

Operating B. Randell
Systems Editor

3'he Multics
Virtual Memory:
Concepts and
Design

A. Bensoussan, C.T. Clingen
Honeywell Information Systems, Inc.*
and
R.C. Daley
Massachusetts Institute of Technologyt

As experience with use of on-line operating
systems has grown, the need to share information
among system users has become increasingly apparent.
Many contemporary systems permit some degree of
sharing. Usually, sharing is accomplished by allowing
several users to share data via input and output of
information stored in files kept in secondary storage.
Through the use of segmentation, however, Multics
provides direct hardware addressing by user and system
programs of all information, independent of its physical
storage location. Information is stored in segments each
of which is potentially sharable and carries its own
independent attributes of size and access privilege.

Here, the design and implementation considerations
of segmentation and sharing in Multics are first
discussed under the assumption that all information
resides in a large, segmented main memory. Since the
size of main memory on contemporary systems is rather
limited, it is then shown how the Multics software
achieves the effect of a large segmented main memory
through the use of the Honeywell 645 segmentation and
paging hardware.

Key Words and Phrases: operating system, Multics,
virtual memory, segmentation, information sharing,
paging, memory management, memory hierarchy

CR Categories: 4.30, 4.31, 4.32

1. Introduction

In the past few years several well-known systems
have implemented large virtual memories which permit
the execution of programs exceeding the size of available
core memory. These implementations have been
achieved by demand paging in the Atlas computer [11],
allowing a program to be divided physically into pages
only some of which need reside in core storage at any
one time, by segmentation in the B5000 computer [15],
allowing a program to be divided logically into seg-
ments, only some of which need be in core, and by a
combination of both segmentation and paging in the
Honeywell 645 [3, 12] and the IBM 360/67 [2] for which
only a few pages of a few segments need be available in
core while a program is running.

As experience has been gained with remote-access,
multiprogrammed systems, however, it has become
apparent that, in addition to being able to take ad-
vantage of the direct addressibility of large amounts of
information made possible by large virtual memories,
many applications also require the rapid but controlled
sharing of information stored on-line at the central
facility. In Multics (Multiplexed Information and
Computing Service) segmentation provides a gener-
alized basis for the direct accessing and sharing of on-
line information by satisfying two design goals: (1) it
must be possible for all on-line information stored in

Copyright © 1972, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part

of this material is granted, provided that reference is made to this
publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Com-
puting Machinery.

Minor revision of a paper presented at an ACM Symposium
on Operating System Principles, Princeton University, October
20-22, 1969. Work reported herein was supported (in part) by
Project MAC, an MIT research program sponsored by the Ad-
vanced Research Projects Agency, Department of Defense, under
Office of Naval Research Contract Number Nonr-4102(1). *Honey-
well Information Systems, Inc., Cambridge, MA 02142. tCam-
bridge, MA 02142.

308 Communications May 1972
of Volume 15
the ACM Number 5

the system to be addressed directly by a processor and
hence referenced directly by any computation; (2) it
must be possible to control access, at each reference, to
all on-line information in the system.

The fundamental advantage of direct addressibility
is that information copying is no longer mandatory.
Since all instructions and data items in the system are
processor-addressible, duplication of procedures and
data is unnecessary. This means, for example, that core
images of programs need not be prepared by loading
and binding together copies of procedures before
execution; instead, the original procedures may be used
directly in a computation. Also, partial copies of data
files need not be read, via requests to an Co system,
into core buffers for subsequent use and then returned,
by means of another I/O request, to their original
locations; instead the central processor executing a
computation can directly address just those required
data items in the original version of the file. This kind
of access to information promises a very attractive
reduction in program complexity for the programmer.

