CS 245

CS 245: Database System
Principles

Notes 4: Indexing

Hector Garcia-Molina

Notes 4

Chapter 4

Indexing & Hashing

record

value —(2)~

Topics

-C
-B
e H

CS 245

onventional indexes
-trees
ashing schemes

Notes 4

CS 245

Dense Index Sequential File
0] | 0l]
20| 1 20l]
S E]

40]
50]
60| | 50
70 60l]
80 O B
90] 4 gol]
110 T od
120 E_

Notes 4

CS 245 Notes 4
Sequential File
o[]
20l]
N
40]
so[]
6o]
o[]
Bo]
oo]
fog]
CS 245 Notes 4

Sparse Index Sequential File
0]] 0[]
30]

50

70

90

110

130

150]

170|

190]

210

230

CS 245 Notes 4

Sparse 2nd level Sequential File

10| —
90

170
250)

330
410
490
570)

CS 245 Notes 4 7

 Comment:
{FILE,INDEX} may be contiguous
or not (blocks chained)

CS 245 Notes 4 8

Question:

e Can we build a dense, 2nd level index
for a dense index?

CS 245 Notes 4 9

Notes on pointers:

(1) Block pointer (sparse index) can be
smaller than record pointer

Notes on pointers:

(2) If file is contiguous, then we can omit
pointers (i.e., compute them)

Cs 245 Notes 4 11

/
BP
RP
CS 245 Notes 4 10
r—].——— "[R
K1] R2
K2
K3 R3
K4
| R4

CS 245 Notes 4 12

.. [RL
ﬁ R2 say:
K2 1024 B
— per block
K3 R3
K4
R4

« if we want K3 block:
get it at offset
(3-1)1024
= 2048 bytes

Cs 245 Notes 4

13

Sparse vs. Dense Tradeoff

e Sparse: Less index space per record
can keep more of index in memory
e Dense: Can tell if any record exists
without accessing file

(Later:

— sparse better for insertions
— dense needed for secondary indexes)

CS 245 Notes 4 14

Terms

 Index sequential file

e Search key (# primary key)
e Primary index (on Sequencing field)

e Secondary index

e Dense index (all Search Key values in)

e Sparse index
e Multi-level index

Cs 245 Notes 4

15

Next:

 Duplicate keys
» Deletion/Insertion

e Secondary indexes

CS 245 Notes 4 16

Duplicate keys

Cs 245 Notes 4

wlw| (W]] [l
588 88| 8| Bl

N
a1

17

Duplicate keys
Dense index, one way to implement?

/
10 /
10

e
20l]

20

S, ;|
20
0 3 -—

30 —————————[30]
30

CS 245 Notes 4 18

Duplicate keys
Dense index, better way?

|

— V] I
10 [0l]
20

S
40 20l]
20]
30]
30]
Bl]

Duplicate keys
Sparse index, one way?

— T+] I
-_

10| —
10\

:
30 \ _

20]
o]
o] |
Bl]

[40] |
l45] |

CS 245 Notes 4

20

[0l]
45|]
CS 245 Notes 4 19
Duplicate keys
Sparse index, one way?
— T
10} — o[]

10\

@x-

3o]

[40]]
l45] |

for 20 or 30!

careful if looking

Cs 245 Notes 4

21

Duplicate keys
Sparse index, another way?

— place first new key from block

S— o] I
0]]

10| —
20‘

—
30 \

_
[40]]
l45s] |

CS 245 Notes 4

22

Duplicate keys
Sparse index, another way?

— place first new key from block

Y ;) B
should [10] o[
thisbe P —4———
30 o[]

40? —3 \
0]]

3o]
o[
3o

[40[]
45]

Cs 245 Notes 4

23

Duplicate values,

Summar
primary index

< Index may point to first instance of
each value only

File
Index/——~ a
al’ a
b |

CS 245 Notes 4

24

Deletion from sparse index

— V] I
10l — (20l]
30 \

5" o —
70 \ ol
% 0 —
2) —

130 70l]
B0l]

150

Cs 245 Notes 4

25

Deletion from sparse index

— delete record 40

— 1] I
10l -_
30 \

:
70 \ T —
% 0] I—
2) —

130 7o |
sol]

