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Abstract

This paper exploits the graphical model with the max-
sum belief propagation to solve the traveling salesman
problem which is commonly solved by heuristic algorithms.
Based on the visiting-ship between each city and step, we
represent the optimal tour search problem by a factor graph
and utilize the max-sum belief propagation algorithm to
achieve the neighborhood optimal solution. By applying
some mathematical tricks to simplify the original messages,
we obtain an efficient message-passing algorithm.

1. Introduction
The traveling salesman problem (TSP) is a classic com-

binatorial optimization problem which is typically solved
by the heuristic methods [7, 12, 10]. The main disad-
vantages of these methods are that they are not theoreti-
cally sound and strongly dependent on the initialization. To
tackle this problem, this paper proposes to use the graph-
ical model with the max-sum belief propagation to effi-
ciently achieve the neighborhood optimal solution. Graphi-
cal model is a well-studied tool to represent structured prob-
ability distributions over large sets of random variables, and
has been widely used in many applications such as data
clustering [1], computer vision [5], and graph matching [9].
There are several algorithms for the exact or approximate
inference in various types of graphical models [5, 3, 8, 6].

2. Graphical model and the algorithm
2.1. The factor graph model

Given a similarity matrix [s(i, j)](N+1)×(N+1) of N + 1
cities with s(i, j) denoting the similarity between city i and
j (e.g. the maximum Euclidean distance between these
cities minus the Euclidean distance between city i and j),
the goal of TSP is to search for a tour (Hamiltonian circuit)
of the N + 1 cities with the maximum sum of similarities.
Since the sum of similarities is independent of the ending
city, without loss of generality, we fix the ending city to be
the N + 1-th city. Let c = [c1, . . . , cN ] be a vector with

ct denoting the id of the city visited in step t, the goal is to
search for a visiting vector such that the sum of similarities∑N−1

t=1 s(ct, ct+1) + s(cN , N + 1) + s(N + 1, c1) is maxi-
mized under the constraint ct ∈ {1, . . . , N}, ct 6= ct′ ,∀t 6=
t′.

We adopt the binary variable model [2] to construct the
factor graph based representation. Let B = [bit]N×N be a
binary matrix denoting the visiting-ship between the first N
cities and steps, such that

bit =

{
1 city i is visited in step t

0 otherwise.
(1)

The constraint that ct ∈ {1, . . . , N}, ct 6= ct′ ,∀t 6= t′ is
converted into city constraint and step constraint as follows.
City constraint: Each city i must be visited in exactly one
step, i.e.,

Ii(bi1, . . . , biN ) =

0 if
N∑

t=1
bit = 1

−∞ otherwise.
(2)

Step constraint: Each step t must visit exactly one city, i.e.,

Et(b1t, . . . , bNt, ct) =

{
0 if bctt = 1&bit = 0,∀i 6= ct

−∞ otherwise.
(3)

The function St(ct+1|ct) denotes the similarity from city ct

to city ct+1, i.e.,

St(ct+1|ct) =

{
s(ct, ct+1) ct 6= ct+1

−∞ ct = ct+1.
(4)

The objective is to maximize the following function,

G(B, c)

=
N−1∑
t=1

St(ct+1|ct) + SN (N + 1|cN ) + SN+1(c1|N + 1)

+
N∑

i=1

Ii(bi1, . . . , biN ) +
N∑

t=1

Et(b1t, . . . , bNt, ct). (5)
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Figure 1. The factor graph based representation and BP messages.
The variable nodes are depicted as usual by circles, and the func-
tion nodes are depicted by small squares. The BP messages are
plotted by black arrows.

This objective function is already factorized (in the log do-
main) into 3N + 1 functions. Figure 1 illustrates the factor
graph based representation of (5).