If all on-line information in the system may be
addressed directly by any computation, it becomes
imperative to be able to limit or control access to this
information both for the self-protection of a computa-
tion from its own mishaps, and for the mutual protec-
tion of computations using the same system hardware
facilities. Thus it becomes desirable to compartmentalize
or package all information in a directly-addressible
memory and to attach access attributes to these in-
formation packages describing the fashion in which
each user may reference the contained data and pro-
cedures. Since all such information is processor-
addressible, the access attributes of the referencing
user must be enforced upon each processor reference
to any information package.

Given the ability to directly address all on-line
information in the system, thereby eliminating the
need for copying data and procedures, and given the
ability to control access to this information, controlled
sharing among several computations then follows as a
natural consequence.

In Multics, segments are packages of information
which are directly addressed and which are accessed in
a controlled fashion. Associated with each segment is
a set of access attributes for each user who may access
the segment. These attributes are checked by hardware
upon each segment reference by any user. Furthermore,
all on-line information in a Multics installation can be
directly referenced as segments while in other systems
most on-line information is referenced as files.

This paper discusses the properties of an "idealized"
Multics memory comprised entirely of segments
referenced by symbolic name, and describes the simula-
tion of this idealized memory through the use of both
specialized hardware and system software. The result of
this simulation is referred to as the Multics virtual
memory. Although the Multics virtual memory has

309

been discussed elsewhere [3, 6, 7] at the conceptual
level or in its earlier forms, the implementation pre-
sentcd here represents a mechanism resulting from
several consecutive implementations leading to an
effective realization of the design goals.

2. Segmentation

A basic motivation behind segmentation is the
desire to permit information sharing in a more auto-
matic and general manner than provided by non-
segmented systems. Sharing must be accomplished
without duplication of information and access to the
shared information must be controlled not only in
secondary memory but also in main memory.

In most existing systems that provide for informa-
tion sharing, the two requirements mentioned above are
not met. For example, in the CTSS system [5], informa-
tion to be shared is contained in files. In order for
several users to access the information recorded in a
file, a copy of the desired information is placed in a
buffer in each user's core image. This requires an
explicit, programmer-controlled I /o request to the file
system, at which time the file system checks whether
the user has appropriate access to the file. During
execution, the user program manipulates this copy and
not the file. Any modification or updating is done on
the copy and can be reflected in the original file only by
an explicit I/O request to the file system, at which time
the file system determines whether the user has the
right to change the file.

In nonsegmented systems, the use of core images
makes it nearly impossible to control access to shared
information in core. Each program in execution is
assigned a logically contiguous, bounded portion of
core memory or paged virtual memory. Even if the
nontrivial problem of addressing the shared information
in core were solved, access to this information could
not be controlled without additional hardware as-
sistance. Each core image consists of a succession of
anonymous words that cannot be decomposed into the
original elementary parts from which the core image
was synthetized. These different parts are indistinguish-
able in the core image; they have lost their identity and
thereby have lost all their attributes, such as length,
access rights, and name. As a consequence, nonseg-
mented hardware is inadequate for controlled sharing
in core memory. Although attempts to share informa-
tion in core memory have been made with nonseg-
mented hardware, they have resulted in each instance
being a special case which must be preplanned at the
supervisory level. For example, if all users are to share
a compiler in main memory, it is imperative that none
of them be able to alter the part of main memory where
the compiler resides. The hardware "privileged" mode
used by the supervisor is often the only means of pro-
tecting shared information in main memory. In order

Communications May 1972
of Volume 15
the ACM Number 5

to protect the shared compiler, it is made accessible
only in this privileged mode. The compiler can no
longer be regarded as a user procedure; it has to be
accessed through a supervisor call like any other part
of the supervisor, and must be coded to respect any
conventions which may have been established for the
supervisor.

