AZ IN SYSTEM THEORY: AN OBSERVABILITY VIEW

David A. Maluf *

ABSTRACT

The problem of the construction of a
Logic Observer, which generates a se-
quence of propositions that correctly de-
scribe system state properties, is mainly
intended to solve the state estimate of
finite state machines. Of particular in-
terest is the convergence of the logic-
based dynamical system statements (in
an appropriate sense) to true character-
izations of the system state. This paper
demonstrates that this observer can be
built within a logic-based framework. It
starts with an informal discussion of the
nature of logic — focusing on the pred-
icate calculus — and discusses the fun-
damental concepts associated with these
formal systems. Later in the paper, the
formal definition of the concepts of the
logic-based dynamical observer is pre-
sented. An arbitrary automaton is se-
lected as an example to understand the
simulation and the expert system pre-
sented to accomplish the task. In this
paper, the assumption is that the au-
tomata representation in state space sys-
tems is expressed by the quintuple set of
states, set of inputs, set of outputs, tran-
sition functions and output functions.
An automaton is taken as a determinis-
tic input-state-output (finite) system.

Key Words— discrete event system, au-
tomata, predicate calculus, logic system, dy-
namical logic observer, observability, artificial
intelligence.

INTRODUCTION

The Simulation of Dynamical Logic Observers
for Finite Automata began with the introduc-
tion of the first series of publications on Dy-
namical Logic Observers in 1988 [1][2]. The
concept of involving Artificial Intelligence in
Systems and Control Theory enabled the appli-
cation of the methodology and foundational as-
pects of mathematical logic and computer sci-
ence to problems involving deterministic input-
state-output dynamical systems [8]. The for-
mulation of dynamical systems with the frame-

*Department of Computer Science, Stanford Uni-
versity, Stanford CA 94305. maluf@db.stanford.edu,
Fax: (415) 725-2588

work of Knowledge Representation may be
viewed as a challenge from Artificial Intelli-
gence (AI) to Systems and Control Theory
(SCT). Partly in response to this, the concept
of Observabilityin Systems and Control Theory
has been studied within Artificial Intelligence
methodologies.

The problem was originally formulated by
the construction of a classical dynamical sys-
tem which generates a sequence of state esti-
mates and a logical dynamical system which
generates a sequence of propositions that cor-
rectly describe the properties of the automa-
ton’s state. A focus of interest of this paper 1s
the particular case where classical observer es-
timates converge to the correct current state
and where the logic observer also converges
to the correct characterizations of the current
state.

The simulation mentioned in the title is
mainly based on the dynamical logic observer.
The classical dynamical observer is discussed
in order to understand the shift from classical
systems to logic systems [7]. The simulation
was written in Lisp and 1s acceptable to any
Common Lusp listener.

The beginning of this paper provides a re-
view of the common concepts introduced in the
field of finite state machines [6]. Basic defini-
tions related to the terminology are presented
in detail in the first part of the paper, and this
section introduces the reader to both types of
dynamical observers: namely, the classical ob-
server [1], and the logic observer which we sim-
ulate; the latter constitutes the second part of
the paper. In the last section, attempts at find-
ing rules concerning the automata dynamics
using logic observers are discussed.

Dynamical Observers for Finite Au-
tomata

In this section of the paper, a few basic defini-
tions will be stated as a reference and review
for the reader. Still, some basic knowledge of
finite automata and control theory is necessary
for a complete understanding of the problem.

An nput-state-output finite automaton is de-
fined as a quintuple M = (X, U,Y, ®, n) where
X is a finite set of states, U, a finite set of in-
puts, Y, a finite set of outputs, ®, a transition
function defined as X x U — X and 7 is output
function defined as X — Y.

One of the definitions of the observer prob-
lem which 1s phrased as the dynamic initial

state observer for a certain automaton is the
problem of estimating the automaton initial
state over a sequence of finite observations,
where normally the observations consist of
pairs of inputs and outputs [9]. Similarly, the
dynamic current state observer is the problem
of estimating the automaton current state over
a sequence of observations. In such cases, the
finite length of observations plays a crucial role
in the estimation of the initial state since the
observability is related to convergence of the
estimation.

The nature of the output function 7 is such
that it is not necessarily a one-to-one map-
ping (which would transform the partial ob-
server problem into a complete forward prob-
lem). However, the output function is defined
for all the states of the automaton which gen-
erate subsets of states. The automata under
study are also often referred to as partially ob-
served automata and without further mention
we shall take the automata to be determin-
istic in both transition and output functions.
It should be noted that the type of finite au-
tomata studied in this paper are also often re-
ferred to as finite machines.