2.2. Messages

To exactly search for the optimal solution for (5) is
NP-hard. Many approaches have been developed to effi-
ciently find good approximate solutions, such as [5, 3, 8, 6].
Among them, for arbitrary objective functions (hence arbi-
trary graphical models), message passing algorithms such
as max-product belief propagation are the most popular
ones [5, 4]. The max-sum (the log-domain max-product)
belief propagation is a local-message-passing algorithm
guaranteed to converge to the neighborhood maximum [11].
In the max-sum algorithm, the message update involves ei-
ther a message from a variable to each adjacent function or
that from a function to each adjacent variable. The mes-
sage from a variable to a function sums together the mes-
sages from all adjacent functions except the one receiving
the message [4],

µx→f (x)←
∑

h∈ne(x)\{f}

µh→x(x) (6)

where ne(x) denotes the set of adjacent functions of vari-
able x. The message from a function to a variable involves
a maximization over all arguments of the function except
the variable receiving the message [4],

µf→x(x)← max
X\{x}

[
f(X) +

∑
y∈X\{x}

µy→f (y)
]

(7)

where X = ne(f) is the set of arguments of the function f .
There are 8 types of belief propagation (BP) messages

passing between variable nodes and function nodes as
shown as the black arrow in Figure 1.
Message ηit : µIi→bit

(m),m = 0, 1.

ηit(m) = max
bit′ :t

′ 6=t

Ii(bi1, . . . , biN ) +
∑

t′:t′ 6=t

ωit′(bit′)



=



∑
t′:t′ 6=t

ωit′(0) m = 1

max
t′:t′ 6=t

[
ωit′(1) +

∑
t′′:t′′ /∈{t,t′}

ωit′′(0)

]
m = 0.

(8)

Message ωit : µbit→Ii
(m),m = 0, 1.

ωit(m) = φit(m). (9)

Message φit : µEt→bit
(m),m = 0, 1.

φit(m)

= max
bi′t:i

′ 6=i,ct

Et(b1t . . . , bNt, ct) +
∑

i′:i′ 6=i

γi′t(bi′t) + ζt(ct)



=



∑
i′:i′ 6=i

γi′t(0) + ζt(i) m = 1

max
i′:i′ 6=i

[
γi′t(1) + ζt(i′) +

∑
i′′:i′′ /∈{i,i′}

γi′′t(0)

]
m = 0.

(10)

Message γit : µbit→Et
(m),m = 0, 1.

γit(m) = ηit(m). (11)

Message βt, t = 1, . . . , N − 1 : µct→St
(m),m =

1, . . . , N .

βt(m) =

{
λt(m) + s(N + 1,m) t = 1,
λt(m) + δt−1(m) t = 2, . . . , N − 1.

(12)

Message δt, t = 1, . . . , N − 1 : µSt→ct+1(m),m =
1, . . . , N .

δt(m) =max
ct

[St(ct,m) + βt(ct)]

= max
ct 6=m

[s(ct,m) + βt(ct)] . (13)

Message λt : µEt→ct
(m),m = 1, . . . , N .

λt(m) = max
bit:i=1,...,N

[
Et(b1t, . . . , bNt,m) +

N∑
i=1

γit(bit)

]
= γmt(1) +

∑
i:i 6=m

γit(0). (14)



Message ζt : µct→Et(m),m = 1, . . . , N .

ζt(m) =


s(N + 1,m) t = 1,
δt−1(m) t = 2, . . . , N − 1,

δN−1(m) + s(m,N + 1) t = N.

(15)

2.3. Message simplification

Like in the affinity propagation algorithm [1, 2], we can
simplify the above messages by applying some mathemati-
cal tricks. First of all, for each message associated with the
binary variable, we introduce the difference between those
with argument 1 and 0. That is, η̃it = ηit(1)−ηit(0), ω̃it =
ωit(1)−ωit(0), φ̃it = φit(1)−φit(0), γ̃it = γit(1)−γit(0).
For the remaining messages, they are viewed as the sum of
variable (with respect to the corresponding argument) and
constant. That is, βt(m) = β̃t(m)+β̄t, δt(m) = δ̃t(m)+δ̄t,
λt(m) = λ̃t(m) + λ̄t, and ζt(m) = ζ̃t(m) + ζ̄t.
Message η̃it:

