Fast Inference with Min-Sum Matrix Product

Pedro Felzenszwalb University of Chicago (Brown University)

Julian McAuley Australia National University / NICTA

Overview

Exact Inference with Graphical Models

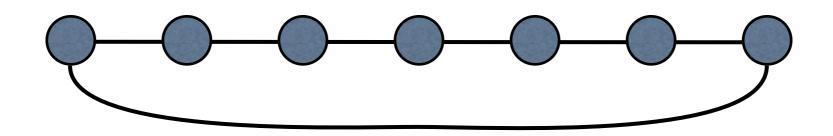
- Classical methods:
 - Dynamic programming, junction-tree, BP, etc.
 - Complexity depends (exponentially) on tree-width
- Classical methods ignore form of clique potentials
- We can do better for certain (general) classes of models
 - [McAuley, Caetano], [Felzenszwalb, McAuley]
 - Based on fast min-sum matrix multiplication

Inference on a chain

$$E(x_1, \dots, x_m) = \sum_{i=1}^{m-1} V_i(x_i, x_{i+1})$$

- *m* variables
- *n* possible values (states) for each variable
- Goal: find minimum energy configurations
- $O(mn^2)$ time algorithm via dynamic programming
 - Best possible for arbitrary pairwise costs

Inference on a cycle



$$E(x_1, \dots, x_m) = \sum_{i=1}^m V_i(x_i, x_{i+1})$$

- Add one edge to form loop
 - One more pairwise cost
- Classical methods take $O(mn^3)$ time instead of $O(mn^2)$
- Is this the best possible? No obvious reason why!
 - [McAuley, Caetano]: $\sim O(mn^{2.5})$
 - In this talk: $\sim O(mn^2\log(n))$

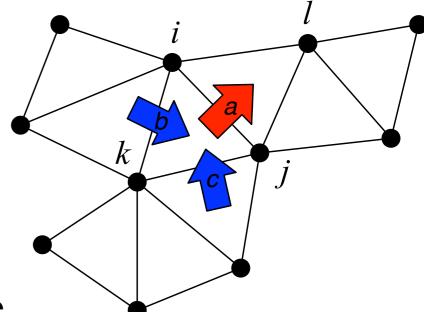
Why loop is harder than chain

- Extra edge increases tree-width
 - "Measure of connectivity"
 - Chain: tree-width = 1
 - Loop: tree-width = 2
- Complexity of inference depends on tree-width
 - $O(mn^{k+1})$ time where k is tree-width

- Where is the room for improvement?
 - Loop has tree-width 2 but only pairwise costs

Inference with tree-width 2 model

- Triangulated model
 - Maximal cliques have size 3



Compute messages between neighboring triangles

$$m_a(x_i, x_j) = \min_{x_k} (V_{ijk}(x_i, x_j, x_k) + m_b(x_i, x_k) + m_c(x_k, x_j))$$

- $O(n^3)$ to compute each message
- $O(mn^3)$ time for inference (best possible)

Pairwise costs

$$m_a(x_i, x_j) = \min_{x_k} (V_{ijk}(x_i, x_j, x_k) + m_b(x_i, x_k) + m_c(x_k, x_j))$$

If we only have pairwise costs

$$V_{ijk}(x_i, x_j, x_k) = V_{ij}(x_i, x_j) + V_{ik}(x_i, x_k) + V_{kj}(x_k, x_j)$$

Then

$$m_a(x_i, x_j) = V_{ij}(x_i, x_j) + \min_{x_k} (V'_{ik}(x_i, x_k) + V'_{kj}(x_k, x_j))$$

Min-Sum Product (MSP) of matrices

- C = A * B (*n* by *n* matrices)
 - $C_{ik} = \min_{j} (A_{ij} + B_{jk})$

 $O(n^3)$ brute force algorithm

No known algorithm with $O(n^{3-e})$ runtime in the worst case

Strassen's algorithm doesn't work

Our result: $O(n^2 \log n)$ expected time, assuming values in A and B are independent samples from a uniform distribution

With tweaks this really works in practice

MSP (min-sum product) / APSP (all-pairs-shortest-paths)

- MSP reduces to APSP and vice versa
 - MSP of *n* by *n* matrices
 - APSP on dense graph with *n* nodes
 - If one can be solved in O(f(n)) time so can the other

