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Abstract
Zador’s classic result for the asymptotic high-rate behavior of entropy-constrained

vector quantization is recast in a Lagrangian form which better matches the Lloyd
algorithm used to optimize such quantizers. A proof that the result holds for a general
class of distributions is sketched.

1 Introduction

In his classic Bell Labs Technical Memo, Paul Zador established the optimal tradeoff
between average distortion and entropy for entropy-constrained vector quantization
in the limit of high rate [6]. The history and generality of the result may be found in
in [4]. Optimality properties and generalized Lloyd algorithms for quantizer design,
however, require a Lagrangian formulation [1]. In addition, the Lagrangian form turns
out to be more convenient for problems involving multiple codebooks such as coding
for mixtures since it obviates the need for optimizing rate allocation, as Zador does
in his proof. We here recast Zador’s theorem in a Lagrangian form and sketch its
proof under the assumption that the distribution of the random vector is absolutely
continuous with respect to Lebesgue measure.

2 Vector Quantization

Consider the measurable space (Ω,B(Ω)) consisting of k-dimensional Euclidean space
Ω = <k and its Borel sets. Assume that X is random vector with a distribution
Pf which is absolutely continuous w.r.t. Lebesgue measure V and hence possesses
a probability density function (pdf) f = dPf/dV so that Pf (F ) =

∫
F f(x)dV (x) =∫

F f(x) dx. The volume of a set F ∈ B is given by its Lebesgue measure V (F ) =
∫
F dx.

We assume that the the differential entropy h(f)
∆
= − ∫

dx f(x) ln f(x) exists and is
finite. The unit of entropy is nats or bits according to whether the base of the
logarithm is 2 or e. Usually nats will be assumed, but bits will be used when entropies
appear in an exponent of 2 and in coding arguments. The relative entropy between
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two distributions Pf and Pg with pdfs f and g is given by Gelfand’s theorem as

H(f ||g) = sup
S

∑
i

Pf (Si) ln
Pf (Si)

Pg(Si)
=

∫
dxf(x) ln

f(x)

g(x)
≥ 0,

where the supremum is over all finite partitions S = {Si}.
A vector quantizer q can be described by the following mappings and sets: an

encoder α : Ωk → I, where I = {0, 1, 2, . . .} is an index set, an associated partition
S = {Si; i ∈ I} such that α(x) = i if x ∈ Si, a decoder β : I → Ωk, an associated
reproduction codebook C = {β(i); i ∈ I}, an index coder ψ : I → {0, 1}∗, the space of
all variable-length binary strings, and the associated length function ` : I → {1, 2, . . .}
defined by `(i) = length(ψ(i)). ψ is assumed to be invertible (a lossless or noiseless
code). The overall quantizer is q(x) = β(α(x))

For simplicity we assume squared error distortion with average

Df (q) = Efd(X, q(X)) =
∑

i

∫
Si

dx f(x)||x− yi||2 =
∑

i

∫
Si

dx f(x)
k−1∑
l=0

|xl − yi,l|2.

The instantaneous rate is r(α(x)) = `(ψ(α(x))), the number of bits required to specify
the index i = α(x) to the decoder. The average rate is

Rf (q) = Efr(α(X)) =
∑

i

Pf (Si)`(ψ(i)).

The optimal performance is the minimum distortion achievable for a given rate:
δf (R) = infq:Rf (q)≤R Df (q). The traditional form of Zador’s theorem states that under
suitable assumptions on f ,

lim
R→∞

2
2
k
Rδf (R) = b(2, k)2

2
k
h(f) (1)

where b(2, k) is Zador’s constant, which depends only on k and not f . Zador’s ar-
gument explicitly requires that his asymptotic result for fixed-rate coding holds and
that h(f) is finite. Zador’s fixed rate conditions have been generalized through the
years (see, e.g., [3]), but his variable results have not been similarly extended and
there are problems with Zador’s proof which limit its applicability to densities with
bounded support.