150

CS 245 Notes 4

26

Deletion from sparse index
— delete record 40

P— Vo] I
10l — 20l]

30| —
50
70

= 0] E—

110 [I
130 70l]
150 ﬁ_

Cs 245 Notes 4

27

Deletion from sparse index
— delete record 30

-_
10]]
ol

. —
70 \

: e
110

130 ol]
go |

150]

CS 245 Notes 4

28

Deletion from sparse index

— delete record 30

I— 1]
10] — 20]

Cs 245 Notes 4

29

Deletion from sparse index
— delete records 30 & 40

—— 1] I
10| 7 20[]

so| o ——-[30]]
70 P —
" Co—

o —

130 o |
o[]

CS 245 Notes 4

30

Deletion from sparse index
— delete records 30 & 40

-_

10| —
30\

T
70

90 \

110

130 _
O .

150

CS 245 Notes 4 31

Deletion from sparse index
— delete records 30 & 40

50
70|50

130
150

|
i

~ (o))
S

CS 245 Notes 4

32

Deletion from dense index

P— Vo] I
ol —— ——fo[]

20] —
3o]
40]

30| —

L0 I e —

]
: B—
60
70

80 I ——

o]]
gol]

CS 245 Notes 4 33

Deletion from dense index

— delete record 30

— 1] I
ol —— o[]

20| —
30|

40| —

s }—-—
60

60
70

80 I ——

801

CS 245 Notes 4

34

Deletion from dense index

— delete record 30

Cs 245 Notes 4 35

Deletion from dense index

— delete record 30

—— 1] I
- 0l]

50 50
eo]

o L ———le0

0 o |
o[]

80|

|

10

T

CS 245 Notes 4

36

Insertion, sparse index case

— V] I
10 (20l]

30| —
w | @]
60 I

|

[40[]
I

Cs 245 Notes 4

37

Insertion, sparse index case

— insert record 34

— 1] I
10 20]

30| —

w 1 ——[@E]

60]
]
lsol |

|

CS 245 Notes 4

38

Insertion, sparse index case

— insert record 34

ol
o] - 20 |
w0l . ——[3]
60

o] |
sol |
] I
I

e our lucky day!
we have free space
where we need it!

Cs 245 Notes 4

39

Insertion, sparse index case

— insert record 15

— 1] I
1ol 20l]
30

s P
60
-_

I

CS 245 Notes 4

40

Insertion, sparse index case

— insert record 15

I— 1]
10] — 20015]

20(s00 =—
40 36120 |

60 \
\

Cs 245 Notes 4

41

Insertion, sparse index case

— insert record 15

——— 1] I
10| 20015 |

20367
o o @20 |
%0 \
0] —
5ol |

« lllustrated: Immediate reorganization
« Variation:]

— insert new block (chained file)
— update index

CS 245 Notes 4

2

Insertion, sparse

index case

— insert record

\

10
o 4+ |

25

10]
20]

40 [30]

60

40l]
Bol]

60

CS 245

Notes 4 43

Insertion, sparse index case

— insert record 25

EI/ e —

\

10

40 [30] | overflow blocks
60 (reorganize later...)
40 |
so[]
60
I
CS 245 Notes 4 44

Insertion, dense index case

e Similar

« Often more

CS 245

expensive . . .

Notes 4 45

Secondary indexes

Sequence

field
\

~ N | (JT[w
oo OO

ﬁ
o

CS 245 Notes 4 46

Secondary indexe

S

 Sparse index

30|
20|
80

Sequence
field
\

- ———[B[]
]

100

T —
0 —

90

=

CS 245

O-

Notes 4 47

Secondary indexes
. Sequence
 Sparse index fied

30|
20| =
807”7

90

~ N | (U1
S| 88

NN
iaa &g

7/

does not make sen

CS 245 Notes 4 48

Secondary indexes
. Sequence
* Dense index field

NN (gT|W
(=]=]=](=)

ﬁ
o

ii

Cs 245 Notes 4

49

Secondary indexes

. Sequence
e Dense index feld

10 W 30]

20 o[]

30

40 200]
7o]

50

: I

70| 4
aog |
ol]

CS 245 Notes 4

50

Secondary indexes
. Sequence
* Dense index feld

=
T

10
50
90

~ N | (01w
=l=]N=)(=]

40

50
60

ﬁ
o

With secondary indexes:

e Lowest level is dense
e Other levels are sparse

Also: Pointers are record pointers
(not block pointers; not computed)

CS 245 Notes 4

52

sparse 70 -
high : pog |
level 1ol]
eo] |
6ol]

CS 245 Notes 4 51
Duplicate values & secondary indexes

20

) = (B
(=] =] l(=](=]

Cs 245 Notes 4

53

Duplicate values & secondary indexes
one option...