In segmented systems, hardware segmentation can
be used to divide a core image into several parts, or
segments [10]. Each segment is accessed by the hardware
through a segment descriptor containing the segment's
attributes. Among these attributes are access rights that
the hardware interprets on each program reference to
the segment for a specific user. The absolute core loca-
tion of the beginning of a segment and its length are
also attributes interpreted by the hardware at each
reference, allowing the segment to be relocated any-
where in core and to grow and shrink independently of
other segments. As a result of hardware checking of
access rights, protection of a shared compiler, for
example, becomes trivial since the compiler can reside
in a segment with only the "execute" attribute, thus
permitting users to execute the compiler but not to
change it.

In most segmented systems, a user program must
first call the supervisor to associate a segment descriptor
with a specific file before the program can directly
access the information in the file. If the number of files
the user program must reference exceeds the number
of segment descriptors available to the user, the user
program is forced to call the supervisor again to free
segment descriptors currently in use so that they can
be reused to access other information. Furthermore,
if the number of segment descriptors is insufficient to
provide simultaneous direct access to each distinct file
required by this program, the user must then provide
for some means of buffering this information. Buffering,
of course, requires that information from more than one
file be copied and coalesced with other distinctly differ-
ent information having potentially different attributes.
Once the information is copied and merged, the
identity of the original information is lost, thus making
it impossible for the information to be shared with
other user programs. In addition, this form of user-
controlled segment descriptor allocation and buffering
of information requires a significant amount of pre-
planning by the user.

In Multics, the number of segment descriptors
available to each computation is sufficiently large to
provide a segment descriptor for each file that the user
program needs to reference in most applications. The
availability of a large number of segment descriptors to
each computation makes it practical for the Multics
supervisor to associate segment descriptors with files
upon first reference to the information by a user pro-
gram, relieving the user from the responsibility of
allocating and deallocating segment descriptors. In
addition, the relatively large number of segment

descriptors eliminates the need for buffering, allowing
the user program to operate directly on the original
information rather than on a copy of the information.
In this way, all information retains its identity and
independent attributes of length and access privilege
regardless of its physical location in main memory or on
secondary storage. As a result, the Multics user no
longer uses files; instead he references all information
as segments, which are directly accessible to his pro-
grams.

To Multics users, all memory appears to be com-
posed of a large number of independent linear core
memories, each associated with a descriptor. A user
program can create a segment by issuing a call to the
supervisor, giving, as arguments, the appropriate
attributes such as symbolic segment name, name of each
user allowed to access the segment with his respective
access rights, etc. The supervisor then finds an unused
descriptor where it stores the segment attributes. The
segment having been created, the user program can
now address any word of the corresponding linear
memory by the pair (name, i) where "name" is the
symbolic name ot' the segment and "i" is the word
number in the linear memory. Furthermore, any
other user can reference word number i of this segment
also by the pair (name, i) but he can access it only
according to the access rights he was given by the
creator and which are recorded in the descriptor.
Combinations of the "read," "write," "execute" and
"append" access rights [6] are available in Multics.

A simple representation of this memory, referred to
as the Multics idealized memory, is shown in Figure 1.

3. Paging

In a system in which the maximum size of any seg-
ment was very small compared to the size of the entire
core memory, the "swapping" of complete segments
into and out of core would be feasible. Even in such a
system, if all segments did not have the same maximum
size, or had the same maximum size but were allowed to
grow from initially smaller sizes, there remains the
difficult core management problem of providing space
for segments of different sizes. Multics, however,
provides for segments of sufficient maximum size so
that only a few can be entirely core-resident at any one
time. Also, these segments can grow from any initial
size smaller than the maximum permissible size.

By breaking segments into equal-size parts called
pages and providing for the transportation of in-
dividual pages to and from core as demand dictates,
the disadvantages of fragmentation are incurred, as
explained by Denning [9]. However, several practical
problems encountered in the implementation of a
segmented virtual memory are solved.

First, since pages are all o f equal size, space alloca-
tion is immensely simplified. The problems of "com-

310 Communications May 1972
of Volume 15
the ACM Number 5

Name 1
Attributes

I
Name 2

~ttributes

I
[A,",*,7,,,

I
=?.1

Fig. 1. Multics idealized memory.

pacting" information in core and on secondary storage,
characteristic of systems dealing with variabIe-sized
segments or pages, are thereby eliminated.