(o

loyoYe
Foloro;

N —
=
N

o -
=
3

o
C

Figure 1: The M7 automaton. States, transitions
and output functions.

A commonly used example of a finite state
machine is chosen and defines the transition
function as the same for all controls where the
input set contains a single element (e.g, the tick
of a clock). The assumption taken of the tran-
sition function simplifies the understanding of
the classical and logic observer. Figure 1 shows
the automaton known as the M, automaton.
This automaton contains seven states labeled
(al,a2,..,c1) and grouped under three dis-
tinct output functions 57 labeled a,b,c. @7 is
the transition function which is considered con-
stant as mentioned earlier in this paragraph.
In the simulation section of this paper, the
transition function will no longer be considered

unique and the input set will be considered as
containing a finite number of controls.

Classical Observers

The classical observer is considered an impor-
tant step in the understanding of the logic ob-
server. 'This observer introduces the idea of
and need for an efficient computational imple-
mentation of logic concepts. What is required
of the observer is to produce the estimates in
the proper format. For the M7 automaton,
a question could be asked such as in which
state would the machine be after observing an
output of (a). Eventually the observer would
provide the estimate (al,a2,a3). Adding a
next observation (b), the observer would pro-
vide the estimate of (b1,b2,b3). In such a
case it takes a third observation to make the
observer lock on one state. What was stated
before defines one branch out of many of the
automaton tree as shown in Figure 2.

(51,a2,a3,b1,b2,b3,c})

C

Figure 2: M5’s current state observer estimation
tree.

Looking again at the M7 automaton, it is
obvious that in some other combinations of ob-
servations the observer would have locked on to
the correct state earlier if the initial observa-
tion were a (c). Figure 2 shows all possible
estimations the classical observer will return.

The 1nitial simulation of the classical dynam-
ical observer was performed in [2] and was writ-
ten in Fortran. Two algorithms were written
for the computation of the current state ob-
server and initial state observer.

The simulation of the classical observer is
performed by a classical computation (e.g.,
nested iterations) for which efficiency can-
not be claimed. Repetitive calculation is fre-
quently found which makes the simulation
time-consuming for large state machines. With
the emergent computer technology, the ob-
server was rewritten and consists of additional
enhancement of 1ts predecessor classical ob-
server. The classical observer was written in

Lisp and showed nested triple iterations; the
programming of the classical observer starts
with the whole set of space states and gener-
ates a tree based on every combined pair of
observations created from the transition func-
tion and output function. The search continues
for every non-singleton created. Such a search
can run indefinitely: that is, there is no conver-
gence of the tree which implies the automaton
is not observable. Such behavior i1s proven by
theorems and provides bounds to the depth of
the tree in the case where all the branches con-
verge to singletons.

Logic Observers

In the original reference [2], the Logic-Based
Dynamical Observer of an automaton M is de-
fined as a tree of families of first order theories
where the automaton is M = (X, U,Y, ®,) as
defined in the beginning of the paper.

A family of the first order indexed by a set
of steps is denoted by the formation rules spec-
ifying the well-formed formulas, by the logi-
cal axioms of predicate calculus, by the dy-
namical axioms which describe the state tran-
sition function, and by a set of observation
axioms specifying a sequence of input-output
pairs which belong to the sets X and Y.

Similarly, with the classical observer, the
logic observer is required to produce estimates
of the current (or initial) state from the dynam-
ics of the automaton which are described by
the transition and output functions and by the
set of observations. Since the automaton can
be fully expressed by propositional calculus, 1t
becomes necessary to present the automaton
by the corresponding predicates [5].

Encoding of Input-State-Output Ma-
chines

In this subsection, a description of the predi-
cates that define an automaton and the nec-
essary rules to achieve the simulation will be
discussed. Looking at the definition and struc-
ture of an automaton [4], it is easy to see
the necessity for two independent collections
of axioms to represent the transition function
and the output function. Based on the previ-
ous statement, such a requirement can be pre-
sented in two independent databases. Again,
from the definition of the automaton, the tran-
sition function @ : X x U — X which combines
the set of states X with the input set U where
every state x € X accepts every input u € U.
Or, written in a list mode:

(NextState x u x’) .

