
1

CS 245 Notes 3 1

CS 245: Database System
Principles

Notes 03: Disk Organization

Hector Garcia-Molina

CS 245 Notes 3 2

• How to lay out data on disk
• How to move it to memory

Topics for today

CS 245 Notes 3 3

What are the data items we want to store?
• a salary
• a name
• a date
• a picture

CS 245 Notes 3 4

What are the data items we want to store?
• a salary
• a name
• a date
• a picture
What we have available: Bytes

8
bits

CS 245 Notes 3 5

To represent:

• Integer (short): 2 bytes
e.g., 35 is

00000000 00100011

• Real, floating point
n bits for mantissa, m for exponent….

CS 245 Notes 3 6

• Characters
 various coding schemes suggested,

most popular is ascii

To represent:

Example:
A: 1000001
a: 1100001
5: 0110101
LF: 0001010

2

CS 245 Notes 3 7

• Boolean
e.g., TRUE

FALSE
1111 1111
0000 0000

To represent:

• Application specific
e.g., RED  1 GREEN  3

BLUE  2 YELLOW  4 …

CS 245 Notes 3 8

• Boolean
e.g., TRUE

FALSE
1111 1111
0000 0000

To represent:

• Application specific
e.g., RED  1 GREEN  3

BLUE  2 YELLOW  4 …

Can we use less than 1 byte/code?
Yes, but only if desperate...

CS 245 Notes 3 9

• Dates
e.g.: - Integer, # days since Jan 1, 1900

- 8 characters, YYYYMMDD
- 7 characters, YYYYDDD

(not YYMMDD! Why?)
• Time

e.g. - Integer, seconds since midnight
- characters, HHMMSSFF

To represent:

CS 245 Notes 3 10

• String of characters
– Null terminated

e.g.,

– Length given
e.g.,

- Fixed length

c ta

c ta3

To represent:

CS 245 Notes 3 11

• Bag of bits

Length Bits

To represent:

CS 245 Notes 3 12

Key Point

• Fixed length items

• Variable length items
- usually length given at beginning

3

CS 245 Notes 3 13

• Type of an item: Tells us how to
interpret
(plus size if fixed)

Also

CS 245 Notes 3 14

Data Items

Records

Blocks

Files

Memory

Overview

CS 245 Notes 3 15

Record - Collection of related data
items (called FIELDS)

E.g.: Employee record:
name field,
salary field,
date-of-hire field, ...

CS 245 Notes 3 16

Types of records:

• Main choices:
– FIXED vs VARIABLE FORMAT
– FIXED vs VARIABLE LENGTH

CS 245 Notes 3 17

A SCHEMA (not record) contains
following information

- # fields
- type of each field
- order in record
- meaning of each field

Fixed format

CS 245 Notes 3 18

Example: fixed format and length

Employee record
(1) E#, 2 byte integer
(2) E.name, 10 char. Schema
(3) Dept, 2 byte code

55 s m i t h 02

83 j o n e s 01
Records

4

CS 245 Notes 3 19

• Record itself contains format
“Self Describing”

Variable format

CS 245 Notes 3 20

Example: variable format and length

4I52 4S DROF46

Field name codes could also be strings, i.e. TAGS

#
 F

ie
ld

s
Co

de
 id

en
tif

yin
g

fie
ld

 a
s

E#
In

te
ge

r t
yp

e

Co
de

 fo
r E

na
m

e
St

rin
g

ty
pe

Le
ng

th
 o

f s
tr.

CS 245 Notes 3 21

Variable format useful for:

• “sparse” records
• repeating fields
• evolving formats

But may waste space...

CS 245 Notes 3 22

• EXAMPLE: var format record with
repeating fields

Employee  one or more  children

3 E_name: Fred Child: Sally Child: Tom

CS 245 Notes 3 23

Note: Repeating fields does not imply
- variable format, nor
- variable size

John Sailing Chess --

CS 245 Notes 3 24

Note: Repeating fields does not imply
- variable format, nor
- variable size

John Sailing Chess --

• Key is to allocate maximum number of
repeating fields (if not used  null)

5

CS 245 Notes 3 25

Many variants between
fixed - variable format:

Example: Include record type in record

record type record length
tells me what
to expect
(i.e. points to schema)

5 27

CS 245 Notes 3 26

Record header - data at beginning
that describes record

May contain:
- record type
- record length
- time stamp
- other stuff ...