3 The Lagrangian Formulation

The Lagrangian formulation of variable rate vector quantization [1] defines for each
value of a Lagrangian multiplier λ > 0 a Lagrangian distortion ρλ(x, i) = d(x, β(i))+
λ`(ψ(i)), a corresponding performance

ρ(f, λ, q) = Ef (d(X, q(X)) + λEf`(ψ(α(X)))) = Df (q) + λRf (q),

and an optimal performance ρ(f, λ) = infq ρ(f, λ, q). Each λ yields a distortion-rate
pair on the operational distortion-rate function curve. Standard arguments imply
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that small λ corresponds to high rate and large λ corresponds to small rate. The
Lagrangian formulation yields Lloyd optimality conditions for vector quantizers. In
particular, for a given decoder (satisfying the usual centroid condition) and index
coder, the optimal encoder is α(x) = argmini (d(x, yi) + λ`(ψ(i))). Optimal choice of
the index coder and the Kraft inequality ensure that Hf (q(X)) ≤ Ef [`(ψ(α(X)))] <
Hf (q(X)) + 1, where

Hf (q(X)) = −∑
i

Pf (Si) ln Pf (Si).

This can also be achieved, e.g., by choosing lengths `(ψ(i)) = d− log Pf (α(X) = i)e
and hence it is common to make the approximation that

`(ψ(i)) ≈ − log Pf (α(X) = i), Rf (q) ≈ Ef`(ψ(α(X))) = Hf (q(X)),

resulting in entropy constrained vector quantization (ECVQ).
Our main result is the following.

Theorem 1 Assume that f is absolutely continuous with respect to Lebesgue measure
and that h(f) is finite. Then

lim
λ→0

(
ρ(f, λ)

λ
+

k

2
ln λ

)
= θk + h(f) (2)

where

θk = θ([0, 1)k)
∆
= inf

λ>0

(
ρ(u1, λ)

λ
+

k

2
ln λ

)
(3)

and u1 is the uniform pdf on the k-dimensional unit cube Ck
1

Comment: It is shown in [5] that the that 1 holds if and only if 2 holds, in which
case θk = k

2
ln 2e

k
b2,k, so that the two formulations are indeed equivalent.

The following notation will be used:

θ(f, λ, q) =
Df (q)

λ
+ Hf (q(X))− h(f) +

k

2
ln λ

θ(f, λ) = inf
q

θ(f, λ, q), θ(f) = lim sup
λ→0

θ(f, λ), θ(f) = lim inf
λ→0

θ(f, λ).

The quantization function θ(f, λ, q) can be rewritten as a weighted sum of relative
entropies minus a constant k ln π. The nonnegativity of relative entropy then yields
the following bound.

Lemma 1 For any f, λ, q θ(f, λ, q) ≥ −k ln π and therefore θ(f) ≥ −k ln π.

The following result is proved in [5]:

Lemma 2 The conclusions of Theorem 1 hold if and only if the limit of (1) exists,
in which case

θk =
k

2
ln

2e

k
b(2, k). (4)
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Mixture sources play a fundamental role in the development. A mixture source is a
random pair {X,Z}, where Z is a discrete random variable with pmf wm = P (Z = m),
m = 1, 2, . . . and conditional pdf’s fX|Z(x|m) = fm(x) with support Ωm. The pdf for
x is given by

f(x) = fX(x) =
∑
m

wmfm(x).

In the special case where the Ωm are disjoint, the mixture is said to be orthogonal.
For an orthogonal mixture define for each m the boundary of Ωm, ∂Ωm as the closure
of Ωm minus the interior of Ωm. An orthogonal mixture is said to have the zero
probability boundaries property if Pf (∂Ωm) = 0 for all m.

