
The University of New South Wales
School of Computer Science and Engineering

SENG4920 (Thesis Part B) Report

Applications of Graphical Models:
Image Inpainting using Belief-Propagation

Julian McAuley
jjmc046@cse.unsw.edu.au

February 26, 2007

ii

Contents

1 Introduction 5

1.1 Image Inpainting . 5

1.2 Graphical Models . 6

1.3 Since Our Thesis Proposal . 8

1.4 This Document . 8

2 Background 11

2.1 Conditional Independence . 11

2.1.1 Graphical Representation of Conditional Independence 12

2.1.2 Interpreting a Graph . 13

2.2 Graphical Models . 14

2.2.1 The Hammersley-Clifford Theorem . 15

2.2.2 Inference in MRFs . 16

2.3 Probability Distributions . 21

3 Image Priors 25

3.1 The ‘Field of Experts’ Image Prior . 25

3.1.1 Learning the Field of Experts Prior . 29

3.2 Extending the Approach to Colour Images . 32

iii

4 The Gaussian Approximation 35

4.1 The Gaussian Image Prior . 35

4.1.1 The Expectation-Maximisation Algorithm 36

4.1.2 The EM Algorithm for Gaussian Mixture Models 38

5 Belief-Propagation 41

5.1 Nonparametric Belief-Propagation Continued 41

5.1.1 The Multivariate Gaussian Probability Density Function 42

5.1.2 Gaussian Mixture Models . 43

5.2 Our Model as a Mixture of Gaussians . 44

5.2.1 The topology of our model . 45

5.2.2 Estimating the Results After Propagation 46

5.3 Our Implementation . 46

6 Results 49

6.1 Reference Implementation . 49

6.2 Performance measures . 50

6.3 Junction-Trees vs. Loopy Belief-Propagation 51

6.4 Inpainting Results . 52

6.4.1 A Colour Image . 52

6.5 Execution Times . 57

7 Discussion and Conclusion 59

7.1 Discussion . 59

7.1.1 Limitations of Our Approach . 59

7.1.2 Extensions . 61

7.2 Conclusion . 62

iv

A Proofs and Further Details 63

A.1 Proofs for Multivariate Gaussians . 63

A.1.1 Marginals . 64

A.1.2 Conditionals . 65

A.1.3 Products . 66

B ICML 2007 Paper 69

v

vi

List of Figures

1.1 An example of image inpainting . 6

1.2 Comparison of existing techniques with ours . 7

2.1 Graphical representation of conditional independence 13

2.2 Conditional independence in images . 13

2.3 Graphical representation of conditional independence, continued 14

2.4 Pseudocode for the gradient-ascent algorithm 17

2.5 A separator set . 18

2.6 A spanning tree for a set of cliques . 18

2.7 A set of cliques without a junction-tree . 18

2.8 Pseudocode for the junction-tree algorithm . 19

2.9 Pseudocode for the loopy belief-propagation algorithm 20

2.10 Motivation for the Student’s T-distribution . 22

3.1 Image filters . 26

3.2 Distribution of inner products . 27

3.3 Normal probability plot of inner products . 28

3.4 Principal component analysis . 30

3.5 The learned filters . 31

vii

4.1 Pseudocode for the EM algorithm . 39

4.2 Pseudocode for the K-means clustering algorithm 40

5.1 Topology of a scratched region . 45

6.1 Regions for which the junction-tree algorithm may or may not be used 51

6.2 Inpainting results: removing text from an image 53

6.3 Inpainting results: comparison with state-of-the-art 54

6.4 Inpainting results: comparison of different models 55

6.5 Inpainting results: inpainting a colour image 56

6.6 Two equally large regions to be inpainted, in two differently sized images . . . 57

7.1 Correcting corrupted regions using a noise-model 60

A.1 Transformation of a Gaussian . 64

viii

List of Tables

6.1 Comparison of different models . 54

6.2 Number of operations required by our algorithm 58

ix

x

Abstract

In this thesis, we seek to solve image processing problems using graphical models. The main
problem we shall deal with is known as image ‘inpainting’ – that is, trying to restore ‘scratched’,
or otherwise corrupted regions of an image. We will show that techniques known as nonpara-
metric belief-propagation can be used in this setting – an approach that we believe has not
previously been applied to this problem. By using such techniques, we will attempt to inpaint
images faster than any existing techniques.

Problems in the field of image processing are often approached using graphical models. Conse-
quently, many models, and many inference algorithms have been developed. Two such classes
of algorithms are belief-propagation and gradient-ascent. Yet while both of these algorithms
seek to solve the same optimisation problem, the conditions under which they can be applied
are very different.

Gradient-based approaches are typically preferred when dealing with images. This occurs due
to the fact that images are typically represented using high-order models, for which belief-
propagation techniques tend to be very expensive. Gradient-based approaches are often faster,
in spite of the fact that they may require several thousand iterations to converge, compared to
belief-propagation approaches which converge in very few iterations.

In this thesis, we will try to address the shortcomings of belief-propagation to render it appli-
cable to the problem of image inpainting. We will present results to demonstrate that by using
such techniques, we are able to inpaint images significantly faster than existing gradient-based
approaches.

1

2

Acknowledgements

I would like to thank my supervisor for his advice, and for his comments on the first draft.
I would also like to thank August Dvorak for his keyboard layout, and Donald Knuth for his
typesetting system. Without their work, the physical realisation of this document would likely
have been impossible.

3

4

Chapter 1

Introduction

As we mentioned in our abstract, the purpose of this thesis is to solve the problem of image
inpainting using graphical models. In order to do so, we will need to build upon and modify
a great deal of work in the fields of graphical models, image processing, as well as statistics.
Since this document is intended to be relatively self contained, a large part of this thesis shall
be spent explaining the mathematical concepts involved.

To begin with, however, it is worth briefly defining the ideas of image inpainting, and graphical
models, in order to motivate the material that follows.

1.1 Image Inpainting

Image inpainting [BSCB00] refers to the process of restoring ‘hidden’ regions in an image. The
most common example of such a region might be a ‘scratch’ – inpainting allows us to infer
what is ‘behind’ this scratch, thereby producing a scratch-free version of the image.

Two examples of this approach are shown in figure 1.1.

In principle, the model we develop for inpainting images could easily be used for other tasks,
such as image denoising (i.e. filtering noise such as electrical interference from an image), or
super-resolution (i.e. producing a high-resolution version of an image using a low-resolution
one). Image inpainting should therefore be thought of as a verification for our method, rather
than as the sole purpose of this thesis. Image inpainting also happens to be an application for
which the techniques we shall describe result in a particularly fast solution.

As we suggested in our abstract, the purpose of this thesis will be to develop fast algorithms
for image inpainting. While neither image inpainting, nor nonparametric belief-propagation

5

1. Introduction

Figure 1.1: Left to right (top and bottom): the image to be inpainted; the region
corresponding to the ‘corrupted’ part of the image we wish to restore (in white); the
image restored using the technique to be described.

are new fields, we believe that the latter has never before been applied to the former. While
our technique will not inpaint images at the state-of-the-art level (in terms of signal-to-noise
ratio), it will produce good results significantly faster than other methods. This speed increase
may give rise to new inpainting applications (such as removing the watermarks from frames in
a movie). It can also be seen as a guide to develop similar algorithms to solve other image-
processing problems.

To make the purpose of this thesis more intuitively obvious, the graph in figure 1.2 shows
how existing techniques compare to ours. We aim at a method which exhibits reasonably fast
performance, yet is still complex enough to inpaint images well.

1.2 Graphical Models

Graphical models [Bis06] are nothing more than tools which can be used to solve a variety of
optimisation problems. Graphical models are beneficial whenever the variables over which we
are trying to optimise exhibit certain conditional independence properties.

6

1.2. Graphical Models

S
pe

ed
 (

lo
w

er
 is

 s
lo

w
)

Model complexity

Existing belief−propagation techniques

High−order gradient−based techniques

Our technique

Figure 1.2: The above plot shows that there already exist low-complexity belief-
propagation techniques (top left). In comparison, high-complexity gradient-based
techniques (bottom right) tend to be much better performing, but also far slower.
The purpose of this thesis is to develop fast algorithms, that still exhibit reasonable
performance (centre).

7

1. Introduction

1.3 Since Our Thesis Proposal

In the original proposal for this thesis, we stated that our intentions were to explore the possible
problems which can be solved using graphical models, and to implement the algorithms required
to solve them. At that stage, we were not sure about exactly which applications we might
explore, nor about which algorithms these problems may require us to implement – image
processing was only one of the many possibilities we suggested.

At this stage, we have decided that image processing shall comprise the core material in this
thesis. This decision was made since image processing is an area with which we have some
familiarity, meaning that less time needed to be spent exploring a new field. We also thought
that it would be better to explore this one topic at a reasonable level of depth, rather than to
treat many topics shallowly.

Of course, for all of the material we present, we shall make an effort to provide references to
other possible applications of the same techniques.

1.4 This Document

Here we shall present a brief overview of the remaining sections of this document.

In Chapter 2, we shall present a background of the topics studied in this thesis. Before we
are able to present the topic of graphical models, we will need to introduce notions such as
conditional independence, and explain how these notions relate to images. In this chapter, we
will also give a brief overview of some of the inference algorithms commonly used for image
processing. Many of the ideas in this section have already been covered in our proposal – the
main difference being that this time we will be discussing them in terms of their relationship
to image processing.

In order to apply graphical models to an image processing problem, we need to define an image
prior. This will be done in Chapter 3. We will define the state-of-the-art priors that are
currently being used to solve similar problems, and develop a model of this form.

To use nonparametric belief-propagation, we will have to make a number of modifications to
the prior presented in Chapter 3. In Chapter 4, we will present the modifications required.

In Chapter 5, we will further describe the inference algorithms we have used for image pro-
cessing. We will give a full description of nonparametric belief-propagation, and explain how
the prior defined in Chapter 4 can be used in this setting.

In Chapter 6, we will present the main results of our thesis. These will be further discussed
in Chapter 7, in which we shall also look at possible extentions, and analyse possible short-
comings of our technique.

Finally, Appendix A will cover various proofs and further details that are not included in
previous chapters. In Appendix B we will include a conference version of this thesis, which has

8

1.4. This Document

been submitted to the International Conference of Machine Learning (ICML2007).

Further Reading

The first paper to formally introduce the idea of image inpainting is the paper by the same
title [BSCB00]. The current ‘state-of-the-art’ work in this area is appears to be the Field of
Experts model developed in [RB05] (this is essentially the model that we shall be adapting).

Image denoising (another application we mentioned) is also covered in [RB05], and more re-
cently (by the author) in [MCSF06]. Super-resolution (among other topics) is covered in
[FPC00].

As for the topic of graphical models (which are a common theme in the above references),
[Bis06] provides a fairly complete discussion of the topic. Two other important texts (though
currently unpublished) are [Jor] and [KF].

9

10

Chapter 2

Background

In this chapter, we will present the mathematical background required to introduce the topic
of graphical models (sometimes referred to as Markov Random Fields). As we have mentioned,
graphical models are nothing more than tools to aid us in performing statistical inference; when
dealing with image inpainting, this simply means to determine the correct values of hidden or
corrupted pixels.

A significant proportion of this chapter will cover material already presented in our thesis
proposal. The main difference here is that we shall make more of an effort to relate these ideas
to images.

2.1 Conditional Independence

Before we are able to properly introduce the topic of graphical models, we must establish a
clear notion of conditional independence. In mathematical terms, we say that two random
variables, A and B, are independent, if P (A = a,B = b) = P (A = a)P (B = b) (for all
a, b). Alternatively, we would say that A and B are conditionally independent given C, if
P (A = a,B = b|C = c) = P (A = a|C = c)P (B = b|C = c) (for all a, b, c). The difference
between these two notions is very important – the first is simply saying that knowing the value
of A tells us nothing about the value of B, while the second is saying that if we know C, then
knowing A tells us nothing more about B – that is, even though A and B may be dependent,
their dependence is entirely ‘explained’ by C. These two ideas are summarised below.

A and B are independent: P (A = a,B = b) = P (A = a)P (B = b) (for all a, b).

A and B are conditionally independent, given C: P (A = a,B = b|C = c) =
P (A = a|C = c)P (B = b|C = c) (for all a, b, c).

11

2. Background

To make this distinction more clear, consider the following example involving umbrellas: ob-
viously, if I carry an umbrella, it is highly likely that you will carry one also (assuming that
we live in the same city). Therefore, we would assert that these two random variables are
not independent. However, if we know that it is raining, then knowing if I carry an umbrella
probably tells us nothing about whether or not you do. Therefore we would assert that these
two random variables are conditionally independent, if we know the weather.

In the above case, we would say that the relationship between us carrying an umbrella and
the weather is causal – it makes sense to say that I am carrying an umbrella because it is
raining, but not the other way around. In some cases, however, no such relationship exists –
for example, the weather in all Australian cities is related, but it is not very meaningful to say
that the weather in one city ‘caused’ the weather in another.

Further examples, which will relate these ideas to images, shall be presented in section 2.1.1.

2.1.1 Graphical Representation of Conditional Independence

In fact, our notion of conditional independence lends itself very naturally to a graphical repre-
sentation. We can simply use nodes to denote each of the random variables in our graph, and
use edges between two nodes to indicate that there is some direct relationship between them.
Using such a representation, we present the above two examples as graphs in figure 2.1.

The graph on the left in figure 2.1 is directed ; such a graph can be used to form a directed
graphical model. In this case, the directed arrows indicate a causal relationship between vari-
ables, but this needn’t be the case; this type of graphical model may be used in other instances
in which the relationship between variables in not symmetric. Alternately, the graph on the
right is undirected, resulting in an undirected graphical model – indicating a mutual relationship
between the variables.

For images, it makes sense to say that two nearby pixels are mutually related to each other; it
does not make sense to say that one pixel ‘caused’ another’s value. Therefore, the remainder
of this section will be concerned only with undirected graphical models. However, the results
we shall present are nearly the same in either case. Further detail about directed graphical
models may be found in [Jor].

Relation to Images

It is possible to establish similar notions of conditional independence for images. For example,
we would certainly say that the colours (or the grey-levels of) two nearby pixels are highly
dependent upon each other [GG84, MCSF06]. That is (for example), a white pixel will probably
be surrounded by other (nearly) white pixels. However, if we already know the grey-levels of
a pixel’s neighbours, then knowing the grey-levels of other nearby pixels will probably tell us
very little. Hence we might conclude that the grey-level of a certain pixel only directly depends
on the grey-levels of its neighbours.

The graph in figure 2.2 represents one possible notion of the dependencies between pixels in

12

2.1. Conditional Independence

GFED@ABCW

��		
		

		
		

		
		

		

��5
55

55
55

55
55

55
5

ONMLHIJKUme
ONMLHIJKUyou

GFED@ABCWS

		
		

		
		

		
		

		

66
66

66
66

66
66

66

ONMLHIJKWC
ONMLHIJKWM

Figure 2.1: The graph on the left is a directed graphical model – the nodeW represents
the weather; Ume and Uyou represent whether or not we carry umbrellas. In this case,
the directed arrows indicate a causal relationship between these variables (although
other types of relationship are possible). The graph on the right is an undirected
graphical model, in which WS , WC , and WM may represent the weather in Sydney,
Canberra, and Melbourne. In this case, no such causal relationship exists.

◦

@@
@@

@@
@ ◦

@@
@@

@@
@

��
��

��
�

◦

@@
@@

@@
@

��
��

��
�

◦

@@
@@

@@
@

��
��

��
�

◦

��
��

��
�

◦

@@
@@

@@
@ ◦

@@
@@

@@
@

��
��

��
�

◦

@@
@@

@@
@

��
��

��
�

◦

@@
@@

@@
@

��
��

��
�

◦

��
��

��
�

◦

@@
@@

@@
@ ◦

@@
@@

@@
@

��
��

��
�

◦

@@
@@

@@
@

��
��

��
�

◦

@@
@@

@@
@

��
��

��
�

◦

��
��

��
�

◦

@@
@@

@@
@ ◦

@@
@@

@@
@

��
��

��
�

◦

@@
@@

@@
@

��
��

��
�

◦

@@
@@

@@
@

��
��

��
�

◦

��
��

��
�

◦ ◦ ◦ ◦ ◦

Figure 2.2: The above graph represents dependencies between pixels in an image. This
graph asserts that a pixel only has a direct relationship to its nearest neighbours, and
its diagonal neighbours.

an image. While this is not the only model possible (indeed, it may be reasonable to say that
a pixel is directly related to its neighbours two or more units away [MCSF06, RB05]), it is the
model we shall be considering throughout most of this document.

2.1.2 Interpreting a Graph

In order to make the conditional independencies implied by the graphs presented more explicit,
we must first introduce some notation for graphs. The notation we use is standard, and is given
as follows:

G = (x, E): A graph.

x = (x1 . . . xN): The set of vertices/nodes in our graph (where each vertex/node

13

2. Background

'&%$!"#a
AA

AA
AA

AA ◦

BB
BB

BB
BB

}}
}}

}}
}}

◦

BB
BB

BB
BB

||
||

||
||

◦

AA
AA

AA
AA

||
||

||
||

◦

}}
}}

}}
}}

◦

@@
@@

@@
@@

/.-,()*+c1

AA
AA

AA
AA

A

~~
~~

~~
~~

/.-,()*+c2

AA
AA

AA
AA

A

}}
}}

}}
}}

}
/.-,()*+c3

??
??