10 (20
0] 7

10
20

20
30
40|
40

40
40

AW (B (B BN (=N
O0| OO0 O o0 ©

/

CS 245 Notes 4

54

Duplicate values & secondary indexes
one option...

10 |
10] P ol]
10
Problem: 20 =
120
exces_s overhead! 5] —
e disk space [40]
. 40
e search time "]
40
CS 245 Notes 4 55

Duplicate values & secondary indexes
another option...

CS 245 Notes 4 56

Duplicate values & secondary indexes
another option...

(10 200]
= ol
20
Problem: (20 40
variable size T o[
records in [0 EDI—
index! [40 o0]
E—
TTT———40
Cs 245 Notes 4 57

Duplicate values & secondary indexes

Another idea (suggested in C|EA

Chain records with same key?

CS 245 Notes 4 58

Duplicate values & secondary indexes

Another idea (suggested in CIEA

Chain records with same key?

Problems:
= Need to add fields to records
= Need to follow chain to know records

Cs 245 Notes 4 59

Duplicate values & secondary indexes

_— FI—
10 1ol]

20| 4—
%0 20]
0 1 40 |

50 o[]
60 40]
40 |
Bo[]
40 |

buckets

CS 245 Notes 4 60

10

Why “bucket” idea is useful

Indexes Records

Name: primary EMP (name,dept,floor,...)
Dept: secondary

Floor: secondary

CS 245 Notes 4 61

Query: Get employees in
(Toy Dept) A (2nd floor)

Dept. index EMP Floor index

Toy| — {E ;D ™ 2nd

CS 245 Notes 4 62

Query: Get employees in
(Toy Dept) ~ (2nd floor)

Dept. index EMP Floor index

Toy| — k ;g ™ 2nd

— Intersect toy bucket and 2nd Floor
bucket to get set of matching EMP’s

CS 245 Notes 4 63

This idea used in
text information retrieval

Documents

...the cat is
fat ...

...was raining
cats and dogs...

...Fido the
dog ...

CS 245 Notes 4 64

This idea used in
text information retrieval

Documents

cat | +——

. ...the cat is
fat ...

do —
gl \7\ ...was raining
—— —— " | cats and dogs...
. | +—— . |..Fidothe
7] dog ...
Inverted lists LI
CS 245 Notes 4 65

IR QUERIES

e Find articles with “cat” and “dog”
e Find articles with “cat” or “dog”
e Find articles with “cat” and not “dog”

CS 245 Notes 4 66

11

IR QUERIES

e Find articles with “cat” and “dog”
Find articles with “cat” or “dog”
Find articles with “cat” and not “dog”

Find articles with “cat” in title

Find articles with “cat” and “dog”
within 5 words

CS 245 Notes 4 67

Common technigue:
more info in inverted list

Posting: an entry in inverted list.
Represents occurrence of
term in article

Size of alist: 1 Rare words or
(in postings) miss-spellings

106 Common words

Size of a posting: 10-15 bits (compressed)

CS 245 Notes 4 69

RO\
e KO x°
o7 7 P
cat Title |5 —
Author |10
Abstract | 57 \\
OO
dog — | Title |100
Title |12
CS 245 Notes 4 68
IR DISCUSSION

« Stop words

e Truncation

e Thesaurus

e Full text vs. Abstracts
< Vector model

CS 245 Notes 4

70

Vector space model

wl w2 w3 w4 ws wb w7 ...
DoC=<1 0 0 1 1 0 0 ..>

Query=<0 0 1 1 0 O O0..>

Cs 245 Notes 4 71

Vector space model

wl w2 w3 w4 w5 wb w7 ...

DoC=<1 0 0 1 1 0 0 ..»