Suppose that for each fm we have a quantizer qm defined on Ωm, i.e., an encoder
αm : Ωm → I, a partition of Ωm {Sm,i; i = 1, 2, . . .}, and a decoder βm : I → Cm.
The component quantizers {qm} together imply an overall composite quantizer q
with an encoder α that maps x into a pair (m, i) if x ∈ Ωm and αm(x) = i, a
partition of Ω {Sm,i; i = 1, 2, . . . , m = 1, 2, . . .}, and a decoder β that maps (m, i)
into βm(i), q(x) =

∑
m qm(x)1Ωm(x). Conversely, an overall quantizer q : Ω → I

can be applied to every component in the mixture, effectively implying a component
quantizers qm(x) =

∑
m q(x)1Ωm(x) for all m. In this case the structure is not so

simple as quantization cells can straddle boundaries of Ωm. Here the partition of Ωm

is {Si ∩ Ωm; i = 1, 2, . . .} and many of the cells may be empty.

Lemma 3 If f is an orthogonal mixture {fm, wm} and q is a composite quantizer
formed from component quantizers qm. Then

Hf (q(X))− h(f) =
∑
m

wm[Hfm(qm(X))− h(fm)], (5)

θ(f, λ, q) =
∑
m

wmθ(fm, λ, qm), θ(f, λ) ≤ ∑
m

wmθ(fm, λ), θ(f) ≤ ∑
m

wmθ(fm). (6)

Proof: If qn has partition {Sn,l}, then Pf (Sn,l) =
∑

m wmPfm(Sn,l) = wnPfn(Sn,l)
since the mixture is orthogonal. Since f ln f is integrable with respect to Lebesgue
measure,

Hf (q(X))− h(f) =
∑
m

wm[Hfm(qm(X))− h(fm)].

Proving (5). The remaining relations follow from conditional expectation Ef ||X −
q(X)||2 =

∑
m wmEfm||X − qm(X)||2, the fact that for a given λ and ε > 0, qm can be

chosen so that θ(fm, λ, qm) ≤ θ(fm, λ) + ε for all m and hence∑
m

wmθ(fm, λ) + ε ≥ ∑
m

wmθ(fm, λ, qm) = θ(f, λ, q) ≥ θ(f, λ),

θ(f) = lim sup
λ→0

θ(f, λ) ≤ ∑
m

wm lim sup
λ→0

θ(fm, λ) =
∑
m

wmθ(fm).

Lemma 4 Given an overall quantizer q. Then

Hf (q(X))− h(f) =
∑
n

wn[Hfn(q(X))− h(fn)]−H(Z|q(X)) (7)

θ(f, λ, q) =
∑
n

wnθ(fn, λ, q)−H(Z|q(X)) (8)
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Proof: Suppose that q is a quantizer defined for the entire space Ω =
⋃

n Ωn. Let
{Sl} be the corresponding partition. Then

Hf (q(X))− h(f) =∑
n

wn[Hfn(q(X))− h(fn)] +
∑
n

∑
l

P (Z = n, q(X) = l) ln
P (Z = n, q(X) = l)

P (q(X) = l)
.

Proving (7), which in turn implies (8). Zador is missing the H(Z|q(X)) term in his
analogous formula on p. 29 in the proof of his Lemma 3.3(b), he tacitly assumes it is
0.

Lemma 5 Suppose λn, qn n →∞ satisfy limn→∞ λn = 0, where the λn are decreasing,
and limn→∞ θ(f, λn, qn) = θ(f). Suppose also that f is a finite orthogonal mixture
{fm, wm; m = 1, 2, . . . , M} which has the zero probability boundaries property. Then
limn→∞ H(Z|qn(X)) = 0.

Proof: Define the sets Gn = {x : qn(x) ∈ ΩZ(x)} and the random variables φ(x) =
1Gn(x). Then

H(Z|qn) ≤ H(Z, φn|qn) = H(φn|qn) + H(Z|φn, qn) ≤ H(φn) + H(Z|φn, qn).

Define pn = Pf (G
c
n) = Pr(φn(X) = 0). Then

H(φn) = h2(pn) = −pn ln pn − (1− pn) ln(1− pn), (9)

and
H(Z|φn, qn) =

∑
y∈Cn

H(Z|φn = 0, qn = y)Pf (φn = 0, qn = y)

since H(Z|φn = 1, qn = y) = 0 for all y (Z is a deterministic function of qn given
φn = 1). Thus H(Z|φn, qn) ≤ pn ln M so that H(Z|qn) ≤ h2(pn) + pn ln M. Thus the
lemma will be proved if pn → 0 as n → ∞. Define A =

⋃
m ∂Ωm. Since assumed

boundaries have zero probability, Pf (A) = 0. Define ||x,A|| = infa∈A ||x− a|| and let
εn → ∞ be a nonnegative decreasing sequence. Then

⋃∞
n=1{x : ||x,A|| > εn} = Ac.

