Fast Inference with
Min-Sum Matrix Product

Pedro Felzenszwalb
University of Chicago
(Brown University)

Julian McAuley
Australia National University / NICTA

Overview

Exact Inference with Graphical Models
® (lassical methods:
- Dynamic programming, junction-tree, BP, etc.
- Complexity depends (exponentially) on tree-width
® (lassical methods 1ignore form of clique potentials
® We can do better for certain (general) classes of models
- [McAuley, Caetano], [Felzenszwalb, McAuley]

- Based on fast min-sum matrix multiplication

Inference on a chain

E($1, “. ,Zl?m)

|
S
S
3
I
p—

m variables

n possible values (states) for each variable

Goal: find minimum energy configurations
O(mn?) time algorithm via dynamic programming

- Best possible for arbitrary pairwise costs

Inference on a cycle

NGl

E(x1,...,0m) = Z Vi(zi, Tit1)
i=1

® Add one edge to form loop

- One more pairwise cost
® (lassical methods take O(mn?) time instead of O(mn?)
® s this the best possible? No obvious reason why!

- [McAuley, Caetano]: ~ O(mn?-)

- In this talk: ~ O(mn?log(n))

Why loop 1s harder than chain

® [Extra edge increases tree-width
- “Measure of connectivity”
— Chain: tree-width = 1
- Loop: tree-width = 2
® (Complexity of inference depends on tree-width

- O(mn*+1) time where k 1s tree-width

® Where 1s the room for improvement?

- Loop has tree-width 2 but only pairwise costs

Inference with tree-width 2 model

® TTriangulated model

- Maximal cliques have size 3

- One clique potential for each triangle

® Compute messages between neighboring triangles

ma(lEi,Q’}j) — Iglkn(%]k(x’uajjvxk) + mb(xiaxk) + mc(ajkaxj))

- O(n’) to compute each message

- O(mn?) time for inference (best possible)

Pairwise costs

Mg (i, ;) = min(Vig (i, x4, k) + my(xi, 2x) + me(xg, 4))
T J,

® [f we only have pairwise costs
Vije (@i, x5,) = Vij(wi, 25) + Vie(xs, o) + Vij (2, 75)

® Then

Ma (i, x5) = Vij(xs, x5) + min(Viy (x4, 2x) + Vi, (28, 25))
Lk

Min-Sum Product (MSP) of matrices

® C =A*B (nbynmatrices)
- Cik=min; (A;; + Bj)
O(n°) brute force algorithm
No known algorithm with O(n7-¢) runtime 1n the worst case

® Strassen’s algorithm doesn’t work

Our result: O(n?log n) expected time, assuming values in A

and B are independent samples from a uniform distribution

With tweaks this really works in practice

MSP (min-sum product) / APSP (all-pairs-shortest-paths)

® MSP reduces to APSP and vice versa
— MSP of n by n matrices
- APSP on dense graph with n nodes

- If one can be solved 1n O(f(n)) time so can the other

® Solving APSP in O(n3-¢) 1s major open problem in TCS
- Best known O(n’/log(n))

Basic algorithm

MSP(A, B)

1: S =9

2: O := 00

3: Initialize () with entries of A, B, C

4: while S does not contain all C;; do

5:

6:

7:

8:

9:

10:

11:

12:

item := remove-min(Q))
S = S Uitem
if item = A;; then

for B, € S relax(Cix, Aij + Bjk)
end if
if «tem = Bj; then

for A;; € S relax(Ciy, Aij + Bji)
end if

13: end while

1:

2:

3:

4.

relax(Cix, v)

if v < C;; then
Cik ' =v
decrease-key(Q, C;i)
end if

Correctness

Assume entries in A and B are non-negative

Let j = argmin A4;; + B

We always have C;, > A;; + B

So A;; and Bji come off the queue before Cjy,
This implies we call relax(Ci, Aij + Bjk)

When Cjj, comes off the queue it equals A;; + B,

Implementation

MSP(A, B)

1: S =9

2: O := 00

3: Initialize () with entries of A, B, C

4: while S does not contain all C;; do

5:

6:

7:

8:

9:

10:

11:

12:

item := remove-min(Q))
S = S Uitem
if item = A;; then

for B, € S relax(Cix, Aij + Bjk)
end if
if item = Bj; then

for A;; € S relax(Ciy, Aij + Bji)
end if

13: end while

relax(Cjg, v)