Query=<0 0 1

PRODUCT =

CS 245 Notes 4

72

12

e Tricks to weigh scores + normalize

e.g.: Match on common word not as
useful as match on rare words...

CS 245 Notes 4 73

e How to process V.S. Queries?

wl w2 w3 w4 w5 wé
Q=<0 0 0 1 1 0 ..=>

CS 245 Notes 4 74

« Try Stanford Libraries
« Try Google, Yahoo, ...

CS 245 Notes 4 75

Summary so far

e Conventional index
— Basic Ideas: sparse, dense, multi-level...
— Duplicate Keys
— Deletion/Insertion

— Secondary indexes
— Buckets of Postings List

CS 245 Notes 4 76

Conventional indexes

Advantage:
- Simple
- Index is sequential file
good for scans

Disadvantage:

- Inserts expensive, and/or
- Lose sequentiality & balance

Cs 245 Notes 4 ”

Example Index (sequential)

10 -
20 -
30 -

continuous <4O - .
50 -
60 -

free space C
70 -
80 -
90 -

CS 245 Notes 4 78

13

Example Index (sequential)
10 — -
20 — 199 | 1
30 — /
, (3
continuous 0 . -
50 | ——
60 | ——
free space - (.
70 —
80 | ——
90 T overflow area
(not sequential)
CS 245 Notes 4 79

Outline:

* Conventional indexes

* NEXT: Another type of index
— Give up on sequentiality of index
— Try to get “balance”

Note: This index is called B+ tree, i
but Gradiance homeworks just call it B-tree. |

CS 245 Notes 4 81

e B-Trees = NEXT
< Hashing schemes
CS 245 Notes 4 80
B+Tree Example n=3
Root
S
—
gl [88]888 [§8 BBR 88|
eI T T
CS 245 Notes 4 82

Sample non-leaf

/

N~ L= 0
o [ee] o

[N

to keys to keys to keys to keys
<57 57< k<81 81<k<95 >95
CS 245 Notes 4 83

Sample leaf node:

From non-leaf node

95

—— 81

Torecord | 57

with key 57

To record
with key 81

CS 245 Notes 4

To record
with key 85

— to next leaf
in sequence

84

14

In textbook’s notation n=3

Leaf:
30|35
\‘\‘ |‘H
Non-leaf: ll
- 30
Lo \||| ‘
o I

Size of nodes: n+1 pointers

Don't want nodes to be too empty

« Use at least

Non-leaf: [(n+1)/2]pointers
Leaf: L (n+1)/2] pointers to data

(fixed)
n keys
CS 245 Notes 4 86
n=3
Full node min. node
/—Aﬁ /—/%
Non-leaf /§/§|§‘ | = |
T | | =
Leaf ™0 g 9 g
[| | 5
IR b 8
CS 245 Notes 4 88

B+tree rules tree of order n

(1) All leaves at same lowest level
(balanced tree)

(2) Pointers in leaves point to records
except for “sequence pointer”

Cs 245 Notes 4 89

(3) Number of pointers/keys for B+tree

Max | Max| Min Min
ptrs | keys| ptrs-data | keys

Mon-leal, In+1| n |[(n+1)/2] |[[(n+1)/2] 1

noielon [n+1| n | Le+n/al | Lin+ayr2]
Root |n+1| n 1 1

CS 245 Notes 4

90

15

Insert into B+tree

(a) simple case

— space available in leaf
(b) leaf overflow
(c) non-leaf overflow
(d) new root

Cs 245 Notes 4

91

(a) Insert key = 32 n=3

100

CS 245 Notes 4 92

(a) Insert key = 32

~]
100
t
/

Cs 245 Notes 4

93

(a) Insert key =7 n=3

100

30

3
5

™~
30 [

— 11
31

CS 245 Notes 4 94

(a) Insert key =7

100

30

7

™~
30 [

31

Cs 245 Notes 4

95

(a) Insert key =7 n=3

100

30 |

«——31

CS 245 Notes 4 96

16

002+
e 08T~
c
6T
09T
08T | 2
3 0sT| 7| DT
9 0zT 95T
__ 0ST+—
> f
~ 00T
rae)
I
(]
[%2]
£ g
—~ 8
O
N—r
00z~
W 08T~
<
08T | 1 =
OmH\v mh._”\
07T 95T
05T
4