??
??

}}
}}

}}
}}

}
◦

��
��

��
��

◦

@@
@@

@@
@@

/.-,()*+c4

AA
AA

AA
AA

A

~~
~~

~~
~~

'&%$!"#b
AA

AA
AA

AA
A

}}
}}

}}
}}

}
/.-,()*+c5

??
??

??
??

}}
}}

}}
}}

}
◦

��
��

��
��

◦

AA
AA

AA
AA

/.-,()*+c6

BB
BB

BB
BB

}}
}}

}}
}}

/.-,()*+c7

BB
BB

BB
BB

||
||

||
||

/.-,()*+c8

AA
AA

AA
AA

||
||

||
||

◦

}}
}}

}}
}}

◦ ◦ ◦ ◦ ◦

Figure 2.3: In the graph on the left, we can see that there is no path from the node
a to the node b which doesn’t pass through one of the nodes in xc = (c1 . . . c8).
Hence we conclude that a and b are conditionally independent given C. On the right,
we show ‘observed’ pixels in a real image – the two light-gray pixels represent the
unknowns (a and b).

represents a random variable). Although this is usually denoted by V , we
use x here to denote the fact that each of our vertices is actually a random
variable.

E = (e1 . . . eM) ⊆ (x× x): The set of edges in our graph.

With this notation in mind, we can rephrase ‘conditional independence’ as follows: for three
sets of vertices xA,xB , and xC (⊂ x),1 we say that xA and xB are conditionally independent,
given xC , if there is no path from the vertices in xA to xB which doesn’t pass through xC .
Another way of putting this is to say that if we were to remove the vertices in xC (and the
corresponding incident edges) from G, then we would form (at least) two disjoint graphs – one
of which contained all of the vertices in xA, and another of which contained all of the vertices
in xB . This is seen in figure 2.3.

2.2 Graphical Models

These notions of conditional independence underpin the topic graphical models. However,
the graph itself is only half of the story – before we are able to talk meaningfully about
an optimisation problem, we must first discuss how probabilities are actually defined in this
setting.

To do so, we must first introduce some more notation. Firstly, for a subset of the vertices in
x (say xc), we say that these vertices form a clique, if for all xi, xj ∈ xc(i 6= j), we have that

1Here we have adopted the convention that a normal-face (e.g. xi) denotes a single vertex, whereas a
boldface (e.g. xA) denotes a set of vertices (specifically the set {xa|a ∈ A}).

14

2.2. Graphical Models

(xi, xj) (or (xj , xi)) ∈ E. That is, xc is a set of vertices, all of which are connected to each
other (except for self-loops). Furthermore, we say that a clique is maximal, if for any node
xk 6∈ xc, we have that xc ∪ {xk} does not form a clique. For example, for the graph in figure
2.3, we would say that the set {c1, c2, c4} forms a clique:

/.-,()*+c1 /.-,()*+c2

}}
}}

}}
}}

}

/.-,()*+c4

However, it is not a maximal clique, since we may obtain a larger clique by adding b (and its
associated edges):

/.-,()*+c1

AA
AA

AA
AA

A /.-,()*+c2

}}
}}

}}
}}

}

/.-,()*+c4 '&%$!"#b

This clique is now maximal, since it it is impossible to add any more vertices and still form a
clique.

It is now possible to separate any graph into a set of maximal cliques C = (c1, . . . cl), such that
each ci ⊆ x is a maximal clique (and, of course,

⋃l
i=1ci = x). The example in figure 2.3 has

a particularly straightforward decomposition – each clique is simply a 2 × 2 region (i.e. the
complete graph K4), much like the one presented above.

2.2.1 The Hammersley-Clifford Theorem

The Hammersley-Clifford theorem [HC71] now states that the probability for any given con-
figuration of a Markov Random Field can be defined entirely in terms of its maximal cliques.
Specifically, if our field has cliques C, then the probability for a given configuration of x is given
by

p(x) =
1
Z

∏
c∈C

φc(xc). (2.1)

Here, each φc is a potential function which acts on the clique c. Although we will define the
concept of a potential function more clearly in chapter 3, for the moment we shall simply
say that each potential function expresses the ‘likelihood’ for any assignment to the clique’s
variables, by returning a (strictly) positive potential.

In equation (2.1), the term Z is simply a normalisation constant, ensuring that the sum of the
probabilities for all possible configuration sums to 1. That is, Z may be computed according
to

Z =
∑
x

∏
c∈C

φc(xc) (here we are summing over all possible assignments to x). (2.2)

15

2. Background

Thus, we are (in principle) able to assign a non-zero probability to every possible configuration
of our field. This theorem forms the basis of both of the inference algorithms to be presented.
In general, however, the exact value of Z may be very difficult (if not impossible) to compute
– since it may involve summing over every possible assignment to the field, which may be
a prohibitively large number. As we shall see, however, we are not usually concerned with
actually computing the probability, but only maximising it, meaning that we will never need
to compute this normalisation constant explicitly.

2.2.2 Inference in MRFs

Unlike our proposal, in which we presented a variety of inference algorithms which may be
relevant to topics in graphical models, in this section we will focus specifically on those that
are relevant to the topic of image inpainting. The two classes of algorithms we shall deal with
are gradient-ascent and belief-propagation.

As an aside, it is worth making a brief mention of why the other inference algorithms we
mentioned in our proposal are no longer relevant to this topic. Consider, for example, Gibbs
sampling (we will not explain Gibbs sampling in this document – see [CG92] for more detail):
for each pixel, Gibbs sampling requires us to compute the potential function (φ) for every clique
containing that pixel, for every possible assignment to that pixel. Even if we assume a clique
size of 2× 2, and if we limit ourselves to grayscale images with 256 distinct gray-levels, we will
still have to evaluate the potential 256× 4 = 1024 times2 just to update a single pixel. Since a
Gibbs sampler may require several thousand iterations to converge, such algorithms are often
simply too expensive when dealing with real images.

Alternately, gradient-ascent algorithms allow us to avoid the need to deal with a large number
of discrete gray-levels – indeed, such algorithms simply treat each variable as continuous.3

As we shall see, the belief-propagation algorithm we shall present actually suffers from many
of the same problems as the Gibbs sampler mentioned above. For this reason, high-order
belief-propagation algorithms are typically not used when dealing with images (although some
exceptions exist [FPC00, LRHB06]).4 Therefore, we will need to use a variant on this algorithm,
known as nonparametric belief-propagation [SIFW03], in order to render these algorithms
practical for our purposes.

Gradient-Ascent

Gradient Ascent algorithms are commonly used in many areas of mathematics and statistics
when maximum-likelihood solutions cannot be computed exactly. They are also commonly
used in graphical models applications [MCSF06, RB05].

2This number arises since we have 256 gray levels, and each pixel is contained by 4 distinct cliques.
3Actually, it is not impossible to deal with continuous variables when using a Gibbs sampler, except that

doing so would require us to be able integrate the potential function, as opposed to differentiating it. Unfortu-
nately, the families of potential functions we shall deal with do not have a simple integral.

4Of course, low -order belief propagation (e.g. with cliques of size 2) may still be possible, but is unlikely to
inpaint images well.

16

2.2. Graphical Models

Algorithm 1: Gradient-ascent
choose an initial estimate x0 (i.e. choose an xi for each vi ∈ V)
choose a ‘learning rate’, δ.
for i ∈ (1 . . . I) do

xi = xi−1 + δ ∂
∂v log(P (V = V ′))

end
return xI

Figure 2.4: Pseudocode for the gradient-ascent algorithm

In our setting, gradient ascent consists of computing the derivative of the probability function
in equation (2.1) (or the derivative of its logarithm), with respect to each of our variables. Here
we have that

∂

∂xi
log(p(x)) =

∂

∂xi
log(

1
Z

∏
c∈C

φc(xc)) (2.3)

=
∂

∂xi
(
∑

(c∈C|xi∈c)

log(φc(xc))− log(Z)) (2.4)

=
∑

(c∈C|xi∈c)

∂

∂xi
log(φc(xc)) (2.5)

(where in the second line we have restricted the set of cliques we are summing over to be only
those which contain xi). Further simplification may be possible – in fact, the form of the φc’s
is often chosen to come from an exponential family, thus allowing us to eliminate the logarithm
from the above expression [GG84]. It should also be noted that the normalisation constant
(Z), which we suggested may be intractable to compute (see section 2.2.1) disappears from the
above expression after differentiation.

Pseudocode for the gradient ascent algorithm is given in figure 2.4 (note that here we use
∂

∂v to denote a vector of partial derivatives). There may be many variations on the specific
implementation – for example the ‘for’ loop may be replaced by a ‘while’ loop, which would
exit once the gradient was sufficiently small; similarly, the learning rate, δ could be changed
after each iteration.

Belief-Propagation – Exact Inference

Our problem of inference can also be solved using message passing techniques. The mathematics
behind some of these techniques is fairly detailed, so we shall only cover them superficially now,
and defer a full explanation until chapter 5. For further information, a good summary paper
on these results is [AM01].

We have already discussed the idea that a set of connected vertices may form a clique. Of
course, in a fully-connected graph, there will also be nodes that are shared between several
cliques. The set of nodes shared between two cliques is usually called their separator set (we
will use Si,j to denote the separator set xi ∩ xj) – an example is shown in figure 2.5.

17

2. Background

?> =<89 :;v1, v2, v3 v1, v3 ?> =<89 :;v1, v3, v4

Figure 2.5: Two cliques (left, right), and the separator set (centre) corresponding to
their intersection.

?> =<89 :;v1, v2, v3, v4

v1, v3

qqqqqqqqqq
v3, v4 v3

KKKKKKKKKK

?> =<89 :;v1, v3, v5

ssssssssss ?> =<89 :;v3, v4, v6 ?> =<89 :;v3, v7

EEEEEEEE

Figure 2.6: One possible spanning tree for our set of cliques.

Now consider a new graph in which each of our cliques becomes a node. It is possible to form
a spanning tree for this graph, in which edges are formed between those cliques with non-
empty intersection. For example, consider a graph containing vertices {v1 . . . v7} and cliques
{{v1, v2, v3, v4}, {v1, v3, v5}, {v3, v4, v6}, {v3, v7}} – one possible spanning tree for this new
graph graph (together with its separator sets) is shown in figure 2.6.

Of course, it should be noted that we have not connected all cliques with non-empty in-
tersection – only enough to form a spanning tree. However, the graph in figure 2.6 has
a very important property – for any cliques that aren’t connected (i.e. xi and xj , with
xi ∩ xj = Si,j 6= ∅), any clique which lies on a path between them also contains their intersec-
tion (i.e. if (xi,xp1 . . .xpn

,xj) is a path between Ci and Cj , then Si,j ⊂ xpi
, i ∈ {1 . . . n}).5

Such a spanning tree is known as a junction-tree, which gives rise to the junction-tree property
– a property required in order to perform exact inference using message passing techniques
[AM00, AM01]. It is important to note that it is not always possible to form a junction-tree –
for example, it is impossible to form a junction-tree using the graph in figure 2.7 (we will deal
with this situation later).

However, assuming that a junction-tree exists, it is possible to perform exact inference using

?> =<89 :;v1, v2 v2 ?> =<89 :;v2, v3

v1 v3

?> =<89 :;v1, v4 v4 ?> =<89 :;v3, v4

Figure 2.7: It is impossible to form a junction-tree from the set of cliques above.

5The subset here is indeed proper (i.e ⊂ rather than ⊆), since we are only concerned with maximal cliques.

18

2.2. Graphical Models

Algorithm 2: The junction-tree algorithm
while some cliques have not received messages from all of their neighbours do

for c ∈ C do
if xc has received messages from all of its neighbours then

for xk ∈ Γxc do
compute and send Mc→k ; /* if it hasn’t been sent
already */

end
end
else if xc has received messages from all neighbours except one xk then

compute and send Mc→k

end
end
for c ∈ C do

compute Dc(xc)
end

end
return D ; /* the vector of all marginal probabilities */

Figure 2.8: Pseudocode for the junction-tree algorithm

a message passing algorithm. We assume that we have already defined a potential function φi

for each clique xi (which we will call that clique’s local distribution). Now, the message that
xi sends to xj (denoted Mi→j(Si,j), a function of the variables in xi ∩ xj) is defined as

Mi→j(Si,j) =
∑

xi\xj

φi(xi)
∏

xk∈(Γxi
\{xj})

Mk→i(Sk,i) (Γxi
denotes all neighbours of xi). (2.6)

Once all messages have been sent, the final distribution for the clique xi is defined as

Di(xi) = φi(xi)
∏

xk∈Γxi

Mk→i(Sk,i). (2.7)

The distribution of each Di now corresponds to the true marginal for that clique.6 The exact
order in which messages are passed is still slightly unclear from this informal specification – so
we present the algorithm in pseudocode in figure 2.8. Although it is not stated explicitly, it
can be seen from the pseudocode that messages will propagate inwards from the leaves to the
‘root’ of the tree, and then proceed outwards toward the leaves.

It may already be clear that this algorithm gives us a more powerful result than the gradient-
ascent algorithm – while gradient-ascent only computes an estimate for each node, this algo-
rithm is able to compute a full marginal density (and moreover, do so exactly).

6Proving this fact is beyond the scope of this document – see [AM00].

19

2. Background

Algorithm 3: Loopy belief-propagation
for i ∈ {1 . . . I} ; /* for each iteration */
do

for c, k ∈ C|k ∈ Γc ; /* for all pairs of neighbouring cliques
(usually ordered randomly) */
do

compute and send Mc→k

end
end
for c ∈ C do

compute Dc(xc)
end
return D ; /* the vector of all marginal probabilities */

Figure 2.9: Pseudocode for the loopy belief-propagation algorithm

Belief-Propagation – Approximate Inference

As we have already mentioned, it is not always possible to form a junction-tree from any set
of cliques. For example, the cliques in figure 2.3 do not obey this property, although such
a structure is used in many applications [GG84]. In these cases, an approximate method
exists, known as Loopy Belief-Propagation [AM00, YFW00]. This algorithm is very similar
to the junction-tree algorithm, except that we connect every pair of cliques with non-empty
intersection. Also, messages may need to be passed for several iterations before they converge.

Pseudocode for loopy belief-propagation is presented in figure 2.9. The main differences here
are that the message-passing order is random, and that we are required to choose a number of
iterations for which to run the algorithm.

Unfortunately, very few theoretical results exist for loopy belief-propagation [IFW04] – it is
often not known whether the algorithm will converge to produce the correct marginals, or worse,
whether it will converge at all. Despite this shortcoming, there have been many successful
applications of loopy belief-propagation [YFW00]. In order to perform image inpainting, we
shall require both forms of belief-propagation.

Nonparametric Belief-Propagation

As we have already suggested, belief-propagation algorithms are highly desirable due to the
fact that they typically converge in far fewer iterations than similar gradient-based approaches.
However, although it may not be immediately apparent from the pseudocode shown, the belief-
propagation algorithms we have presented may be so computationally expensive as to negate
this benefit.

For example, when dealing with images, we typically deal with cliques of size at least 2× 2; in
order to compute the messages in the pseudocode in figures 2.8 and 2.9, we would first need

20

2.3. Probability Distributions

to compute the local distribution (φi(xi)). Even if we restrict ourselves to grayscale images,
with only 256 possible gray-levels, we would still need to consider 2564 possible configurations
of each clique in order to compute φi(xi). Such an approach is clearly impractical.

Nonparamateric belief-propagation [SIFW03] tries to deal with these problems by expressing
the potential function in some nonparametric form. That is, rather than compute the response
for all 2564 possible configurations, we may say (for example) that the response takes the form
of a Gaussian distribution – the probability for every configuration is now captured by the
mean vector and covariance matrix for this Gaussian.

This allows us to replace the sum in equation (2.6) with an integral. That is, our new messages
take the form

Mi→j(Si,j) =
∫
xi\xj

φi(xi)
∏

xk∈(Γxi
\{xj})

Mk→i(Sk,i). (2.8)

Usually, in order to apply this approach, we assume that the potential functions take the form
of a Gaussian mixture – i.e. a weighted sum of several Gaussian density functions [SIFW03].
This form is assumed because both the product and the integral in equation (2.8), when applied
to a Gaussian mixture, result in a new Gaussian mixture.

Assuming that we are able to approximate our potential function using such a Gaussian mix-
ture, it is now possible to perform very fast inference in this setting. Actually finding this
approximation may be difficult – especially if the potential function is high dimensional; the
approach used in [SIFW03] is only used to learn at most three-dimensional potential functions
– smaller than those typically required when dealing with images.

However, we will show that it is possible to use this technique when dealing with images. We
shall present the nonparametric belief-propagation algorithm, as well as the specific approxi-
mation we derive in more detail in chapter 3.

2.3 Probability Distributions

Although it is somewhat difficult to motivate at this stage, we will need to deal with some
theory about probability distributions.

We have already suggested that our potential function may take the form of a Gaussian mixture.
However, what we have not yet mentioned is that the potential function we shall be approxi-
mating using a Gaussian mixture will take the form of a Student’s T-distribution [Gos42].

It is therefore important that we highlight the difference between these two distributions. The
Student’s T-distribution was originally suggested when we wish to approximate a distribution
in the presence of outliers [Gos42].