For any δ > 0 {x : ||x,A|| > δ}⋂{x : ||x − qn(x)|| ≤ δ/2} ⊂ Gn since if x is at
least δ from the nearest boundary point and less than δ/2 from qn(x), then from the
triangle inequality ||qn(x), A|| ≥ δ/2 and qn(x) must be in the same Ωm as x. Thus
Gc

n ⊂ {x : ||x,A|| ≤ δ}⋃{x : ||x− qn(x)|| > δ/2} and hence from union bound

pn ≤ Pf ({x : ||x,A|| ≤ δ}) + Pf ({x : ||x− qn(x)|| > δ

2
}).

From the Tchebychev inequality Pf ({x : ||x − qn(x)|| > δ/2}) ≤ 4Df (qn)/δ2. Define

δ = δn by δ2

4
=
√

λn. Then pn ≤ Pf ({x : ||x,A|| ≤ 2λ
1
4
n}) + Df (qn)/

√
λn. Since λ1/4

n is

decreasing, the sets {x : ||x,A|| ≤ 2λ
1
4
n} are decreasing to

∞⋂
n=1

{x : ||x,A|| ≤ 2λ
1
4
n} =

( ∞⋃
n=1

{x : ||x,A|| > 2λ
1
4
n}

)c

= A,
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which has zero probability by assumption, hence limn→∞ Pf ({x : ||x,A|| ≤ 2λ
1
4
n}) = 0.

The assumptions of lemma imply that

Df (qn) ≤ λnθ(f)− k

2
λn log λn + λnh(f) + λno(n) (10)

and hence Df (qn)/
√

λn → 0 as λn → 0, completing the proof of the lemma.

Lemma 6 Assume a possibly infinite mixture {fm, Ωm, wm; m = 1, 2, . . .} which
satisfies the zero probability boundary condition and has the property that H(Z) < ∞.
Suppose λn, qn n → ∞ satisfy limn→∞ λn = 0, where the λn are decreasing, and
limn→∞ θ(f, λn, qn) = θ(f). Then limn→∞ H(Z|qn(X)) = 0.

Proof: Given an orthogonal mixture {fm, Ωm, wm; m = 1, 2, . . .}, for any M form
{f ′m, Ω′

m, w′
m; m = 1, 2, . . . , M + 1} by f ′m(x) = f(x)/Pf (Ω

′
m)1Ω′

m
(x) with

Ω′
m =

{
Ωm m = 1, 2, . . . , M⋃∞

i=M+1 Ωi m = M + 1
, w′

m =
{

wm m = 1, 2, . . . , M
sM+1 =

∑
i=M+1 wm m = M + 1

Fix ε > 0 and assume that M is chosen large enough to ensure that

h2(sm+1) < ε, −sM+1 ln sM+1 ≤ ε, −
∞∑

z=M+1

wz ln wz ≤ ε.

Define

Z ′
M(x) =

{
m if x ∈ Ωm, m = 1, . . . ,M
M + 1 otherwise

, ψM(x) =
{

1 x ∈ ⋃∞
i=M+1 Ωi

0 otherwise

and note that Pf (ψM = 1) = sm+1 and Pf (ψM = 0) = 1 − sm+1 From the previous
lemma, limn→∞ H(Z ′

M |qn(X)) = 0 so that

H(Z|qn) = H(Z,ψM |qn) = H(ψM |qn) + H(Z|ψM , qn)

≤ H(ψM) + H(Z|ψM , qn) = h2(sM+1) + H(Z|ψM , qn)

≤ ε + H(Z|ψM , qn),

H(Z|ψM , qn) = sM+1

∑
y∈Cn

Pf (qn = y|ψM = 1)×H(Z|ψM = 1, qn = y)

+(1− sM+1)
∑

y∈Cn

Pf (qn = y|ψM = 0)H(Z|ψM = 0, qn = y).