Second, since only the referenced page of a segment
need be in core at any one instant, segments need not be
small compared to core memory.

Third, "demand paging" permits advantage to be
taken of any locality of reference peculiar to a program
by transporting to core only those pages of segments
which are currently needed. Any additional overhead
associated with demand paging should of course be
weighed against the alternative inefficiencies associated
with dedicating core to entire segments which must be
swapped into core but which may be only partly ref-
erenced.

Finally, demand paging allows the user a greater
degree of machine independence in that a large pro-
gram designed to run well in a large core memory con-
figuration will continue to run at reduced performance
on smaller configurations.

4. The Multics Virtual Memory

Multics simulates the idealized memory, represented
in Figure 1, using the segmentation and paging features
of the 645 assisted by the appropriate software features.
The result of the simulation is referred to as the "Multics
Virtual Memory." The user can keep a large number of
segments in this memory and reference them by symbolic
name; upon first reference to a segment, the supervisor
automatically transforms the symbolic name into the
appropriate hardware address which is directly used
by the processor for subsequent references.

The remainder of this paper explains the addressing
mechanism in the 645 and describes how the Multics su-
pervisor simulates the Multics idealized memory.

311

5. The Honeywell 645 Processor

The features of the 645 processor which are of in-
terest for the implementation of the Multics virtual
memory are segmentation and paging.

5.1 Segmentation
Any address in the 645 processor consists of a

pair of integers [s, i]. "s" is called the segment number;
"i" the index within the segment. The range of "s" and
"i" is 0 to 2]8 -- 1. Word [s, i] is accessed through a
hardware register which is the sth word in a table called
a descriptor segment (DS). The descriptor segment is in
core memory and its absolute address is recorded in a
processor register called a descriptor base register
(DRR). Each word of the DS is called a segment descriptor
word (SDW); the sth sDw will be referred to as SOW(S).
See Figure 2.

The DBR contains the values:
DBR. core which is the absolute core address of the os.
DBR. L which is the length of the DS.
Segment descriptor word number "s" contains the

values:
SDW(S)-core which is the absolute core address of

the segment s.
sow(s). L which is the length of the segment s.
sow(s) .acc which describes the access rights for

the segment.
SOW(S)-F which is the "missing segment" switch.

A simplified version of the algorithm used by the
processor to access the word whose address is Is, i]
follows (see Figure 2):

If DBR.L < S, generate a trap, or "faul t" to the
supervisor.

Access SDW(S) at absolute location oBR.core + s.
If sow(s) .v = ON, generate a missing segment fault.
If SOW(s).L < i, generate a fault.
If sow(s) .acc is incompatible with the requested

operation, generate a fault.
Access the word whose absolute address is SDW(S).

core + i.

5.2 Paging
The above description assumes that segments are

not paged; in fact, paging is implemented in the
645 hardware. In the Multics implementation, all
segments are paged and the page size is always 1,024
words.

Element "i" of a segment is the w th word of the
pth page of the segment, "w" and "p" being defined by

t p = i rood 1,024
= (i - w)/1,024

Each segment is referenced by a processor through a
page table (PX). The PX of a segment is an array of

Communications May 1972
of Volume 15
the ACM Number 5

Fig. 2. Hardware segmentation in the Honeywell 645.

SEGMENT "S"

WORD [s.i]

OS

SOW [S)

Core[L[occ IF

OBR

.; [co,. ILl

Fig. 3. Hardware segmentation and paging in the Honeywell 645.
PYof DS DBR

PAGE "Sp"of DS ~ ~re ILl

PT of 1
SEGMENT i Sw

%" i c°relLl~¢lF ,1' PAG'E "ip" of ~ ~ t
SEGMENT "S" I PTW(iD)I [ip

physically contiguous words in core memory. Each
element of this array is called a page table word (PTW).
Page table word number p contains:

Pxw(p) .core which is the absolute core address of
page number p.

