
Fast Inference with
Min-Sum Matrix Product

Pedro Felzenszwalb
University of Chicago

(Brown University)

Julian McAuley
Australia National University / NICTA

Overview

Exact Inference with Graphical Models

• Classical methods:

- Dynamic programming, junction-tree, BP, etc.

- Complexity depends (exponentially) on tree-width

• Classical methods ignore form of clique potentials

• We can do better for certain (general) classes of models

- [McAuley, Caetano], [Felzenszwalb, McAuley]

- Based on fast min-sum matrix multiplication

Inference on a chain

• m variables

• n possible values (states) for each variable

• Goal: find minimum energy configurations

• O(mn2) time algorithm via dynamic programming

- Best possible for arbitrary pairwise costs

E(x1, . . . , xm) =
m−1�

i=1

Vi(xi, xi+1)

Inference on a cycle

E(x1, . . . , xm) =
m�

i=1

Vi(xi, xi+1)

• Add one edge to form loop

- One more pairwise cost

• Classical methods take O(mn3) time instead of O(mn2)

• Is this the best possible? No obvious reason why!

- [McAuley, Caetano]: ~ O(mn2.5)

- In this talk: ~ O(mn2log(n))

Why loop is harder than chain

• Extra edge increases tree-width

- “Measure of connectivity”

- Chain: tree-width = 1

- Loop: tree-width = 2

• Complexity of inference depends on tree-width

- O(mnk+1) time where k is tree-width

• Where is the room for improvement?

- Loop has tree-width 2 but only pairwise costs

• Triangulated model

- Maximal cliques have size 3

- One clique potential for each triangle

• Compute messages between neighboring triangles

- O(n3) to compute each message

- O(mn3) time for inference (best possible)

Inference with tree-width 2 model

k

i

j

l

ab

c

ma(xi, xj) = min
xk

(Vijk(xi, xj , xk) + mb(xi, xk) + mc(xk, xj))

Pairwise costs

• If we only have pairwise costs

• Then

Vijk(xi, xj , xk) = Vij(xi, xj) + Vik(xi, xk) + Vkj(xk, xj)

ma(xi, xj) = min
xk

(Vijk(xi, xj , xk) + mb(xi, xk) + mc(xk, xj))

ma(xi, xj) = Vij(xi, xj) + min
xk

(V �
ik(xi, xk) + V �

kj(xk, xj))

Min-Sum Product (MSP) of matrices

• C = A * B (n by n matrices)

- Cik = minj (Aij + Bjk)

O(n3) brute force algorithm

No known algorithm with O(n3-e) runtime in the worst case

• Strassen’s algorithm doesn’t work

Our result: O(n2 log n) expected time, assuming values in A
and B are independent samples from a uniform distribution

With tweaks this really works in practice

MSP (min-sum product) / APSP (all-pairs-shortest-paths)

• MSP reduces to APSP and vice versa

- MSP of n by n matrices

- APSP on dense graph with n nodes

- If one can be solved in O(f(n)) time so can the other

• Solving APSP in O(n3-e) is major open problem in TCS

- Best known O(n3/log(n))

Basic algorithm
MSP(A, B)

1: S := ∅

2: Cik :=∞

3: Initialize Q with entries of A, B, C

4: while S does not contain all Cik do

5: item := remove-min(Q)

6: S := S ∪ item

7: if item = Aij then

8: for Bjk ∈ S relax(Cik, Aij + Bjk)

9: end if

10: if item = Bjk then

11: for Aij ∈ S relax(Cik, Aij + Bjk)

12: end if

13: end while

relax(Cik, v)

1: if v < Cik then

2: Cik := v

3: decrease-key(Q, Cik)

4: end if

1

MSP(A, B)

1: S := ∅

2: Cik :=∞

3: Initialize Q with entries of A, B, C

4: while S does not contain all Cik do

5: item := remove-min(Q)

6: S := S ∪ item

7: if item = Aij then

8: for Bjk ∈ S relax(Cik, Aij + Bjk)

