From Potentials to Polyhedra: Inference in Structured Models

Sebastian Nowozin

Machine Learning and Perception Group Microsoft Research Cambridge

Colorado Springs, 20th June 2011

Microsoft* Research

Approximating a Unit Disc

▶ Using linear inequalities, how can we approximate the unit disc?

- ightharpoonup Error $\epsilon=rac{1}{\cosrac{\pi}{k}}-1pproxrac{\pi^2}{2k^2}$
- ▶ Inefficient, $\epsilon \le 10^{-6}$ needs k > 2200
- ► Can we do better?

- ▶ Inefficient, $\epsilon \le 10^{-6}$ needs k > 2200
- ► Can we do better?

- ightharpoonup Error $\epsilon=rac{1}{\cosrac{\pi}{k}}-1pproxrac{\pi^2}{2k^2}$
- ▶ Inefficient, $\epsilon \le 10^{-6}$ needs k > 2200
- ► Can we do better?

- Error $\epsilon = \frac{1}{\cos \frac{\pi}{k}} 1 \approx \frac{\pi^2}{2k^2}$
- ▶ Inefficient, $\epsilon \le 10^{-6}$ needs k > 2200
- ► Can we do better?

Extended Formulations

- ▶ Augment variable set (x_1, x_2) to (x_1, x_2, α)
- ▶ Define set S on enlarged space
- Project

$$\mathcal{C}=\mathrm{proj}_{x_1,x_2}\mathcal{S}$$

Amazing fact in high dimensions:
 Simple S (small number of inequalities) can create complicated C (exponential number of inequalities)

Extended Formulations

- ▶ Augment variable set (x_1, x_2) to (x_1, x_2, α)
- Define set S on enlarged space
- Project

$$\mathcal{C}=\mathrm{proj}_{x_1,x_2}\mathcal{S}$$

Amazing fact in high dimensions:
 Simple S (small number of inequalities) can create complicated C (exponential number of inequalities)

Ben-Tal/Nemirovski Polyhedron

Variables x_1 , x_2 , and $\alpha = (\xi^j, \eta^j)_{j=0,...,k}$, parameter k

$$\begin{split} \xi^0 & \geq x_1, \qquad \xi^0 \geq -x_1, \\ \eta^0 & \geq x_2, \qquad \eta^0 \geq -x_2, \\ \xi^j & = \cos\left(\frac{\pi}{2^{j+1}}\right)\xi^{j-1} + \sin\left(\frac{\pi}{2^{j+1}}\right)\eta^{j-1}, \qquad j=1,\ldots,k \\ \eta^j & \geq -\sin\left(\frac{\pi}{2^{j+1}}\right)\xi^{j-1} + \cos\left(\frac{\pi}{2^{j+1}}\right)\eta^{j-1}, \qquad j=1,\ldots,k \\ \eta^j & \geq \sin\left(\frac{\pi}{2^{j+1}}\right)\xi^{j-1} - \cos\left(\frac{\pi}{2^{j+1}}\right)\eta^{j-1}, \qquad j=1,\ldots,k \\ \xi^k & \leq 1, \\ \eta^k & \leq \tan\left(\frac{\pi}{2^{k+1}}\right)\xi^k. \end{split}$$

- ▶ BTN-k, for k = 2, 3, 4, ...
- ▶ Number of non-zero coefficients in system: 9k + 11, linear in k
- ▶ Number of vertices in (x_1, x_2) -projection: 2^{k+1}

k	No. vert.	NNZ	ϵ
4	32	47	0.0048
5	64	56	0.0012
6	128	65	$3.0 \cdot 10^{-4}$
k	2^{k+1}	9k + 11	$O(\frac{1}{4^k})$

- ▶ BTN-k, for k = 2, 3, 4, ...
- ▶ Number of non-zero coefficients in system: 9k + 11, linear in k
- ▶ Number of vertices in (x_1, x_2) -projection: 2^{k+1}
- ▶ BTN: error $\epsilon = \frac{1}{\cos \frac{\pi}{2k+1}} 1 = O(\frac{1}{4^k})$ ($\epsilon \le 3 \cdot 10^{-7}$ for k = 12)
- Naive: error $\epsilon = \frac{1}{\cos \frac{\pi}{k}} 1 \approx \frac{\pi^2}{2k^2}$ ($\epsilon \le 10^{-6}$ for k = 2,200)
- ► → A much better approximation