Exercise: How to store XML data?
<table>
<description> people on the fourth floor <\description>
<people>

<person>
<name> Alan <\name>
<age> 42 <\age>
<email> agb@abc.com <\email>

<\person>
<person>

<name> Sally <\name>
<age> 30 <\age>
<email> sally@abc.com <\email>

<\person>
<\people>
<\table>

CS 245 Notes 3 27

from:
Data on the Web,
Abiteboul et al

CS 245 Notes 3 28

Other interesting issues:

• Compression
– within record - e.g. code selection
– collection of records - e.g. find common

patterns
• Encryption

CS 245 Notes 3 29

Encrypting Records

trusted
processor

new
record

r
dbms

E(r)

E(r1)
E(r2)
E(r3)
E(r4)
...

CS 245 Notes 3 30

Encrypting Records

trusted
processor

search
F(r)=x

dbms
??

E(r1)
E(r2)
E(r3)
E(r4)
...

6

CS 245 Notes 3 31

Search Key in the Clear

trusted
processor

search
k=2

dbms
Q: k=2

[1, E(b1)]
[2, E(b2)]
[3, E(b3)]
[4, E(b4)]

...
• each record is [k,b]
• store [k, E(b)]
• can search for records with k=x

A: [2, E(b2)]

CS 245 Notes 3 32

Encrypt Key

trusted
processor

search
k=2

dbms
Q: k’=E(2)

[E(1), E(b1)]
[E(2), E(b2)]
[E(3), E(b3)]
[E(4), E(b4)]

...
• each record is [k,b]
• store [E(k), E(b)]
• can search for records with k=E(x)

A: [E(2), E(b2)]

CS 245 Notes 3 33

Issues

• Hard to do range queries
• Encryption not good
• Better to use encryption that does not

always generate same cyphertext

E
k

D
E(k, random) k

simplification
CS 245 Notes 3 34

How Do We Search Now?

trusted
processor

search
k=2

dbms
Q: k’=E(2)

[E(1, abc), E(b1)]
[E(2, dhe), E(b2)]
[E(3, nft), E(b3)]
[E(2, lkz), E(b4)]

...
• each record is [k,b]
• store [E(k, rand), E(b)]
• can search for records with k=E(x,???)?

A: [E(2,dhe), E(b2)]
[E(2, lkz), E(b4)]

???

CS 245 Notes 3 35

Solution?
• Develop new decryption function:

D(f(k1), E(k2, rand)) is true if k1=k2

CS 245 Notes 3 36

Solution?
• Develop new decryption function:

D(f(k1), E(k2, rand)) is true if k1=k2

trusted
processor

search
k=2

dbms

Q: check if D(f(2),*) true

[E(1, abc), E(b1)]
[E(2, dhe), E(b2)]
[E(3, nft), E(b3)]
[E(2, lkz), E(b4)]

...

A: [E(2,dhe), E(b2)]
[E(2, lkz), E(b4)]

7

CS 245 Notes 3 37

Issues?
• Cannot do non-equality predicates
• Hard to build indexes

What are choices/issues with
data compression?

• Leaving search keys uncompressed not as
bad

• Larger compression units:
– better for compression efficiency
– worse for decompression overhead

• Similar data compresses better
– compress columns?

CS 245 Notes 3 38

CS 245 Notes 3 39

Next: placing records into blocks

blocks ...

a file
CS 245 Notes 3 40

Next: placing records into blocks

blocks ...

a file

assume fixed
length blocks

assume a single file (for now)

CS 245 Notes 3 41

(1) separating records
(2) spanned vs. unspanned
(3) sequencing
(4) indirection

Options for storing records in blocks:

CS 245 Notes 3 42

Block

(a) no need to separate - fixed size recs.
(b) special marker
(c) give record lengths (or offsets)

- within each record
- in block header

(1) Separating records

R2R1 R3

8

CS 245 Notes 3 43

• Unspanned: records must be within one
block

block 1 block 2
...

• Spanned
block 1 block 2

...