- Solving APSP in $O(n^{3-e})$ is major open problem in TCS
 - Best known $O(n^3/\log(n))$

Basic algorithm

MSP(A, B)

1:
$$S := \emptyset$$

2:
$$C_{ik} := \infty$$

3: Initialize Q with entries of A, B, C

4: while S does not contain all C_{ik} do

5:
$$item := remove-min(Q)$$

6:
$$S := S \cup item$$

7: **if**
$$item = A_{ij}$$
 then

8: for
$$B_{jk} \in S \operatorname{relax}(C_{ik}, A_{ij} + B_{jk})$$

9: end if

10: **if**
$$item = B_{jk}$$
 then

11: for
$$A_{ij} \in S \operatorname{relax}(C_{ik}, A_{ij} + B_{jk})$$

12: end if

13: end while

 $relax(C_{ik}, v)$

1: if $v < C_{ik}$ then

 $2: \quad C_{ik} := v$

3: decrease-key (Q, C_{ik})

4: end if

Correctness

Assume entries in A and B are non-negative

Let $j = \operatorname{argmin} A_{ij} + B_{jk}$

We always have $C_{ik} \geq A_{ij} + B_{jk}$

So A_{ij} and B_{jk} come off the queue before C_{ik}

This implies we call $relax(C_{ik}, A_{ij} + B_{jk})$

When C_{ik} comes off the queue it equals $A_{ij} + B_{jk}$

Implementation

MSP(A, B)

1:
$$S := \emptyset$$

2:
$$C_{ik} := \infty$$

3: Initialize
$$Q$$
 with entries of A , B , C

4: while S does not contain all C_{ik} do

5:
$$item := remove-min(Q)$$

6:
$$S := S \cup item$$

7: **if**
$$item = A_{ij}$$
 then

8: for
$$B_{jk} \in S \operatorname{relax}(C_{ik}, A_{ij} + B_{jk})$$

9: end if

10: **if**
$$item = B_{jk}$$
 then

11: for
$$A_{ij} \in S \operatorname{relax}(C_{ik}, A_{ij} + B_{jk})$$

12: **end if**

13: end while

 $\operatorname{relax}(C_{ik}, v)$

1: if $v < C_{ik}$ then

 $2: \quad C_{ik} := v$

3: decrease-key (Q, C_{ik})

4: end if

Maintain 2n lists

I[j]: list of i such that A_{ij} in S

K[j]: list of k such that B_{jk} in S

Running time determined by number of additions and priority queue operations

Runtime Analysis

- Let N = # pairs (A_{ij}, B_{jk}) that are combined before we stop
 - Both A_{ij} and B_{jk} come off the queue
- Main Lemma: $E[N] = O(n^2 \log n)$
- Running time:
 - *N* additions
 - $3n^2$ insertions
 - at most $3n^2$ remove-min
 - at most N decrease-key
- Using a Fibonacci heap the expected time is $O(n^2 \log n)$

Main lemma

Let N = # pairs (A_{ij}, B_{jk}) that are combined

If entries in *A* and *B* are iid samples from a uniform distribution over [0,1] then $E[N] = O(n^2 \log n)$

- Basic idea:
 - Let M be maximum value in C
 - A_{ij} , B_{jk} come off queue if both are at most M
 - Probability that *M* is large is low
 - Probability that both A_{ij} , B_{jk} are small is low

Improvements - normalizing the inputs

- 1) Subtract min value from each row of *A* and column of *B* (add back to *C* in the end)
- 2) Remove entries from *I/K* if we finish a row/column of *C*
- 3) (A* search)

Let a(j) be minimum value in column j of A

Let b(j) be minimum value in row j of B

- Put A_{ij} into Q at priority $A_{ij} + b(j)$
- Put B_{jk} into Q at priority $B_{jk} + a(j)$

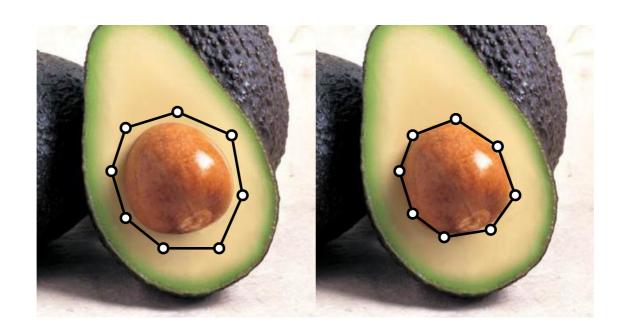
Practical issues

Fibonacci heap not practical (believe me, we tried)