If ψM = 0, then Z = Z ′
M and hence

H(Z|ψM , qn) = sM+1

∑
y∈Cn

Pf (qn = y|ψM = 1)H(Z|ψM = 1, qn = y)

+(1− sM+1)
∑

y∈Cn

Pf (qn = y|ψM = 0)H(Z ′
M |ψM = 0, qn = y)

≤ sM+1H(Z|ψM = 1) + (1− sM+1)H(Z ′
M |ψM = 0, qn),
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since conditioning decreases entropy, and

H(Z ′
M |qn) ≥ H(Z ′

M |ψM , qn) = H(Z ′
M |ψM = 0, qn)(1− sM+1)

since given ψM = 1, Z ′
M = M + 1 and hence H(Z ′

M |ψM = 1, qn) = 0. Thus
H(Z|ψM , qn) ≤ sM+1H(Z|ψM = 1) + H(Z ′

M |qn). The conditional pmf for Z given
ψM = 1 is wm/sM+1 for m = M + 1, . . . and 0 otherwise. Hence

H(Z|ψM = 1) = −
∞∑

z=M+1

wz

sM+1

ln
wz

sM+1

= ln sM+1 − 1

sM+1

∞∑
z=M+1

wz ln wz

so that combining the pieces yields

H(Z|qn) ≤ ε + H(Z|ψM , qn) ≤ 3ε + H(Z ′|qn) →n→∞ 3ε,

proving the lemma.
Combining the lemmas yields the following corollary.

Corollary 1 Suppose that f is an orthogonal mixture {fm, Ωm, wm} which satisfies
the zero probability boundary condition and for which H(Z) < ∞ (Z = m if x ∈ Ωm)
(e.g., the mixture is finite). Then

∑
m

wmθ(fm) ≤ θ(f) ≤ θ(f) ≤ ∑
m

wmθ(fm). (11)

Thus if fm ∈ Z for all m, then also f ∈ Z.

Proof of theorem: First Step: Uniform pdfs on cubes Define a cube in Ωk as
Ca = {x : 0 < xi ≤ a; i = 0, 1, . . . , k − 1} (or any translation of a set of this form).
Define the corresponding uniform pdf ua(x) = V (Ca)

−11Ca(x). Then V (Ca) = ak,
h(ua) = ln V (Ca) = k ln a, and ua(x) = a−ku1(

x
a
).

Lemma 7 θ(ua, λ, qa) = θ(u1, a
−2λ, q1), θ(ua, λ) = θ(u1, a

−2λ).

Proof: Suppose have a quantizer q1 with encoder α1 : C1 → I and decoder β1 : I → C
defined for the unit cube. Define a quantizer qa with encoder αa and decoder βa for
Ca by straightforward variable changes αa(x) = α1(

x
a
), βa(l) = aβ1(l), qa(x) = rq1(

x
a
).

Then Hua(qa) = Hu1(q1), h(ua) = − ln ak + h(u1), Eua||X − qa(X)||2 = a2Eu1||X −
q1(X)||2 and hence θ(ua, λ) = θ(u1, λ/a2). Hence we can focus on u1(x) = 1C1(x),
uniform pdf on unit cube.

Lemma 8 limλ→0 θ(u1, λ) = θk.