9: end if

10: if item = Bjk then

11: for Aij ∈ S relax(Cik, Aij + Bjk)

12: end if

13: end while

relax(Cik, v)

1: if v < Cik then

2: Cik := v

3: decrease-key(Q, Cik)

4: end if

1

Correctness

MSP(A, B)

1: S := ∅

2: Cik :=∞

3: Initialize Q with entries of A, B, C

4: while S does not contain all Cik do

5: item := remove-min(Q)

6: S := S ∪ item

7: if item = Aij then

8: for Bjk ∈ S relax(Cik, Aij + Bjk)

9: end if

10: if item = Bjk then

11: for Aij ∈ S relax(Cik, Aij + Bjk)

12: end if

13: end while

relax(Cik, v)

1: if v < Cik then

2: Cik := v

3: decrease-key(Q, Cik)

4: end if

Assume entries in A and B are non-negative

Let j = argminAij + Bjk

We always have Cik ≥ Aij + Bjk

So Aij and Bjk come off the queue before Cik

This implies we call relax(Cik, Aij + Bjk)

When Cik comes off the queue it equals Aij + Bjk

1

Implementation

Maintain 2n lists

I[j]: list of i such that Aij in S

K[j]: list of k such that Bjk in S

Running time determined by
number of additions and
priority queue operations

MSP(A, B)

1: S := ∅

2: Cik :=∞

3: Initialize Q with entries of A, B, C

4: while S does not contain all Cik do

5: item := remove-min(Q)

6: S := S ∪ item

7: if item = Aij then

8: for Bjk ∈ S relax(Cik, Aij + Bjk)

9: end if

10: if item = Bjk then

11: for Aij ∈ S relax(Cik, Aij + Bjk)

12: end if

13: end while

relax(Cik, v)

1: if v < Cik then

2: Cik := v

3: decrease-key(Q, Cik)

4: end if

1

MSP(A, B)

1: S := ∅

2: Cik :=∞

3: Initialize Q with entries of A, B, C

4: while S does not contain all Cik do

5: item := remove-min(Q)

6: S := S ∪ item

7: if item = Aij then

8: for Bjk ∈ S relax(Cik, Aij + Bjk)

9: end if

10: if item = Bjk then

11: for Aij ∈ S relax(Cik, Aij + Bjk)

12: end if

13: end while

relax(Cik, v)

1: if v < Cik then

2: Cik := v

3: decrease-key(Q, Cik)

4: end if

1

Runtime Analysis

• Let N = # pairs (Aij, Bjk) that are combined before we stop

- Both Aij and Bjk come off the queue

• Main Lemma: E[N] = O(n2 log n)

• Running time:

- N additions

- 3n2 insertions

- at most 3n2 remove-min

- at most N decrease-key

• Using a Fibonacci heap the expected time is O(n2 log n)

Main lemma

Let N = # pairs (Aij, Bjk) that are combined

If entries in A and B are iid samples from a uniform
distribution over [0,1] then E[N] = O(n2 log n)

• Basic idea:

- Let M be maximum value in C

- Aij, Bjk come off queue if both are at most M

- Probability that M is large is low

- Probability that both Aij, Bjk are small is low

Improvements - normalizing the inputs

1) Subtract min value from each row of A and column of B
 (add back to C in the end)

2) Remove entries from I/K if we finish a row/column of C

3) (A* search)

Let a(j) be minimum value in column j of A

Let b(j) be minimum value in row j of B

• Put Aij into Q at priority Aij + b(j)

• Put Bjk into Q at priority Bjk + a(j)

Practical issues

Fibonacci heap not practical (believe me, we tried)

Alternatives:

• Integer queue

- In principle could introduce rounding errors but can be
made exact without increasing running time

• Scaling method

- No data structures, very simple to implement

Application: snakes

Goal: trace the boundary of an object

User initializes a contour close to an object boundary

Contour moves to the boundary

• Attracted to local features (intensity gradient)