NextState is an arbitrary description of the
transition function database and is considered
as an atom and used as a key-pad string '. No-

! Assuming the transition functions ®; : X xU — X,
Py : X x U* - X where U # U™, it is necessary to

tice that 1t is possible that x’ and x could be
the same. The expansion of the predicate men-
tioned for the M7 automaton is shown later in
this section.

Again, from the definition of the automaton,
the output function n: X — Y also forces the
state to produce an output y, where y € Y.
The encoding of the output function is of the
form:

(Emit x y)
where Emit 1s also a description of the
database. The concept of providing a descrip-
tion for the databases is useful when different
dynamics of the transition and output func-
tions are involved.

The encoding of the input-state-output au-
tomaton is achieved in a sequence of lists which
eventually are kept and handled in such a way
as to avoid duplication of the same axioms.
Such encoding fits the requirement of both
classical and logic observers.

T1: (NextState al u bi)

T2: (NextState a2 u b2)
T8: (NextState a3 u b3)
T4: (NextState bl u c1)
T5: (NextState b2 u a2)
T6: (NextState b3 u b3)
T7: (NextState c1 u bil)

F1: (Emit al a)
F2: (Emit a2 a)
F3: (Emit a3 a)
F4: (Emit bl b)
F5: (Emit bl b)
F6: (Emit bl b)
F7: (Emit c1 c)

Table 1: The My transition and output func-
tions. The selection of NextState and Emit strings
is arbitrary and provides a key-pad in handling the
Databases.

SIMULATION OF
LOGIC OBSERVERS

DYNAMICAL

The basic challenge in the simulation of the
logic observer was to generate the environment
that would be able to handle the automaton
and the observer efficiently. In the previous
section, the encoding of the input-state-output
machines showed the necessity of having two
independent databases. For the logic observer
in question, a set of rules can be defined to
specify its goals ? which are grouped in sep-
arate databases. Particular attention should

group the functions separately, ®;:(NextState-1 x u
x?), 5: (WextState-2 x u™ x?).

2Usually it is expected from the logic observer to
return a current estimate (or initial estimate) given the
transition and output function database and a set of

be paid to the Current Dynamic Observer or
CDO-Next facts which are generated as conse-
quences defined by the rules of the logic ob-
server. Another aspect of the logic observer
is that the facts generated by the logic simu-
lation are expressed within the framework of
propositional calculus. This will enable the
Logic Observer to use the previous expressions
of the CDO-Next facts in the estimation prob-
lem. This aspect will be be discussed later in
the building of the logic environment section.

Building a Dynamical Logic System En-
vironment

This section is dedicated to the simulation of
automata which is the basic concern of the cur-
rent project. Common Lisp was chosen as the
programming language. Lisp is considered to
be the language of artificial intelligence and
provides a powerful tool for symbolic problems
which satisfies the requirements for the simu-
lation of the logic observer.

Once the two collections of axioms repre-
senting the transition function and the out-
put function are grouped, efficient methods
for handling the databases are required. In
the 1implementation of the simulation, func-
tionalities common to the design of an ex-
pert system database are found. The ma-
jor intent is to maintain different databases
of facts and rules. A fact or facts are en-
tered using the function (db-add-facts form
&optional (db database)). These functions
have the potential to be used in a dynami-
cal form (changing the dynamics of the au-
tomaton). To preserve the deterministic prop-
erty and one-to-one mapping, deletion of facts
must be possible, which is achieved by the
function (db-delete-facts form &optional
(db database)). Upon the addition of facts,
forward chaining is feasible in case the fact
is new. The answer to that requirement is
achieved by the use of the function (add-fact
fact (facts-db) (rules-db)) which has the
potential of invoking the forward chaining on
the fact added. In general, it is wise to com-
plete deletions prior to the addition of the new
facts.

Since expert systems are potentially capa-
ble of processing the symbolic representation
defined above, the need for rules about how
to process the knowledge base axioms becomes
essential. The objectives of the logic observer
are to assess convergence to singletons through
unification, and to provide an estimation when
given the observations. The current dynami-
cal observer can be represented as a query of
what is the estimate of the current state given
the sequence of observations, and answering the
query will solve the problem of the logic ob-
server, but what is expected of the dynamical

observations.

logic observer is more than providing an es-
timate. In such a case, the dynamical clas-
sical observer showed some efficiency, as for
example the classical observer would estimate
the observability question from the automa-
ton dynamics without having the observations
which are achieved by generating the tree and
without applying the theorems that relate the
observability ® to the depth of the tree (see
[2]). Such capabilities of the classical observer
became themselves minimum requirements for
the logic observer to generate information on
the observability status of the automaton once
the knowledge base of the dynamics of the ma-
chine were defined.