In figure 2.10 we show a histogram of a synthesised data set. This data set appears to roughly
follow the shape of a normal distribution, except for a few outlying points. If we try to approx-
imate this distribution using a Gaussian, the variance is overestimated in order to compensate

21

2. Background

−15 −10 −5 0 5 10
0

1

2

3

4

5

6

7

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 2.10: Left: a histogram of 20 (synthesised) data-points. Right: an approxima-
tion of this data using a Gaussian distribution (dotted line), and using a Student’s
T-distribution (solid line). The Student’s T-distribution seems to do a better job at
capturing the ‘important’ part of the curve.

for these outliers (figure 2.10, dotted line). Alternately, when we try to estimate the data using
a Student’s T-distribution, the outliers have very little effect (figure 2.10, solid line). Therefore,
if these points are indeed outliers, then the Student’s T-distribution has done a better job of
capturing the ‘important’ part of the curve.

Specifically, the Student’s T-distribution is proportional to

(1 +
1
ν
x2)−(ν+1)/2. (2.9)

Although this distribution will prove important in later sections of this document, it is im-
portant to note that this distribution cannot be used directly with the nonparametric belief-
propagation framework we have outlined. Specifically, we no longer have the useful property
that the shape of the distribution is maintained upon multiplication and integration. There-
fore, we shall be forced to use an approximation of the Student’s T-distribution, which we shall
introduce in chapter 3.

Further Reading

The original paper in which the Student’s T-distribution was suggested is reproduced in
[Gos42]. The paper was originally written by Willeam Sealy Gosset (under the pen-name
‘Student’), when he was working for Guinness in Dublin.

An outline of the proof of the Hammersley-Clifford theorem was originally given in Hammersley
and Clifford’s (unpublished) manuscript [HC71]. A more detailed proof is given in [Bes74].

A short introduction to the belief-propagation algorithms presented above is presented in the
tutorial paper [AM00] (or [AM01]). Additional texts which cover these ideas in more depth
include [Bis06, Jor, KF].

22

2.3. Probability Distributions

A pioneer paper using nonparametric belief-propagation is [SIFW03]. Similar ideas are also
considered in [Bis06] and [RH05].

A number of papers utilise gradient-ascent algorithms for image restoration. One paper which
performs inpainting using such an approach is [RB05]. Others include [FPC00, MCSF06].

As we mentioned, the belief-propagation techniques presented are typically unsuitable for image
restoration problems. However, similar belief-propagation techniques have seen some success
in the field of image restoration – some example papers include [FPC00, LRHB06].

23

24

Chapter 3

Image Priors

In order to apply any of the inference algorithms mentioned in chapter 2, we must first deal with
the problem of selecting an appropriate prior. That is, we must select the potential functions
(φis) for each maximal clique in our field. The prior should give us information about how
pixels in an image ‘should behave’.

Specifically, we shall adapt the Field of Experts image prior presented in [RB05]. As we have al-
ready suggested, this prior is not in a form which renders it suitable for belief-propagation tech-
niques. We will therefore use an approximation of this prior which renders inference tractable
in our setting.

Most of the results presented in this section cover well-established work on image priors. It is
not until section 4.1 that we shall begin to derive new results in this area.

3.1 The ‘Field of Experts’ Image Prior

In [RB05], the authors presented the Field of Experts image prior, which appears to produce
state-of-the-art results for image restoration problems. In this setting, each potential function is
assumed to take the form of a product of experts [Hin99], in which each ‘expert’ is the response
of some image patch (xc) to a particular filter (Jf). That is, we have potential functions of the
form

φ(xc; J, α) =
F∏

f=1

φ′f (xc, Jf , αf). (3.1)

This formulation probably requires further explanation. Here, the ‘image patches’ (xcs) are
just the cliques in our field. Each filter (Jf) is just a particular patch that captures some

25

3. Image Priors

ONMLHIJKxc;1,1

GGGGGGGGGG
ONMLHIJKxc;1,2

wwwwwwwwww

ONMLHIJKxc;2,1 ONMLHIJKxc;2,2

Figure 3.1: Left: an image patch – here each xi,j is an unknown. Right: a filter. In
this case the filter corresponds to a vertical edge. Image patches which are ‘similar’
to vertical edges will have a very large (in magnitude) inner-product.

property about ‘natural’ images. The ‘response’ of the patch to this filter is typically assumed
to be a function of their inner-product. That is, assuming the cliques in our image correspond
to n× n regions, the response of the clique xc to the filter Jf takes the form1

φ′f (xc, Jf) = ψ(〈xc, Jf 〉) = ψ(
n∑

i=1

n∑
j=1

(xc;i,j × Jf ;i,j)). (3.2)

Essentially, the inner-product tells us how similar the image patch is to a particular filter.
For example, consider the case in which our image patches correspond to 2 × 2 cliques. One
possible filter is shown in figure 3.1.

This filter could be described as a ‘vertical edge’. Assuming that this filter is appropriately
normalised (e.g. the values are scaled to lie between −0.5 and 0.5), the inner-product will have
a large magnitude exactly when the image patch (xc) is also a vertical edge. For example, if
the filter in figure 3.1 is given by [

−0.5 0.5
−0.5 0.5

]
(rounding to the nearest decimal place) and we have image patches

p1 =
[

0 255
0 255

]
, p2 =

[
255 0
255 0

]
, p3 =

[
255 255
0 0

]
, p4 =

[
255 255
255 255

]
,

then p1 and p2 have very large (in magnitude) inner products with our filter, whereas p3 and
p4 have inner products of 0. This matches our intuition, since both p1 and p2 correspond to
vertical edges. Thus, each of our ‘experts’ measures how similar a particular image patch is to
a given filter. Of course, the ‘vertical edge’ filter we have shown is used by only one expert –
we may have another for horizontal edges, another for uniform patches, etc.

The expert is not given by the inner product, but rather by some function of the inner product.
In order for this function to be sensible, it makes sense that it should be consistent with the
actual distribution of inner products that we would observe in real images [Hin99].

1Here we define the inner product to act on matrices, rather than vectors, but the definition is otherwise
the same.

26

3.1. The ‘Field of Experts’ Image Prior

−100 −50 0 50 100
0

1000

2000

3000

4000

5000

6000

inner product

fr
eq

ue
nc

y

Figure 3.2: The above histogram shows the distribution of inner products observed
in real 2× 2 patches taken from real images in the Berkeley Segmentation Database
[MFTM01]. A total of 50, 000 inner products were used to generate this histogram,
which has been separated into 500 bins.

The plot in figure 3.2 shows a histogram of the inner products of real image patches against
the filter shown in figure 3.1. In order to generate these inner products, we randomly cropped
50, 000 2 × 2 patches from images in the Berkeley Segmentation Database [MFTM01], and
computed their inner products against the filter shown.

Two important observations should be made from the histogram in figure 3.2. Firstly, the mode
of the distribution is clearly 0. This is not surprising: ‘constant’ patches are the most common
in natural images [RB05], and these are completely orthogonal to this particular filter. Other
common patches, such as horizontal edges also have an inner product of zero, meaning that
this distribution is very ‘peaked’ about its mode. However, vertical edges are also reasonably
common in natural images, meaning that large inner products are not uncommon. Hence, the
distribution is quite heavily tailed.

In fact, the distribution is substantially more heavily tailed than would be suggested by a
normal distribution. Although this is difficult to see from the histogram alone, it is more
clearly evidenced by the normal probability plot shown in figure 3.3. A normal probability plot is
constructed as follows: consider random data generated by a hypothetical normal distribution.
If the data are sorted and plotted, they should correspond to a smooth monotonic curve. By
appropriately scaling the vertical axis, the data can be made to follow a straight line. Now, if
we are assessing whether or not new data follow a normal distribution, we can simply plot the

27

3. Image Priors

−80 −60 −40 −20 0 20 40 60 80 100

0.001
0.003
0.01
0.02
0.05
0.10

0.25

0.50

0.75

0.90
0.95
0.98
0.99

0.997
0.999

inner product

pr
ob

ab
ili

ty

Figure 3.3: The above normal probability plot shows that the inner products (hori-
zontal axis) are more heavily tailed than would be suggested by a normal distribution.

sorted data on this scale. If it is normally distributed, it should approximately follow this line.
If it does not follow this line, the plot is able to tell us whether it is more or less heavily tailed
than a normal distribution.

In figure 3.3, the dotted line corresponds to the theoretical normal distribution mentioned
above. It is very clear from this plot that the inner products (shown by the solid line) do not
follow a normal distribution. Specifically, the plot reveals that the inner products are more
heavily tailed (on both sides) than would be suggested by a normal distribution.

In light of this information, it seems that a Student’s T-distribution [Gos42] may be a reasonable
choice. This confirms the conclusion obtained in [WHO02], in which such a distribution is
suggested for problems of this form.

This leads to the previously mentioned Field of Experts prior [RB05], in which each expert
takes the form of a Student’s T-distribution. Specifically, we have each expert taking the form

φ′f (xc; Jf , αf) = (1 +
1
2
〈Jf ,xc〉2)−αf , (3.3)

leading to a potential function of the form

φ(xc; J, α) =
F∏

f=1

(1 +
1
2
〈Jf ,xc〉2)−αf . (3.4)

28

3.1. The ‘Field of Experts’ Image Prior

The αf in the above expression is simply a transformation of the degrees of freedom term
(ν) given in equation (2.9). These parameters simply control the ‘shape’ of the Student’s
T-distribution, and in doing so, control the relative importance of each filter.

The shape of this prior should be considered carefully – the mode of each distribution actually
occurs when the inner product is zero. The inner product is only zero when the image patch is
orthogonal to the filter – i.e. when the two are extremely dissimilar. In this sense, the image
prior actually tells us which filters we should not look like. Hence (as we shall see), the ‘most
important’ filter shall actually correspond to the least likely configuration of an image patch.

3.1.1 Learning the Field of Experts Prior

By now we have motivated the appropriateness of the Field of Experts model as an image prior.
What remains to be shown is how we actually choose the filters (Jf s) and the importances (αf s)
given in the above equations.

It is typical to choose a set of filters that forms a spanning set for our space of image patches.
This means that the number of filters required should be the same as the number of variables in
our maximal cliques. Although we have not yet mentioned it explicitly, it is natural to assume
that each maximal clique in our image will share the same potential function, since regions in
natural images tend to be homogeneous [BM87]. It should be noted that there are a number
of applications in which more filters are used than are required to form a spanning set (in such
a case we are said to have an overcomplete basis [OF97]), but we will not consider such cases
here.

Hence, when dealing with n × n image patches, we are required to select n × n filters, each
of whose size is n × n, as well as their corresponding importances. This results in a total of
n4 + n2 parameters which must be learned (e.g. 20 in the 2× 2 case; 90 in the 3× 3 case).

When dealing with such a large number of parameters, it is not possible to simply select them
by maximum likelihood. [RB05] use an approach known as contrastive divergence learning
[Hin01, CPnH05]. While this approach has proven to be effective, it has been shown that
comparable results can be achieved simply by performing a principal component analysis on
the filters [MCSF06].

Principal Component Analysis

A principal component analysis (or PCA) can be performed on a set of vectors in order to
determine the axes upon which these vectors vary the most [Smi02]. The result of the PCA
is a transformation matrix; this allows us to express our data-points using a new set of basis
vectors, such that the largest amounts of variance now occur in a direction parallel to the basis.

The PCA consists of two steps: given an n×k data-matrix, D (in which each column is a vector
corresponding to a single observation), we first find the covariance matrix of DT . The principal
components are simply given by the eigenvectors of the covariance matrix, which are typically
found using a singular-value decomposition. Explicitly, the PCA is performed as follows:

29

3. Image Priors

0

0

0

0

0

0

Figure 3.4: Left to right: the original data; the principal components of the data; the
transformed data.

• Given a data-matrix D ∈Mn×k, find

Σ = cov(DT) = E
[
(DT − E(DT))(DT − E(DT))T

]
= E

[
(D − E(D))T (D − E(D))

]
• Perform a singular-value decomposition to find Σ = USUT .2

• The principal components are now given by the columns of U , which correspond to
the eigenvalues of Σ. The entries of S (a diagonal matrix) are the variances for the
corresponding columns of U

Furthermore, the amount of variance along each axis is given by the eigenvalues of the covari-
ance matrix. These are just given by S in the above formula.

Despite the fairly complex formulation of the PCA, it actually has a very intuitive explanation.
In figure 3.4 (on the left), we show a scatterplot of some (synthesised) data. The data points
almost correspond to a straight line, despite some random error. It is clear that most of the
variance occurs along the line y = x. In the centre of figure 3.4, we show the two vectors
found by performing PCA, scaled according to their eigenvalues. This confirms that most of
the variance occurs along y = x, and a much smaller amount occurs along the line y = −x.
Finally, the data are transformed using the transformation found from the PCA. It is clear that
for the transformed data, most of the variance occurs along the line y = 0 (or, equivalently,
parallel to the vector (1, 0)); the rest occurs along the line x = 0 (or parallel to the vector
(0, 1)).

The Learned Image Patches

We applied exactly the above approach to select the filters for our Field of Experts model. Of
course, the above definition only applies when the data-points are vectors, whereas the image
patches we are dealing with are two-dimensional. This is not a problem, however – we simply

2This is sometimes known as the eigenvalue decomposition – a special case of the singular-value decompo-
sition for cases in which Σ is a square, symmetric matrix (as is always the case with covariance matrices).

30

3.1. The ‘Field of Experts’ Image Prior

Figure 3.5: Top to bottom: the (last three) filters for a 2× 2 model; the filters for a
3× 3 model; the filters for a 4× 4 model.

let each component of the matrix correspond to a component of a vector.3 As long as we
reverse this process after the PCA has been performed, we will arrive at a result in terms of
matrices.

As our data-matrix (D), we randomly selected 50, 000 image patches from the Berkeley Segmen-
tation Database [MFTM01] of the size corresponding to our filters. By performing a principal
component analysis, it was easy to learn 2×2, 3×3, or even larger models. Some of the learned
models are shown in figure 3.5.

In 3.5, we have not shown the first filter – in every case, this filter simply corresponded to
a uniform gray patch. We can interpret such a patch as capturing variation due to intensity.
This is indeed true of the responses it would generate – the inner product of an image patch
with such a filter would be directly proportional to that patch’s overall intensity. With some
thought, it can be seen that we actually should not include such a patch in our model – we do
not want to favour a patch with lower or higher intensity as being more or less correct than
another. For this reason, such a patch should typically not be included – this was indeed the
approach taken by [RB05].4

Despite having learned our filters, we have yet to learn their corresponding importances.
In [RB05] the importances were also learned using contrastive divergence learning, and in
[MCSF06], they were learned using gradient-ascent. Another obvious approach would be sim-
ply to select them according to a maximum-likelihood estimate of a Student’s T-distribution
on the set of inner products of these filters with the image patches used in the PCA.

However, we will not adopt any of these approaches – as we shall present in section 4.1, the
Student’s T-distribution will not be used by our model. The importances of each filter shall be
implicitly learned by the Gaussian approximation we shall present. Hence we shall defer this
important learning step until the next chapter.

3e.g.

»
m1,1 m1,2

m2,1 m2,2

–
becomes (m1,1, m1,2, m2,1, m2,2)T

4Even though [RB05] used contrastive divergence learning to select their filters instead of PCA, their process
still produced a filter corresponding to a uniform gray patch.

31

3. Image Priors

3.2 Extending the Approach to Colour Images

So far, all of the results we have presented have been for grayscale images. Fortunately, these
approaches can be very easily applied to colour images.

The simplest approach is simply to apply the techniques developed for grayscale images to
each of the red, green, and blue channels of an RGB image. Unfortunately, this will produce
fairly poor performance, as the channels in a multiband image appear to be highly correlated
[MCSF06].

This very fact is actually the motivation for the YCbCr colour space – it is simply a transfor-
mation of the original RGB colour space in which the bands become less correlated [The94].
Assuming that RGB values range from 0–255, then the transformation is defined as:

Y = 16 +
1

256
(65.738R+ 129.057G+ 25.064B)

Cb = 128 +
1

256
(−37.945R− 74.494G+ 112.439B)

Cr = 128 +
1

256
(112.439R− 94.154G− 18.285B)

The inverse transformation is then defined as:

R = 1.164(Y − 16) + 1.596(Cr − 128)
G = 1.164(Y − 16)− 0.813(Cr − 128)− 0.392 ∗ (Cb− 128)
B = 1.164(Y − 16) + 2.017(Cb− 128)

To better explain what is happening here, Y , Cb, and Cr, or R, G, and B can simply be thought
of as three basis vectors that can be used to describe a colour. The above transformation simply
takes some linear combination of red, green, and blue components, and expresses it in terms of
Y , Cb, and Cr. Saying that Y , Cb, and Cr are less correlated than R, G, and B is the same
as saying that the basis vectors in YCbCr are more orthogonal than those in RGB (i.e. their
dot-products are smaller).

Now, if we apply our inference algorithms to each channel in this transformed colourspace, we
are able to achieve very good performance on the multiband image. This is the approach used
by [RB05].

Of course, even in the YCbCr colourspace, there is still some correlation between the channels
(although the YCbCr colourspace is defined in such a way that there should be no first order
correlations, there may still be high-order correlations). Therefore, it is still possible to produce
superior results if the channels are treated as being correlated. Indeed, similar techniques to
those already described can be used to perform a principal component analysis on multiband
images in this way – our ‘image patches’ now become 2×2×3, or 3×3×3 regions (corresponding
to the three channels for each pixel), instead of 2× 2 or 3× 3 [MCSF06].