Polyhedra 00000 Polyhedra

From Sets to Functions

Connections to the Literature

- Extended formulations for polyhedral sets (Balas, 1975)
- Extended formulations for convex functions in integer programs (Miller and Wolsey, 2003)

In computer vision (under various names, often combined with an inference method)

- ► (Rother and Kohli, 2011)
- ► (Ladicky et al., ECCV 2010)
- ► (Ishikawa, CVPR 2009)
- **...**

- ▶ Problem: graphical model formulation not expressive enough to capture structure of *E_F*,
- Decomposable higher-order interactions
 - ▶ Representable by a set of T new variables with state spaces S_t ,
 - ➤ T, S_t bounded by a polynomial in the scope size and variable state spaces

- ▶ Problem: graphical model formulation not expressive enough to capture structure of E_F,
- Decomposable higher-order interactions
 - ▶ Representable by a set of T new variables with state spaces S_t ,
 - I, S_t bounded by a polynomial in the scope size and variable state spaces

- ▶ Problem: graphical model formulation not expressive enough to capture structure of E_F ,
- Decomposable higher-order interactions
 - ▶ Representable by a set of T new variables with state spaces S_t ,
 - T, S_t bounded by a polynomial in the scope size and variable state spaces

- ► Problem: graphical model formulation not expressive enough to capture structure of *E_F*,
- Decomposable higher-order interactions
 - ightharpoonup Representable by a set of T new variables with state spaces S_t ,
 - T, S_t bounded by a polynomial in the scope size and variable state spaces

Decomposable Higher-order Interactions

- 1. Partition \mathcal{Y}_F into a small set \mathcal{Z} of equivalence classes,
- 2. Introduce a new model variable $Z \in \mathcal{Z}$
- 3. Build simple energy model for each class (e.g. constant)
- 4. Integrate with original variables

Decomposable Higher-order Interactions

- 1. Partition \mathcal{Y}_F into a small set \mathcal{Z} of equivalence classes,
- 2. Introduce a new model variable $Z \in \mathcal{Z}$
- 3. Build simple energy model for each class (e.g. constant)
- 4. Integrate with original variables

Decomposable Higher-order Interactions

- 1. Partition \mathcal{Y}_F into a small set \mathcal{Z} of equivalence classes,
- 2. Introduce a new model variable $Z \in \mathcal{Z}$
- 3. Build simple energy model for each class (e.g. constant)
- 4. Integrate with original variables

Example 1: Pattern-based Potential

- ► (Rother et al., CVPR 2009), (Komodakis and Paragios, CVPR 2009)
- Match a small set of patterns with low energy or assign a default energy
- ▶ Pattern set \mathcal{P} .

$$E_F(y_F) = \left\{ egin{array}{ll} C_{y_F} & ext{if } y_F \in \mathcal{P} \\ C_{ ext{max}} & ext{otherwise.} \end{array}
ight.$$

Example 1: Pattern-based Potential (cont)

$$E_F(y_F) = \left\{ egin{array}{ll} C_{y_F} & ext{if } y_F \in \mathcal{P} \\ C_{ ext{max}} & ext{otherwise.} \end{array}
ight.$$

- Fix joint configuration y_F
- ▶ Pattern cost C_{y_F} or C_{\max}

Example 2: Co-occurence Potential

- ▶ (Ladicky et al., ECCV 2010), (Delong et al., CVPR 2010)
- ► Have a cost function based on what sets of labels appear (independent of their counts)

Example 2: Co-occurence Potential

- ► (Ladicky et al., ECCV 2010), (Delong et al., CVPR 2010)
- ► Have a cost function based on what sets of labels appear (independent of their counts)

Example 2: Co-occurence Potential (cont)

- Extended formulation with "has-color"-variable
- ▶ This extended formulation: further conditions required for E_F
- ightharpoonup Extension possible for arbitrary E_F
- Size polynomial in the number of subsets