(c) Insert key = 160

00T

CS 245

(d) New root, insert 45

8
/N

'

v

102

Notes 4

CS 245

002+~ 1
T =
7 v
/
08T
— 1, 6.T—
09T~
] 05T BEL |-
— ozt oet
Il *omﬁ\l
e *
X oot
-
F .
I}
(2]
; »
: 8
(8]
N—r
™ "
7| 08T
: /
08T ﬂ
T e
091
] osT| | DL -
- 0zt et
Il *omTl.
n_V.vJ |
X oot
o
I}
[72)
; ©
: 8
(&)
N—r

(d) New root, insert 45

™~

(1)

0T

I

v

I

v

v

101

Notes 4

CS 245

17

(d) New root, insert 45

(d) New root, insert 45 n=3

new root

1

2

3
“T 10
T 12

Cs 245 Notes 4

CS 245 Notes 4 104

Deletion from B+tree

(a) Simple case - no example

(b) Coalesce with neighbor (sibling)
(c) Re-distribute keys

(d) Cases (b) or (c) at non-leaf

Cs 245 Notes 4

105

(b) Coalesce with sibling n=4
— Delete 50

sgg | | e8| |
. t

CS 245 Notes 4 106

(b) Coalesce with sibling
— Delete 50

100 |+

SF
A T
el L

| ~

<110

Cs 245 Notes 4

(c) Redistribute keys
— Delete 50

n=4

~F10
20

CS 245 Notes 4 108

18

(c) Redistribute keys n=4
— Delete 50
e
o oo [n o I
ARSf 857
I =
(d) Non-leaf coalesce n=4
— Delete 37
&
SR

/I\ Lc’/“

1
-3

30
%
A

<40

45

CS 245

Notes 4

(d) Non-leaf coalesce

n=4
— Delete 37
o]
N
o o [oNe]
— N, oS
////\\ / \
ol 23]]28 (ee | |85 |99
A S b I
CS 245 Notes 4 110
(d) Non-leaf coalesce n=4
— Delete 37
[Te)
N
AN
2 8l | B&
/ ’ \\
— i I =5 - =
“ol 183 /Y888 [BX] 8¢
HOEE N B e

CS 245 Notes 4

(d) Non-leaf coalesce

n=4
— Delete 37

new root -,

3882 P8

<] - Oa‘. 7 1
o o« 0 © ow
T“ln -—|.‘—| N NNC“') \W < <

| [[N L
T I L Ty I

Cs 245 Notes 4

B+tree deletions in practice

— Often, coalescing is not implemented

— Too hard and not worth it!

CS 245 Notes 4

114

19

Comparison: B-trees vs. static
indexed sequential file

Ref #1: Held & Stonebraker
“B-Trees Re-examined”
CACM, Feb. 1978

CS 245 Notes 4 115

Ref # 1 claims:
_ - Concurrency control harder in B-Trees

- B-tree consumes more space

For their comparison:

block = 512 bytes
key = pointer = 4 bytes
4 data records per block

CS 245 Notes 4 116

Example: 1 block static index

Example: 1 block B-tree

k1] k1 1 data
K2] block

63 keys 63|

k3

-1
*next

63x(4+4)+8 = 512 Bytes
-> pointers needed in B-tree up to 63
blocks because index is blocks

not contiguous
CS 245 Notes 4 118

ki } 1 data
block
k2
127 keys
K3
(127+1)4 = 512 Bytes
-> pointers in index implicit! up to 127
blocks
CS 245 Notes 4 117
Size comparison Ref. #1
Static Index B-tree
data # data

blocks height

blocks height

2->127 2 2->63 2

128 -> 16,129 3 64 -> 3968 3

16,130 -> 2,048,383 4 3969 -> 250,047 4
250,048 -> 15,752,961 5

Cs 245 Notes 4 119

Ref. #1 analysis claims

* For an 8,000 block file,
after 32,000 inserts

after 16,000 lookups

= Static index saves enough accesses
to allow for reorganization

CS 245 Notes 4 120

20

Ref. #1 analysis claims

» For an 8,000 block file,
after 32,000 inserts

after 16,000 lookups

= Static index saves enough accesses
to allow for reorganization

Ref. #1 conclusion Static index better!!