• Internal forces enforce smoothness

Optimization problem

m control points

n possible locations for each point (blue regions)

minimize:
E(x1, . . . , xm) =

m�

i=1

Vi(xi, xi+1)

triangulated model

Experimental results with real data

0 200 400 600 800 1000

n = w × w

0

15

30

45

60

W
al

lt
im

e
(s

ec
on

ds
)

Image segmentation

naı̈ve method
method from [12]
Algorithm 1
Algorithm 2

Figure 4: Interactive image segmentation with an active contour model. Left: initial placement of

the contour and search neighborhoods for the control points. Center: final segmentation. Right:

running time as a function of the search space size using different MSP algorithms.

standard inference procedure requires O(mn3), where n = w2 is the number of possible positions

for each control point. Figure 4 shows a typical result and running times obtained using different

methods for MSP as a subroutine. Using the näıve method for MSP is computationally equivalent

to classical dynamic programming solutions for this problem.

4.2 Point Pattern Matching

Many of the problems suggested in [12] involved finding maps between two point sets. Examples

include OCR [6], pose reconstruction [17], SLAM [15], and point pattern matching [13].

Here we search for a ‘template’ s with m points within a ‘target’ t containing n points. The

target consists of a (transformed) copy of the template, together with noise and outliers. An

example is shown in Figure 5. The objective function in question takes the form

f
∗ = argmin

f

�

(i,j)∈E

g(||si − sj ||, ||f(si)− f(sj)||),

where f maps points in s to points in t and for (i, j) ∈ E we have a robust elasticity constraint

defined by g, enforcing distances to be preserved to the extent possible.

Solving for f∗ corresponds to MAP estimation in a graphical model with topology defined by

E. It was shown in [12] that in many applications E forms a tractable model. We use the model

from [13] shown in Figure 1(c). For inference we run loopy belief propagation for 25 iterations in

12

naive method uses O(n3) brute-force algorithm MSP

[12] gives an O(n2.5) algorithm with (weaker) assumption that
entries come in random order

Algorithm 1: integer queue

Algorithm 2: scaling method

Application: Language modeling

Something between
bigram and trigram model

• Bigram: P(xt | xt-1)

• Trigram: P(xt | xt-1, xt-2)

• Skip-chain: P(xt | xt-1, xt-2) ~ q1(xt, xt-1) q2(xt, xt-2)

Task: recover a sentence from noisy data

Each character corrupted with probability e

Use skip model as prior over sentences P(x)

Given corrupted text y, find x maximizing P(x|y) ~ P(y|x)P(x)

(a) Skip-chain model

(b) Triangulated cycle (c) Point-matching model

Figure 1: Some typical graphical models with third-order cliques but only pairwise factors.

Let A and B be two n × n matrices. The min-sum product (MSP) of A and B is the n × n

matrix C = A⊗B defined by

Cik = min
j

Aij + Bjk; (1)

this is exactly matrix product in the min-plus (tropical) semiring.

Standard algorithms for MAP estimation with a tree-width 2 model take O(mn3) time, where

m is the number of variables in the model and n is the number of possible values for each variable.

For models that contain only pairwise factors inference can be done in O(mf(n)) time if we have

an algorithm for computing MSP of n× n matrices in O(f(n)) time.

The brute-force approach for computing MSP of n×n matrices takes O(n3) time. Unfortunately

there is no known method that improves this bound by a significant amount in the worst case. An

important difference from the standard matrix product is that the minimum operation does not

have an inverse. This means that fast matrix multiplication methods that rely on a ring structure,

such as Strassen’s algorithm [18], can not be directly applied to compute MSP.

Our main result is an algorithm for MSP that runs in O(n2 log n) expected time, assuming the

entries of each matrix are independent samples from a uniform distribution. Our basic algorithm

uses a Fibonacci heap (or similar structure) and is mainly of theoretical interest. The algorithm can

also be implemented with an integer queue to obtain a practical solution up to an additive error.

We also describe an alternative algorithm that computes exact values using a scaling technique

and avoids any complex data structure. Our experimental results show the methods perform well

in three different applications: interactive image segmentation with active contours, point pattern

matching with belief propagation and text denoising with skip-chain models.