Example 2: Co-occurence Potential (cont)

- Extended formulation with "has-color"-variable
- ▶ This extended formulation: further conditions required for E_F
- ightharpoonup Extension possible for arbitrary E_F
- Size polynomial in the number of subsets

Example 2: Co-occurence Potential (cont)

- Extended formulation with "has-color"-variable
- ▶ This extended formulation: further conditions required for E_F
- ightharpoonup Extension possible for arbitrary E_F
- Size polynomial in the number of subsets

Non-Decomposable Interactions

Non-decomposable,

- Not representable by a small set of new variables with small state spaces
- Requires analysis outside the graphical model framework

Examples of non-decomposable interactions

- Cooperative cuts (Jegelka and Bilmes, CVPR 2011)
- ▶ Topological constraints (Vicente et al., CVPR 2008), (Nowozin and Lampert, CVPR 2009), (Chen et al., CVPR 2011)

Connectivity: Connected Subgraph Polytope

Object segmentation

- "Connectedness": the resulting object segmentations should be connected
- (Nowozin and Lampert, CVPR 2009), (Nowozin and Lampert, SIAM IMS 2010)

Steps

- Global potential ψ_V : connectivity
- Derive a polyhedral set which captures connected subgraphs
- ► This set is the *connected subgraph polytope*
- Use MAP-MRF linear programming relaxation, but intersect with this set

Connectivity: Connected Subgraph Polytope

Object segmentation

- "Connectedness": the resulting object segmentations should be connected
- (Nowozin and Lampert, CVPR 2009), (Nowozin and Lampert, SIAM IMS 2010)

Steps

- Global potential ψ_V : connectivity
- Derive a polyhedral set which captures connected subgraphs
- ▶ This set is the *connected subgraph polytope*
- Use MAP-MRF linear programming relaxation, but intersect with this set

Connectivity: Connected Subgraph Polytope

Object segmentation

- "Connectedness": the resulting object segmentations should be connected
- (Nowozin and Lampert, CVPR 2009), (Nowozin and Lampert, SIAM IMS 2010)

Steps

- Global potential ψ_V : connectivity
- Derive a polyhedral set which captures connected subgraphs
- ▶ This set is the *connected subgraph polytope*
- Use MAP-MRF linear programming relaxation, but intersect with this set

Connected Subgraph Polytope (cont)

Definition (Connected Subgraph Polytope)

Given a simple, connected, undirected graph G = (V, E), consider indicator variables $y_i \in \{0, 1\}$, $i \in V$. Let $C = \{\mathbf{y} : G' = (V', E') \text{ connected}$, with $V' = \{i : y_i = 1\}$, $E' = (V' \times V') \cap E\}$ denote the finite set of connected subgraphs of G. Then we call the convex hull $Z = \operatorname{conv}(C)$ the *connected subgraph polytope*.

Connected Subgraph Polytope (cont)

Definition (Connected Subgraph Polytope)

Given a simple, connected, undirected graph G = (V, E), consider indicator variables $y_i \in \{0, 1\}$, $i \in V$. Let $C = \{\mathbf{y} : G' = (V', E') \text{ connected}$, with $V' = \{i : y_i = 1\}$, $E' = (V' \times V') \cap E\}$ denote the finite set of connected subgraphs of G. Then we call the convex hull $Z = \operatorname{conv}(C)$ the *connected subgraph polytope*.

Definition (Connected Subgraph Polytope)

Given a simple, connected, undirected graph G = (V, E), consider indicator variables $y_i \in \{0, 1\}$, $i \in V$. Let $C = \{\mathbf{y} : G' = (V', E') \text{ connected}$, with $V' = \{i : y_i = 1\}$, $E' = (V' \times V') \cap E\}$ denote the finite set of connected subgraphs of G. Then we call the convex hull $Z = \operatorname{conv}(C)$ the *connected subgraph polytope*.

Definition (Connected Subgraph Polytope)

Given a simple, connected, undirected graph G = (V, E), consider indicator variables $y_i \in \{0, 1\}$, $i \in V$. Let $C = \{\mathbf{y} : G' = (V', E') \text{ connected}$, with $V' = \{i : y_i = 1\}$, $E' = (V' \times V') \cap E\}$ denote the finite set of connected subgraphs of G. Then we call the convex hull $Z = \operatorname{conv}(C)$ the *connected subgraph polytope*.