(2) Spanned vs. Unspanned

R1 R2

R1

R3 R4 R5

R2 R3
(a)

R3
(b) R6R5R4 R7

(a)

CS 245 Notes 3 44

need indication need indication
of partial record of continuation
“pointer” to rest (+ from where?)

R1 R2 R3
(a)

R3
(b) R6R5R4 R7

(a)

With spanned records:

CS 245 Notes 3 45

• Unspanned is much simpler, but may
waste space…

• Spanned essential if
record size > block size

Spanned vs. unspanned:

CS 245 Notes 3 46

• Ordering records in file (and block) by
some key value

Sequential file ( sequenced)

(3) Sequencing

CS 245 Notes 3 47

Why sequencing?

Typically to make it possible to efficiently
read records in order
(e.g., to do a merge-join — discussed later)

CS 245 Notes 3 48

Sequencing Options

(a) Next record physically contiguous
...

(b) Linked

Next (R1)R1

R1 Next (R1)

9

CS 245 Notes 3 49

(c) Overflow area

Records
in sequence

R1
R2
R3
R4
R5

Sequencing Options

CS 245 Notes 3 50

(c) Overflow area

Records
in sequence

R1
R2
R3
R4
R5

Sequencing Options

header

R2.1
R1.3
R4.7

CS 245 Notes 3 51

• How does one refer to records?

(4) Indirection

Rx

CS 245 Notes 3 52

• How does one refer to records?

(4) Indirection

Rx

Many options:
Physical Indirect

CS 245 Notes 3 53

Purely Physical

Device ID
E.g., Record Cylinder #

Address = Track #
or ID Block #

Offset in block

Block ID

CS 245 Notes 3 54

Fully Indirect
E.g., Record ID is arbitrary bit string

map
rec ID

r address
a

Physical
addr.Rec ID

10

CS 245 Notes 3 55

Tradeoff

Flexibility Cost
to move records of indirection
(for deletions, insertions)

CS 245 Notes 3 56

Physical Indirect

Many options
in between …

CS 245 Notes 3 57

Example: Indirection in block
Header

A block: Free space

R3

R4
R1 R2

CS 245 Notes 3 58

Block header - data at beginning that
describes block

May contain:
- File ID (or RELATION or DB ID)
- This block ID
- Record directory
- Pointer to free space
- Type of block (e.g. contains recs type 4;

is overflow, …)
- Pointer to other blocks “like it”
- Timestamp ...

CS 245 Notes 3 59

(1) separating records
(2) spanned vs. unspanned
(3) sequencing
(4) indirection

Options for storing records in blocks:

CS 245 Notes 3 60

Case Study: salesforce.com
• salesforce.com provides CRM services
• salesforce customers are tenants
• Tenants run apps and DBMS as service

tenant A

tenant B

tenant C

salesforce.com

data
CRM App

11

CS 245 Notes 3 61

Options for Hosting

• Separate DBMS per tenant
• One DBMS, separate tables per tenant
• One DBMS, shared tables

CS 245 Notes 3 62

Tenants have similar data

customer A B C D E F
a1 b1 c1 d1 e1 -
a2 b2 c2 - e2 f2

customer A B C D G
a3 b3 c2 - -
a1 b1 c1 - g1
a4 - - d1

tenant 1:

tenant 2:

CS 245 Notes 3 63

salesforce.com solution
customer tenant A B C

1 a1 b1 c1
1 a2 b2 c2
2 a3 b3 c2
2 a1 b1 c1

cust-other tenant A f1 v1 f2 v2 ...
1 a1 D d1 E e1
1 a2 E e2 F f2
2 a1 G g1
3 a4 D d1

fixed schema for
all tenants

var schema for
all tenants

CS 245 Notes 3 64

(1) Insertion/Deletion
(2) Buffer Management
(3) Comparison of Schemes

Other Topics

CS 245 Notes 3 65

Block

Deletion

Rx

CS 245 Notes 3 66

Options:

(a) Immediately reclaim space
(b) Mark deleted

12

CS 245 Notes 3 67

Options:

(a) Immediately reclaim space
(b) Mark deleted

– May need chain of deleted records
(for re-use)

– Need a way to mark:
• special characters
• delete field
• in map

CS 245 Notes 3 68

As usual, many tradeoffs...