However, dealing with multiband images in this way also has the effect of increasing the size
of our maximal cliques by a factor of three. Since the purpose of this thesis is to develop fast

32

3.2. Extending the Approach to Colour Images

algorithms, as opposed to algorithms which produce state-of-the-art results, we would simply
use the standard technique of converting the colourspace to YCbCr.

Further Reading

[RB05] introduce the Field of Experts image prior for use in image processing (and specifically
inpainting). They show that their model produces results at the current state-of-the-art level.

The Product of Experts model upon which the Field of Experts model is built is described
in [Hin99]. Subsequent papers which demonstrate how contrastive divergence learning can be
used in this setting are [Hin01] and [CPnH05].

The original motivation for the use of the Student’s T-distribution in image priors is given in
[WHO02].

Finally, [MCSF06] explores the improvement that can be achieved by treating the channels in
a multiband image as being correlated objects.

33

34

Chapter 4

The Gaussian Approximation

As we already suggested in chapter 3, the form of the Student’s T-distribution is not appropriate
for nonparametric belief-propagation techniques. This is due to the fact that neither the integral
nor the product of Student’s T-distributions results in another distribution of the same form.

Hence, in this chapter, we will develop an approximation of the Student’s T-distribution which
takes the form of a mixture of Gaussian density functions. Using such an approximation, we
will develop a potential function which is easy to integrate, multiply, and marginalise, while
maintaining the shape of a mixture of Gaussian densities.

4.1 The Gaussian Image Prior

In a Gaussian mixture model, our potential functions take the form of a sum of weighted
Gaussian probability densities. Specifically, φ takes the form

φ(xc) =
N∑

i=1

βie
(xc−µi)

T Σ−1
i (xc−µi). (4.1)

Here, each βi is simply a weighting coefficient – hence we generally assume that
∑N

i=1 βi = 1.
The µis and Σis are simply the means and covariances of the corresponding Gaussians.

We will show that by approximating each of our experts using a Gaussian mixture, we are able
to approximate our potential function using such a mixture also.1 In order to approximate
arbitrary data using a mixture of Gaussians, we will use an algorithm known as the expectation-
maximisation algorithm, presented below.

1Although this approximation produces a product of sums of Gaussians, this can be expressed as simply a
product, as we shall demonstrate later.

35

4. The Gaussian Approximation

4.1.1 The Expectation-Maximisation Algorithm

The aim of our approximation is essentially as follows – given a collection of inner products
(similar to those found in section 3.1),2 we want to estimate their distribution using a mixture
of N weighted Gaussians. Obviously, we want to choose those Gaussians that result in the
closest fit to the true distribution of the inner products. This requires us not only to compute
the means and variances of the N Gaussians, but also to determine for each data-point how
responsible each of the N Gaussians was in generating it.

The parameters we wish to estimate are β = (β1 . . . βN), µ = (µ1 . . . µN), and Σ = (Σ1 . . .ΣN).3

For brevity, we will use Θ to denote our set of unknowns, i.e. Θ = (β, µ, σ).

However, in order to estimate these parameters, we will also need to determine how responsible
each of our Gaussians was in generating each data-point. That is, supposing that we have a
data-matrix U ∈ MK×D (here we have K data-vectors, each of which is D dimensional), we
want to compute the matrix J ∈ MK×N , where each Ji,j represents the probability that the
ith data-point was generated by the jth Gaussian. The matrix J is referred to as the ‘hidden’
data in our model.

Of course, we are not interested in the values of our hidden variables – we only want to maximise
the probability of our estimate (say, Θ′) given the data (U). That is, we want to compute the
value of Θ which maximises

l(Θ;U) = logP (U|Θ) = log
∑
J∈J

P (U,J|Θ) (4.2)

(This is known as the ‘incomplete’ log-likelihood, since it does not contain J). Here we are
summing over all possible assignments to J in order to compute the marginal probability with
respect to Θ, given U. Ultimately, we want to compute

Θ′ = argmax
Θ

∑
J∈J

P (U,J|Θ). (4.3)

In general, it is not possible to compute this assignment by maximum likelihood directly, due
to the exponential number of possibilies for J. Instead, we introduce an ‘averaging coefficient’
(q(J|U,Θ)), which allows us to compute the expected complete log-likelihood [RKC05]. An
expression for this is given by

〈l(Θ;U,J)〉q =
∑
J∈J

P (U,J|Θ). (4.4)

Now, we note that while it may not be possible to maximise l(Θ;U) directly, q gives us a

2As the expectation-maximisation algorithm is far slower than performing a singular value decomposition
(section 3.1), we only used 5,000 random patches here, rather than the 50,000 used in section 3.1.

3In general, each µi is actually the vector of means for the ith gaussian, and each Σi is a covariance matrix
– in our case we are actually dealing with one-dimensional Gaussians, meaning that both of these may simply
be regarded as scalars.

36

4.1. The Gaussian Image Prior

method of computing a lower bound to l. This is given by

l(Θ;U) = log
∑
J∈J

P (U,J|Θ) (4.5)

= log
∑
J∈J

q(J|U)
P (U,J|Θ)
q(J|U)

(4.6)

≥
∑
J∈J

q(J|U) log
(
P (U,J|Θ)
q(J|U)

)
(4.7)

def.= L(q,Θ) (4.8)

(the above result can be derived using Jensen’s inequality [Del02, Bil98, Bor04]).

This allows us to express the EM algorithm as follows: given an initial estimate of Θ (say,
Θ0), we repeatedly perform two steps (known as the ‘E’, or ‘expectation’, and the ‘M’, or
‘maximisation’ steps), until our estimates of Θ converge. These two steps are specified as
follows:

E-step Compute qt+1 = argmaxq L(q,Θt)

M-step Compute Θt+1 = argmaxΘ L(qt+1,Θ).

It can be proved that successive estimates of Θ taken in this way will eventually converge to a
local maximum of logP (U,Θ) [DLR77, MK97, Del02].

The M-step is now equivalent to maximising the expected complete log-likelihood (equation
(4.4)). This can be seen as follows:

L(q,Θ) =
∑
J∈J

q(J|U) log
(
P (U,J|Θ)
q(J|U)

)
(4.9)

=
∑
J∈J

q(J|U) logP (U,J|Θ)−
∑
J∈J

q(J|U) log q(J|U) (4.10)

= 〈l(Θ;U,J)〉q −
∑
J∈J

q(J|U) log q(J|U). (4.11)

The right-hand-side of the above expression is now independent of Θ, so it can be ignored when
maximising.

Finally, the specific solution for qt+1(J|U) is just P (J|U,Θt) [RKC05], since

L(P (J|U,Θt),Θt) =
∑
J∈J

P (J|U,Θt) log
(
P (U,J|Θ)
P (J|U,Θt)

)
(4.12)

=
∑
J∈J

P (J|U,Θt) logP (U|Θt) (4.13)

= logP (U|Θt) (4.14)
= l(Θt;U). (4.15)

37

4. The Gaussian Approximation

4.1.2 The EM Algorithm for Gaussian Mixture Models

Although we have tried to present the most general forumaltion of the EM algorithm above,
it is worth specifically stating how this applies when the parameters we are trying to estimate
are those which define a Gaussian mixture.

All of the formulas presented below can be derived from the above equations. Since this is
probably the most common application of the EM algorithm, there are many texts relating to
exactly this specific form. See [Bil98] for further details.

Assuming that we have determined a suitable initial estimate of Θ (Θ0 = (β0, µ0, σ0)) (we
will deal with the details of this initial estimate later), then the E-step and the M-step of our
algorithm are presented in figure 4.1.

Of course, since the Gaussians we are trying to estimate are all one dimensional, our mean
vectors (µis), and our covariance matrices (Σis) are simply scalars.

K-Means Clustering

While the algorithm presented in figure 4.1 will produce an approximation of the data in the
desired form, the quality of this approximation tends to be highly sensitive to its initialisation
[MA93]. Possibly the simplest approach for initialisation would be simply to select the the
means and covariances to be the component means and covariances for random subsets of the
data.

A slightly more principled approach, which we will use, is that of K-means clustering. This
algorithm is very similar to the EM algorithm in its purpose. Here, we are trying to cluster our
data into K groups, such that the distances of our data-points to the means of their groups
are minimised. Hence, we are trying to minimise the error function

V =
C∑

c=1

∑
Ui∈Uc

(Ui − µc)2 (Or equivalently
C∑

c=1

∑
Ui∈Uc

|Ui − µc|) (4.16)

(Here our data are separated into C clusters, with means (µ1 . . .µC) – minimising the mean-
squared error is equivalent to minimising the distance).

Again, this is done using an iterative approach. Initially, we simply use a random selection of C
of our data-points as the means of the clusters. In order to cluster the remaining data-points,
we simply assign them to whichever cluster has the closest mean.

Having done this, we now compute the new means of the clusters, and the process is repeated.
Pseudocode for the EM algorithm is presented in figure 4.2.

Furthermore, the βs and Σs may simply be computed by computing the covariances of the
clusters and the size of the clusters respectively.

As an aside, it is worth mentioning that the K-means clustering algorithm is also highly

38

4.1. The Gaussian Image Prior

Algorithm 4: E-Step
Data: U , Θt = (βt, µt,Σt)
J = 0
for i ∈ {1 . . .K} ; /* K = number of data-points */
do

for j ∈ {1 . . . N} ; /* N = number of Gaussians */
do

z = 1
√

2∗πN
q

det(Σt
j)
exp(− 1

2 (Ui − µt
j)

T (Σt
j)
−1(Ui − µt

j))

numerator = βt
j × z

denominator = 0
for r ∈ {1 . . . N} do

z = 1√
2∗πN

√
det(Σt

r)
exp(− 1

2 (Ui − µt
r)

T (Σt
r)
−1(Ui − µt

j))

denominator = denominator +βt
r × z

end
Ji,j = numerator

denominator
end

end
return J

Algorithm 5: M-Step
Data: U, J
for s ∈ {1 . . . N} do

βt+1
s =

∑K
j=1 Jj,s

µt+1
s =

PK
j=1 UjJj,sPK

j=1 Jj,s

Σt+1
s =

PK
j=1(Uj−µt+1

s)(Uj−µt+1
s)T Jj,sPK

j=1 Jj,s

end
return Θt+1 = (βt+1, µt+1,Σt+1)

Algorithm 6: The EM algorithm
Data: U, Θ0

for i ∈ {1 . . . I} ; /* for each iteration */
do

J =E-Step(U, Θi−1)
Θi =M-step(U, J)

end
return Θ′ = ΘI

Figure 4.1: Pseudocode for the EM algorithm

39

4. The Gaussian Approximation

Algorithm 7: The K-means clustering algorithm
Initially, choose C random data-points as the means of our clusters (µ1 . . . µC).
for i ∈ {1 . . . I} ; /* for each iteration */
do

for Uj ∈ U do
assign Uj to the cth cluster such that (Uj − µc) is minimised.

end
compute the new cluster means from the assignments just generated.

end
return µ

Figure 4.2: Pseudocode for the K-means clustering algorithm

sensitive to its initialisation. For this reason, several more sophisticated initialisation algorithms
have been developed [MA93]. In our case, we found such approaches to be unnecessary.

Further Reading

Many ideas relating to the EM algorithm are covered in [Har58]. The algorithm was first fully
specified in [DLR77].

This algorithm is covered in more detail in [MK97]. Many tutorial papers have also been
valuable when learning this material, especially [Del02, Bil98, Bor04] and [Min98]. Many of
the derivations presented above were adapted from those in [RKC05]. Furthermore, [Bil98]
deals specifically with how the EM algorithm relates to estimating Gaussian mixture models,
meaning that it is probably the most relevant to this work.

Issues related to the initialisation of the EM algorithm, which motivate our use of K-means
clustering, are covered in [MA93].

Finally, as we have already mentioned in chapters 1 and 2, the use of the Gaussian distribution
in the MRF setting is described in [Bis06] and [RH05].

40

Chapter 5

Belief-Propagation

In this chapter, we will give a more detailed discussion of the belief-propagation algorithms
presented in chapter 2. This will allow us to see how these algorithms may be applied when
the messages being passed are (the parameters of) multivariate Gaussian distributions.

Having done this, we will see how the Gaussian image prior we developed in chapter 4 can be
expressed in the form required by these algorithms.

5.1 Nonparametric Belief-Propagation Continued

We have already introduced the important equations for nonparametric belief-propagation in
chapter 2. Specifically, we have that messages are computed according to

Mi→j(Si,j) =
∫
xi\xj

φi(xi)
∏

xk∈(Γxi
\{xj})

Mk→i(Sk,i), (5.1)

and that the final distribution is computed according to

Di(xi) = φi(xi)
∏

xk∈Γxi

Mk→i(Sk,i). (5.2)

We have also explained that our image prior takes the form of a mixture of Gaussians. That
is, it takes the form

φ(xc) =
N∑

i=1

βie
(xc−µi)

T Σ−1
i (xc−µi). (5.3)

What we must now demonstrate is that when our potential functions take such a form, the
equations (5.1) and (5.2) have a particularly simple solution.

41

5. Belief-Propagation

In order to do so, we will first need to develop some additional theory about Gaussian proba-
bility distributions.

5.1.1 The Multivariate Gaussian Probability Density Function

In order to compute equations (5.1) and (5.2), we will need to show how to compute the product
of several Gaussians, and the marginal distribution of a Gaussian. Furthermore, since we are
trying to solve inpainting problems, many of the variables (pixels) in our field are observed,
i.e. those pixels on the edge of an inpainting region. Hence we shall also need to show how to
compute the conditional distribution of a multivariate Gaussian.

Fortunately, all three of these equations have a simple form [Bis06, RH05]. We shall simply
state each of these forms without proof in this section – each of these results shall be proved
in the Appendix.

Products of Gaussian Distributions

Given K Gaussians (with means µ1 . . . µK , and covariances Σ1 . . .ΣK), the covariance of the
product (Σ′) is given by

Σ′ = (
K∑

i=1

Σ−1
i)−1 (5.4)

(It should be noted that although each Σ−1
i is often singular, their sum, in general, is not).

The mean of the product (µ′) is given by

µ′ = Σ′(
K∑

i=1

Σ−1
i µi). (5.5)

The corresponding importance term for the product is just β′ =
∏K

i=1 βk.

Marginal Distribution

Suppose that we want to marginalise a certain Gaussian distribution in x in terms of some
subset of its variables xu. Then without loss of generality (by reordering the variables), we
can write x as x = (xT

(u) | x(m))T (here x(m) corresponds to the variables we want to integrate
out). With this ordering of the variables, we can partition the mean and the covariance matrix
as

µ =
(

µ(u)

µ(m)

)
(5.6)

and

Σ =
[

Σ(u,u) Σ(u,m)

Σ(m,u) Σ(m,m)

]
. (5.7)

42

5.1. Nonparametric Belief-Propagation Continued

The mean of the marginal distribution is now simply given by the corresponding subset of the
means of the full distribution – i.e. the new mean is given by µ(u). Similarly, the new covariance
matrix is given by Σ(u,u).

Conditional Distribution

Finally, suppose that certain variables in a Gaussian distribution have been observed. Again,
we write x as x = (xT

(u) | x(o))T , where in this case x(o) corresponds to our set of observed
values (a constant vector). Again, we partition the mean and the covariance matrix as

µ =
(
µ(u)

µ(o)

)
(5.8)

and

Σ =
[

Σ(u,u) Σ(u,o)

Σ(o,u) Σ(o,o)

]
. (5.9)

The mean of the conditional distribution (µ(u;o)) is now given by

µ(u;o) = µ(u) + Σ(u,o)Σ−1
(o,o)(x(o) − µ(o)), (5.10)

and the covariance matrix (Σ(u;o)) is given by

Σ(u;o) = Σ(u,u) − Σ(u,o)Σ−1
(o,o)Σ

T
(u,o) (5.11)

(see the Appendix for more details).

5.1.2 Gaussian Mixture Models

It is easy to apply the above results when we are dealing with not one, but several multivariate
Gaussians. The marginal and conditional distribution formulas can simply be applied to each
of the Gaussians in the mixture, with their individual weights (βis) remaining unchanged.

Products of several Gaussian mixtures are computed in much the same way that polynomials
are multiplied – if we wish to multiply together P different mixture models, each consisting ofK
Gaussians (say, G1,1 . . . GP,K), then we would obtain a new mixture containing one Gaussian
for each element in the cartesian product G1 × G2 × . . . × GP . Each of these products is
computed using the equations presented above. The new mixture now contains KP Gaussians.

It is not difficult to see that this poses a certain problem for our algorithm – the number of
Gaussians in our mixtures will grow exponentially as we pass messages (equation (5.1)). Since
we are interested in producing fast algorithms, it will be necessary to decrease this number to
a reasonable level.

When passing messages, [SIFW03] use a Gibbs sampler to estimate a new mixture model which
contains a smaller number of Gaussians. However, they are only able to apply the algorithms
they develop to small cliques (the largest they show contain three nodes). Since the smallest
model we are reasonably able to work with contains cliques of size four (see chapter 3), their

43

5. Belief-Propagation

approach is not suitable in our case. Hence we opt for the simpler (if suboptimal) approach
of including only the most important Gaussians in our new model (i.e. those with the highest
weighting coefficient, βi), up to some predefined limit.