Since the axioms that define the automaton
transition and output functions can be identi-
fied by key-pad descriptions within their spe-
cific databases, we can use an inference en-
gine with no preset goal which requires a for-
ward chaining rather than backward chaining.
In such a case, comparison with the classical
observer becomes reasonable. However, artifi-
cial intelligence can contribute to solving more
complex questions. Since it is a matter of rules
that interact in forward chaining, the output of
the inference can be expressed and preserved
as a set of axioms and can define the CDO-Next
database as mentioned in the previous section.
Thus, new features such as updating the in-
ference knowledge database become powerful
when changes occur in the dynamical structure
of the automaton.

Much attention and care should be taken in
the definition of rules that would control the
forward chaining. The idea i1s to keep two
distinct databases of rules where the first set
would be used in case the inference is done for
the first time, and the second set would be used
for the dynamics updates of the machine. The
forward chaining rules are entered using a form
such as the following:

(defrule rule-name
(<= condition &rest consequences)).

In the next section, Simulating an QObserver,
descriptions of the rules that generate the
CDO-Next axioms are presented as they con-
cern the simulation of the observer rather than
the preparation of the simulation. The latter
consists of a permanent base for the complete
simulation and hence should be kept separated.

Upon the simulation of the logic observer
as will be shown later, the concept of having
transformation in the dynamics of the automa-
ton will influence the design of the logic system
environment. Rules which are already defined
can be added, modified or removed. Hence
the databases (transition, output and rules) are
verified. Using the given assertion pattern as a
key, a changed fact searches through all of the

3 Observability of an automaton is linked to the con-
vergence of the tree branches to singletons.

forward chaining rules for a set whose condi-
tions might resolve with the new fact (changed
fact). For all of those which return valid bind-
ing frames * when the condition is treated as
a query into the database, assertion of each of
the facts in the consequences occurs after sub-
stituting for the variable bindings imposed by
the conditions. Since this process is needed for
every assertion in the database and potentially
results in further assertions, it may generate a
chain of such inferences.

Different functions were written specifically
to provide an adequate support for the major
routines. Those functions which are considered
general purpose functions also facilitated the
design of the classical observer.

Simulating an Observer

Since the encoding of the automaton depends
on writing the transition and output functions
in axioms which are entered as facts in spe-
cific format, and handled by a database, and
since the environment built up provides an in-
ference engine based on forward chaining which
applies rules to the existing axioms of facts, the
problem of simulating the observer becomes a
question of formulating proper rules.

In the previous section, the format of defin-
ing rules (entering) was presented. The func-
tion ”defrule” requires initially a name for the
rule followed by the binding conditions and fi-
nally by the consequences. For example:

(defrule CDO-Next
(<= (and

(Emit 7state Zoutput)

(NextStates 7initial 7input 7state)))
(CDO-Next ?7initial ?input Zoutput ?state))

CDO-Next was chosen as a name for the rule
that basically generates the CDO-Next facts.
The and is used to test the binding conditions.
(Emit ?state 7output) ® will return all the
output function axioms.

This simple rule is considered the most im-
portant rule in representing the logic observer.
It defines the search path of the forward prop-
agation by (i) taking all the possible observa-
tion pairs of input and output and then (ii)
providing all the Current Dynamical Observer
Next (CDO-Next) states. In the above rule,
Emit and NextStates appear as a pair of the
knowledge base. The facts CDO-Next are de-
fined as the consequence of the inference and
Table 2 shows the output of such an inference
in case the M7 is considered.

This example of a rule shows the flexibility
of the logic observer and is partially controlled
by the definition of the rule. For example if the

4New facts generated.
5For example, the query (Emit ?state a) in the
M7 automaton will return al a2 a3 states.

1 (CD0 (al a2 a3 bl b2 b3 cl1) a (al a2 a3))
2 (CDO (al a2 a3 bl b2 b3,cl) b (b1 b2 b3))
3 (CD0 (al a2 a3 bl b2 b3 cl1) c (c1))
4(1) (CD0 (al a2 a3) u,a -))
5(1) (CDO (al a2 a3) u,b (b1 b2 b3))
6(1) (CDO (a1l a2 a3) u,c (=)
7(2) (CDO (b1 b2 b3) u,a (a2))
8(2) (CDO (b1 b2 b3) u,b (b3))
9(2) (CDO (b1 b2 b3) u,c (c1))

Table 2: Simulation output of the M7 machine.

query is required for one specific output e.g. b,
the binding list (Emit 7state b) will be used
and the table above would shrink to numbers
2 and 8.