PTW(p).v which is the "missing page" switch.
The meaning of oBR.core and sDw(s).core is now:
DBR.cOre = Absolute core address of the PT of the

descriptor segment.
sow(s) .core = Absolute core address of the PT of

segment number s.
A simplified version of the algorithm used by the

processor to access the word whose address is [s, i] is
as follows (see Figure 3):

I f DBR.L < S, generate a fault.
Split s into the page number sp and word number sw.
Access PTW(Sp) at absolute location

DBR.COre + sp.
I f PTW(sp).v = ON, generate a missing page fault.
Access sow(s) at absolute location

PTW(sp)-core + s~.
I f s o w (s) . r = ON, generate a missing segment fault.
I f St)W(s).L < i, generate a fault.
I f sow(s) .acc is incompatible with the requested

operation, generate a fault.
Split i into the page number ip and word number i~,.
Access PTW(ip) at absolute location

sow(s) .core + ip.
I f]'Tw(ip).F = ON, generate a missing page fault.
Access the word whose absolute location is

PXW(ip).core + iw.
In order to reduce the number of processor refer-

ences to core storage while performing this algorithm,
each processor has a small, high-speed associative
memory [12] automatically maintained so as to always
contain the PTW'S and sow's most recently used by the
processor. The associative memory significantly reduces

312

the number of additional memory requests required
during address preparations.

6. Multics Processes and the Multics Supervisor

A process is generally understood as being a program
in execution. A process is characterized by its state-
word defining, at any given instant, the history resulting
f rom the execution of the program. It is also charac-
terized by its address space. The address space of a
process is the set of processor addresses that the process
can use to reference information in memory. In Multics,
any information that a process can reference by an
address of the form (segment number, word number) is
said to be in the address space of the process. There is a
one-to-one correspondence between Multics processes
and address spaces. Each process is provided with a
private descriptor segment which maps segment num-
bers into core memory addresses and with a private
table which maps symbolic segment names into seg-
ment numbers. This table is called the Known Segment
Table (KST).

The Multics supervisor could have been written so
as not to use segment addressing of course; but organiz-
ing the supervisor into procedures and data segments
permits one to use, in the supervisor, the same conven-
tions that are used in user programs. For instance, the
call-save-return conventions [7] made for user pro-
grams can be used by the supervisor; the standard way
to manufacture pure procedures in a user program is
also used extensively in the supervisor. A less visible
advantage of segmentation of the supervisor is that
some supervisory facilities provided for the management
of user segments can also be applied to supervisor
segments; for example, the demand paging facility
designed to automatically load pages of user segments

Communications May 1972
of Volume 15
the ACM Number 5

can also be used to load pages of supervisor segments.
As a result, a large portion of the supervisor need not
reside permanently in core.

Unlike most supervisors, the Multics supervisor does
not operate in a dedicated process or address space.
Instead, the supervisor procedure and data segments
are shared among all Multics processes. Whenever a
new process is created, its descriptor segment is ini-
tialized with descriptors for all supervisor segments
allowing the process to perform all of the basic super-
visory functions for itself. The execution of the super-
visor in the address space of each process facilitates
communication between user procedures and supervisor
procedures. For example, the user can call a supervisor
procedure as if he were calling a normal user procedure.
Also, the sharing of the Multics supervisor facilitates
simultaneous execution, by several processes, of super-
visory functions, just as the sharing of user procedures
facilitates the simultaneous execution of functions
written by users.

Since supervisor segments are in the address space
of each process, they must be protected against un-
authorized references by user programs. Multics pro-
vides the user with a ring protection mechanism [13]
which segregates the segments in his address space into
several sets with different access privileges. The Multics
supervisor takes advantage of the existence of this
mechanism and uses it, rather than some other special
mechanism to protect itself.