1: 1f v < Czk then
2: Ozk =0
3: decrease-key(Q, Cjr)

4: end if

Maintain 2n lists
I[j]: list of 7 such that A;; in S
K[j]: list of k such that By in §

Running time determined by
number of additions and
priority queue operations

Runtime Analysis

® [et N =+# pairs (A;;, Bjx) that are combined before we stop
- Both A;; and Bjx come oft the queue
® Main Lemma: E[N] = O(n? log n)
® Running time:
- N additions
- 3n? Insertions
- at most 3n¢ remove-min
- at most N decrease-key

® Using a Fibonacci heap the expected time is O(n? log n)

Main lemma

Let N = # pairs (A;;, Bjx) that are combined

If entries in A and B are 11d samples from a uniform
distribution over [0,1] then E[N] = O(n? log n)

® Basic idea:
- Let M be maximum value in C
- A, Bjx come oft queue if both are at most M
— Probability that M 1s large 1s low

- Probability that both A;;, Bjx are small 1s low

Improvements - normalizing the inputs

1) Subtract min value from each row of A and column of B
(add back to C 1n the end)

2) Remove entries from //K 1f we finish a row/column of C
3) (A* search)
Let a(j) be minimum value in column j of A
Let b(j) be minimum value in row j of B
® Put A; into Q at priority A;; + b(j)

® Put Bj; into Q at priority Bjx + a(j)

Practical 1ssues

Fibonacci heap not practical (believe me, we tried)
Alternatives:
® Integer queue

— In principle could introduce rounding errors but can be
made exact without increasing running time

® Scaling method

- No data structures, very simple to implement

Application: snakes

Goal: trace the boundary of an object
User 1nitializes a contour close to an object boundary
Contour moves to the boundary

® Attracted to local features (intensity gradient)

® Internal forces enforce smoothness

Optimization problem

triangulated model
m control points
n possible locations for each point (blue regions)

minimize:

Experimental results with real data

Image segmentation

—e naive method /
+—+ method from [12]
A—4A Algorithm 1
BT o—o Algorithm 2

60 |-

Wall time (seconds)

O]]
0 200 400 600 800 1000
n=wXuw

naive method uses O(n’) brute-force algorithm MSP

[12] gives an O(n?~) algorithm with (weaker) assumption that
entries come in random order

Algorithm 1: integer queue

Algorithm 2: scaling method

Application: Language modeling

Something between
bigramand trigrammodel @ @ ® © G G G

® Bigram: P(x; | x:1)

® Trigram: P(x: | xi1, Xt-2)

® Skip-chain: P(x; | xr1, x-2) ~ q1(xs, Xt-1) g2(Xt, X1-2)
Task: recover a sentence from noisy data
Each character corrupted with probability e
Use skip model as prior over sentences P(x)

Given corrupted text y, find x maximizing P(xly) ~ P(ylx)P(x)

Language modeling

Skip-chain text denoising

* naive method i

+ + method from [12]
| A A Algorithm 1
® @ Algorithm 2

N
ot

0.16 -

| 0.08 |-e . ° . titi

> @

Wall time (seconds)
»

3

>

e

o)

o

0.00

() L—ama

81 1708
n (alphabet size)

Application: Point pattern matching

Map points in template to points in target
preserving distances between certain pairs (o) Point-matching model

2D Graph matching

4000 F
. —e naive method
e
template :..-"';....;;:" = +—+ method from [12]
S 3000 | a—A Algorithm 1
*0 TL% 3 ®&—e Algorithm 2
s o LW o
o ° o? ° g)/
o et o 2000
S A £
oop® . —_
WOV S e, T 1000
e . - e’ ot =
’ \: '... e s
target °0 200 400 600 800 1000

n (size of target graph)

Application: Parsing

Parsing with stochastic context-free grammars

® ((n’) with dynamic programming (CKY)

® Reduces to MSP with Valiant’s transitive closure method

RNA Secondary structure prediction
® ((n’) dynamic programming

® Reduces to parsing with special grammar

Some open questions

® Why does it work on non-random inputs?
® (haracterize what “‘normalization” 1s doing

- How does it relax assumptions on input distribution?

® (Can we get an O(n’-¢) worst case algorithm for MSP?
(randomized)

® (Can we get a practical parsing method?

- Avoid transitive closure machinery