CS 245 Notes 4 121

Ref #2: M. Stonebraker,

“Retrospection on a database
system,” TODS, June 1980

Ref. #2 conclusion B-trees better!!

CS 245 Notes 4 122

Ref. #2 conclusion B-trees better!!

< DBA does not know when to reorganize

» DBA does not know how full to load
pages of new index

CS 245 Notes 4 123

Ref. #2 conclusion B-trees better!!

« Buffering
— B-tree: has fixed buffer requirements

— Static index: must read several overflow
blocks to be efficient
(large & variable size
buffers needed for this)

CS 245 Notes 4 124

» Speaking of buffering...
Is LRU a good policy for B+tree buffers?

Cs 245 Notes 4 125

« Speaking of buffering...
Is LRU a good policy for B+tree buffers?

— Of course not!

— Should try to keep root in memory
at all times

(and perhaps some nodes from second level)

CS 245 Notes 4 126

21

Interesting problem:

For B+tree, how large should 77 be?

Z/A

nis number of keys / node

CS 245 Notes 4 127

Sample assumptions:

(1) Time to read node from disk is
(S+Tn) msec.

CS 245 Notes 4 128

Sample assumptions:
(1) Time to read node from disk is
(S+Tn) msec.

(2) Once block in memory, use binary
search to locate key:
(a + bLOG, n) msec.

For some constants a,6, Assume a << S

CS 245 Notes 4 129

Sample assumptions:

(1) Time to read node from disk is
(S+Tn) msec.

(2) Once block in memory, use binary
search to locate key:
(a+ bLOG, n) msec.

For some constants a,b, Assume a << S
(3) Assume B+tree is full, i.e.,

nodes to examine is LOG, NV
where N = # records

CS 245 Notes 4 130

~Can get:
f(n) = time to find a record

fn)

opt

Cs 245 Notes 4 131

& FIND 7, by () =0

Answer is n,,, = “few hundred”

(see homework for details)

CS 245 Notes 4 132

22

& FIND 7, by () =0

Answer is n,,, = “few hundred”
(see homework for details)

& What happens to 71,,, as

« Disk gets faster?
e CPU get faster?

Exercise
S= 14000
T= 0.2
b= 0.002
a= 0
N= 10000000

e f(n)= log,N*[S+T*n+a+b*log,(n)]

CS 245 Notes 4 133
S= 14000
. . T= 0.2
N=10 million records B
N= 10000000
find time
o)
XXEN] \\————____
2o
PPPEEPPFPPPPPPPESS N
times in microseconds
CS 245 Notes 4 135

CS 245 Notes 4 134
S= 14000
- . T= 0.2
N=100 million records =
N= 10000000
find time
5000 — —e————,
AN "-,

n

FPPPPPPIPIPPPFA PP FASLS

times in microseconds

CS 245 Notes 4 136

N=100 million records &
Effect of 5
\ S$=20000
$=14000
Ho

times in microseconds
CS 245 Notes 4 137

Variation on B+tree: B-tree (no +)

e ldea:
— Avoid duplicate keys
— Have record pointers in non-leaf nodes

CS 245 Notes 4 138

23

/

‘ ‘Kllpl‘/ ’KZ PZ‘ \‘K33P3‘

/to record / to record \ to record
with K1 with K2 with K3

B-tree example n=2

CS 245 Notes 4 140

to keys to keys to keys to keys

<K1 Kl<x<K2 K2<x<k3 >k3

CS 245 Notes 4 139
B-tree example n=2

* sequence pointers
not useful now!

(but keep space for simplicity) o] ﬁ
@l g
/ 7 \x

CS 245 Notes 4 141

Note on inserts

« Say we insert record yith key = 25

Note on inserts

e Say we insert record ‘V}ith key = 25

T n=3
leaf | S8

* Afterwards:

|
LR
—_ -4
o n o
— N ™M
! it
Cs 245 Notes 4 143

leaf | SQY | n=3
-
v
CS 245 Notes 4 142
So, for B-trees:
MAX MIN
—T T ~
Tree | Rec Keys Tree | Rec Keys
Ptrs | Ptrs Ptrs | Ptrs
Non-leaf
non-root n+l |n n |[+1/2]| [(n+1)21-1| [(n+1)/2711
Leaf
non-root 1 n n 1 Ln/2] Ln/2]
Root
non-leaf n+tl | n n 2 1 1
Root
Leaf 1 n n 1 1 1
CS 245 Notes 4 144

24

Tradeoffs:

© B-trees have faster lookup than B+trees

® in B-tree, non-leaf & leaf different sizes
® in B-tree, deletion more complicated

CS 245 Notes 4 145

Tradeoffs:

© B-trees have faster lookup than B+trees

® in B-tree, non-leaf & leaf different sizes
® in B-tree, deletion more complicated

= B-+trees preferred!