7. Segment Attributes

7.1 Directory Hierarchy
The name of a segment and its attributes are asso-

ciated in a catalogue. Conceptually this catalogue con-
sists of a table with one entry for each segment in the
system. An entry contains the name of the segment and
all its attributes: length, memory address, list of users
allowed to use the segment with their respective access
rights, date and time the segment was created, etc.

In Multics, this catalogue is implemented as several
segments, called directories, organized into a tree
structure. A segment name is a list of subnames reflect-
ing the position of the entry in the tree structure, with
respect to the beginning, or root directory (ROOT) of
the tree. By convention, subnames are separated by the
character " > " . Each subname is called an entryname
and the list of entrynames is called a pathname. An
entryname is unique in a given directory and a path-
name is unique in the entire directory hierarchy. Be-
cause of its property of uniquely identifying a segment
in the directory hierarchy, the pathname has been
chosen as the symbolic name by which the Multics user
must reference a segment. There are two types of direc-
tory entries, branches and links. A branch is a directory
entry which contains all attributes of a segment while a
link is a directory entry which contains the pathname of

another directory entry. A more detailed description of
the directory hierarchy and of the use of links is given
by Daley and Neumann [6].

7.2 Operations on Segment Attributes
Supervisor primitives perform all operations on

segment attributes. There is a set of primitives available
to the user which allow him, for example, to create a
segment, delete a segment, change the entryname of a
directory entry, change the access rights of a segment,
list the segment attributes contained in a directory, etc.

Creating a segment whose pathname is ROOT
> A > B > C (see Figure 4) consists basically of the fol-
lowing steps:

Check that entryname c does not already exist in
the directory ROOT > A > B.

Allocate space for a new branch in directory ROOT
> A > B .

Store in the branch the following items:
The entry name ¢.
The segment length, initialized to zero.
The access list, given by the creator.
The segment map, consisting of an array of second-

ary memory addresses, one for each page of the segment.
The maximum length of a segment in Multics being 64
pages, the segment map for any segment contains 64
entries. Since the segment length is still zero, each
entry of the segment map is initialized with a "null"
address, showing that no secondary memory has been
assigned to any potential page of the segment.

The segment status "inactive," meaning that there
is no page table for this segment. The segment status,
which may be either "act ive" or "inactive" is indicated
by the active switch.

Fig. 4. Directory hierarchy.
~COT>A>B>C

ROOT>&>B

.oo,

~0 U E'mpty

ROOT>D>A>F
ROOT>A>Y ROOT>D

eCC"

ROOT>D>X

• SQ~ores ore chrecrory seqments.

• C~¢1e$ o~e non "d,rectorv secJme~*s.

313 Communications
of
the ACM

May 1972
Volume 15
Number 5

8. Segment Accessing

Although the creation of a segment initializes its
attributes, additional supervisor support is required to
make the segment accessible to the processor when a
user program references the segment by symbolic name.

8.1 Symbolic Addressing Conventions
The pathname is the only symbolic name by which

a segment can be uniquely identified in the directory
hierarchy. However, for user convenience, the system
provides a facility whereby a user can reference a seg-
ment from his program using only the last entryname of
the segment's pathname and supplying the rest of the
pathname according to system conventions. This last
entry name is called the reference name.

When a process executes an instruction which
attempts to access a segment by means of its reference
name, the Multics dynamic linking facility [7] is auto-
matically invoked. The dynamic linker determines the
missing part of the pathname according to the above-
mentioned system conventions. These conventions are
called search rules and may be regarded as a list of
directories to be searched for an entryname matching
the specified reference name. When this entryname is
found in a directory, the directory pathname is prefixed
to the reference name yielding the required pathname.
The dynamic linker, using the "Make Known" module
(Section 8.2), then obtains a segment number by which
the referenced segment will be accessed. Finally it trans-
forms the reference name into this segment number so
that all subsequent executions of the instruction in this
process access the segment directly by segment number.
Further details are given by Daley and Dennis [7].

