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Approximating a Unit Disc

» Using linear inequalities, how can we approximate the unit disc?
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Naive approach
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» Inefficient, € < 1079 needs k > 2200
» Can we do better?

=] F = 9arx
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Extended Formulations

» Augment variable set (x1, x2) to (x1, X2, &)
» Define set S on enlarged space
» Project

C = proj,, »,S
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Extended Formulations

» Augment variable set (x1, x2) to (x1, X2, &)
» Define set S on enlarged space
» Project

C = proj,, »,S
» Amazing fact in high dimensions:

Simple S (small number of inequalities) can create complicated C
(exponential number of inequalities)
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Ben-Tal/Nemirovski Polyhedron

Variables x1, x>, and a = (Ejﬂ?j)j 0,....k, parameter k

€0 > x, ¢°
°>x, 1°
. T s . T s .
§J:cos(2jﬁ)ff 1+S|n(2jﬁ)n’ 1 Jj=1..,k
HZ—Sin(%)&j_l—i-cos(;ﬁ)nj_l, j=1,... .,k
2 sin () €7 —eos () 0 dm
77’25|n(2j+1)§ cos | 57 7w, j=1,...,k
<,

™
’I']k < tan (ﬁ) fk.
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Ben-Tal/Nemirovski Polyhedron (cont)

Projection of Ben—Tal-Nemirovski polytope, k=2
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Ben-Tal/Nemirovski Polyhedron (cont)

Projection of Ben—Tal-Nemirovski polytope, k=3
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Ben-Tal/Nemirovski Polyhedron (cont)

Projection of Ben—Tal-Nemirovski polytope, k=4
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Ben-Tal/Nemirovski Polyhedron (cont)

Projection of Ben—Tal-Nemirovski polytope, k=7
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Ben-Tal/Nemirovski Polyhedron (cont)

» BTN-k, for k =2,3,4,...
» Number of non-zero coefficients in system: 9k + 11, linear in k
» Number of vertices in (x1, x2)-projection: 2¢+1

k No. vert. NNZ €

4 32 47 0.0048

5 64 56 0.0012

6 128 65 3.0-107*
k 2k+1 9k+11  O(3x)
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Ben-Tal/Nemirovski Polyhedron (cont)

v

BTN-k, for k =2,3,4,...

Number of non-zero coefficients in system: 9k + 11, linear in k

v

v

Number of vertices in (x1, xp)-projection: 2k+1

» BTN:error e = —_1— —1=0(%) (¢ <3-1077 for k = 12)

os i 4
. 2
» Naive: error e = 1= — 1~ 7> (e < 107 for k = 2,200)

s
k

» — A much better approximation
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Decomposable Interactions

From Sets to Functions

Connections to the Literature
» Extended formulations for polyhedral sets (Balas, 1975)

» Extended formulations for convex functions in integer programs
(Miller and Wolsey, 2003)

In computer vision (under various names, often combined with an
inference method)

(Rother and Kohli, 2011)
(Ladicky et al., ECCV 2010)
(Ishikawa, CVPR 2009)

v
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Higher-order Interactions
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Higher-order Interactions
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Higher-order Interactions

» Problem: graphical model formulation not expressive enough to
capture structure of Ef,
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Decomposable Interactions

Higher-order Interactions

» Problem: graphical model formulation not expressive enough to
capture structure of Ef,
» Decomposable higher-order interactions
> Representable by a set of T new variables with state spaces S,
» T, S: bounded by a polynomial in the scope size and variable state
spaces
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Decomposable Interactions

Decomposable Higher-order Interactions
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Decomposable Interactions

Decomposable Higher-order Interactions

1. Partition V¢ into a small set Z of equivalence classes,
2. Introduce a |new model variable Z ¢ Z
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Decomposable Higher-order Interactions

. Partition Vr into a small set Z of equivalence classes,
. Introduce a new model variable Z € Z

1
2
3. Build simple energy model for each class (e.g. constant)
4

Integrate with original variables
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Example 1: Pattern-based Potential

» (Rother et al., CVPR 2009), (Komodakis and Paragios, CVPR 2009)

» Match a small set of patterns with low energy or assign a default
energy

» Pattern set P,

. CyF ifyreP
Er(yr) = { Cmax otherwise.
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Example 1: Pattern-based Potential (cont)

