4; 

is overflow, …)
- Pointer to other blocks “like it”
- Timestamp ...
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(1) separating records
(2) spanned vs. unspanned
(3) sequencing
(4) indirection

Options for storing records in blocks:
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Case Study: salesforce.com
• salesforce.com provides CRM services
• salesforce customers are tenants
• Tenants run apps and DBMS as service

tenant A

tenant B

tenant C

salesforce.com

data
CRM App



11

CS 245 Notes 3 61

Options for Hosting

• Separate DBMS per tenant
• One DBMS, separate tables per tenant
• One DBMS, shared tables
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Tenants have similar data

customer   A  B   C  D  E  F  
a1 b1 c1 d1 e1  -
a2 b2 c2  - e2  f2

customer   A  B   C  D  G   
a3 b3 c2  - -
a1 b1 c1  - g1
a4  - - d1

tenant 1:

tenant 2:
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salesforce.com solution
customer  tenant  A   B   C

1     a1 b1 c1
1     a2 b2 c2
2     a3 b3 c2
2     a1 b1 c1

cust-other  tenant  A   f1  v1  f2  v2 ...
1      a1  D   d1  E   e1
1      a2  E    e2  F   f2 
2      a1  G   g1
3      a4  D   d1

fixed schema for
all tenants

var schema for
all tenants
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(1) Insertion/Deletion
(2) Buffer Management
(3) Comparison of Schemes

Other Topics
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Block

Deletion

Rx
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Options:

(a) Immediately reclaim space
(b) Mark deleted
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Options:

(a) Immediately reclaim space
(b) Mark deleted

– May need chain of deleted records
(for re-use)

– Need a way to mark:
• special characters
• delete field
• in map
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As usual, many tradeoffs...

• How expensive is to move valid record 
to free space for immediate reclaim?

• How much space is wasted?
– e.g.,  deleted records, delete fields, free 

space chains,...
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Dangling pointers

Concern with deletions

R1 ?
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Solution #1: Do not worry

CS 245 Notes 3 71

E.g., Leave “MARK” in map or old location

Solution #2: Tombstones

CS 245 Notes 3 72

E.g., Leave “MARK” in map or old location

Solution #2: Tombstones

• Physical IDs

A block

This space This space can
never re-used be re-used
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• Logical IDs

ID LOC

7788

map

Never reuse
ID 7788 nor 
space in map...

E.g., Leave “MARK” in map or old location

Solution #2: Tombstones
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Easy case: records not in sequence
 Insert new record at end of file or 

in deleted slot
 If records are variable size, not 

as easy...

Insert
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Hard case: records in sequence
 If free space “close by”, not too bad...
 Or use overflow idea...

Insert
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Interesting problems:

• How much free space to leave in each 
block, track, cylinder?

• How often do I reorganize file + overflow?
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Free
space
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• DB features needed
• Why LRU may be bad         Read
• Pinned blocks Textbook!
• Forced output
• Double buffering
• Swizzling

Buffer Management

in Notes02
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Swizzling

Memory Disk

Rec A

block 1

block 2

block 1
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Swizzling

Memory Disk

Rec A

block 1

Rec Ablock 2 block 2

block 1

CS 245 Notes 3 81

Row vs Column Store
• So far we assumed that fields of a 

record are stored contiguously (row 
store)...

• Another option is to store like fields 
together (column store)
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• Example: Order consists of
– id, cust, prod, store, price, date, qty

Row Store

id1 cust1 prod1 store1 price1 date1 qty1

id2 cust2 prod2 store2 price2 date2 qty2

id3 cust3 prod3 store3 price3 date3 qty3
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• Example: Order consists of
– id, cust, prod, store, price, date, qty

Column Store

id1 cust1
id2 cust2
id3 cust3
id4 cust4
... ...

id1 prod1
id2 prod2
id3 prod3
id4 prod4
... ...

id1 price1 qty1
id2 price2 qty2
id3 price3 qty3
id4 price4 qty4
... ... ...

ids may or may not be stored explicitly
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Row vs Column Store
• Advantages of Column Store

– more compact storage (fields need not 
start at byte boundaries)

– efficient reads on data mining operations
• Advantages of Row Store

– writes (multiple fields of one record)more 
efficient

– efficient reads for record access (OLTP)
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Interesting paper to read:
• Mike Stonebreaker, Elizabeth (Betty) 

O'Neil, Pat O’Neil, Xuedong Chen, et al. 
" C-Store: A Column-oriented DBMS," 
Presented at the 31st VLDB Conference, 
September 2005.

• http://www.cs.umb.edu/%7Eponeil/
vldb05_cstore.pdf
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• There are 10,000,000 ways to organize 
my data on disk…

Which is right for me?

Comparison
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Issues:

Flexibility Space Utilization

Complexity Performance
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To evaluate a given strategy, compute      
following parameters:
-> space used for expected data
-> expected time to

- fetch record given key
- fetch record with next key
- insert record
- append record
- delete record
- update record
- read all file
- reorganize file
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Example

How would you design Megatron 3000 
storage system? (for a relational DB, low end)
– Variable length records?
– Spanned?
– What data types?
– Fixed format?
– Record IDs ?
– Sequencing?
– How to handle deletions?
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• How to lay out data on disk
Data Items

Records
Blocks
Files

Memory
DBMS

Summary
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How to find a record quickly,
given a key

Next