From the practical side, the question of effi-
ciency in the simulation can become important.
The application of large numbers of states and
complex dynamics in the transition and out-
put functions would attract the attention to
the run-time cost in the estimation. This ap-
proach becomes necessary in the section Ap-
plications of Dynamical Logic Observers where
the dynamical behavior is involved and the on-
line estimation is required.

Returning to the definition of an automa-
ton given at the beginning of this paper, let
M= (X,U,Y,®;,n;) be an automaton and let
1 be the index of the discrete event correspond-
ing to the transformation of the transition and
output function. In other words, let the au-
tomaton start with an initial transition func-
tion @ and output function 7y. Assuming that
the automaton dynamics change to ®; and n,
the existing current and initial state estimation
become invalid and thus a new estimation pro-
cedure is required employing the appropriate
new system model.

Looking at the M7 automaton introduced
in figure 1, the choice of different transfor-
mations of the automaton transition function
which retain observability is wide. Changing
the (NextStates b2 ®; a2) transition in the
M7 to (NextStates b2 ®7; bi) would pro-
vide an adequate example. Such a procedure
can be applied differently using the environ-
ment introduced above and it could be made
operational via the assignment procedure:

(defun db-change-fact (old-fact new-fact)
(db-delete-fact old-fact transition-db)
(add-fact new-fact transition-db rule-db))

(db-change-fact
> (NextStates b2 Φ_7 a2)
> (NextStates b2 Φ_7 b1))

Updating the facts of the databases,
add-fact will automatically forward chain on
the new fact. db-add-fact can be used to
avoid the query.

Modifications of the automaton dynamics
might lead to changes in the propagation tree.
The re-estimation of the current (or initial)

state of the modified automaton requires a new
CDO-Next database from which the propaga-
tion tree is deduced. Since the inference is
based on forward propagation as mentioned
previously, it becomes advantageous to use the
forward chaining separately on the changed
facts without generating a new CDO-Next
database. For the modification on the M~
automaton mentioned above, forward chaining
on the deleted fact provides the list of axioms
to be deleted from the CDO-Next database and
forward chaining again on new facts provides
the list of axioms to be added®. The following
table presents the modified CDO-Next axioms
compared to the previous table.

1 (CDO UNIVERSE a (al a2 a3))
2 (CDO UNIVERSE b (b1 b2 b3))—7,8,9
3 (CDO UNIVERSE c (c1))
4(1) (CD0 (al a2 a3) u,a (=)
5(1) (CDO (al a2 a3) u,b (b1l b2 b3))—7,8,9
6(1) (CDO (al a2 a3) u,c (=)
2— 7(2) (CDO (b1 b2 b3) u,a (a2))
2— 8(2) (CDO (b1 b2 b3) u,b (b1,b3))—>10,11,12
2— 9(2) (CDO (b1 b2 b3) u,c (c1))
8— 10(8) (CDO (b1,b3) u,a (=)
8— 11(8) (CDO (b1,b3) u,a (b3))
8— 12(8) (CDO (b1,b3) u,a (c1))

Table 3: Partial modification of the CDO-Next
database. Notice that, practically, 4(;), 6(1) and
8(10) are discarded. UNIVERSE stands for the list
(a1 a2 a3 bl b2 b3 cl).

Since the modification in the dynamics is re-
lated to the state (b2), the inference starts
with line 2 from the table above and generates
lines 7,8,9 and since line 8 is not a singleton,
the forward chaining continues and generates
lines 10,11,12. As expected the process stops
until singletons are generated.

The difference between the logic observer
and the classical observer is seen with large
numbers of states, assuming the variation of
the automaton is minor. In fact the compari-
son should be achieved with the creation of the
set estimate propagation tree, which is what
the classical observer generates, and that re-
quires the logic observer to be assembled from
the generation of the Current Dynamical Ob-
server database. The deduction of the tree
from the CDO database is straightforward and
is achieved in one iteration.