5.2 Our Model as a Mixture of Gaussians

In chapter 3 we developed an image prior which took the form of a product of experts, in which
each expert took the form of a Student’s T-distribution. In chapter 4, we showed that each of
these experts can be approximated using a mixture of Gaussians. However, this approximation
is still not in the form required by our model. Specifically, each of our experts has been
approximated in the form

φ′f (xc; Θ, J) '
K∑

i=1

βf,iexp

(
(〈Jf ,xc〉 − µf,i)2

2σ2
f,i

)
(5.12)

(i.e. as a mixture of K one-dimensional Gaussians in terms of the inner product of Jf and xc).
Instead, we would like each Gaussian in our mixture to be expressed in terms of xc. Hence, we
need to solve the system

exp

(
(〈J,x〉 − µ)2

2σ2

)
= exp

(
(x− µ)T Σ−1(x− µ)

)
. (5.13)

That is, we are trying to solve for Σ−1 (a matrix) and µ (a vector), in terms of J (a vector)
and µ (a constant). It is not difficult to see (by expanding (〈J,x〉 − µ)2, and looking at the
coefficients of the quadratic terms) that the only solution for Σ−1 is

Σ−1 =
1

2σ2
J · JT =

1
2σ2

J2

1 J1J2 · · · J1Jn

J2J1 J2
2 J2Jn

...
. . .

...
JnJ1 JnJ2 · · · J2

n

 (5.14)

(where n is the size of the filter J – in our case, we will typically have n = 4).

Alternately, there are infinitely many solutions for µ. One obvious solution is

µ =

µPn

i=1 Ji

...
µPn

i=1 Ji

 . (5.15)

However, we found for all of our filters that
∑n

i=1 Ji ' 0, meaning that this solution would be
highly unstable. A more stable solution (which we used) is given by

µ =

µ/J1

0
...
0

 (5.16)

44

5.2. Our Model as a Mixture of Gaussians

• • • • ___

�
�
�

@@
@@

@@
@ • ___

@@
@@

@@
@

�
�

�
�

• ___

@@
@@

@@
@

��
��

��
�

• ___

@
@

@
@

��
��

��
�

•

�
�
�

��
��

��
�

• • • ___

�
�
�

@@
@@

@@
@ •

@@
@@

@@
@

�
�

�
�

◦

@@
@@

@@
@

��
��

��
�

◦

@@
@@

@@
@

��
��

��
�

◦

@@
@@

@@
@

��
��

��
�

•

�
�
�

�
�

�
�

• ___

�
�
�

@@
@@

@@
@ • ___

@@
@@

@@
@

�
�

�
�

•

@@
@@

@@
@

��
��

��
�

◦

@@
@@

@@
@

��
��

��
�

◦

@@
@@

@@
@

��
��

��
�

◦

@@
@@

@@
@

��
��

��
�

• ___

�
�
�

�
�

�
�

•

•

�
�
�

@
@

@
@ ◦

@@
@@

@@
@

��
��

��
�

◦

@@
@@

@@
@

��
��

��
�

◦

@@
@@

@@
@

��
��

��
�

• ___

�
�
�

�
�

�
�

• ___ • •

• ___ • ___ • ___ • ___ • • • •

Figure 5.1: The topology of a scratched region. In the above graph, the empty circles
correspond to the scratched regions in our image, whereas the filled circles correspond
to the ‘observed’ regions.

(in all cases we had that J1 ∼ ±0.5). Of course, there are plenty of other solutions of the same
(or a similar) form, but the particular solution chosen should make no difference in practice
(as long as it is stable).

Using the above solution, each of our experts can now be expressed in the required form.
Furthermore, by using the equations already introduced for the product of several Gaussian
mixtures (equation (5.4) and (5.5)), we are able to express our entire potential function as a
single Gaussian mixture.

5.2.1 The topology of our model

When dealing with image inpainting, the topology of the graphical model being used will
depend on the shape of the region being inpainted. Fortunately, by using tools in Elefant (see
section 5.3), we were able to perform belief-propagation for graphical models of any topology.

In chapter 2, we presented several figures to describe common topologies of graphical models
that may be encountered when dealing with images. The situation is slightly different when
dealing with inpainting, since most of the nodes in our graph are observed (i.e. the pixels which
have not been corrupted). As a result, the only cliques which participate in our graphical model
are those cliques that contain some unknown values (i.e. the scratches).

Now, any clique which is fully contained within a scratch simply uses the Gaussian model
described in chapter 4 as its potential function. For other cliques which are only partially
contained within the scratch, this Gaussian model is conditioned upon those variables which
have been observed (see section 5.1.1). An example of such a graph (using a 2 × 2 model) is
presented in figure 5.1.

In figure 5.1, the empty circles correspond to the scratched regions in our image, whereas the
filled circles correspond to the ‘observed’ regions. Since we are using a 2 × 2 model, only the

45

5. Belief-Propagation

observed regions which are adjacent to our scratch are considered by our model. The other
pixels are simply ignored (indicated by the absence of an edge in the graph). Although some
edges (indicated by a dotted line) only connect two observed variables, these edges are still
used to form the maximal cliques. Consequently, any maximal clique containing one or more
of these observed nodes will have its potential function conditioned upon their observed values.
In figure 5.1, there is actually only one maximal clique which uses the full, unconditional,
potential function (in the top right section of the graph). It is also worth noting that it is
possible to form a junction tree from the cliques in figure 5.1 (see section 6.3).

5.2.2 Estimating the Results After Propagation

After all messages have been propagated throughout our field, we still have the problem of
selecting the correction of each pixel from the distributions contained in each clique.

Using the equation for the marginal distribution described above, it is easy to determine the
(one-dimensional) marginal distribution for any given pixel.

Unfortunately, computing the mode of, or sampling from, a mixture of Gaussian density func-
tions is actually very difficult.1 Hence, to select the mode of such a distribution, we simply
consider all 256 possible pixel values. Although this may appear to make our algorithm linear
in the number of gray-levels (the very problem we were trying to avoid), it should be noted
that this is performed only as a final step, after the last iteration, and that measuring the
response of a one-dimensional Gaussian is a very inexpensive procedure. More complicated
mode-finding techniques do exist [CPn00], but we found these to be unnecessary in our case.

Of course, when dealing with the special case in which our mixture contains only a single
Gaussian, we can simply use the mean of this distribution as its mode, and avoid this problem
altogether (see chapter 6).

5.3 Our Implementation

Having now fully described the model and the algorithms required to apply nonparametric
belief-propagation to image inpainting problems, it is worth briefly describing a few details of
our implementation.

Learning/Approximating the Prior

In order to select our filters, we randomly cropped 50, 000 2× 2 image patches from images in
the Berkeley Segmentation Database [MFTM01, RB05, MCSF06]. These regions were selected,
and the principal component analysis was performed using MATLAB code that we developed.

1If we were dealing with the sum of several Gaussian random variables this would be easy – but since we
are actually dealing with a single distribution, this problem is hard.

46

5.3. Our Implementation

We implemented the EM algorithm and K-means clustering (as specified in chapter 4) using
MATLAB.

Belief Propagation

All of our belief-propagation routines were written using a high-level Python implementation.
Much of this code used libraries from Elefant2 – an open-source machine-learning toolkit which
is currently being developed by NICTA (which I played a small role in developing). With this
code, we are able to produce loopy belief-propagation and junction-tree algorithms for graphs of
any topology. Additionally, we used the numpy matrix library (see http://numpy.scipy.org/
for more detail) for all message-passing code, allowing us to develop reasonably fast belief-
propagation algorithms, in spite of our high-level implementation.

Ultimately, once the prior model has been learned (and the corresponding importances, co-
variance matrices, and means have been saved in a file), our algorithm requires the following
parameters:

A corrupted image – the image whose pixels we want to restore.

An inpainting mask – a two colour (usually black/white) image indicating which
pixels are corrupted.

The original image – the ‘uncorrupted’ image. This is only used to gauge in-
painting performance, and can be ignored if it is unknown (for example, for
the picture of Abraham Lincoln presented in chapter 1, we do not have access
to an uncorrupted version).

I – the number of iterations to perform belief-propagation.

Our algorithm simply produces a new image, which is just the corrupted image, with the region
specified by the mask restored.

We have also developed a concurrent (MPI) version of loopy belief-propagation (using pypar
– a Python binding for MPI, available at http://datamining.anu.edu.au/~ole/pypar/).
However, for the sake of running-time comparisons, we have restricted ourselves to using a
single processor.

2Elefant can be downloaded at https://rubis.rsise.anu.edu.au/elefant.

47

48

Chapter 6

Results

In this section, we will present the inpainting experiments we performed using our implemen-
tation. As we have mentioned, the main purpose of our method is to inpaint images quickly,
rather than to achieve optimal inpainting performance. Therefore, running-times shall be the
main focus of this section. Fortunately, we shall also demonstrate that in spite of our ap-
proximate technique, our method is able to produce results that are visually comparable to
high-order (gradient-based) techniques.

6.1 Reference Implementation

Currently, the state-of-the-art (in terms of signal-to-noise ratio) inpainting implementation is
probably [RB05]. This implementation is available online, at

http://www.cs.brown.edu/people/roth/research/software.html

This implementation uses gradient-based techniques, and appears to achieve optimal inpainting
performance (in terms of PSNR). Unfortunately, the code provided only has trained filters for
a 3×3 model, meaning that it is not easily comparable to our 2×2 model. Therefore, we shall
present some of these results using a 3× 3 model, as an indication of what ‘optimal’ inpainting
performance looks like. In order to measure running-times, we shall simply use a random
set of filters with this implementation; while these filters will not be able to inpaint images
successfully, they will indicate the running-time of this method if it were properly trained on
2× 2 filters (the actual choice of filters should have no effect on the running time).

49

6. Results

6.2 Performance measures

Other than the running time of our inpainting algorithm, we will assess two measures of its
performance – peak signal-to-noise ratio (PSNR), and structured similarity (SSIM) [WBSS04].
A brief description of the meaning of these two measures is as follows:

PSNR

The peak signal-to-noise ratio is defined in terms of the mean-squared difference between the
original (uncorrupted) image, and the inpainted image.1 For a set of pixels in the original
image (say X), and a set of inpainted pixels (say Y), the mean-squared error between X and
Y is defined as

MSE(X,Y) =
1
|X|

|X|∑
i=1

(Xi − Yi)2. (6.1)

The PSNR is now computed as

PSNR(X,Y) = 20 log10

(
255√

MSE(X,Y)

)
. (6.2)

Here, 255 is the maximum pixel value that we observe in images (assuming that pixels are
stored as integers in the range 0-255). This value simply appears in the numerator of the above
expression in order to ensure that the results are appropriately scaled, meaning that the PSNR
is independent on the specific representation of the image. Ultimately, the PSNR increases
without bound as X and Y are made more similar.

SSIM

[WBSS04] reported that even though two results may differ in terms of their PSNR, they may
appear to be visually very similar. For this reason, they produced a similarity measure which
is intended to better coincide with people’s real perception of the difference between images, as
opposed to the less interpretable mean-squared error. Since the interpretation of this method
is quite involved, we shall only present the computational formula.

Given two images, X and Y , we define

µX =
1
|X|

|X|∑
i=1

Xi, (6.3)

σX =

√√√√ 1
|X| − 1

|X|∑
i=1

(Xi − µX)2, (6.4)

σXY =
1

|X| − 1

|X|∑
i=1

((Xi − µX)(Yi − µY)) (6.5)

1For the purpose of testing, we shall generally assume that we have access to the uncorrupted image, which
would not be the case in practice.

50

6.3. Junction-Trees vs. Loopy Belief-Propagation

Figure 6.1: The graph formed from the white pixels in the left image forms a junction-
tree (assuming a 2× 2 model). The graphs formed from the white pixels in the other
two images do not.

(which is well defined since |X| = |Y |). µY and σY are defined analogously. The structured
similarity (SSIM) is now computed by

SSIM(X,Y) =
(2 · µX · µY + c1)(2 · σXY + c2)
(µ2

X + µ2
Y + c1)(σ2

X + σ2
Y + c2)

. (6.6)

Here c1 and c2 are both constants which must be chosen; [WBSS04] define these constants
in terms of two different values, namely (c1, c2) = ((255K1)2, (255K2)2), where (K1,K2) =
(0.01, 0.03) (the specific values of these constants were chosen by [WBSS04] in order to design
a similarity measure that closely matches our visual perception). Again, the number 255 is
used to scale the result appropriately.

This measure now corresponds to a value between 0 and 1, with 1 indicating that the two
images are identical.

6.3 Junction-Trees vs. Loopy Belief-Propagation

As we have already suggested, it is sometimes possible to form a junction-tree from the cliques
in the region being inpainted (such an example was shown in section 5.2.1). This may be highly
advantageous, as it would allow us to inpaint an image using only a single iteration, whereas
loopy belief-propagation may take multiple iterations in order to converge.

While it is difficult to characterise exactly for which graphs it is possible to form a junction-tree,
it should be sufficient to say that they roughly correspond to those which contain no ‘loops’.
As an example, consider the three images in figure 6.1: it is easy to form a junction-tree from
cliques in the leftmost image (assuming that we are using a 2×2 model) – in fact, the resulting
tree will simply be a chain. However, no junction-tree exists for the cliques in the other two
(again assuming a 2× 2 model).2

2It should be noted that we could form a junction tree, if we were willing to deal with larger cliques. Of
course, since we are interested in developing fast algorithms, we shall only consider cases in which 2× 2 cliques
are used.

51

6. Results

Unfortunately, determining whether or not a graph obeys the junction-tree property or not is
a very expensive procedure (see chapter 2). Therefore, in all of our examples, we have simply
used the loopy belief-propagation algorithm. However, it should be noted that if the user is able
to visually determine that this property is obeyed (as it often will be when removing common
forms of corruption, such as scratches), it will be possible for them to use the junction-tree
algorithm, and produce results even faster.

6.4 Inpainting Results

In figure 6.2 we show an image which has had text overlayed which we want to remove (this
particular image was originally used in [BSCB00]). Even after only a single iteration of in-
painting, the text has been almost completely removed. This is in contrast to gradient-based
methods, which typically take several thousand iterations to inpaint an image.

Alternately, figure 6.3 compares our results to the current state-of-the-art. Although it is true
that there are regions of the image in which a difference between the two is perceptible, the
quality of both images is quite high. The ‘state-of-the-art’ technique uses a 3 × 3 model, and
2750 iterations of gradient-ascent. Consequently, it takes several times longer to produce a
result.

In the images presented in figure 6.2, we trained a model using three Gaussians, and then se-
lected the most important Gaussian in order to perform inpainting. Interestingly, this approach
outperformed the more obvious approach of training a model using only a single Gaussian. It
is possible that in the former case, the ‘most important’ Gaussian is capturing only the rele-
vant information about the shape of the curve, whereas in the latter case, the variance of our
Gaussian is overestimated to compensate for the heavy tails of our distribution (see chapter
2).

In figure 6.4, we compare the performance of several models, in which training and inference is
performed using different numbers of Gaussians. These results are presented in detail in table
6.1.

6.4.1 A Colour Image

To demonstrate that this approach can be applied to colour images, it is worth giving one
example of a colour image being inpainted using this technique. in figure 6.5, we show a
corrupted image, converted to the YCbCr colour-space (see chapter 3), and inpainted in each
channel separately. The three inpainted channels are then combined to form a single colour
image.

52

6.4. Inpainting Results

Figure 6.2: Above, top-left to bottom-right: the original image; the image containing
the text to be removed; inpainting after a single iteration, using a single Gaussian
(PSNR = 22.74, SSIM = 0.962); inpainting after two iterations (PSNR = 22.82, SSIM
= 0.962). Below: close-ups of all images.

53

6. Results

Figure 6.3: Left: our inpainted image (PSNR = 22.82); right: inpainted image from
[RB05] (PSNR = 31.4232).

Gaussians Max Iteration PSNR SSIM
1 1 1 22.57 0.927

2 22.67 0.928
3 22.68 0.928

3 1 1 22.81 0.927
2 22.87 0.928
3 22.88 0.928

3 3 1 22.82 0.927
2 22.87 0.928
3 22.88 0.928

3 9 1 22.80 0.927
2 22.86 0.928
3 22.87 0.928

Table 6.1: Comparison of inpainting performance for several models. Here we vary
the number of Gaussians used to compute the initial mixture, as well as the maximum
number of Gaussians allowed during propagation.

54

6.4. Inpainting Results

Figure 6.4: Above: the original image; the corrupted image containing ‘scratches’.
Below, top-left to bottom-right: mixture contains 1 Gaussian, propagation is per-
formed with 1 Gaussian; mixture contains 3 Gaussians, propagation is performed
with 1 Gaussian; propagation is performed with 3 Gaussians; propagation is per-
formed with 9 Gaussians. All results are shown using the 2 × 2 model, after three
iterations. See table 6.1 for more detail.

55

6. Results

����
��

��
�

�� ��?
??

??
??

�� �� ��

��?
??

??
??

�� ����
��

��
�

Figure 6.5: Top to bottom, left to right: the original image, the corrupted image, and
the inpainting mask; the corrupted image is separated into its Y, Cb, and Cr channels;
each of the channels is inpainted seperately; the three channels are combined to form
the inpainted colour image.