Proof: Partition the unit cube C1 into mk disjoint unit cubes C1/m. For each of the
small cubes have a uniform pdf f1/m(x) = mk on the cube. All of the small cubes
have the same ρ(f1/m, λ). From Lemma 7, θ(f1/m, λ) = θ(u1,m

2λ). From Lemma 3,

θ(u1, λ) ≤ ∑mk

i=1
1

mk θ(f1/m, λ) = θ(f1/m, λ), which with the previous equation implies
θ(u1, λ) ≤ θ(u1,m

2λ). Replacing m2λ by λ, θ(u1, λ) ≥ θ(u1,m
−2λ). Fix λ and note
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that (0, λ] =
⋃∞

m=1(
λ

(m+1)2
, λ

m2 ] so for any λ′ between 0 and λ there is an integer m

such that λ/(m + 1)2 < λ′ ≤ λ/m2. ρ(f, λ) is nondecreasing with decreasing λ, hence

θ(u1, λ) ≥ ρ(u1, λ
′)

(m+1
m

)2λ′
+

k

2
ln λ′ = (

m + 1

m
)2θ(u1, λ

′) + (
2m + 1

m2 + 2m + 1
)
k

2
ln λ′

Choose any subsequence of λ′ tending to zero. The largest possible value is θ(u1)

and hence θ(u1, λ) ≥ θ(u1) which means that θk
∆
= infλ θ(u1, λ) ≥ θ(u1). Hence

θ(u1) ≥ θk ≥ θ(u1) and hence the limit limλ→0 θ(u1, λ) must exist and equal θk.
Second step: Piecewise constant pdfs on cubes Suppose that C(n) is a collec-
tion of disjoint unit cubes, wm is a pmf, and

f(x) =
∑
m

wm
1

V (C(m))
1C(m)(x).

Combining the previous result and Corollary 1 using the fact that the boundaries of
cubes have zero volume and hence also zero probability implies that f ∈ Z.
Third step: Distributions on the unit cube Let Ck

1 denote the k-dimensional
unit cube and assume that Pf (C

k
1 ) = 1. For any integer M can partition Ck

1 into MK

cubes of side length 1/M , say C(m); 1, 2, . . . , Mk. Given a pdf f , form a piecewise
constant approximation

f̂ (M)(x) =
Mk∑
m=1

Pf (C(m))

V (C(m))
1C(m)(x).

This is an orthogonal mixture source with wm = Pf (C(m)) and component pdfs

f̂m(x) = Mk1C(m)(x). If P̂M denotes the distribution induced by f̂ (M), i.e., P̂M(F ) =∫
F f̂ (M)(x) dx, then f̂ (M) = dP̂M/dV (x).

Lemma 9 limM→∞ f̂ (M)(x) = f(x), V − a.e., limM→∞ ||f̂ (M) − f ||1 = 0,
limM→∞ h(f̂ (M)) = h(f).

Proof: The first two results follow by differentiation of measures and Scheffé’s lemma
(See, e.g., [3], p.88.) The third result follows from the convergence of entropy for
uniform scalar quantizers, e.g., [2].

Fix λ > 0. Suppose q1 is a quantizer with corresponding encoder α1, decoder β1,
index coder ψ1, and length function `1. Assume that q1 is optimal for a design pdf g
(which will be either f or f̂ (M)) Si = {x : α1(x) = i}, li|1 = `(ψ1(i)), and pi = Pg(Si),
which are assumed nonincreasing in i. Optimality of the index coder implies that li|1
are nondecreasing. Given any node n in the code tree, define Wn = all x contained in
an Si ⊂ Wn. Choose a node n∗ in the code tree that is not a leaf with the property

Pg(Wn∗) =
∑

i:Si⊂Wn∗
pi ≤ ε.

Call the node n the flag node and let Lε − 2 denote the depth of the code tree of
this node. A second quantizer q2 is a uniform k-dimensional quantizer with side-
width ∆ = 1/N where N = b√λc so that N ≤ λ−1/2, ∆ ≤ √

λ/1−√λ, ∆2 ≤

8



λ/(1− 2
√

λ) = λ + o(λ3/2). Each cell is represented by its Euclidean centroid so
every input point is within ∆/2 of a reproduction and hence

d(x, q2(x)) ≤ k
∆2

4
≤ k

4
λ + o(λ3/2)

Use a fixed rate lossless code for q2, to specify the centroid selected, this will require
Lλ = dln Nke ≤ ln Nk + 1 ≤ −k

