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1. Introduction

Dual-decomposition methods for optimization have
emerged as an extremely powerful tool for solving combi-
natorial problems in graphical models. These techniques
can be thought of as decomposing a complex model into a
collection of easier-to-solve components, providing a vari-
ational bound which can then be optimized over its param-
eters. A wide variety of algorithms have been proposed,
often distinguished by the class of models from which sub-
problems are constructed, including trees [14, 5], planar
graphs [3], outer-planar graphs [2], k-fans [4], or some more
heterogeneous mix of combinatorial subproblems [13].

While the class of tree-reweighted methods are now
fairly well understood, many of the same concepts and guid-
ance available for trees are not available for more gen-
eral classes of decompositions. In this work, we ana-
lyze reweighting methods that seek to decompose planar
MRFs into subproblems consisting of tractable binary pla-
nar graphs. We show that the ultimate building blocks of
such a decomposition are simple cycles of the original graph
and that to achieve the tightest possible bounds, one must
choose a set of subproblems that cover all such cycles. Cy-
cles in planar-reweighted decomposition thus play a role
analogous to trees in tree-reweighted decompositions.

There are various techniques for enforcing consistency
over cycles in an MRF. For example, one can triangulate the
graph and introduce constraints over all triplets in the result-
ing triangulation. However, this involves O(n?) constraints
which is impractical in large-scale inference problems. A
more efficient route is to only add a small number of con-
straints as needed, e.g., using a cutting-plane approach [11].

We describe a new variational bound that enforces the
constraints over all cycles in a planar binary MRF with only
a constant factor overhead. This representation is very sim-
ple and efficient to optimize, which we demonstrate in ex-
perimental comparisons to existing state-of-the-art, cycle-
enforcing methods, where we achieve substantial perfor-
mance gains. To handle more general d-state planar MRFs,
we consider binary partitions of the state space of each node
which yield tractable binary subproblems. There are a large
number of such subproblems. However, we are often able
to achieve tight bounds after adding only a handful of sub-

problems in an incremental fashion, analogous to cutting
plane techniques used in LP relaxations, and outperform
competing algorithms on classes of problems which have
long range cyclic dependencies.

2. Exact Inference for Binary Planar MRFs

Consider the energy function E(X) associated with a
general binary MRF defined over a collection of variables
(X1, Xa,...) € {0, 1} with specified unary and pairwise
potentials. It is straightforward to show that any such MRF
can be reparametrized up to a constant using pairwise dis-
agreement costs ¢;; along with unary parameters ;. The
energy function can thus be written as

B(X,0) =Y 0,[Xi # X;]+ > _6:[X; #0] (1)
> i

where [-] is the indicator function and we have dropped any

constant terms.

We can express such an energy function without includ-
ing any unary terms by introducing an auxiliary variable X
and replacing the unary terms with pairwise connections to
X so that

Bi(X,0) =Y 05[X; # X;]+ ) _0:[Xi # Xo] ()
i>j i

If we fix X¢ = 0, then E is clearly equivalent to our orig-
inal energy function E. Since the potentials in E; are sym-
metric, for any state X = (X, X1, ...), there is a state X
with identical energy, given by flipping the states of every
X; including Xy. Thus any X that minimizes F; can be
easily mapped to a minimizer of E.

While minimizing F(X,0) is computationally in-
tractable in general [1], a clever construction due to Kaste-
leyn and Fisher allows one to find minimizing states when
the graph corresponding to E is planar. This is based on
the complementary relation between states of the nodes X
and perfect matchings in the so-called expanded dual of the
graph G1. ! See the report of [9] for an in-depth discussion
and implementation details.

'Matchings in planar graphs can be found somewhat more efficiently
than for general graphs which yields the best known worst-case running
time of O(N3/2 log N)) for max-cut in planar graphs [10].



While this reduction to perfect matching provides a
unique tool for energy minimization and probabilistic infer-
ence, the requirement that G; be planar is a serious restric-
tion since even if the original graph G corresponding to E is
planar, e.g., in the case of the grid graphs commonly used in
computer vision applications, G; is typically not, since the
addition of edges from every node to the auxiliary node X
renders the graph non-planar.

3. Inference with Dual Decomposition

Dual decomposition is a general approach for leverag-
ing such islands of tractability in order to perform inference
in more general MRFs. The application of dual decompo-
sition to inference in graphical models was popularized by
the work of [14] on Tree-Reweighted Belief Propagation
(TRW). TRW finds an optimal decomposition of an MRF
into a collection of tree-structured problems where exact in-
ference is tractable. More formally, let ¢ index a collection
of subproblems defined over the same set of variables X
and whose parameters sum up to the original parameter val-
ues, so that § = >, 0°. The energy function is linear in 6
so we have

Eprap = min E(X,0) = rr}}nzt: E(X,0Y) (3)
> max min E(X?, @t) 4)
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The inequality arises because each subproblem ¢ is solved
independently and thus may yield different solutions. On
the other hand, if the solutions to the sub-problems all
happen to agree then the bound is tight. The problem of
maximizing the lower-bound over possible decompositions
{#'} is convex and when inference for each sub-problem is
tractable (for example, 0" is tree-structured) the bound can
be optimized efficiently using message passing (fixed-point
iterations) based on computing min-marginals in each sub-
problem [ 4] or by projected subgradient methods [7].