56

6.5. Execution Times

Figure 6.6: Two equally large regions to be inpainted, in two differently sized images.
While the gradient-based implementation we used for comparison inpaints the smaller
(right) image much faster, our algorithm inpaints both at the same speed, rendering
a fair comparison more difficult.

6.5 Execution Times

Unfortunately, it proved very difficult to compare the execution times of our model with existing
gradient-ascent techniques. For example, the inpainting algorithm used in [RB05] computes
the gradient for all pixels using a 2-dimensional matrix convolution over the entire image,
and then selects only the region within the inpainting mask. While this results in very fast
performance when a reasonable proportion of an image is being inpainted, it results in very
slow performance when the inpainting region is very sparse (as is often the case with scratches).
It is easy to produce results which favour either algorithm, but such a comparison will likely
be unfair.

To make explicit this difficulty, consider the images in figure 6.6. The image on the left is
significantly larger than the image on the right, yet the corrupted regions are of the same
size (∼ 1500 pixels). As a result, our algorithm exhibited the same running time on both
images (∼10 seconds per iteration), whereas the gradient-ascent algorithm from [RB05] was
approximately 6 times faster on the smaller image (∼0.06 seconds compared to ∼0.01 seconds).

As a more representative example, when inpainting the image in figure 6.4 (using a single
Gaussian), the first iteration took ∼33.6 seconds on our test machine. The second iteration
took ∼39.0 (as did subsequent iterations – the first is slightly faster due to many messages
being empty at this stage). The running time of this algorithm increases linearly with the
number of Gaussians (for example, when using three Gaussians, the first iteration took ∼87.0
seconds).

Alternately, a single iteration of inpainting using the gradient-ascent algorithm from [RB05]
took ∼0.1 seconds (using a 2 × 2 model). However, their code was run for 2,500 iterations,

57

6. Results

n Multiplications Inverses

1 14800 44648
2 42072 37386
3 25760 12880
4 43308 21654

Table 6.2: Number of operations required by our algorithm. Multiplications are of
(n× n)× (n× 1), and inverses are of (n× n) matrices, for various values of n.

meaning that our code is still in the order of 2 to 3 times faster. This is a pleasing result, given
that we used a high-level language for our implementation.

In an attempt to provide a more ‘fair’ comparison, we have tried to analyse the computations
required by both algorithms. It can be seen from the equations presented in chapter 5 that
our algorithm consists (almost) entirely of matrix multiplications and inverses.3 Although it
is very difficult to express exactly the number of such operations required by our algorithm in
general, we have calculated this number for a specific case.

The corrupted image in figure 6.4 requires us to inpaint a total of 5829 pixels. The number
of operations required by our algorithm to inpaint this image (during the second iteration) is
shown in table 6.2.

Alternately, the gradient-ascent approach in [RB05] is dominated by the time taken to compute
the inner products in (the derivative of the logarithm of) equation (3.4). Each pixel is contained
by four cliques, and we must compute the inner product against each of our three filters.
Therefore we must compute a total of 4× 3× 5829 = 69948 inner products per iteration.

As a simple experiment, we timed these operations in MATLAB (using random matrices and
vectors). We found that computing 69948 inner products was approximately 10 times faster
than computing the matrix operations shown in table 6.2. This leads us to believe that a
low-level implementation of our belief-propagation algorithms may be significantly faster than
the results we have shown.

3Other operations, such as additions and permutations are typically much faster than these.

58

Chapter 7

Discussion and Conclusion

7.1 Discussion

Our results have shown than even a 2× 2 model is able to produce very satisfactory inpainting
performance. We believe that even this small model is able to capture much of the important
information about natural images. While higher-order models exist [RB05], the improvements
appear to be quite incremental, despite a significant increase in their execution time. While
it is certainly the case that our results fall short of the state-of-the-art in terms of PSNR,
the differences are difficult to distinguish visually. It is therefore pleasing that we are able to
produce competitive results within only a short period of time.

While it is difficult to shed further light on the examples we have presented, it is still possible
to discuss the shortcomings of our approach, as well as different applications and extensions.
These ideas will be discussed in this section.

7.1.1 Limitations of Our Approach

One possibility which we have not considered is that the corrupted pixels may contain some
information about the original image. As an example for which this would be the case, consider
a coffee stain – although the region behind the coffee stain has been corrupted, it still contains
important information about the correct values of the pixels. In such a case, our graphical
model would look more like the one presented in figure 7.1. In this case, we add an additional
edge between the original (observed) pixels, and their corrected (inferred) values. Since this
edge is also a maximal clique in our model, the relationships between these two nodes would
also be modelled using a Gaussian mixture.

59

7. Discussion and Conclusion

◦

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
◦

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
◦

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��

•

ppppppppppppp •

ppppppppppppp •

ppppppppppppp

◦

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
◦

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
◦

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��

•

ppppppppppppp •

ppppppppppppp •

ppppppppppppp

◦ ◦ ◦

•

ppppppppppppp •

ppppppppppppp •

ppppppppppppp

Figure 7.1: A corrupted region in which the original pixels (filled circles) contain
important information about the corrupted pixels whose correct values we want to
infer (empty circles).

60

7.1. Discussion

Many gradient-ascent approaches implicitly exploit this possibility by initialising their algo-
rithms using the corrupted pixels. If the restored image is ‘close to’ the corrupted image, this
can result in faster convergence.

Our approach can deal with this case, but it is not quite as simple – we have to explicitly
specify the relationship between the original pixels and their corrected values. For instance,
in the case of a coffee stain, we might suggest that the Gaussian distance between the original
pixels and their corrected values (i.e. exp(− 1

2σ2 (original − corrected)2)) should be small, to
prevent us from deviating too far from the observed values. However, since learning the nature
of such a relationship may be quite difficult, we have not yet dealt with such problems at this
stage.

Furthermore, it is clear that our algorithm will exhibit the best performance when the regions
being inpainted are small, such as the scratches we have presented. In these cases, we found
that loopy belief-propagation tended to converge in very few iterations. While we believe it
helped that the regions we inpainted appeared to be fairly ‘tree-like’, there is very little theory
to support this claim. On the other hand, loopy belief-propagation often converges far slower
when dealing with large regions, meaning that we can inpaint a ‘scratch’ much faster than the
coffee stain presented above.

7.1.2 Extensions

In this thesis, we have not only solved inpainting problems, but rather defined a prior model for
natural images. While inpainting is an application in which our model is highly beneficial, it
can potentially be applied in many cases in which we are making inferences using image priors.
One such example is image denoising, which is in fact very similar to the example presented
in figure 7.1. In an image denoising application, we assume that every pixel in the image has
been corrupted by some random noise – we then want to find a correction of this image which
is not only consistent with our image prior, but is also consistent with our noise model (e.g.
if we are dealing with Gaussian noise, we would expect that the corrected pixel values have a
small Gaussian distance to the original values, as was the case presented above).

We have not dealt with this case, simply because it would do little to highlight the advantages
of our method. Gradient-based approaches to image denoising can be very fast, due to the
fact that the gradient can be computed using a full matrix convolution over the whole image
[RB05]. Since this matrix convolution is very costly in an inpainting scenario, our methods are
better demonstrated in an inpainting setting.

Furthermore, we have not yet fully explored the possibility of using the junction-tree algorithm
to inpaint images (we have only used loopy belief-propagation). Unfortunately, determining
whether a graph obeys the junction-tree property (see chapter 2) is very expensive, meaning we
simply used loopy belief-propagation in all cases, without even performing this test. However,
there are many cases in which we can be sure that a junction-tree exists – for example, if the
inpainting region is a scratch which is only one or two pixels wide. In such cases, optimal
results can be produced after only a single iteration, which would render our algorithm several
times faster again.

61

7. Discussion and Conclusion

7.2 Conclusion

In this thesis, we have developed a model for inpainting images quickly using belief-propagation.
While image inpainting has previously been performed using low-order models by belief-
propagation, and high-order models by gradient-ascent, we have presented new methods which
manage to exploit the benefits of both, while avoiding their shortcomings.

We have shown these algorithms to be faster than existing gradient-based techniques, even
in spite of our high-level implementation. We believe that this represents an important step
towards developing a variety of fast algorithms for image processing.

62

Appendix A

Proofs and Further Details

A.1 Proofs for Multivariate Gaussians

Here, we shall derive the formulae for marginals, conditionals, and products of multivariate
Gaussians. We will only consider the case in which we have two Gaussians – these derivations
can easily be extended to many Gaussians. Some of these ideas have been taken from [Bis06,
RH05], as well as [Ahr05, Mar06]. Others have been derived independently.

Firstly, it shall help us to think of a Gaussian in terms of eigenvectors and eigenvalues, rather
than its covariance matrix. We already mentioned in chapter 3 that a covariance matrix can be
decomposed in terms of its eigenvectors and eigenvalues, by using an eigenvalue decomposition.
Namely, we have that

Σ = V ΛV −1 = V ΛV T (A.1)

(where V is a matrix of eigenvectors, Λ is a diagonal matrix of eigenvalues).

In this setting, it makes sense that a Gaussian distribution may be transformed simply by
transforming its eigenvectors, and its mean.

That is, for a Gaussian N (µ,Σ), and a transformation matrix B, we have that BN (µ,Σ) is
given by

BN (µ,Σ) = BN (µ, V ΛV T) (A.2)
= N (Bµ, (BV)Λ(BV)T) (A.3)
= N (Bµ,BV ΛV TBT) (A.4)
= N (Bµ,BΣBT). (A.5)

A demonstration of this transformation is given in figure A.1. Here, a Gaussian distribution
(shown using its eigenvectors, scaled by their eigenvalues), has its eigenvalues transformed to
produce a new Gaussian distribution.

63

A. Proofs and Further Details

0

0

µ

B→

0

0

Bµ

Figure A.1: The original Gaussian (left), shown using its eigenvectors (scaled by their
eigenvalues); the Gaussian transformed by B (right).

From this it is clear that applying any linear transformation to a Gaussian distribution results
in a new distribution which is also Gaussian.

A.1.1 Marginals

Corollary A.1.1. Suppose x follows a multivariate Gaussian distribution, and is partitioned
as x = (xT

(u) | x(m))T , with mean and covariance

µ =
(

µ(u)

µ(m)

)
(A.6)

and

Σ =
[

Σ(u,u) Σ(u,m)

Σ(m,u) Σ(m,m)

]
. (A.7)

Then the marginal x(u) is simply a multivariate Gaussian with mean µ(u), and covariance
Σ(u,u).

Proof. Simply apply equation (A.5) with

B =
[
I|x(u)|

∣∣∣0|(u,m)|

]
(A.8)

64

A.1. Proofs for Multivariate Gaussians

A.1.2 Conditionals

Theorem A.1.2. Suppose x follows a multivariate Gaussian distribution, and is partitioned
as x = (xT

(u) | x(o))T , with mean and covariance

µ =
(
µ(u)

µ(o)

)
(A.9)

and

Σ =
[

Σ(u,u) Σ(u,o)

Σ(o,u) Σ(o,o)

]
. (A.10)

The mean of the conditional distribution (µ(u;o)) is now given by

µ(u;o) = µ(u) + Σ(u,o)Σ−1
(o,o)(x(o) − µ(o)), (A.11)

and the covariance matrix (Σ(u;o)) is given by

Σ(u;o) = Σ(u,u) − Σ(u,o)Σ−1
(o,o)Σ

T
(u,o). (A.12)

Proof. Assuming that the joint distribution of xa and xb (which we shall denote π(xa,xb)) is
Gaussian, then we have already shown (corollary A.1.1) that π(xa) and π(xb) also follow a
Gaussian distribution.

Furthermore, it is not difficult to see that π(xa|xb) (the conditional distribution we want to
find) is also Gaussian. This follows from the fact that π(xa|xb) = π(xa,xb)

π(xb)
, where π(xb) is

merely a constant in this case. Furthermore, by substituting specific values into the joint
distribution, it is easy to solve the resulting equation in terms of a new mean and covariance.
It is only the specific computational equation for the conditional distribution which is not
obvious.

So, we will simply state that π(xa|xb) ∼ N (α + βxb,Σe). Our task is now to solve for α, β,
and Σe.

In the above expression, we have essentially described the conditional distribution of xa given
xb as a linear model in terms of xb. While we shall not delve too deeply into the theory of linear
models here, we require one simple theorem – namely, that the residual of the model (i.e. the
difference between the value predicted by the linear model and the true value), is independent
of the predictor (i.e. the input value). This is true as long as our response is indeed of the
form α+ βx +N (µ,Σ) (i.e. it is linear, together with some random error), which is certainly
the case here.

Here, we have that the residual is given by

π(E) = π(xa)− (α+ βπ(xb)). (A.13)

(in this case, the ‘random error’ in our response is determined by Σe). Hence, our theorem
from linear models simply states that π(E) is independent of π(xb).

Furthermore, when two Gaussian distributions are independent, their joint distribution has a
particularly simple form. Specifically, there is no covariance between the two distributions.

65

A. Proofs and Further Details

Hence, the covariance matrix is block-diagonal. In this case, the joint distribution of E and xb

is given by

π(E,xb) ∼ N
((

0
µ(b)

)
,

[
Σe 0
0 Σ(b,b)

])
. (A.14)

We can now express the joint distribution, π(xa,xb), as an affine transformation of π(E,xb).
Specifically, we have1

π(xa,xb) =
(
α
0

)
+
[
I β
0 I

]
π(E,xb) (A.15)

∼ N
((

µ(a)

µ(b)

)
,

[
Σ(a,a) Σ(a,b)

Σ(b,a) Σ(b,b)

])
. (A.16)

We can now use this fact to solve the above expression in terms of α, β, and Σe (again using
equation (A.5)).

Here we have (
µ(a)

µ(b)

)
=
(
α
0

)
+
[
I β
0 I

](
0
µ(b)

)
=
(
α+ βµ(b)

µ(b)

)
(A.17)

and [
Σ(a,a) Σ(a,b)

Σ(b,a) Σ(b,b)

]
=

[
I β
0 I

] [
Σe 0
0 Σ(b,b)

] [
I 0
βT I

]
(A.18)

=
[

Σe + βΣ(b,b)β
T βΣ(b,b)

Σ(b,b)β
T Σ(b,b)

]
. (A.19)

Now we can easily solve our system

β = Σ(a,b)Σ−1
(b,b) (A.20)

α = µ(a) − βµ(b) (A.21)

Σe = Σ(a,a) − Σ(a,b)Σ−1
(b,b)Σ(b,a). (A.22)

Simple substitution now gives us the required result.

A.1.3 Products

Theorem A.1.3. Given Gaussians N (µa,Σa) and N (µb,Σb), the covariance of the product
(Σc) is given by

Σc = (Σ−1
a + Σ−1

b)−1 (A.23)

The mean of the product (µc) is given by

µ′ = Σc(Σ−1
a µa + Σ−1

b µb). (A.24)

1Here we have ignored the dimensions of some matrices where there is no ambiguity.

66

A.1. Proofs for Multivariate Gaussians

Proof. Explicitly, the product is proportional to

exp(−1
2
[
(x− µa)TQa(x− µa) + (x− µb)TQb(x− µb)

]
) (A.25)

(where we have used Qa to represent Σ−1
a to be more concise). Expanding the term within the

exponent gives

(x− µa)TQa(x− µa) + (x− µb)TQb(x− µb)
= xTQax− xTQaµa − µT

aQax + xTQbx− xTQbµb − µT
b Qbx +K

= xT (Qa +Qb)x− xT (Qaµa +Qbµb)− (Qaµa +Qaµb)T x +K

= xT (Qa +Qb)x− xT (Qa +Qb)(Qa +Qb)−1(Qaµa +Qbµb)
−(Qaµa +Qbµb)T (Qa +Qb)−1(Qa +Qb)x +K

= (x− (Qa +Qb)−1(Qaµa +Qbµb))T (Qa +Qb)(x− (Qa +Qb)−1(Qaµa +Qbµb)) +K ′

(the fact that K 6= K ′ does not matter, as they only serve as scaling coefficients). This
technique is similar to that of completing the square; rewriting Qa = Σ−1

a etc. gives the
required solution.

67

68

Appendix B

ICML 2007 Paper

We decided that it would be worthwhile to submit our results to the International Conference
of Machine Learning (ICML2007). ICML is well-known for publishing papers on topics such as
graphical models, and learning in images. If accepted, these results will be presented in June
2007.

The full text of this paper is included below. As this paper is currently under review, it should
not be distributed.

69

High-Order Nonparametric Belief-Propagation for Fast Image
Inpainting

Abstract

In this paper, we use belief-propagation tech-
niques to develop fast algorithms for image
inpainting. Unlike traditional gradient-based
approaches, which may require many iter-
ations to converge, our techniques achieve
competitive results after only a few itera-
tions. On the other hand, while belief-
propagation techniques are often unable to
deal with high-order models due to the ex-
plosion in the size of messages, we avoid this
problem by approximating our high-order
prior model using a Gaussian mixture. By
using such an approximation, we are able to
inpaint images quickly while at the same time
retaining good visual results.