Alternatives:

- Integer queue
 - In principle could introduce rounding errors but can be made exact without increasing running time
- Scaling method
 - No data structures, very simple to implement

Application: snakes



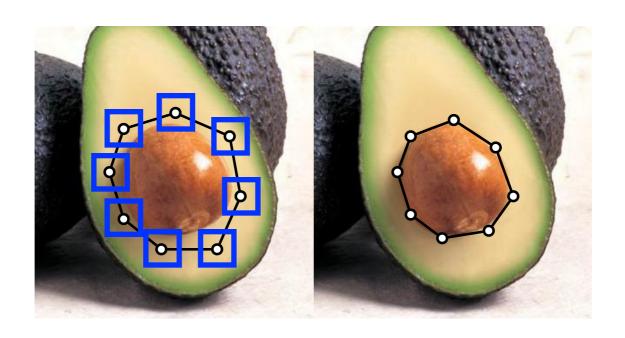
Goal: trace the boundary of an object

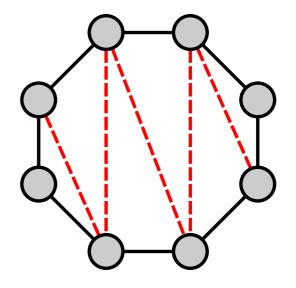
User initializes a contour close to an object boundary

Contour moves to the boundary

- Attracted to local features (intensity gradient)
- Internal forces enforce smoothness

Optimization problem





triangulated model

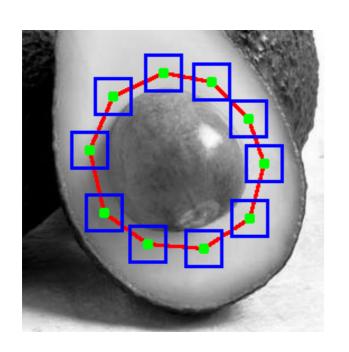
m control points

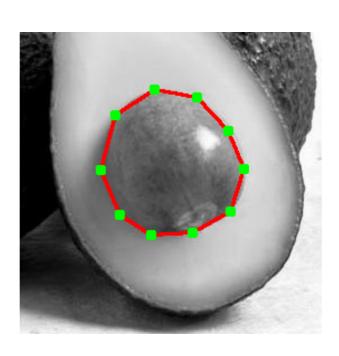
n possible locations for each point (blue regions)

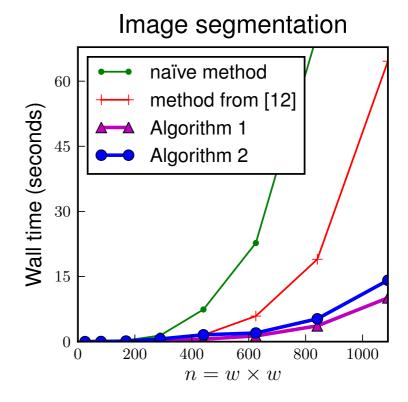
minimize:

$$E(x_1, \dots, x_m) = \sum_{i=1}^m V_i(x_i, x_{i+1})$$

Experimental results with real data







naive method uses $O(n^3)$ brute-force algorithm MSP

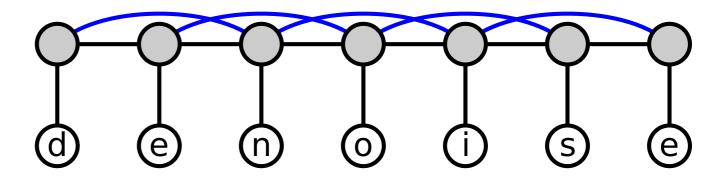
[12] gives an $O(n^{2.5})$ algorithm with (weaker) assumption that entries come in random order

Algorithm 1: integer queue

Algorithm 2: scaling method

Application: Language modeling

Something between bigram and trigram model



- Bigram: $P(x_t \mid x_{t-1})$
- Trigram: $P(x_t \mid x_{t-1}, x_{t-2})$
- Skip-chain: $P(x_t \mid x_{t-1}, x_{t-2}) \sim q_1(x_t, x_{t-1}) q_2(x_t, x_{t-2})$