CS 245 Notes 4 146

But note:

« If blocks are fixed size
(due to disk and buffering restrictions)

Then lookup for B+tree is
actually better!!

CS 245 Notes 4 147

Example:
_ - Pointers 4 bytes
- Keys 4 bytes

- Blocks 100 bytes (just example)
- Look at full 2 level tree

CS 245 Notes 4 148

Root has 8 keys + 8 record pointers
+ 9 son pointers

= 8x4 + 8x4 + 9x4 = 100 bytes

Cs 245 Notes 4 149

Root has 8 keys + 8 record pointers
+ 9 son pointers

= 8x4 + 8x4 + 9x4 = 100 bytes

Each of 9 sons: 12 rec. pointers (+12 keys)
= 12x(4+4) + 4 = 100 bytes

CS 245 Notes 4 150

25

Root has 8 keys + 8 record pointers
+ 9 son pointers

= 8x4 + 8x4 + 9x4 = 100 bytes

Each of 9 sons: 12 rec. pointers (+12 keys)
= 12x(4+4) + 4 = 100 bytes

2-level B-tree, Max # records =
12x9 + 8 = 116

CS 245 Notes 4 151

Root has 12 keys + 13 son pointers
= 12x4 + 13x4 = 100 bytes

CS 245 Notes 4 152

Root has 12 keys + 13 son pointers
= 12x4 + 13x4 = 100 bytes

Each of 13 sons: 12 rec. ptrs (+12 keys)
= 12x(4 +4) + 4 = 100 bytes

CS 245 Notes 4 153

Root has 12 keys + 13 son pointers
= 12x4 + 13x4 = 100 bytes

Each of 13 sons: 12 rec. ptrs (+12 keys)
= 12x(4 +4) + 4 = 100 bytes

2-level B+tree, Max # records
= 13x12 = 156

CS 245 Notes 4 154

8 records

an
T

H9000000000000Q, 00000009

156 records 108 records
Total = 116

CS 245 Notes 4 155

So... 8 records

/QQQOOOOOOO 0% /deOQROOR
156 records 108 records
Total = 116
« Conclusion:
— For fixed block size,

— B+ tree is better because it is bushier

CS 245 Notes 4 156

26

An Interesting Problem...

e What is a good index structure when:

—records tend to be inserted with keys

that are larger than existing values?
(e.g., banking records with growing data/time)

—we want to remove older data

Cs 245 Notes 4

157

One Solution: Multiple Indexes
e Example: 11, 12

day days indexed ‘ days indexed
11 12

10 1,2,3,4,5 6,7,8,9,10

11 11,2,3,4,5 6,7,8,9,10

12 11,12,3,4,5 6,7,8,9,10

13 11,12,13,4,5 6,7,8,9,10

eadvantage: deletions/insertions from smaller index
edisadvantage: query multiple indexes

CS 245 Notes 4 158

Another Solution (Wave Indexes)

Outline/summary

day | 11 | 12 | 13 | 14
10 1,2,3 4,56 7,8,9 10
11 1,2,3 45,6 7,8,9 10,11
12 1,2,3 45,6 7,8,9 10,11, 12
13 13 4,56 7,8,9 10,11, 12
14 13,14 45,6 7,8,9 10,11, 12
15 13,14,15 45,6 7,8,9 10,11, 12
16 13,14,15 16 7,8,9 10,11, 12
eadvantage: no deletions
edisadvantage: approximate windows
CS 245 Notes 4 159

< Conventional Indexes
* Sparse vs. dense
* Primary vs. secondary

e B trees
* B+trees vs. B-trees
* B+trees vs. indexed sequential

e Hashing schemes --> Next

CS 245 Notes 4 160

27