1. Introduction

In order to restore a corrupted image, one needs a
model of how uncorrupted (i.e. natural) images ap-
pear. In the Markov random field Bayesian paradigm
for image restoration (Geman & Geman, 1984), nat-
ural images are modeled via an image prior. This is
a probabilistic model that encodes how natural im-
ages behave locally (in the vicinity of every pixel). An
inference algorithm is then used to restore the image,
whose aim is to find a consensus among all vicinities on
which global solution is most compatible with a natu-
ral image (while still similar to the corrupted image—
a corrupted tree should be restored as an uncorrupted
tree, not as an uncorrupted house). The simplest ex-
ample of an image prior is perhaps the pairwise model
presented in (Geman & Geman, 1984) – which simply
expresses that neighboring pixels are likely to share
similar gray-levels. However, it is easy to see that such
a model fails to capture a great deal of important in-
formation about natural images. For example, ‘edges’
are highly penalized by such a prior, and it is unable
to encode any information about ‘texture’. Only by

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

using higher-order priors will one be able to capture
this important information.

An example of a high-order prior is the field of experts
model (Roth & Black, 2005), which is parameterized
as the product of a selection of filters (or ‘experts’).
Each of these filters is typically a patch of 3 × 3 or
5 × 5 pixels, resulting in a 9 or 25-dimensional prior
respectively. Unfortunately, such a high-dimensional
prior limits the practicality of many inference algo-
rithms. Even though it may be possible to use smaller
(for example, 2 × 2) patches (Lan et al., 2006), we
are still limited by the number of gray-levels used to
properly represent natural images (typically 256). Up-
dating a single pixel using a Gibbs sampler (for exam-
ple) requires us to consider all 256 possible gray-levels.
Since Gibbs samplers may typically take hundreds (or
thousands) of iterations to converge, they are simply
impractical in this setting.

While belief-propagation techniques tend to converge
in fewer iterations (Yedidia et al., 2000), they are often
equally impractical. Since adjacent cliques may share
as many as 6 nodes (using a 3 × 3 model), the size of
the messages passed between them may be as large as
2566. Even if we only use 2× 2 cliques, the size of our
messages may still be as large as 2562, which remains
impractical for many purposes.

To avoid these problems, image restoration is typically
performed using gradient-ascent, thereby eliminating
the need to deal with many discrete gray-levels, and
avoiding expensive sampling (Roth & Black, 2005).
While gradient-based approaches are generally consid-
ered to be fast, they may still require several thousand
iterations in order to converge, and even then will con-
verge only to a local optimum.

In this paper, we propose a method that enables one
to get the best of both worlds: we manage to render
belief-propagation practical using a high-order (2 × 2
pixels or larger) model and use it for the task of im-
age inpainting. By using a nonparametric prior, we
are able to avoid the need to discretize images, result-
ing in much smaller messages being passed between
cliques. Our experiments show that belief-propagation

High-Order Nonparametric Belief-Propagation for Fast Image Inpainting

techniques are able to produce competitive results af-
ter only a single iteration, rendering them faster than
many gradient-based approaches, while retaining sim-
ilar visual quality of the restoration.

2. Background

In this section, we define the Markov random field
(MRF) image prior to be used in our model. Although
we shall not present any significant results in terms of
learning the prior, we have nevertheless made a num-
ber of modifications to the ‘standard’ image prior in
order to render inference tractable.

2.1. The ‘Field of Experts’ Image Prior

The Hammersley-Clifford theorem states that the joint
probability distribution of a Markov random field with
clique set C (assuming maximal cliques) is given by

p(x) =
1
Z

∏
c∈C

φc(xc) (1)

(where xc is the set of variables in x belonging to the
cth clique; Z is a normalization constant) (Geman &
Geman, 1984). When dealing with images, the φcs are
often assumed to be homogeneous (Burton & Moor-
head, 1987), meaning that the prior can be defined
entirely in terms of a single potential function, φ. In
the Field of Experts model (Roth & Black, 2005), this
potential function is assumed to take the form of a
product of experts (Hinton, 1999), in which each ‘ex-
pert’ is the response of the image patch {xc} to a par-
ticular filter {Jf}. That is, the potential function takes
the form

φ(xc; J, α) =
F∏

f=1

φ′f (xc, Jf , αf) (2)

(where the αf ’s are simply weighting coefficients con-
trolling the importances of the filters). Specifically,
each expert is assumed to take the form of a Student’s
T-distribution, namely

φ′f (xc; Jf , αf) = (1 +
1
2
〈Jf ,xc〉2)−αf . (3)

Although (Roth & Black, 2005) use contrastive diver-
gence learning to select the filters and alphas, it has
been shown that the filters can more easily be selected
using principal component analysis (PCA) (McAuley
et al., 2006). This leaves only the problem of learning
the alphas, which we shall deal with in section 3.

2.2. Belief-Propagation

Inference in the MRF setting can be formulated as
a message passing problem. Two common message

passing algorithms exist, namely the junction-tree al-
gorithm, and loopy belief-propagation (Aji & Mceliece,
2001). In our case, which algorithm should be ap-
plied depends upon the ‘shape’ of the region being in-
painted. We will give only a brief overview of these
algorithms in order to explain why it is infeasible to
apply them directly when using the above prior. A
more complete specification is given in (Aji & Mceliece,
2001).

Belief-propagation algorithms work by having cliques
pass ‘messages’ to other cliques which share one or
more nodes in common. If we denote by Si,j the in-
tersection of the two cliques xi and xj , and denote by
Γxi

the neighbors of xi (i.e. those cliques which share
one or more nodes with xi), then the message, Mi→j ,
sent from xi to xj is given by

Mi→j(Si,j) =
∑

xi\xj

φ(xi)
∏

xk∈(Γxi
\{xj})

Mk→i(Sk,i). (4)

That is, the outgoing message from xi to xj is de-
fined as the product of the local potential {φ(xi)} with
the incoming messages from all neighbors except xj ,
marginalized over the variables in xi but not in xj .
Once all messages have been sent, the final distribu-
tion of xi {Di(xi)} is given by

Di(xi) = φ(xi)
∏

xk∈Γxi

Mk→i(Sk,i). (5)

Even when using the 2 × 2 model, evaluating φ(xi)
requires us to consider 2564 possible gray-level combi-
nations. Although it may be possible to approximate
the marginal being computed in equation (4) without
computing φ(xi) explicitly (Lan et al., 2006), the mes-
sage itself still contains 2562 elements. This problem
is dealt with in (Lan et al., 2006) by using a factor-
graph (Kschischang et al., 2001), which requires only
that one dimensional marginals are computed, how-
ever the running time of their method is still linear in
the number of gray-levels, in addition to the fact that
the factor-graph fails to fully capture the conditional
independencies implied by the model.

As a result, we seek φ in such a form that the sum
in equation (4) may be replaced by an integral. In
(Sudderth et al., 2003), the authors defined such a
model in which the potential function takes the form
of a Gaussian mixture, that is, with φ taking the form

φ(xc) =
N∑

i=1

βie
(xc−µi)

T Σ−1
i (xc−µi) (6)

(this is sometimes known as a Gaussian random field
(Bishop, 2006; Rue & Held, 2005)). Unfortunately,

High-Order Nonparametric Belief-Propagation for Fast Image Inpainting

the method they use to learn these mixtures appears
to be applicable only to low-order models (the largest
mixture models they learn are 3-dimensional).

In the remainder of this paper, we will show that
the experts {φ′f s} can be approximated as a Gaus-
sian mixture, resulting in a high-order model which
closely matches the one given in equations (2) and (3).
We will describe belief-propagation in this setting, and
show how this approach can be used for fast image in-
painting.

3. Approximating the Prior

In (McAuley et al., 2006), the authors showed that
the filters {Jf s} in equation (2) can be learned by per-
forming PCA on a collection of natural image patches.
Here we follow this idea. To learn our filters (for a 2×2
model), we randomly cropped 50,000 2 × 2 patches
from images in the Berkeley Segmentation Database
(Martin et al., 2001), and used the last three princi-
pal components (it was found in (Roth & Black, 2005)
that the first component corresponds to a uniform gray
patch, which should be ignored for a model invariant
to intensity). The three resulting patches appear to
make sense visually, and are shown in figure 1.

Figure 1. The three filters used in our 2× 2 model.

This model requires also that we learn the ‘impor-
tances’ {αf} of each filter. From equation (3), it can be
seen that the αf s simply control the shape (or ‘peaked-
ness’) of the Student’s T-distribution. Rather than try
to learn the αf s explicitly, we will learn them implic-
itly through our approximation.

In order to approximate the experts {φ′f}, we first cal-
culated the inner products {〈Jf ,xc〉} for a random se-
lection of 5,000 image patches (again cropped from the
Berkeley segmentation database (Martin et al., 2001)).
Rather than assume that this data is generated ac-
cording to a Student’s T-distribution, we simply tried
to approximate this data directly using a mixture of
Gaussians. We observed (from a normal probability
plot) that the data was more heavily tailed than would
be suggested by a normal distribution, indicating that
the Student’s T-distribution may indeed be valid.

In order to estimate the distribution governing this
data, we used the expectation-maximization (EM) al-

gorithm (Dempster et al., 1977), assuming that the
set of inner products for each filter was generated by a
mixture of three Gaussians. All of our parameters to
be learned {Θ = (β, µ, σ)} were initialized by using a
K-means clustering (MacQueen, 1967) on the original
inner products. We used this approach to learn a sep-
arate mixture model for each expert. This algorithm
produces an approximation of the form

φ′f (xc; Θ, J) '
3∑

i=1

βf,i exp

(
(〈Jf ,xc〉 − µf,i)2

2σ2
f,i

)
.

(7)
The alpha terms are no longer relevant – the ‘shape’
of the distribution is implicitly controlled by the other
parameters. However, the expression in equation (7)
is not yet in the same form as equation (6). Hence we
need to solve the system

exp
(

(〈J,x〉 − µ)2

2σ2

)
= exp

(
(x− µ)T Σ−1(x− µ)

)
.

(8)
That is, we are trying to solve for Σ−1 (a matrix) and
µ (a vector), in terms of J (a vector) and µ (a scalar).
It is not difficult to see that the only solution for Σ−1

is

Σ−1 =
1

2σ2
J ·JT =

1
2σ2

J2

1 J1J2 · · · J1Jn

J2J1 J2
2 J2Jn

...
. . .

...
JnJ1 JnJ2 · · · J2

n

(9)

(where n is the size of the filter J – in our case, n = 4).
Alternately, there are infinite solutions for µ. One ob-
vious solution is

µ =

µPn

i=1 Ji

...
µPn

i=1 Ji

 . (10)

However, we found for all of our filters that∑n
i=1 Ji ' 0, meaning that this solution would be

highly unstable. A more stable solution (which we
used) is given by

µ =

µ/J1

0
...
0

 . (11)

Our potential function is now of the form

φ(xc; Θ, J) =
3∏

f=1

3∑
i=1

βf,i exp

(
(〈Jf ,xc〉 − µf,i)2

2σ2
f,i

)
.

(12)

High-Order Nonparametric Belief-Propagation for Fast Image Inpainting

In order to expand the above product, we use the fol-
lowing result about the product of Gaussian distribu-
tions (Ahrendt, 2005): givenK Gaussians (with means
µ1 . . . µK , and covariances Σ1 . . .ΣK), the covariance
of the product {Σ′} is given by

Σ′ = (
K∑

i=1

Σ−1
i)−1 (13)

(although each Σ−1
i is singular in our case, their sum

is not). The mean of the product {µ′} is given by

µ′ = Σ′(
K∑

i=1

Σ−1
i µi). (14)

The corresponding beta term for the product is just
β′ =

∏K
i=1 βk. In our case this results in a final ap-

proximation which is a mixture of 33 = 27 Gaussians.

4. Inference

In order to perform belief-propagation, we must first
be able to express equations (4) and (5) in terms of the
Gaussian mixtures we have defined. In our setting, the
sum in equation (4) becomes an integral, resulting in
the new equation

Mi→j(Si,j) =
∫
xi\xj

φ(xi)
∏

xk∈(Γxi
\{xj})

Mk→i(Sk,i). (15)

We have already suggested how to perform the above
multiplication in equations (13) and (14). The only
difference in this case is that the mixtures for each
message may contain fewer variables (and smaller co-
variance matrices) than the local distribution {φ(xi)}.
In such a case, the inverse covariance matrices for each
message {Σ−1s} are simply assumed to be zero in all
missing variables.

To compute the marginal distribution of a Gaussian
mixture with mean µ and covariance matrix Σ (i.e.
the integral in equation (15)), we simply take the ele-
ments of µ and Σ corresponding to the variables whose
marginals we want. The importances for each Gaus-
sian in the mixture remain the same.

Of course, when we compute the products in equation
(15), we produce a model with an exponentially in-
creasing number of Gaussians. As a simple solution
to this problem, we restrict the maximum number of
Gaussians to a certain limit (see section 5), by includ-
ing only those with the highest importances.

When solving an inpainting problem, we only wish to
treat some of the variables in each clique as unknowns

(for example, the ‘scratched’ sections). Hence the po-
tential function for these cliques should be conditioned
upon the ‘observed’ regions of the image. Suppose
that for a clique c we have unknowns x(u), and ob-
served variables x(o) (i.e. xc = (xT

(u);x
T
(o))

T). Then we
may partition the mean and covariance matrix (for a
particular Gaussian in the mixture) as

µ =
(
µ(u)

µ(o)

)
(16)

and

Σ =
[

Σ(u,u) Σ(u,o)

Σ(o,u) Σ(o,o)

]
. (17)

The mean of the conditional distribution {µ(u;o)} is
now given by

µ(u;o) = µ(u) + Σ(u,o)Σ−1
(o,o)(x(o) − µ(o)), (18)

and the covariance matrix {Σ(u;o)} is given by

Σ(u;o) = Σ(u,u) − Σ(u,o)Σ−1
(o,o)Σ

T
(u,o). (19)

Finally, once all messages have been propagated, we
are able to compute the marginal distribution for
a given node (or pixel, belonging to clique c) by
marginalizing Dc(xc) (equation (5)) in terms of that
node. In order to estimate the ‘most likely’ configura-
tion for this pixel, we simply consider each of the 256
possible gray-levels.1

4.1. Propagation Methods

As we mentioned in section 2.2, the two propagation
techniques we will deal with are the junction-tree algo-
rithm and loopy belief-propagation. Although we will
not cover these in great detail (see (Aji & Mceliece,
2001) for a more complete exposition), we will explain
the differences between the two in terms of image in-
painting.

Both algorithms work by passing messages between
those cliques with non-empty intersection. However,
when using the junction-tree algorithm, we connect
only enough cliques to form a maximal spanning tree.

1Although this final step may appear to make the run-
ning time of our solution linear in the number of gray-
levels, it should be noted that this step needs to be per-
formed only once, after the final iteration. It should also
be noted that this estimate only requires us to measure
the response of a one-dimensional Gaussian, which is inex-
pensive. More sophisticated mode-finding techniques exist
(Carreira-Perpiñán, 2000), which we considered to be un-
necessary in this case. Finally, note that this step is not
required when our mixture contains only a single Gaussian,
in which case we simply select the mean.

High-Order Nonparametric Belief-Propagation for Fast Image Inpainting

Now, suppose that two cliques ca and cb have intersec-
tion Sa,b. If each clique along the path between them
also contains Sa,b, we say that this spanning tree obeys
the ‘junction-tree property’. If this property holds, it
can be proven that exact inference is possible (sub-
ject only to the approximations used by our Gaussian
model), and requires that messages be passed only for
a single iteration (Aji & Mceliece, 2001). Although it
is hard to concisely characterize those graphs which
obey this property (technically, triangulated graphs),
they tend to be those which are ‘tree-like’.

If this property doesn’t hold, then we may resort to us-
ing loopy belief-propagation, in which case we simply
connect all cliques with non-empty intersection. There
is no longer any message passing order for which equa-
tion (15) is well defined (i.e. we must initially assume
that some messages correspond to a uniform distribu-
tion), meaning that messages must be passed for many
iterations in the hope that they will converge.

Figure 2 shows an inpainting problem for which a
junction-tree exists, and two problems for which one
does not (assuming (2 × 2)-pixel cliques). Since the
regions being inpainted are usually thin lines (or
‘scratches’), we will often observe graphs which do in
fact obey the junction-tree property.

Figure 2. The graph formed from the white pixels in the
left image forms a junction-tree (assuming a 2× 2 model).
The graphs formed from the white pixels in the other two
images do not.

Fortunately, we found that even in those cases where
no junction-tree existed, loopy belief-propagation
tended to converge in very few iterations. Although
there are few theoretical results to justify this be-
havior, loopy-belief propagation typically converges
quickly in those cases where the graph almost forms
a tree (as is usually the case for the regions being in-
painted).

5. Experimental Results

In order to perform image inpainting, we used a high-
level (Python) implementation of the junction-tree al-
gorithm and loopy belief-propagation, which is capable
of constructing Markov random fields with any topol-

Table 1. Comparison of inpainting performance for several
models. Here we vary the number of Gaussians used to
compute the initial mixture, as well as the maximum num-
ber of Gaussians allowed during propagation.

Gaussians Max Iter. PSNR SSIM

1 1 1 22.57 0.927
2 22.67 0.928
3 22.68 0.928

3 1 1 22.81 0.927
2 22.87 0.928
3 22.88 0.928

3 3 1 22.82 0.927
2 22.87 0.928
3 22.88 0.928

3 9 1 22.80 0.927
2 22.86 0.928
3 22.87 0.928

ogy.2 Despite being written in a high-level language,
our implementation is able to inpaint images within
a reasonably short period of time. Since it is difficult
to assess the quality of our results visually, we have
reported both the peak signal-to-noise ratio (PSNR),
and the structured similarity (SSIM) (Wang et al.,
2004).