OPTIMIZATION USING THE LOGIC
OBSERVER

One aspect related to the simulation of the ob-
server 1s the association of the number of con-
trols in the transition function with the max-
imum width of the propagation tree. Another
aspect relates the depth of the automaton to
its observability [5], and demonstrates that the

6 Practically, there is no need to forward chain on the
old fact as an overwrite procedure handles the deletion.

automaton converges in less than N? levels in
observable cases where N i1s the number of con-
trols.

Limiting the Automaton Functions

In [5], the authors refer to the maximum num-
ber of controls for an automaton as of the order
of 2V . The following is a supportive example to
show the exact number of the possible controls
for a specific automaton.

Recall the definition of the transition func-
tion @ to be X x U — X where X is a finite
set of states. The combination of singletons,
doubles, etc. will form a new finite set. The
mapping of every element of the new set to all
the elements will construct a table. Since the
output function and the transition functions
are independent, it is arbitrary to choose the
output function in such a way as to show all
the controls in the table introduced above. As-
suming, for example, a three state (a1 a2 a3)
automaton, and choosing the output function
with no initial input to the machine, the ob-
server returns the whole set (al a2 a3). De-
noting the transition u with a subscript num-
ber as shown in table 1.1., the problem can
then be stated as how many distinct controls
can the table accept.

Table 1.1 relates the controls of the tran-
sition function to the possible subset combi-
nation (excluding the empty set) of the state
space (al a2 a3). What this table shows is
the propagation possibility of every set in ev-
ery row. For example, the first line, interpreted
as (al a2 a3), will generate the sub-set pair
(a1 a2) under the control u;, (a1l a3) un-
der us etc. until all possible combinations of
(N —1,...1) sets. Notice that N is not in-
cluded for the reason that observability is vi-
olated when a set (not singletons) generates
itself. These facts are shown in the table and
marked with a dash when necessary.

(al a2 a3) (al a2) (al a3) (a2 a3)
(al a2) U1 -
(al a3) Usg -
(a2 a3) ujz -
(a1) Uy
(a2) us
(a8) Ug

Table 4: Mapping of a three state automaton as-
suming one possible output.

From Table 4, the maximum distinct con-
trols that could be allocated for the first row 1s
six and in general 2V — 2 (see footnote 7).

Such allocation defines the transition func-
tion mapping in a particular fashion and any

7"The general case can be deduced using the same
mapping argument for N states. Output function with
more than one possibility can be displayed in parallel
tables, one table per output.

additional distinct controls claimed for the
second, third, and last rows will violate the
uniqueness of the existing controls. For exam-
ple in Table 1.1, the set (al,a3) generates the
singleton (a1) under the control uz. Since the
set (a1,a3) is included in (al,a2,a3), this
will make the latter set generate the same sin-
gleton under the control uy; which violates the
uniqueness of the existing control ug.

(al a2 a3) (al a2) (al a3) (a2 a3)
(al a2) U1 -
(al a3) Uy -
(a2 a3) uj -
(a1) Ug
(a2) Uus
(a3) us

Table 5: Mapping of a three state automaton with
one possible output.

Table 5 shows a different assignment of the
controls, still with the purpose of finding the
table with maximum unique controls. And as
stated before, any additional control will vio-
late the uniqueness. The allocation of controls
U4, U5, ug 18 done arbitrarily for the singletons
and can be related to the control of the tree
propagation expansion.

Propagation Width for the M; Automa-
ton

Different approaches were tried with the pur-
pose of solving the question of binding the
propagation width. Starting by considering the
maximum number of controls in an automaton
to be of the order of 2V, it is logical to believe
that, in the worst case, the maximum width
is of the order of NV where again N is the
number of states.

This section lists the reasoning for find-
ing the maximum width of the M7 with
seven states, three outputs and two transitions.
Since the question is that of searching for the
maximum width w* in the propagation tree, it
is obvious that the transition and output func-
tions constitute complete information for the
determination of w*. Initially, the automaton
is considered to have the same output function
mapping as stated in the beginning of this doc-
ument which follows that (a1 a2 a3) will emit
a, (b1 b2 b3) will emit b and (c1) will emit
c. However, one can assume a new transition
function where a and 3 are the two operating
controls. Looking at the dynamical nature of
the automaton, some knowledge and rules can
be deduced from the output function dynam-
ics before considering the controls. (e.g. if the
dimension of the output set equals the dimen-
sion of the state set, the estimation question
can rely only on the observer output). Ini-
tially, level 01s always constant and is the set of
all states (a1 a2 a3 bl b2 b3 c1). Knowing

that at no input does the automaton emit an
output before absorbing a control, then level 1
is deduced in the form:

Level 0: 61,a2,a3,b1,b2,b3,c3

a bx c
) @) (©)
?7 27 ?7

Figure 3: The M7 automaton. States, transitions
and output

What is shown above is independent of the
transition functions and defines a part of the
characteristic of the automaton with respect to
the output function and always constitutes the
first set of facts of the CDO-Next database. The
question 1is raised as to what is the maximum
width on the second level of the propagation
tree, or, that is to say, the sum of the sets of
singletons, doubles and triples forming level 2.