Definition (Connected Subgraph Polytope)

Given a simple, connected, undirected graph G = (V, E), consider indicator variables $y_i \in \{0, 1\}$, $i \in V$. Let $C = \{\mathbf{y} : G' = (V', E') \text{ connected, with } V' = \{i : y_i = 1\}, E' = (V' \times V') \cap E\}$ denote the finite set of connected subgraphs of G. Then we call the convex hull $Z = \operatorname{conv}(C)$ the *connected subgraph polytope*.

Definition (Connected Subgraph Polytope)

Given a simple, connected, undirected graph G = (V, E), consider indicator variables $y_i \in \{0, 1\}$, $i \in V$. Let $C = \{\mathbf{y} : G' = (V', E') \text{ connected, with } V' = \{i : y_i = 1\}, E' = (V' \times V') \cap E\}$ denote the finite set of connected subgraphs of G. Then we call the convex hull $Z = \operatorname{conv}(C)$ the *connected subgraph polytope*.

Facets and Valid Inequalities

Convex polytopes have two equivalent representations

- As a convex combination of extreme points
- As a set of facet-defining linear inequalities

A linear inequality with respect to a polytope can be

- valid, does not cut off the polytope,
- representing a face, valid and touching,
- facet-defining, representing a face of dimension one less than the polytope.

Warmup

Some basic properties about the connected subgraph polytope Z. Note that Z depends on the graph structure.

Lemma

If G is connected, dim(Z) = |V|, that is, Z has full dimension.

Lemma

For all $i \in V$, the inequalities $y_i \ge 0$ and $y_i \le 1$ are facet-defining for Z.

An Exponential-sized Class of Facet-defining Inequalities

Theorem

The following linear inequalities are facet-defining for Z = conv(C).

$$y_i + y_j - \sum_{k \in S} y_k \le 1, \quad \forall (i,j) \notin E : \forall S \in \bar{\mathcal{S}}(i,j).$$
 (1)

Non-Decomposable Interactions

$$y_0 + y_2 - y_1 \le 1$$
.

Intuition

$$y_i + y_j - \sum_{k \in S} y_k \le 1, \quad \forall (i,j) \notin E : \ \forall S \in \bar{\mathcal{S}}(i,j)$$

If two vertices i and j are selected ($y_i = y_j = 1$, shown in black), then any set of vertices which separate them (set S) must contain at least one selected vertex.

Figure: Vertex i and j and one vertex separator set $S \in \bar{S}(i,j)$.

Formulation

Theorem

C, the set of all connected subgraphs, can be described exactly by the following constraint set.

$$y_i + y_j - \sum_{k \in S} y_k \le 1, \forall (i,j) \notin E : \forall S \in \mathcal{S}(i,j), \tag{2}$$

$$y_i \in \{0,1\}, \qquad i \in V. \tag{3}$$

This means

- inequalities together with integrality are a formulation of the set of connected subgraphs,
- ▶ we can attempt to relax (3) to

$$y_i \in [0; 1], \quad i \in V.$$

▶ (Problem): number of inequalities (2) is exponential in |V|.

Conclusions

- ▶ Discrete graphical models are just one way to capture structure
- ► There are other tractable/approximable structures
 - Extended formulations (latent variables with specific tying)
 - Polyhedral combinatorics

Open questions

- ▶ How to perform probabilistic inference in higher-order models?
- How to parametrize and learn higher-order models?
- (Is there a more suitable formalism than either graphical models or polytopes?)

Conclusions

- ▶ Discrete graphical models are just one way to capture structure
- ► There are other tractable/approximable structures
 - Extended formulations (latent variables with specific tying)
 - Polyhedral combinatorics

Open questions

- ▶ How to perform probabilistic inference in higher-order models?
- How to parametrize and learn higher-order models?
- (Is there a more suitable formalism than either graphical models or polytopes?)

Thank you!

feedback most welcome

nowozin@gmail.com