η̃it =ηit(1)− ηit(0)

=
∑

t′:t′ 6=t

ωit′(0)− max
t′:t′ 6=t

ωit′(1) +
∑

t′′:t′′ /∈{t,t′}

ωit′′(0)


=− max

t′:t′ 6=t
[ωit′(1)− ωit′(0)] = − max

t′:t′ 6=t
[ω̃it′ ] . (16)

Message ω̃it:

ω̃it = ωit(1)− ωit(0) = φit(1)− φit(0) = φ̃it. (17)

Message φ̃it:

φ̃it = φit(1)− φit(0)

=

( ∑
i′:i′ 6=i

γi′t(0) + ζt(i)

)

− max
i′:i′ 6=i

γi′t(1) + ζt(i′) +
∑

i′′:i′′ /∈{i,i′}

γi′′t(0)


= − max

i′:i′ 6=i
[(γi′t(1)− γi′t(0)) + ζt(i′)− ζt(i)]

= − max
i′:i′ 6=i

[
γ̃i′t + ζ̃t(i′)

]
+ ζ̃t(i). (18)

Message γ̃it:

γ̃it = γit(1)− γit(0) = ηit(1)− ηit(0) = η̃it. (19)

Message βt(m):

βt(m) =

{
λ̃t(m) + λ̄t + s(N + 1,m) t = 1,

λ̃t(m) + λ̄t + δ̃t−1(m) + δ̄t−1 t = 2, . . . , N − 1.

(20)

Message δt(m):

δt(m) = max
ct 6=m

[
s(ct,m) + β̃t(ct)

]
+ β̄t,∀t = 1, . . . , N − 1.

(21)

Message λt(m):

λt(m) = (γ̃mt + γmt(0)) +
∑

i:i 6=m

γit(0) = γ̃mt +
N∑

i=1

γit(0).

(22)

Message ζt(m):

ζt(m)

=


s(N + 1,m) t = 1,

δ̃t−1(m) + δ̄t−1 t = 2, . . . , N − 1,

δ̃N−1(m) + δ̄N−1 + s(m,N + 1) t = N.

(23)

2.4. Message summary

According to the trick used in the binary model of
AP [2], for each message with the binary argument, we only
consider and update its difference denoted using “˜”. And
similar to [1], for each message with non-binary argument,
the variable part denoted using “˜” is considered and up-
dated. Consequently, we have the following simplified mes-
sages.
∀i, t = 1, . . . , N :

φ̃it =− max
i′:i′ 6=i

[
γ̃i′t + ζ̃t(i′)

]
+ ζ̃t(i), (24)

γ̃it =− max
t′:t′ 6=t

[
φ̃it′

]
. (25)

∀m = 1, . . . , N, ∀t = 1, . . . , N − 1:

βt(m) =

{
λ̃1(m) + s(N + 1,m) t = 1,

λ̃t(m) + δ̃t−1(m) t = 2, . . . , N − 1,

(26)

δt(m) =max
n 6=m

[
s(n, m) + β̃t(n)

]
. (27)

∀m, t = 1, . . . , N :

λt(m) =γ̃mt, (28)

ζt(m) =


s(N + 1,m) t = 1,
δ̃t−1(m) t = 2, . . . , N − 1,

δ̃N−1(m) + s(m,N + 1) t = N.

(29)

In the above simplified messages, the message pair of η̃it

and ω̃it is eliminated by directly replacing these two mes-
sages with −maxt′:t′ 6=t

[
φ̃it′
]

and φ̃it respectively.



2.5. Estimate c

To estimate the value of an element ct, we sum together
all incoming messages to ct and take the value ĉt that max-
imizes the sum. That is,

ĉt =arg max
ct=1,...,N

[λt(ct) + δt−1(ct)]

= arg max
ct=1,...,N

[
λ̃t(ct) + δ̃t−1(ct)

]
,∀t = 2, . . . , N − 1,

(30)

ĉ1 =arg max
c1=1,...,N

[λ1(c1) + s(N + 1, c1)]

= arg max
c1=1,...,N

[
λ̃1(c1) + s(N + 1, c1)

]
, (31)

ĉN =arg max
cN=1,...,N

[δN−1(cN ) + λN (cN ) + s(cN , N + 1)]

= arg max
cN=1,...,N

[
δ̃N−1(cN ) + λ̃N (cN ) + s(cN , N + 1)

]
.