Er(yr) = { Cor

ifyreP
Cnax Otherwise.
» Fix joint configuration yr

Sebastian Nowozin

» Pattern cost C, or Cpax
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Decomposable Interactions

Example 2: Co-occurence Potential

» (Ladicky et al., ECCV 2010), (Delong et al., CVPR 2010)

» Have a cost function based on what sets of labels appear
(independent of their counts)
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Decomposable Interactions

Example 2: Co-occurence Potential

» (Ladicky et al., ECCV 2010), (Delong et al., CVPR 2010)

» Have a cost function based on what sets of labels appear
(independent of their counts)

oy <3 : =, = 9ac
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Example 2: Co-occurence Potential (cont)

F

Er(y) = C(L(y)) = C({e,*,*})

Extended formulation with “has-color”-variable
This extended formulation: further conditions required for Eg

Extension possible for arbitrary Eg

vV vV v v

Size polynomial in the number of subsets
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Example 2: Co-occurence Potential (cont)

(zd (@) (&)

Extended formulation with “has-color”-variable
This extended formulation: further conditions required for Ef
Extension possible for arbitrary Ep

vV v v v

Size polynomial in the number of subsets
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Example 2: Co-occurence Potential (cont)

2
2Qomo

Extended formulation with “has-color”-variable

This extended formulation: further conditions required for Ef
Extension possible for arbitrary Eg

Size polynomial in the number of subsets

vV V. vY
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Non-Decomposable Interactions

Non-decomposable,

» Not representable by a small set of new variables with small state
spaces

» Requires analysis outside the graphical model framework

Examples of non-decomposable interactions
» Cooperative cuts (Jegelka and Bilmes, CVPR 2011)

» Topological constraints (Vicente et al., CVPR 2008), (Nowozin and
Lampert, CVPR 2009), (Chen et al., CVPR 2011)
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on-Decomposable Interactions

Connectivity: Connected Subgraph Polytope

Object segmentation

» “Connectedness”: the resulting object
segmentations should be connected

» (Nowozin and Lampert, CVPR 2009),
(Nowozin and Lampert, SIAM IMS
2010)

Steps
» Global potential ¥y: connectivity
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on-Decomposable Interactions

Connectivity: Connected Subgraph Polytope

Object segmentation

» “Connectedness”: the resulting object
segmentations should be connected

» (Nowozin and Lampert, CVPR 2009),
(Nowozin and Lampert, SIAM IMS
2010)

Steps
» Global potential ¥y: connectivity
» Derive a polyhedral set which captures connected subgraphs

» This set is the connected subgraph polytope
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on-Decomposable Interactions

Connectivity: Connected Subgraph Polytope

Object segmentation
» “Connectedness”: the resulting object
segmentations should be connected

» (Nowozin and Lampert, CVPR 2009),
(Nowozin and Lampert, SIAM IMS

2010)
Steps
» Global potential ¥y: connectivity
» Derive a polyhedral set which captures connected subgraphs
» This set is the connected subgraph polytope
» Use MAP-MREF linear programming relaxation, but intersect with
this set
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Non-Decomposable Interactions

Connected Subgraph Polytope (cont)

Definition (Connected Subgraph Polytope)

Given a simple, connected, undirected graph G = (V, E), consider
indicator variables y; € {0,1}, i€ V. Let C={y: G' =

(V', E’) connected, with V' = {i:y; =1}, E' = (V' x V') N E} denote
the finite set of connected subgraphs of G. Then we call the convex hull
Z = conv(C) the connected subgraph polytope.
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Non-Decomposable Interactions

Connected Subgraph Polytope (cont)

Definition (Connected Subgraph Polytope)

Given a simple, connected, undirected graph G = (V, E), consider
indicator variables y; € {0,1}, i€ V. Let C={y: G' =

(V', E’") connected, with V' ={i:y; =1}, E' = (V' x V') N E} denote
the finite set of connected subgraphs of G. Then we call the convex hull
Z = conv(C) the connected subgraph polytope.
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Non-Decomposable Interactions

Connected Subgraph Polytope (cont)

Definition (Connected Subgraph Polytope)

Given a simple, connected, undirected graph G = (V, E), consider
indicator variables y; € {0,1}, i€ V. Let C={y: G' =

(V', E’") connected, with V' ={i:y; =1}, E' = (V' x V') N E} denote
the finite set of connected subgraphs of G. Then we call the convex hull
Z = conv(C) the connected subgraph polytope.
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Non-Decomposable Interactions

