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Abstract

We present a new penalizing scheme for a recently in-
troduced prior model [8] on discrete frameworks. The
model convincingly assumes that the optimal solutions for
the frameworks possess sparse representation on certain
transform domains, and applies this sparsity assumption as
a prior information for inference problems. Promoting the
sparsity, we proposes to penalize l0-norm of coefficient vec-
tor of the transform bases, instead of l1-norm employed in
that recent work. Experiments compare the proposed prior
with previous ones and show enhanced performance, both
in qualitative and quantitative manner.

1. Introduction
Sparse representation of signals has been extensively

studied for decades. The main idea is that signals can be
represented by linear combination of few (sparse) compo-
nents in a dictionary containing prototype signals. This
well-known property has presented numerous applications
in various fields; e.g., lossy compression and compressive
sensing [3] are definite examples. In the literature of com-
puter vision, researchers have applied this property to reg-
ularization in inverse problems such as denoising [5] and
super-resolution [12]. These inverse problems are gener-
ally reduced to solve the optimization problem of following
form:

min
α

||α||0 s.t. x = Ψα, (1)

where x is an observed signal, Ψ is the dictionary matrix.
α means a coefficient vector for the linear combination and
||α||0 is the l0-norm of the vector α indicating the number
of its non-zero elements.

Exactly solving this equation is reported to be NP-hard,
thus a relaxed approach [4] was proposed to address this
challenge: By replacing non-convex l0-norm with convex
l1-norm, the method finds optimal solution using convex
optimization [1]. It was also introduced [2] that for many
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Figure 1: Plots for lp norms: p = 2(gray), p = 1(red),
p = 0.5(blue) and p = 0.05(black), respectively. When
p approaches to zero, the function becomes severely non-
convex.

problems, minimizing the l1-norm is equivalent to mini-
mizing the l0-norm under certain conditions. However, ex-
perimental results in [9] posed a strong question about the
equivalence of minimizing both norms in practical prob-
lems.

Meanwhile, a recent study [8] proposed a new model
applying the sparse constraint for the inverse problems de-
fined on discrete frameworks. This model employs discrete
optimization strategy [11] which has been presenting state-
of-the-art performance in various applications. In contrast
to the previous methods based on convex optimization, it
presents a big advantage to address more flexible energy
terms; e.g., non-convex (but more robust) cost functions.

Despite that advantage, its energy model still stays on
using l1-norm for the sparsity-promoting term, showing un-
satisfactory results in applications. To this end we propose
to employ the original term; i.e., l0-norm, enforcing the ex-
act meaning of sparsity. Our experiments show that this
simple strategy greatly enhances the performance without
any additive computational complexity.

2. Proposed Prior Model
We consider a problem finding the MAP (Maximum-a-

Posteriori) for a discrete random field. Let G be an undi-
rected graph with node set V and clique set C. Let xs be
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a random variable in some discrete sample space Xs =
{0, . . . , L − 1}, representing the label of the node s ∈ V .
Provided the posterior follows the Gibbs distribution, we
convert the problem into minimizing energy functional de-
fined with likelihood and prior potentials as follows:

E(x) =
∑
s∈V

θs(xs) +
∑
c∈C

θc(xc). (2)

When the clique set only involves an edge set E =
{(s, t)|s, t ∈ V} and the potential is defined as θc(xs, xt) =
ρ(xs − xt), the prior is well-known smoothness prior with
pairwise potential term. Likewise we can define other prior
models in the previous works with higher order clique po-
tentials.

The proposal in [8] starts from a novel prior assump-
tion: the optimal label configuration can be represented by
sparse combination of basis signals on a transform domain.
Strictly, it is the signal mapped from the label configura-
tion that has the sparse representation, not the configuration
itself. However, for notational and conceptual simplicity,
we may assume the mapping is linear: τs(xs) = axs + bs
where a is a scale factor and bs is an offset. Then follow-
ing equations are all valid and only differ by the scale and
offset.

We may also assume that this prior knowledge is still ap-
plicable even for smaller parts of the solution. A part of the
solution x̂ (= argminxE(x)) is assumed to be represented
by combination of few basis label configurations, shown as
follows:

x̂c = Ψαc, (3)

where Ψ is an orthonormal complete matrix whose columns
are the basis solutions, and αc is a coefficient vector.

Most of components of αc should be zero to be referred
as sparse. We penalize the non-zero terms using lp norm.

θc(xc) = ||αc||pp =
N∑
i=1

|α(i)
c |p

=
N∑
i=1

|ψT
i xc|p,

(4)

where α(i)
c means ith component of αc, ψT

i means the trans-
pose of ith column of Ψ, and N indicates the size of the
clique xc. Figure 2b presents graphical structure of this en-
ergy model when N = 4.

The penalizer better promotes sparsity when p → 0; but
it becomes severely non-convex as shown in Figure 1. Tak-
ing advantage of the discrete framework, we propose to use
the l0-norm as it is, less concerning local minima. The final
energy formulation is shown as follows:

E(x) =
∑
s∈V

θs(xs) +
∑
c∈C

N∑
i=1

[ψT
i xc = 0], (5)

(a) (b)

Figure 2: Graphical illustration for the proposed model. (a)
Overlapped cliques (N = 4) are shown in dark red squares
while nodes are shown in dark blue circle. (b) Each clique
is sum of cliques (shown in light red squares) with special
form; known as linear constraint nodes [10].

where [·] is one if its argument is true and zero otherwise.