Figure 3 shows a corrupted image from which we want
to remove the text. The image has been inpainted
using a model containing only a single Gaussian (al-
though the learned mixtures contained three Gaus-
sians – see below). After a single iteration, most of
the text has been removed, and after two iterations
it is almost completely gone. Although the current
state-of-the-art inpainting techniques produce superior
results in terms of PSNR (Roth & Black, 2005), they
give similar visual results and take several thousand
iterations to converge, compared to ours which takes
only two (no further improvement was observed after
a third iteration).

Figure 4 compares models of various sizes, varying
both the number of Gaussians used to approximate
each mixture, as well as the maximum number of
Gaussians allowed during the inference stage. The
same results are summarized in table 1.

The top-right image in figure 4 was produced using
a model in which each expert was approximated us-
ing three Gaussians, yet only one Gaussian was al-
lowed during propagation. In contrast, the model
used to produce the top-left image was approximated
using only a single Gaussian. Interestingly, the for-

2Our implementation is available at http://?? (not
included for blind submission).

High-Order Nonparametric Belief-Propagation for Fast Image Inpainting

Figure 3. Above, top-left to bottom-right: the original im-
age; the image containing the text to be removed; inpaint-
ing after a single iteration, using a single Gaussian (PSNR
= 22.74, SSIM = 0.962); inpainting after two iterations
(PSNR = 22.82, SSIM = 0.962). Below: close-ups of all
images.

mer model actually outperformed the latter in this ex-
periment. While this result may seem surprising, it
may be explainable as follows: in the single-Gaussian
model, the standard deviation is overestimated in or-
der to compensate for the high kurtosis of the training
data (Gosset, 1942). However, in the model containing
three Gaussians, the most significant Gaussian (i.e. the
Gaussian with the highest β term) captures only the
most of the ‘important’ information about the distri-
bution, and ignoring the other two is not very harmful.

Furthermore, given that increasing the maximum
number of Gaussians allowed during propagation does
not seem to significantly improve inpainting perfor-
mance, we suggest that this single-Gaussian model
may be the most practical. Even after only a single
iteration, the results are visually pleasing.

Figure 4. Above: the original image; the corrupted image
containing ‘scratches’. Below, top-left to bottom-right:
mixture contains 1 Gaussian; mixture contains 3 Gaus-
sians, propagation is performed with 1 Gaussian; propa-
gation is performed with 3 Gaussians; propagation is per-
formed with 9 Gaussians. All results are shown using the
2 × 2 model, after three iterations. See table 1 for more
detail.

5.1. Execution Times

Unfortunately, it proved very difficult to compare the
execution times of our model with existing gradient-
ascent techniques. For example, the inpainting algo-
rithm used in (Roth & Black, 2005) computes the gra-
dient for all pixels using a 2-dimensional matrix convo-
lution over the entire image, and then selects only the
region corresponding to the inpainting mask. While
this results in very fast performance when a reasonable
proportion of an image is being inpainted, it results in
very slow performance when the inpainting region is
very sparse (as is often the case with scratches). It is
easy to produce results which favor either algorithm,
but such a comparison will likely be unfair.

To make explicit this difficulty, consider the images in
figure 5. The image on the left is significantly larger
than the image on the right, yet the corrupted re-
gions are of the same size (∼1500 pixels). As a re-
sult, our algorithm exhibited the same running time
on both images, whereas the gradient-ascent algorithm
from (Roth & Black, 2005) was approximately 6 times
slower on the larger image.

As a more representative example, when inpainting the

High-Order Nonparametric Belief-Propagation for Fast Image Inpainting

Figure 5. Two equally large regions to be inpainted, in two
differently sized images.

image in figure 4 (using a single Gaussian), the first it-
eration took ∼33.6 seconds on our test machine. The
second iteration took ∼39.0 (as did subsequent itera-
tions – the first is slightly faster due to many messages
being empty at this stage). The running time of this
algorithm increases linearly with the number of Gaus-
sians (for example, when using three Gaussians, the
first iteration took ∼87.0 seconds).

Alternately, a single iteration of inpainting using the
gradient-ascent algorithm from (Roth & Black, 2005)
took ∼0.1 seconds (using a 2 × 2 model). However,
their code was run for 2,500 iterations, meaning that
our code is still in the order of 2 to 3 times faster.
This is a pleasing result, given that we used a high-
level language for our implementation.

However, in an attempt to provide a more ‘fair’ com-
parison, we have tried to analyze the computations
required by both algorithms. It can be seen from the
equations presented in section 4 that our algorithm
consists (almost) entirely of matrix multiplications and
inverses.3 Although it is very difficult to express ex-
actly the number of such operations required by our
algorithm in general, we have calculated this number
for a specific case.

The corrupted image in figure 4 requires us to inpaint
a total of 5829 pixels. The number of operations re-
quired by our algorithm to inpaint this image (during
the second iteration) is shown in table 2.

Alternately, the gradient-ascent approach in (Roth &
Black, 2005) is dominated by the time taken to com-
pute the inner products in (the derivative of the log-
arithm of) equation (3). Each pixel is contained by
four cliques, and we must compute the inner product
against each of our three filters. Therefore we must
compute a total of 4 × 3 × 5829 = 69948 inner prod-
ucts per iteration.

3Other operations, such as additions and permutations
are typically much faster than these.

Table 2. Number of operations required by our algorithm.
Multiplications are of (n×n)×(n×1) matrices, and inverses
are of (n× n) matrices, for various values of n.

n Multiplications Inverses

1 14800 44648
2 42072 37386
3 25760 12880
4 43308 21654

As a simple experiment, we timed these operations
in Matlab (using random matrices and vectors). We
found that computing 69948 inner products was ap-
proximately 10 times faster than computing the ma-
trix operations shown in table 2. This leads us to
believe that a low-level implementation of our belief-
propagation algorithms may be significantly faster
even than the results we have shown.

6. Discussion

Our results have shown than even a 2×2 model is able
to produce very satisfactory inpainting performance.
We believe that even this small model is able to cap-
ture much of the important information about natu-
ral images. While higher-order models exist (Roth &
Black, 2005), the improvements appear to be quite in-
cremental, despite a significant increase in their execu-
tion time. While it is certainly the case that our results
fall short of the state-of-the-art in terms of PSNR, the
differences are difficult to distinguish visually. It is
therefore pleasing that we are able to produce com-
petitive results within only a short period of time.

We have not yet fully explored the possibility of us-
ing the junction-tree algorithm to inpaint images. Un-
fortunately, determining whether a graph obeys the
junction-tree property (see section 4.1) is very expen-
sive, meaning we simply used loopy belief-propagation
in all cases, without even performing this test. How-
ever, there are many cases in which we can be sure
that a junction-tree exists – for example, if the in-
painting region is a scratch which is only one or two
pixels wide. In such cases, optimal results can be pro-
duced after only a single iteration, which would render
our algorithm several times faster again.

In spite of this, we found that loopy belief-propagation
tended to converge in very few iterations. While we
believe it helped that the regions we are inpainting ap-
pear to be fairly ‘tree-like’, there is very little theory to
support this claim. On the other hand, loopy belief-
propagation often converges far slower when dealing

High-Order Nonparametric Belief-Propagation for Fast Image Inpainting

with large regions, meaning that we can inpaint a
‘scratch’ much faster than a ‘coffee stain’.

We have also not considered the possibility that the
corrupted pixels may contain some information about
the original image. Many gradient-ascent approaches
implicitly exploit this possibility by initializing their
algorithms using the corrupted pixels. If the restored
image is ‘close to’ the corrupted image, this can result
in faster convergence. Our approach is also able to
deal with this possibility by augmenting the graphical
model with an observation layer with the respective
noise model for the damaged pixels.

7. Conclusion

In this paper, we have developed a model for inpaint-
ing images quickly using belief-propagation. While
image inpainting has previously been performed us-
ing low-order models by belief-propagation, and high-
order models by gradient-ascent, we have presented
new methods which manage to exploit the benefits
of both, while avoiding their shortcomings. We have
shown these algorithms to give satisfactory visual re-
sults and to be faster than existing gradient-based
techniques, even in spite of our high-level implemen-
tation.

References

Ahrendt, P. (2005). The multivariate gaussian proba-
bility distribution.

Aji, S. M., & Mceliece, R. J. (2001). The generalized
distributive law and free energy minimization. Pro-
ceedings of the 39th Allerton Conference.

Bishop, C. M. (2006). Pattern recognition and machine
learning. Springer.

Burton, G. J., & Moorhead, I. R. (1987). Color and
spatial structure in natural scenes. Applied Optics,
26, 157 – 170.

Carreira-Perpiñán, M. A. (2000). Mode-finding for
mixtures of Gaussian distributions. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence
(pp. 1318–1323).

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977).
Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical So-
ciety. Series B (Methodological), 39, 1–38.

Geman, S., & Geman, D. (1984). Stochastic relax-
ation, Gibbs distributions, and the bayesian restora-

tion of images. IEEE Trans. Pattern Anal. Machine
Intell., 6, 721–741.

Gosset, W. S. (1942). The probable error of a mean.
Student’s Collected Papers (pp. 11–34).

Hinton, G. E. (1999). Products of experts. Ninth Inter-
national Conference on Artificial Neural Networks,
ICANN (pp. 1–6).

Kschischang, Frey, & Loeliger (2001). Factor graphs
and the sum-product algorithm. IEEE Transactions
on Information Theory, 47, 498–519.

Lan, X., Roth, S., Huttenlocher, D. P., & Black, M. J.
(2006). Efficient belief propagation with learned
higher-order Markov random fields. ECCV (2) (pp.
269–282).

MacQueen, J. B. (1967). Some methods of classifica-
tion and analysis of multivariate observations. Pro-
ceedings of the Fifth Berkeley Symposium on Math-
emtical Statistics and Probability (pp. 281–297).

Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001).
A database of human segmented natural images
and its application to evaluating segmentation al-
gorithms and measuring ecological statistics. Proc.
8th Int’l Conf. Computer Vision (pp. 416–423).

McAuley, J. J., Caetano, T. S., Smola, A. J., & Franz,
M. O. (2006). Learning high-order MRF priors of
color images. ICML ’06: Proceedings of the 23rd
international conference on Machine learning (pp.
617–624). New York, NY, USA: ACM Press.

Roth, S., & Black, M. J. (2005). Fields of experts: A
framework for learning image priors. IEEE Confer-
ence on Computer Vision and Pattern Recognition
(pp. 860–867).

Rue, H., & Held, L. (2005). Gaussian Markov random
fields: Theory and applications, vol. 104 of Mono-
graphs on Statistics and Applied Probability. Lon-
don: Chapman & Hall.

Sudderth, E., Ihler, A., Freeman, W., & Willsky, A.
(2003). Nonparametric belief propagation. Proceed-
ings of the 2003 IEEE Conference on Computer Vi-
sion and Pattern Recognition.

Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli,
E. P. (2004). Image quality assessment: from error
visibility to structural similarity. IEEE Transactions
on Image Processing, 13, 600–612.

Yedidia, J. S., Freeman, W. T., & Weiss, Y. (2000).
Generalized belief propagation. NIPS (pp. 689–695).

78

Bibliography

[Ahr05] Peter Ahrendt. The multivariate gaussian probability distribution, 2005.

[AM00] Srinivas M. Aji and Robert J. McEliece. The generalized distributive law. In IEEE
Transactions on Information Theory, volume 46, pages 325–343, 2000.

[AM01] Srinivas M. Aji and Robert J. McEliece. The generalized distributive law and free
energy minimization. In Proceedings of the 39th Allerton Conference, 2001.

[Bes74] Julian Besag. Spatial interaction and the statistical analysis of lattice systems.
Journal of the Royal Statistical Society, 36(2), 1974.

[Bil98] Jeff A. Bilmes. A gentle tutorial of the EM algorithm and its application to pa-
rameter estimation for gaussian mixture and hidden markov models, 1998.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
August 2006.

[BM87] G. J. Burton and I. R. Moorhead. Color and spatial structure in natural scenes.
Applied Optics, 26:157 – 170, 1987.

[Bor04] Sean Borman. The expectation maximization algorithm, 2004.

[BSCB00] Marcelo Bertalmio, Guillermo Sapiro, Vicent Caselles, and Coloma Ballester. Im-
age inpainting. In Kurt Akeley, editor, Siggraph 2000, Computer Graphics Proceed-
ings, pages 417–424. ACM Press / ACM SIGGRAPH / Addison Wesley Longman,
2000.

[CG92] G. Casella and E. I. George. Explaining the Gibbs sampler. American Statistician,
46:167–174, 1992.

[CPn00] Miguel Á. Carreira-Perpiñán. Mode-finding for mixtures of Gaussian distributions.
In IEEE Transactions on Pattern Analysis and Machine Intelligence, volume 22,
pages 1318–1323, 2000.

[CPnH05] Miguel Á. Carreira-Perpiñán and Geoffrey E. Hinton. On contrastive divergence
learning. In 10th Int. Workshop on Artificial Intelligence and Statistics (AIS-
TATS’2005), 2005.

[Del02] Frank Dellaert. The expectation maximization algorithm, 2002.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society. Series
B (Methodological), 39(1):1–38, 1977.

79

[FPC00] William T. Freeman, Egon C. Pasztor, and Owen T. Carmichael. Learning low-
level vision. International Journal of Computer Vision, 40(1):25–47, 2000.

[GG84] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the
bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intell.,
6(6):721–741, Nov. 1984.

[Gos42] Willeam Sealy Gosset. The probable error of a mean. In Student’s Collected Papers,
pages 11–34, 1942.

[Har58] H. Hartley. Maximum likelihood estimation from incomplete data. Biometrics,
14:174–194, 1958.

[HC71] J. M. Hammersley and P. Clifford. Markov field on finite graphs and lattices.
unpublished manuscript, 1971.

[Hin99] G. E. Hinton. Products of experts. In Ninth International Conference on Artificial
Neural Networks, ICANN, volume 1, pages 1–6, 1999.

[Hin01] Geoffrey E. Hinton. Training products of experts by minimizing contrastive diver-
gence, 2001.

[IFW04] A. T. Ihler, J. W. Fisher III, and A. S. Willsky. Message errors in belief propagation.
In Neural Information Processing Systems, 2004.

[Jor] Michael I. Jordan. An introduction to probabilistic graphical models. In prepara-
tion.

[KF] D. Koller and N. Friedman. Structured probabilistic models. In preparation.

[LRHB06] Xiangyang Lan, Stefan Roth, Daniel P. Huttenlocher, and Michael J. Black. Effi-
cient belief propagation with learned higher-order Markov random fields. In ECCV
(2), pages 269–282, 2006.

[MA93] Patricia McKenzie and Mike Alder. The EM algorithm used for gaussian mixture
modelling and its initialization, 21, 1993.

[Mar06] John Marden. Multivariate statistical analysis (course notes), 2006.

[MCSF06] Julian J. McAuley, Tibério S. Caetano, Alex J. Smola, and Matthias O. Franz.
Learning high-order MRF priors of color images. In ICML ’06: Proceedings of the
23rd international conference on Machine learning, pages 617–624, New York, NY,
USA, 2006. ACM Press.

[MFTM01] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natu-
ral images and its application to evaluating segmentation algorithms and measuring
ecological statistics. In Proc. 8th Int’l Conf. Computer Vision, volume 2, pages
416–423, July 2001.

[Min98] T. Minka. Expectation-maximization as lower bound maximization, 1998.

[MK97] G.J. McLachlan and T. Krishnan. The EM algorithm and extensions. Wiley, New
York, 1997.

[OF97] B. Olshausen and D. Field. Sparse coding with an overcomplete basis set: A
strategy employed by V, 1997.

80

[RB05] Stefan Roth and Michael J. Black. Fields of experts: A framework for learning
image priors. In IEEE Conference on Computer Vision and Pattern Recognition,
volume 2, pages 860–867, June 2005.

[RH05] H. Rue and L. Held. Gaussian Markov Random Fields: Theory and Applications,
volume 104 of Monographs on Statistics and Applied Probability. Chapman & Hall,
London, 2005.

[RKC05] Antonio Robles-Kelly and Tiberio Caetano. Graph-based methods in computer
vision and pattern recognition, 2005.

[SIFW03] E. Sudderth, A. Ihler, W. Freeman, and A. Willsky. Nonparametric belief prop-
agation. In Proceedings of the 2003 IEEE Conference on Computer Vision and
Pattern Recognition, 2003.

[Smi02] Lindsay I. Smith. A tutorial on principal components analysis, 2002.

[The94] The ITU Radiocommunication Assembly. ITU-R BT.601, 1994.

[WBSS04] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. Image
quality assessment: from error visibility to structural similarity. IEEE Transactions
on Image Processing, 13(4):600–612, 2004.

[WHO02] Max Welling, Geoffrey E. Hinton, and Simon Osindero. Learning sparse topo-
graphic representations with products of student-t distributions. In NIPS, pages
1359–1366, 2002.

[YFW00] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Generalized belief
propagation. In NIPS, pages 689–695, 2000.

81