2

Language modeling

0 200 400 600 800 1000

n (size of target graph)

0

1000

2000

3000

4000

W
al

lt
im

e
(s

ec
on

ds
)

2D Graph matching

naı̈ve method
method from [12]
Algorithm 1
Algorithm 2

Figure 5: Point pattern matching experiment. Left: tem-

plate and a scene with noise and outliers. Right: running

times for inference using different algorithms.

81 1108

n (alphabet size)

0

15

30

45

W
al

lt
im

e
(s

ec
on

ds
)

Skip-chain text denoising

naı̈ve method
method from [12]
Algorithm 1
Algorithm 2

81 107
0.00

0.08

0.16

Figure 6: Text denoising exper-

iment with different languages

(box is closeup of bottom left).

the loop of ‘width’ 2. This takes O(mn3) time per iteration using the näıve MSP method. The

performance using different MSP methods is shown in Figure 5.

4.3 Skip-Chain Models for Text Denoising

In [19], it was observed that powerful inference procedures can be developed by introducing long-

range dependencies into pairwise graphical models.

In this experiment, we adapt a simple Markov model for text denoising (typo correction): we

model not only the relationship between neighboring characters, but also the relationship between

characters at distance two. This leads to the graphical model shown in Figure 1(a).

For a sequence of length m drawn from an alphabet with n characters the objective we use is

x∗(t) = argmax
x

m�

i=1

�
p(1− I{ti}(xi)) + (1− p)I{ti}(xi)

�

� �� �
noise model

m−1�

i=1

q1(xi, xi+1)
m−2�

i=1

q2(xi, xi+2)

� �� �
prior

.

Here t is our input text, with each character corrupted with probability p, and IA(x) is the indicator

function that equals 1 if x ∈ A and 0 if x �∈ A. Our priors are extracted from the statistics of

sentences in the Leipzig corpora [16]. Inference again requires O(mn3) operations using the näıve

MSP method. The performance using different methods is shown in Figure 6. The largest language

we consider is Korean with 1108 characters.

13

(a) Skip-chain model

(b) Triangulated cycle (c) Point-matching model

Figure 1: Some typical graphical models with third-order cliques but only pairwise factors.

Let A and B be two n × n matrices. The min-sum product (MSP) of A and B is the n × n

matrix C = A⊗B defined by

Cik = min
j

Aij + Bjk; (1)

this is exactly matrix product in the min-plus (tropical) semiring.

Standard algorithms for MAP estimation with a tree-width 2 model take O(mn3) time, where

m is the number of variables in the model and n is the number of possible values for each variable.

For models that contain only pairwise factors inference can be done in O(mf(n)) time if we have

an algorithm for computing MSP of n× n matrices in O(f(n)) time.

The brute-force approach for computing MSP of n×n matrices takes O(n3) time. Unfortunately

there is no known method that improves this bound by a significant amount in the worst case. An

important difference from the standard matrix product is that the minimum operation does not

have an inverse. This means that fast matrix multiplication methods that rely on a ring structure,

such as Strassen’s algorithm [18], can not be directly applied to compute MSP.

Our main result is an algorithm for MSP that runs in O(n2 log n) expected time, assuming the

entries of each matrix are independent samples from a uniform distribution. Our basic algorithm

uses a Fibonacci heap (or similar structure) and is mainly of theoretical interest. The algorithm can

also be implemented with an integer queue to obtain a practical solution up to an additive error.

We also describe an alternative algorithm that computes exact values using a scaling technique

and avoids any complex data structure. Our experimental results show the methods perform well

in three different applications: interactive image segmentation with active contours, point pattern

matching with belief propagation and text denoising with skip-chain models.

2

Application: Point pattern matching

0 200 400 600 800 1000

n (size of target graph)

0

1000

2000

3000

4000

W
al

lt
im

e
(s

ec
on

ds
)

2D Graph matching

naı̈ve method
method from [12]
Algorithm 1
Algorithm 2

Figure 5: Point pattern matching experiment. Left: tem-

plate and a scene with noise and outliers. Right: running

times for inference using different algorithms.