2
ln λ + 1. For reasons to be seen, we instead use a

longer fixed rate code with length li|2 = Lε − 1 + Lλ ≤ Lε − k
2
ln λ. Form a code q̂

by merging q1 and q2 as follows: Given an input vector x, find the code and index
yielding the smallest Lagrangian distortion:

(m, i) = (m(x), i(x)) = argmin
l,j

(d(x, βl(j)) + λ`l(j))

Let B = {x : m(x) = 2} (uniform quantizer best). If x ∈ Bc ∩W c
n∗ , then the encoded

sequence is that produced by q1: ψ(α(x)) = ψ1(α1(x)). Otherwise, either x ∈ B or
x ∈ Wn∗ . Send the pathmap to n∗ (length=Lε − 2) and (1) if x ∈ Wn∗ , send a 0
(one bit) followed by the remainder of the binary sequence according to q1. In this
case the final codeword has an additional bit, li = li|1 + 1, or (2) otherwise send a 1
(one bit) followed by the fixed rate log N bit word designating the uniform quantizer
output for a total of li|2. By construction,

d(x, q(x)) + λl(ψα((x))) = min
l,j

(d(x, βl(j)) + λ`l(j)) + 1Wn∗∩Bc(x)

and hence

min
l,j

(d(x, βl(j)) + λ`l(j)) ≤ d(x, βl(j)) + λ`l(j) + 1Wn∗∩Bc(x); l = 1, 2. (12)

In particular, the upper bound for l = 2 implies

d(x, q(x)) + λl(ψα(x)) ≤ (
k

4
+ Lε)λ− k

2
λ ln λ + o(λ3/2) (13)

which after some algebra yields

|θ(f, λ, q)− θ(f̂ (M), λ, q)| ≤ (
k

4
+ Lε + o(

√
λ))||f − f̂ (M)||+ |h(f)− h(f̂ (M))|. (14)

For any q1 with q2 and q constructed in this way using a design pdf g = f̂ (M)

θ(f, λ) ≤ θ(f, λ, q) ≤ θ(f̂M , λ, q) + (
k

4
+ Lε + o(

√
λ)||f − f̂ (M)||+ |h(f)− h(f̂ (M))|

Using (12) with l = 1,

θ(f̂M , λ, q) =
∫

dx f̂ (M)(x)

(
d(x, q(x))

λ
+ l(ψ(x))

)
+

k

2
ln λ + h(f̂ (M))

≤
∫

dx f̂ (M)(x)

(
d(x, β1(j))

λ
+ `1(j) + 1Wn∗∩Bc(x)

)
+

k

2
ln λ + h(f̂ (M))

≤ θ(f̂ (M), λ) + 2ε

9



since q1 was assumed approximately optimal for f̂ (M). Thus

θ(f, λ) ≤ θ(f̂ (M), λ) + 2ε + (
k

4
+ Lε + o(

√
λ))||f − f̂ (M)||+ |h(f)− h(f̂ (M))|

θ(f) ≤ θk + 2ε + (
k

4
+ Lε)||f − f̂ (M)||+ |h(f)− h(f̂ (M))|.

Since f̂ (M) has the Zador property, letting M → ∞ θ(f) ≤ θk + 2ε. Since ε > 0 was
arbitrary, θ(f) ≤ θk. The converse inequality is proved in a similar fashion.
Final step: Proof of theorem Carve Ωk into disjoint unit cubes C1(n) and write
the pdf f as the orthogonal mixture

f(x) =
∑
n

Pf (C1(n))fn(x), fn(x) =
f(x)

Pf (C1(n))
1C1(n)(x).

To apply Corollary 1 it must be shown that the boundaries of unit cubes have zero
probability and that H(Z) is finite. The first property follows since the boundaries
have zero Lebesgue measure and f is absolutely continuous with respect to Lebesgue
measure. The second property follows from the limiting properties for uniform quan-
tizers [2], the finiteness of h(f), and the fact that refining partitions increases entropy.
Thus the previous lemma and Corollary 1 yield θ(f) =

∑
n Pf (C1(n))θ(fn) = θk, which

proves the theorem.
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