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Abstract
Shape matching problems are often described in
terms of structural properties, encoding the ‘elas-
ticity’ of certain joints in a rigid object. Encod-
ing such constraints often results in a hard opti-
mization problem, presenting a problem for many
learning approaches that require exact inference
schemes as a subroutine. We note that certain types
of constraints, such as isometries, result in ‘easier’
optimization problems that can be solved with low
tree-width graphical models. This allows us to ap-
ply learning in near-isometric matching scenarios,
encoding rich first-order properties, as well as iso-
metric and topological information.

Some of our models with globally rigid embeddings

model:

complexity: O(MN4) O(MN3) O(MN2
√
N) O(MN2 logN)

reference: [CC06] [MdCC10] [MCS08]

Some of our graphical models and their associated running times (for a template of size |S| = M in a scene
of size |T | = N ); white nodes denote boolean variables. The nodes of this graph are ‘embedded’ in the
plane, as shown for the model from [MCS08] at right. Our best methods are sub-cubic in N , meaning that
we improve upon the running time implied by the tree-widths of the graphs.

Matching objectives
The well-known ‘quadratic assignment’ problem
takes the form

f̂ = argmin
f :A→B

∑
a,b∈A

Da,b,f(a),f(b).

Many structural matching problems can be ex-
pressed in this form, such as isometric matching:

f̂ = argmin
f :S→T

∑
si,sj∈S

∣∣d(si, sj)− d(f(si), f(sj))
∣∣,

where S and T represent shapes, f maps points in S
to points in T , and d is a distance function. In cases
where this equation has a zero-cost solution, we
note that far more efficient solutions to this prob-
lem can be found: we need not consider all edges
between pairs of points in S, but rather a subset of
edges that define a ‘globally rigid’ graph.

Structured matching objectives
We can augment our potentials to encode structural
constraints other than distance preservation:

f̂ = argmin
f :S→T

∑
i,j∈G

〈
Φi,j(si, sj , f(si), f(sj)), θ

〉
.

Here Φ is a feature vector, which could include topo-
logical information, and first-order properties such
as Shape Contexts or SIFT features; we can also cre-
ate higher-order features Φi,j,k encoding angle and
scale information. θ is a parameter vector, chosen us-
ing the structured learning framework of [THJA04].
Our objective function for choosing the best θ̂ is

θ̂ = argmin
θ

1
K

K∑
i=1

∆(f̂ i, f i)︸ ︷︷ ︸
empirical risk

+
λ

2
‖θ‖22︸ ︷︷ ︸

L2 regularizer

,

where f1 . . . fK is our training set, ∆(f̂ i, f i) is a loss
function, and λ is a regularization constant.

Our findings
We find that models based on rigid graphs – in
which inference can be done exactly – signifi-
cantly outperform approximate methods based on
quadratic assignment once learning is applied. This
confirms the need for efficient, exact inference pro-
cedures in structured learning settings. Our models
also outperform first-order models based on Shape
Contexts and SIFT features, confirming the need for
high-order structural objectives.
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