3. Optimization
The clique size N needs to be large enough in order for

the sparsity works as a prior. Thus the proposed prior poten-
tial involves extremely high order potentials. Minimizing
that high order potential in general is not feasible under cur-
rent hardware capabilities. In addition, overlapped cliques
in the graph yield very complicated structure for optimiza-
tion, as shown in 2a.

To this challenge, we employ the method proposed
in [8]: we apply the dual decomposition [6] for overall op-
timization. Dual decomposition is an optimization method
obtaining the solution from a difficult large problem by de-
composing it into smaller subproblems; and then combining
the solutions addressing the subproblems. We decompose
each of the clique potentials into an individual subproblem.
Resolving the high order potentials in the subproblems, we
apply the efficient message-passing method using the prop-
erty that clique potentials are linear constraint [10]. Re-
markably, these procedures can be implemented on parallel
hardware providing a practical framework.

4. Experiments
Experiments are designed to show performance enhance-

ment by employing l0-norm rather than l1; although we
have also provided results from several smoothness priors.
For algorithmic simplicity [8], we use the WHT (Walsh-
Hadamard Transform) as basis matrix.

4.1. Signal reconstruction

We start with conducting simple 1-D signal reconstruc-
tion tests. We consider 5 different types of groundtruth sig-
nals; i.e., Step4, Step2, Slope, Sawtooth and Half-Circle.
We generate 10 noisy input signals for each, to see aver-
age performance. The input signals are generated by adding
Gaussian noise with σ = 8. The amount of noise is cropped
in [−5, 5] to limit the number of label L = 11. For unary



Table 1: PSNR results for signal reconstruction (σ = 8.)
(1) Step4, (2) Step2, (3) Slope, (4) Sawtooth and (5) Half-
Circle.

PSNR (dB)
Prior (1) (2) (3) (4) (5)

1st-Order 37.34 35.12 36.74 37.76 37.43
1st+2nd+3rd 37.73 44.83 39.72 38.69 41.09
Sparsity(l1) 53.29 49.77 37.81 36.48 34.21
Sparsity(l0) 59.74 56.29 39.10 39.21 40.13

potentials, we use θs(xs) = |ys − τs(xs)| where ys is a
value at s of the input signal and τs(xs) = xs + bs where
xs ∈ {0, . . . , 10}. We set bs = ys− 5 which means we find
the solution in the range of [ys−5, ys+5]. The clique sizeN
is set to 16 while total length of input signal is 64. Resulting
graph contains 49 subtrees where each subtree contains 16
linear constraint cliques. More detailed configurations are
referred to the previous work [8].

Figure 3 shows qualitative results. Upper two rows
present the cases that contain only step functions. The 1st

order prior (b) generates locally regularized effect while the
combination prior (c) generally performs better but over-fits
curves around edges. In contrast, both of the sparsity priors
(d,e) yield outperforming results on homogeneous as well as
edge region; however we may conclude the proposed prior
gives more robust performance, as we can find some extra
perturbations in (d). This can be clearly seen in the quanti-
tative results (PSNR) in Table 1.

For the rest of cases where the sparsity priors are not ex-
pected to show the best performance (due to inherent limi-
tation of the WHT), we still found the proposed prior yields
much better results than l1-norm-based one; moreover, it
performs almost close to (Line, Half-Circle) or better than
(Sawtooth) the combination prior.

4.2. Image denoising

We extend the reconstruction problem to 2-D domain.
We use synthetic 32× 32 images with plain structure (Fig-
ure 4.) Detail configuration such as additive noise, number
of labels, unary potential just follows that of Section 4.1.

Since images are two dimensional, two different type of
cliques can be overlapped on the nodes; i.e., 1-D line and 2-
D patch types. For simplicity we only tested the line-type.
Solving the line-type clique can be considered as solving
multiple signal reconstruction in parallel along with x and
y coordinates. We set clique size N = 16 producing 1088
cliques.

As shown in Figure 4 and average PSNR, the proposed
prior presents the best performance, the combination prior
is next and the l1-norm-based one follows. Considering the
line-type is direct extension of 1-D signal construction and
the image is also the case of 1-D heavyside step function,

Figure 4: Top-left: Noisy 32 × 32 input image (PSNR:
36.21). Denoising result from Top-right: combination of
1st, 2nd and 3rd order smoothness prior (PSNR: 41.11),
Bottom-left: l1-norm-based prior (PSNR: 40.42), and
Bottom-right: the proposed prior (PSNR: 54.64). Best
viewed electronically.

it is notable that the l1-norm based prior yields worse result
than the combination prior. (Since it produced much better
results in 1-D case.)

This result implies that when the graph structure
becomes highly complex, the robustness of sparsity-
promoting term much influences the performance; and thus
the proposed l0-norm prior is definitely preferable in real
applications. Both sparsity priors take the same 10.1 sec-
onds per iteration, which is tolerable time considering the
image and clique size.

5. Conclusion

This paper proposed a new sparsity-promoting penalizer
for the discrete framework. Our work much improved the
performance of the previous work by simply employing the
l0-norm instead of the l1-norm. This result indicates that the
equivalence of minimizing both norms [2] may not hold true
in real applications as was already issued in [9]. We plan to
further apply the proposed method to various problems to
convince the difference.
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Figure 3: Signal reconstruction results using different prior information. (a) Noisy input signal with blue dotted line illus-
trating groundtruth signal. Reconstruction results using (b) 1st order smoothness prior, (c) combination of 1st, 2nd and 3rd

order smoothness prior [7], (d) l1-norm-based prior [8], and (e) the proposed prior.
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