• How expensive is to move valid record
to free space for immediate reclaim?

• How much space is wasted?
– e.g., deleted records, delete fields, free

space chains,...

CS 245 Notes 3 69

Dangling pointers

Concern with deletions

R1 ?

CS 245 Notes 3 70

Solution #1: Do not worry

CS 245 Notes 3 71

E.g., Leave “MARK” in map or old location

Solution #2: Tombstones

CS 245 Notes 3 72

E.g., Leave “MARK” in map or old location

Solution #2: Tombstones

• Physical IDs

A block

This space This space can
never re-used be re-used

13

CS 245 Notes 3 73

• Logical IDs

ID LOC

7788

map

Never reuse
ID 7788 nor
space in map...

E.g., Leave “MARK” in map or old location

Solution #2: Tombstones

CS 245 Notes 3 74

Easy case: records not in sequence
 Insert new record at end of file or

in deleted slot
 If records are variable size, not

as easy...

Insert

CS 245 Notes 3 75

Hard case: records in sequence
 If free space “close by”, not too bad...
 Or use overflow idea...

Insert

CS 245 Notes 3 76

Interesting problems:

• How much free space to leave in each
block, track, cylinder?

• How often do I reorganize file + overflow?

CS 245 Notes 3 77

Free
space

CS 245 Notes 3 78

• DB features needed
• Why LRU may be bad Read
• Pinned blocks Textbook!
• Forced output
• Double buffering
• Swizzling

Buffer Management

in Notes02

14

CS 245 Notes 3 79

Swizzling

Memory Disk

Rec A

block 1

block 2

block 1

CS 245 Notes 3 80

Swizzling

Memory Disk

Rec A

block 1

Rec Ablock 2 block 2

block 1

CS 245 Notes 3 81

Row vs Column Store
• So far we assumed that fields of a

record are stored contiguously (row
store)...

• Another option is to store like fields
together (column store)

CS 245 Notes 3 82

• Example: Order consists of
– id, cust, prod, store, price, date, qty

Row Store

id1 cust1 prod1 store1 price1 date1 qty1

id2 cust2 prod2 store2 price2 date2 qty2

id3 cust3 prod3 store3 price3 date3 qty3

CS 245 Notes 3 83

• Example: Order consists of
– id, cust, prod, store, price, date, qty

Column Store

id1 cust1
id2 cust2
id3 cust3
id4 cust4
... ...

id1 prod1
id2 prod2
id3 prod3
id4 prod4
... ...

id1 price1 qty1
id2 price2 qty2
id3 price3 qty3
id4 price4 qty4
...

ids may or may not be stored explicitly

CS 245 Notes 3 84

Row vs Column Store
• Advantages of Column Store

– more compact storage (fields need not
start at byte boundaries)

– efficient reads on data mining operations
• Advantages of Row Store

– writes (multiple fields of one record)more
efficient

– efficient reads for record access (OLTP)

15

CS 245 Notes 3 85

Interesting paper to read:
• Mike Stonebreaker, Elizabeth (Betty)

O'Neil, Pat O’Neil, Xuedong Chen, et al.
" C-Store: A Column-oriented DBMS,"
Presented at the 31st VLDB Conference,
September 2005.

• http://www.cs.umb.edu/%7Eponeil/
vldb05_cstore.pdf

CS 245 Notes 3 86

• There are 10,000,000 ways to organize
my data on disk…

Which is right for me?

Comparison

CS 245 Notes 3 87

Issues:

Flexibility Space Utilization

Complexity Performance

CS 245 Notes 3 88

To evaluate a given strategy, compute
following parameters:
-> space used for expected data
-> expected time to

- fetch record given key
- fetch record with next key
- insert record
- append record
- delete record
- update record
- read all file
- reorganize file

CS 245 Notes 3 89

Example

How would you design Megatron 3000
storage system? (for a relational DB, low end)
– Variable length records?
– Spanned?
– What data types?
– Fixed format?
– Record IDs ?
– Sequencing?
– How to handle deletions?

CS 245 Notes 3 90

• How to lay out data on disk
Data Items

Records
Blocks
Files

Memory
DBMS

Summary

16

CS 245 Notes 3 91

How to find a record quickly,
given a key

Next