(32)

2.6. The algorithm

The overall algorithm of the proposed approach is sum-
marized as follows. Given the similarity matrix s and the
dampening factor θ (e.g. 0.5), we first initialize all mes-
sages φ̃it, γ̃it, βt(m), δt(m), λt(m) as zeros. Then each
type of these messages are sequentially updated via equa-
tions (24) to (29) with additional dampening, i.e. µ ←
θµold + (1− θ)µnew. The message-updating procedure may
be terminated after the local decisions (i.e. the estimate of
c) stay constant for some number of iterations tconv , or after
a fixed number of iterations tmax.

3. Empirical results
This section reports some empirical results with the

dampening factor θ set to 0.5, tconv = 5, and tmax = 1000.
We first demonstrate the result on a small city group con-

sisting of 5 cities with the similarity matrix given as follows

s =


0.8 10.1 12.5 0.1 0.6
0.9 0.2 0.9 0.4 0.1
0.1 0.5 0.9 0.9 0.8
0.9 0.9 0.5 0.8 0.9
0.6 0.009 1.8 0.9 0.6

 . (33)

The tour produced by the proposed approach is

5→ 2→ 4→ 3→ 1→ 5 (34)

with the tour length being 1.609, which is equal to the over-
all minimum tour length. Our approach only requires 10
iterations to reach this good result; on the other hand the
number of all possible permutations of these 5 cities is 120
which implies that we have to try 120 times for the optimal
solutions using exhaustive search.

On the other synthetic testing set of 100 cities, only
about 1000 iterations are required to reach the optimal so-
lution. Compared to the typically used heuristic algorithms,
the main advantages of the proposed algorithm are that, it
is based on the sound theory of the probabilistic graphical
models with the max-sum belief propagation, and it is de-
terministic without random initialization. Additionally, it is
quite efficient.

4. Conclusions
This paper presents the use of the message-passing al-

gorithm to solve the traveling salesman problem. A new
graphical model based representation is proposed and the
max-sum belief propagation is utilized to generate the
neighborhood optimal solution. In the future work, we will
try the Junction-Tree algorithm for an exact inference in the
derived graphical model.

References
[1] B. J. Frey and D. Dueck. Clustering by passing messages

between data points. Science, 315:972–976, 2007. 1, 3
[2] I. E. Givoni and B. J. Frey. A binary variable model for affin-

ity propagation. Neural Computation, 21(6):1589–1600,
June 2009. 1, 3

[3] S. Gould, F. Amat, and D. Koller. Alphabet SOUP: A frame-
work for approximate energy minimization. In CVPR, 2009.
1, 2

[4] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor
graphs and the sum-product algorithm. IEEE Trans. Inf. The-
ory, 47(2):498–519, Feb. 2001. 2

[5] M. P. Kumar and P. Torr. Fast memory-efficient generalized
belief propagation. In ECCV, 2006. 1, 2

[6] Y. Lim, K. Jung, and P. Kohli. Energy minimization under
constraints on label counts. In ECCV, 2010. 1, 2

[7] S. Lin and B. W. Kernighan. An effective heuristic algorithm
for the traveling-salesman problem. Operations Research,
21:498–516, 1973. 1

[8] J. McAuley and T. Caetano. Exploiting within-clique fac-
torizations in Junction-Tree algorithms. In NIPS Workshop,
2009. 1, 2

[9] J. McAuley, T. Caetano, and M. S. Barbosa. Graph rigidity,
cyclic belief propagation, and point pattern matching. IEEE
Trans. Pattern Anal. Mach. Intell., 30:2047–2054, 2008. 1
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