One can tighten the bound in Equation 4 by adding ad-
ditional subproblems to the primal (or equivalently con-
straints to the dual) which enforce consistency over larger
sets of variables. This has been explored, e.g. by [I1]
who suggest adding cycle inequalities to the dual which
enforce consistency of pseudo-marginals around a cycle.
Since there are a large number of potential cycles present in
the graph, Sontag suggests either using a cutting plane algo-
rithm to successively add violated cycle constraints [ 1] or
to only add small cycles such as triplets or quadruplets [12]
that can be enumerated with relative ease and optimized us-
ing local message passing rather than general LP solvers.

For binary problems, it is natural to consider replacing
Wainwright’s tree subproblems with tractable outer-planar
subgraphs. This has been explored by [3] and [2] who pro-
posed decomposing a graph into a set of planar graphs for

Figure 1. We lower-bound the energy of a planar binary MRF by
a tractable planar graph in which auxiliary nodes associated with
each face capture unary potentials in the original problem.

the purposes of estimating the partition function and mini-
mum energy state respectively. For energy minimization, it
is well-known that any set of subproblems that cover every
edge is sufficient to achieve the TRW bound; but what is
the best set of planar graphs to use? Is it necessary to use
all outer-planar or even all planar subgraphs? It turns out
that consistency on the set of all outer-planar or planar sub-
graphs is equivalent to consistency on all cycles of G. This
observation leads to algorithms such as reweighted perfect
matching [8], which explicitly constructs a set of subprob-
lems that form a complete cycle basis, or incremental algo-
rithms to enforce cycle constraints [1 1, 12, 6].

4. Planar Cycle Coverings

Consider a planar embedding of the graph G correspond-
ing to a binary MRF. Since we cannot directly connect the
unary node X to every node in the graph without losing
planarity, we propose the following relaxation. For each
face f of G add an independent copy of the unary node X g
and connect it to all vertices on the boundary of the face
with weights Olf ; see Figure 1 above. Let IV; be the set of
unary node copies attached to node 7. We split the original
unary potential 6; across all the unary face nodes connected
to i while maintaining the constraint that >, v 07 =0,
Using this system we have the following relaxation

Eyap= min Zaij[Xi # X;]+ ZOZ[Xi # X{]
X:X{=Xo 5 07

>min Y 0,[X; # X+ Y 071X # X]] )
i>j if

The inequality arises because we have dropped the con-
straint that all copies of X take on the same value. On
the other hand, since the graph corresponding to the relax-
ation in Equation 5 is planar, we can compute the minimum
exactly. Furthermore, we have freedom to adjust the 9{ pa-
rameters so long as they sum up to our original parameters.
This yields the variational problem

Epcc = _max min » 0;[X; 2 X1+ Y 07 (X # X{]
0.3 0f=0. X i35 if
(0)



where Fyrap > Epcce.

Although this planar decomposition includes duplicate
copies of nodes from the original problem, it differs from
standard dual decomposition in that there are not multi-
ple independent subproblems but just a single, larger pla-
nar problem to be solved. This is analogous to our work in
[15] which replaces the collection of spanning trees in TRW
with a single “covering tree”. We refer to this construction
as a planar cycle covering of the original graph since the
singular potentials for each face cycle are covered by some
auxiliary node and in fact all other cycles also are covered
in the following precise sense:

Theorem 4.1 The lower-bound given by the planar cycle
covering graph is equal to the lower-bound given by de-
composition into the collection of all cycles.

For a proof and details see the technical report [16].

4.1. Bound optimization

As with dual decomposition, the parameters may be op-
timized using subgradient or marginal fixed-point updates.
For example, the subgradi f i -

ple, the subgradient updates for Qi at a given set
ting of X can be easily computed by taking a gradient and
enforcing the summation constraint. This yields the update
rule

0 =0/ +o | [X; £ Xx]] - SNxi£AXY | D

INIgeN

where | V;| is the number of auxiliary face nodes attached to
X and « is a stepsize parameter. After each such gradient
step, one must recompute the optimal setting of X which
can be done efficiently using perfect matching.