Task: recover a sentence from noisy data

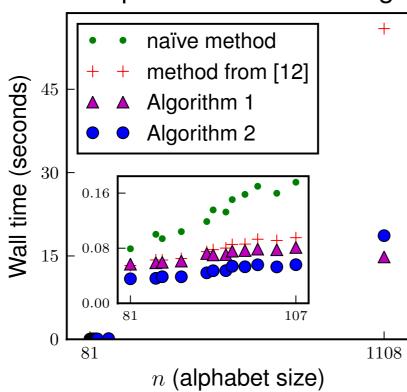
Each character corrupted with probability e

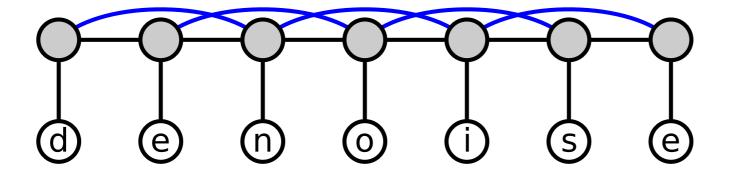
Use skip model as prior over sentences P(x)

Given corrupted text y, find x maximizing $P(x|y) \sim P(y|x)P(x)$

Language modeling

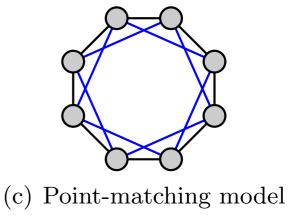
Skip-chain text denoising

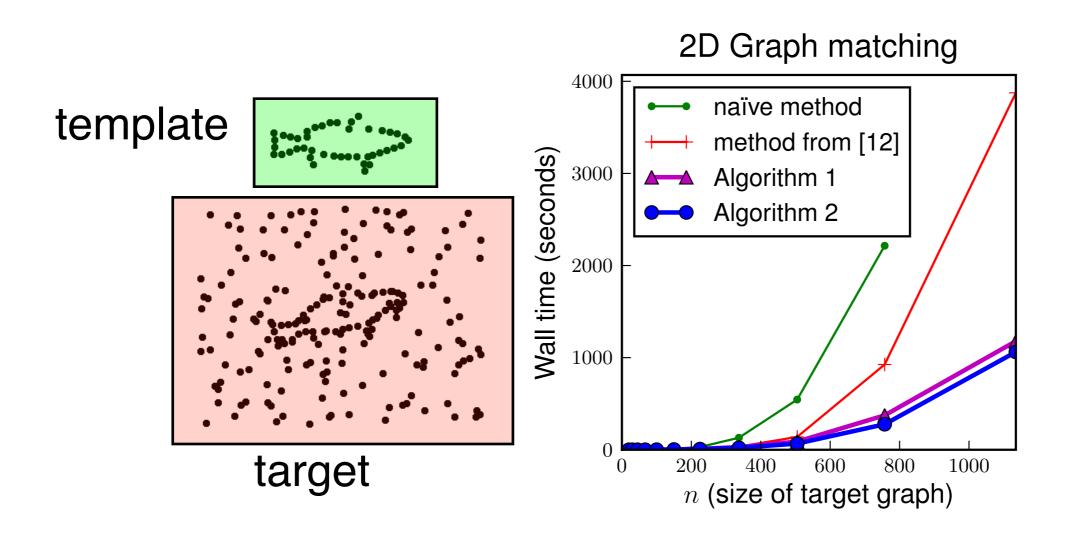




Application: Point pattern matching

Map points in template to points in target preserving distances between certain pairs





Application: Parsing

Parsing with stochastic context-free grammars

- $O(n^3)$ with dynamic programming (CKY)
- Reduces to MSP with Valiant's transitive closure method

RNA Secondary structure prediction

- $O(n^3)$ dynamic programming
- Reduces to parsing with special grammar

Some open questions

- Why does it work on non-random inputs?
- Characterize what "normalization" is doing
 - How does it relax assumptions on input distribution?

• Can we get an $O(n^{3-e})$ worst case algorithm for MSP? (randomized)

- Can we get a practical parsing method?
 - Avoid transitive closure machinery