81 1108

n (alphabet size)

0

15

30

45

W
al

lt
im

e
(s

ec
on

ds
)

Skip-chain text denoising

naı̈ve method
method from [12]
Algorithm 1
Algorithm 2

81 107
0.00

0.08

0.16

Figure 6: Text denoising exper-

iment with different languages

(box is closeup of bottom left).

the loop of ‘width’ 2. This takes O(mn3) time per iteration using the näıve MSP method. The

performance using different MSP methods is shown in Figure 5.

4.3 Skip-Chain Models for Text Denoising

In [19], it was observed that powerful inference procedures can be developed by introducing long-

range dependencies into pairwise graphical models.

In this experiment, we adapt a simple Markov model for text denoising (typo correction): we

model not only the relationship between neighboring characters, but also the relationship between

characters at distance two. This leads to the graphical model shown in Figure 1(a).

For a sequence of length m drawn from an alphabet with n characters the objective we use is

x∗(t) = argmax
x

m�

i=1

�
p(1− I{ti}(xi)) + (1− p)I{ti}(xi)

�

� �� �
noise model

m−1�

i=1

q1(xi, xi+1)
m−2�

i=1

q2(xi, xi+2)

� �� �
prior

.

Here t is our input text, with each character corrupted with probability p, and IA(x) is the indicator

function that equals 1 if x ∈ A and 0 if x �∈ A. Our priors are extracted from the statistics of

sentences in the Leipzig corpora [16]. Inference again requires O(mn3) operations using the näıve

MSP method. The performance using different methods is shown in Figure 6. The largest language

we consider is Korean with 1108 characters.

13

(a) Skip-chain model

(b) Triangulated cycle (c) Point-matching model

Figure 1: Some typical graphical models with third-order cliques but only pairwise factors.

Let A and B be two n × n matrices. The min-sum product (MSP) of A and B is the n × n

matrix C = A⊗B defined by

Cik = min
j

Aij + Bjk; (1)

this is exactly matrix product in the min-plus (tropical) semiring.

Standard algorithms for MAP estimation with a tree-width 2 model take O(mn3) time, where

m is the number of variables in the model and n is the number of possible values for each variable.

For models that contain only pairwise factors inference can be done in O(mf(n)) time if we have

an algorithm for computing MSP of n× n matrices in O(f(n)) time.

The brute-force approach for computing MSP of n×n matrices takes O(n3) time. Unfortunately

there is no known method that improves this bound by a significant amount in the worst case. An

important difference from the standard matrix product is that the minimum operation does not

have an inverse. This means that fast matrix multiplication methods that rely on a ring structure,

such as Strassen’s algorithm [18], can not be directly applied to compute MSP.

Our main result is an algorithm for MSP that runs in O(n2 log n) expected time, assuming the

entries of each matrix are independent samples from a uniform distribution. Our basic algorithm

uses a Fibonacci heap (or similar structure) and is mainly of theoretical interest. The algorithm can

also be implemented with an integer queue to obtain a practical solution up to an additive error.

We also describe an alternative algorithm that computes exact values using a scaling technique

and avoids any complex data structure. Our experimental results show the methods perform well

in three different applications: interactive image segmentation with active contours, point pattern

matching with belief propagation and text denoising with skip-chain models.

2

Map points in template to points in target
preserving distances between certain pairs

template

target

Application: Parsing

Parsing with stochastic context-free grammars

• O(n3) with dynamic programming (CKY)

• Reduces to MSP with Valiant’s transitive closure method

RNA Secondary structure prediction

• O(n3) dynamic programming

• Reduces to parsing with special grammar

Some open questions

• Why does it work on non-random inputs?

• Characterize what “normalization” is doing

- How does it relax assumptions on input distribution?

• Can we get an O(n3-e) worst case algorithm for MSP?
(randomized)

• Can we get a practical parsing method?

- Avoid transitive closure machinery