The subgradient update lends itself to a simple interpre-
tation. If Xg disagrees with X; but the other neighboring
copies { X7} do not, then the cost for X/ and X disagree-
ing is increased. On the other hand, if all the copies { X{ }
take on the same state then the update leaves the parameters
unchanged.

5. Planar Subproblems for non-Binary MRFs

We would like to exploit the tractability of binary planar
problems to lower-bound energies for planar MRFs where
each node takes on one of d states. There is clearly not a
one-to-one mapping from our d-state MRF to a binary pla-
nar problem in general. However, if the pairwise potentials
happened to take on only two values across the d x d possi-
ble states along every edge, then we could first project down
to an equivalent binary problem and then lift the solution
back to the original state space.

To be precise, for a given subproblem k with nodes X5,
suppose we partition the state space of the original variables

X into two subsets S¥USF = {1...d}. We allow for each
node 7 in each subproblem k to have a distinct partition. We
will say that the potentials % are of the planar binary type
if the graph G(0*) is planar, 6¥ = 0 and ij is of the form:

A (XFeShHe
0 :  otherwise
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where @ denotes exclusive-or. Then we can define a pro-
jected energy function of the form shown in Equation 2 with
binary variables X ¥ where Xf =1 < XF e SFand
edge weights )\fj. The solution to this binary problem can
be found efficiently using perfect matching.

We can now construct a lower-bound consisting of a tree-
structured problem (as in TRW) along with the set of binary
subproblems defined by partitions {S*, S?,...}. We write
this optimization problem as:

Paiap 2 %) g, 22 fu it
2 2 P XXt

'LJ 7J. v
SN ek xEXE, ®)

(i,4),k wv

subject to the constraints:
Z ef,u = e’i;’u«
t

6" is of the planar blnary type

Z 91] ;uv + G?j;uv = eij;uv

By convention, index ¢ always runs over the copies of nodes
X! in the tree structured problem and index k always runs
over copies in the planar problems. We use 9 to denote the
allocation of the pairwise potentials to the tree structured
subproblem. ¢;; is the index of the copy of node X; which
is connected along edge 7j in the tree.

In optimizing the bound, we are trying to find an allo-
cation of the unary parameters among copies of the nodes
in the tree and allocations of the pairwise parameters across
the tree and binary planar subproblems. We use subgradient
bundle trust techniques for solving this bound optimization
problem. For a fixed value of the X variables, the function
is linear in #. In the optimization, one alternates between
(1) solving the minimization for the X using dynamic pro-
gramming to find { X'} and perfect matching to find { X*}
and (2) updating 6 using a gradient step.

6. Experimental Results and Discussion

We demonstrate the performance of the planar cycle
cover bound on randomly generated binary grid problems,
and compare against two state-of-the-art approaches: max-
product linear programming (MPLP) with incrementally
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Figure 2. Average convergence behavior of lower- and upper-
bounds for randomly generated 32x32 binary grid problems. We
compare PCC, the planar cycle cover bound (blue) to RPM (green)
and MPLP (red). Energies shown are averaged over 10 random
problem instances and plotted relative to a MAP energy of 0.

added cycles [12] and reweighted perfect matching (RPM)
[8]. Each problem consists a grids of size NxN with pair-
wise potentials drawn from a uniform distribution 60;; ~
U(—1,1). The unary potentials are generated from a uni-
form distribution §; ~ U(—a,a), where the magnitude a
determines the difficulty of the problem. Figure 2 shows
the upper and lower bounds found by each algorithm as
a function of time, for 32 x 32 problem instances with
a = 0.8. Across a range of problem instance sizes, we
find that the PCC algorithm yields solutions 10-100x faster
and converges to the MAP solution more frequently on hard
problem instances.

In further experiments, we have demonstrated the effi-
cacy of planar subproblems for solving non-binary MRFs.
A key difficulty is in choosing a small number of such sub-
problems to include. We adopt a cutting-plane type strat-
egy in which we optimize the lower-bound to convergence
and then if the bound isn’t tight, we use the current de-
coding from the tree in order to construct a partitioning of
each node’s state-space and add the resulting planar sub-
problem. This procedure guarantees that we add new cycle
constraints at each iteration. In practice, for many prob-
lem instances adding a few sub-problems in this manner
quickly yields a tight lower-bound. For problems with long-
range cyclic dependencies, this method appears to outper-
form MPLP (which incrementally adds small local cycles).

We have described new variational bounds for perform-
ing inference in planar MRFs. Our bounds subsume those
given by both the tree-reweighted (TRW) and outer-planar
decompositions since they implicitly include every edge
and cycle as a sub-problem. Unlike approaches such as
MPLP which successively add cycles, we are able to get
the full benefit of all cycle constraints immediately (in the
binary case) or in large batches (in the d-state case). As a
result we achieve fast convergence in practice.
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