Since the number of available controls and
outputs are two and three respectively, the pos-
sible combinations of observations is limited to
six (e a, ab,ac,f a,fb, fc). Looking at level
1, it becomes obvious that the maximum possi-
ble width of the second level would be thirteen.
The last few statements mentioned before lead
to the concept of the use of a backward chain-
ing inference engine to find the dynamics of
an automaton that suits the goals of the lev-
els required. To complete the success of this
search, the observability status of the proposed
automaton that would generate the mentioned
levels has to be evaluated through the use of
the logic observer. This technique was carried
out on this seven states automaton (with two
controls and three outputs) and the maximum
width found for the second level was eleven.

A similar exhaustive search should be
achieved on higher levels in the tree which will
lead to a higher number of transition function
maps. This search should provide an answer to
the problem of finding a limit to the width of
the tree.

CONCLUSIONS

To briefly summarize, in this paper the simula-
tion of the Dynamical Logic Observer has been
proposed to contrast with the classical observer
which was introduced in the beginning of the
paper. The logic observer in this work started
by the encoding of the input-state-output ma-
chine into sets of axioms which modify a given
automaton in real time by handling the axioms
in a systematic fashion to preserve the required

dynamics. Once the encoding is completed as
an initial step, the logic observer forward prop-
agates on the existing axioms and generates a
permanent database of facts from which the
tree is deduced.

The last section of this paper tries to set an
approach for optimizing the behavior of the
functions of the machines to acquire pre-set
knowledge cases. Upon finding the maximum
width of the tree for a given machine, the idea
suggested was to define, on any given level, a
certain width and then to propagate backward
in search of the possible function that satisfies
that goal.

REFERENCES

[1] Peter E. Caines, Russell Greiner, and Sun-
ing Wang. Dynamical Logic Observers for Fi-
nite Automata. In Proceeding of the 27th IEEE
Conference on Decision and Control, pages
226-233, Austin, Texas, December 1988. (Also
presented at the NASA-Ames workshop on Ar-
tificial Intelligence and Discrete Event Control
Systems, June, 1988)

[2] Peter E. Caines, Suning Wang, and Rus-
sell Greiner. Dynamical Logic Observers for
Finite Automata. In Proceeding of the 1988
Conference on Sciences and Systems, pages 50-
56, Princeton University, Princeton NJ, March
1988

[3] Peter E. Caines and Suning Wang. Clas-
sical and Logic-Based Regulators for Par-
tially Observed Automata: Dynamic Program-
ming Formulation. In Proceeding of the 1989
Conference on Information Sciences and Sys-
tems, John Hopkins University, Baltimore,

MA, March 1989.

[4] Peter E. Caines and Suning Wang. Classi-
cal and Logic-Based Regulators Design and Its
Complexity. In Proceedings of the 28th IEEE
Conference on Decision and Control, Tampa,
Florida, December 1989.

[5] Michael R. Genesereth and Nils J. Nilsson.
Logical Foundations of Artificial Intelligence.
Morgan Kaufmann Publishers, Inc., Los Altos,

CA, 1987.

[6] Arthur Gill. Introduction to the Theory
of Finite State Machines. New-York, McGraw
Hill, 1962.

[7] Jonathan S. Ostroff. Real Time Com-
puter Control of Discrete Systems Modeled by
Extended Machines: A Temporal Logic Ap-
proach. Ph.D. thesis. University of Toronto,
1987.

[8] Peter Ramadge and Murray Wonham. The
control of Discrete Event Systems. In Proceed-

wings IEEE, Vol 77, No. 1, pp 81-98, 1989.

[9] Jonathan S. Robinson. A Machine-Oriented
Logic Based on the Resolution Principle. Jour-

nal of the ACM, 12 (1), pp 23-24, 1965.