Connected Subgraph Polytope (cont)

Definition (Connected Subgraph Polytope)

Given a simple, connected, undirected graph G = (V, E), consider
indicator variables y; € {0,1}, i€ V. Let C={y: G' =

(V', E’") connected, with V' ={i:y; =1}, E' = (V' x V') N E} denote
the finite set of connected subgraphs of G. Then we call the convex hull
Z = conv(C) the connected subgraph polytope.
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Non-Decomposable Interactions

Connected Subgraph Polytope (cont)

Definition (Connected Subgraph Polytope)

Given a simple, connected, undirected graph G = (V, E), consider
indicator variables y; € {0,1}, i€ V. Let C={y: G' =

(V', E’") connected, with V' ={i:y; =1}, E' = (V' x V') N E} denote
the finite set of connected subgraphs of G. Then we call the convex hull
Z = conv(C) the connected subgraph polytope.
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Non-Decomposable Interactions

Connected Subgraph Polytope (cont)

Definition (Connected Subgraph Polytope)

Given a simple, connected, undirected graph G = (V, E), consider
indicator variables y; € {0,1}, i€ V. Let C={y: G' =

(V', E’") connected, with V' ={i:y; =1}, E' = (V' x V') N E} denote
the finite set of connected subgraphs of G. Then we call the convex hull
Z = conv(C) the connected subgraph polytope.
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Non-Decomposable Interactions

Facets and Valid Inequalities

Convex polytopes have two equivalent
representations T
3

» As a convex combination of extreme d;?/ <1
points

> As a set of facet-defining linear
inequalities

A linear inequality with respect to a

polytope can be diy <1
» valid, does not cut off the polytope,
> representing a face, valid and touching,

» facet-defining, representing a face of
dimension one less than the polytope.

Sebastian Nowozin Microsoft Research Cambridge
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Warmup

Some basic properties about the connected subgraph polytope Z. Note
that Z depends on the graph structure.

Lemma
If G is connected, dim(Z) = |V

, that is, Z has full dimension.

Lemma
For all i € V, the inequalities y; > 0 and y; < 1 are facet-defining for Z.

Sebastian Nowozin Microsoft Research Cambridge
From Potentials to Polyhedra: Inference in Structured Models
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Non-Decomposable Interactions

An Exponential-sized Class of Facet-defining Inequalities

Theorem
The following linear inequalities are facet-defining for Z = conv(C).

Yityi— Y w <1, (i,j) ¢ E: VS € 8(i.)). (1)
keS

Y2

ag

Yo

Yo+y—y1 <1

Sebastian Nowozin Microsoft Research Camb
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Intuition

Non-Decomposable Interactions
[e]e]e]ele]e] o)

Vityi— Y w<1l, Y(ij)¢E:vSed(i))
kes

If two vertices i and j are selected (y; = y; = 1, shown in black), then
selected vertex.

any set of vertices which separate them (set S) must contain at least one

Sebastian Nowozin

Figure: Vertex i and j and one vertex separator set S € S(i,J).
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Formulation
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Theorem

Non-Decomposable Interactions

following constraint set.

ity — > oy SLV(ij) ¢ E:VS € S(i,)),
keS

Yi S {Oa 1}a

This means

C, the set of all connected subgraphs, can be described exactly by the
(2)
ieV

connected subgraphs,

Sebastian Nowozin

(3)

> inequalities together with integrality are a formulation of the set of
> we can attempt to relax (3) to

yi € [0; 1]7
i Fetiaties o Felieie: (faemes in Srmemred Mets

ieV.
> (Problem): number of inequalities (2) is exponential in |V|]. _

Microsoft Research Cam
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Conclusions

» Discrete graphical models are just one way to capture structure
» There are other tractable/approximable structures

» Extended formulations (latent variables with specific tying)
> Polyhedral combinatorics
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Conclusions

» Discrete graphical models are just one way to capture structure

» There are other tractable/approximable structures

» Extended formulations (latent variables with specific tying)
> Polyhedral combinatorics

Open questions
» How to perform probabilistic inference in higher-order models?
» How to parametrize and learn higher-order models?

» (Is there a more suitable formalism than either graphical models or
polytopes?)
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Thank you!

feedback most welcome

nowozin@gmail.com
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