8.2 Making a Segment Known to a Process
Each time a segment is referenced in a process by its

pathname, either explicitly or as the result of the evalua-
tion of a reference name by the dynamic linking facility,
the pathname must be translated into a segment number
in order to permit the processor to address the segment
for this process. This translation is done by the super-
visor using the KST associated with the process. The
KST is an array organized such that entry number "s",
KSTE(S), contains the pathname associated with segment
number "s". See Figure 5.

If the association (pathname, segment number) is
found in the KST of the process, the segment is said to be
known to the process and the segment number can be
used to reference the segment.

If the association (pathname, segment number) is
not found in the KS'r, this is the first reference to the
segment in the process and the segment must be made
known. A segment is made known by assigning an
unused segment number "s" in the process and by
recording the pathname in KSTE(S) to establish the pair
(pathname, segment number) in the KST of the process.
The directory hierarchy is also searched for this path-

Fig. 5. Basic tables used to implement the Multics virtual memory.
OaR

name and a pointer to the corresponding branch is
entered in KSTE(S) for later use (Section 8.3.).

The per-process association of pathname and seg-
ment number is used in the Multics system because it
is impossible to assign a unique segment number to
each segment. The reason is that the number of seg-
ments in the system will nearly always be larger than
the number of segment numbers available in the
processor.

When a segment is made known to a process by
segment number "s," its attributes are not placed in
SDW(S) of the descriptor segment of that process.
SDW(S) having been initialized with the missing segment
switch ON, the first reference in this process to that
segment by segment number "s" will cause the processor
to generate a trap. In Multics this trap is called a
"missing segment fault" and transfers control to a
supervisor module called the segment fault handler.

8.3 The Segment Fault Handler
When a missing segment fault occurs, control is

passed to the segment fault handler to store the proper
segment attributes in the appropriate SDW and set the
missing segment switch OFF in the sow.

These attributes, as shown in Figure 3, consist of
the page table address, the length of the segment, and
the access rights of the user with respect to the segment.
The information initially available to the supervisor
upon occurrence of a missing segment fault is the seg-
ment number "s."

The only place where the needed attributes can be
found is in the branch of the segment. Using the segment
number "s", the supervisor can locate the KST entry
associated with the faulting segment; it can then find the
required branch since a pointer to the branch has been
stored in the KST entry when the segment was made
known to this process (Section 8.2).

314 Communications May 1972
of Volume 15
the ACM Number 5

Using the active switch (Figure 5) in the branch, the
supervisor determines whether there is a page table
for this segment. Recall that this switch was initialized
in the branch at segment creation time. I f there is no
page table, one must be constructed. A portion of core
memory is permanently reserved for page tables. All
page tables are of the same length and the number of
page tables is determined at system initialization.

The supervisor divides page tables into two lists:
the used list and the free list. Manufacturing a page
table (Pa') for a segment could consist only of selecting
a 1,x from the free list, putting its absolute address in
the branch and moving it f rom the free to the used list.
I f this were actually done, however, the servicing of each
missing page fault would require access to a branch
since the segment map containing secondary storage
addresses is kept there (Figure 5). Since it is impractical
for all directories to permanently reside in core, page
fault handling could thereby require a secondary
storage access in addition to the read request required
to transport the page itself into core. Although this
mechanism works, efficiency considerations have led
to the "activation" convention between the segment
fault handler and the page fault handler.

Activation. A portion of core memory is permanently
reserved for recording attributes needed by the page
fault handler, i.e. the segment map and the segment
length. This portion of core is referred to as the active

segment table (AST). There is only one asa" in the system
and it is shared by all processes. The AST contains one
entry (ASTE) for each Px. APT is always associated with
an ASTE, the address of one implying the address of the
other. They may be regarded as a single entity and will
be referred to as the (Pa', ASTE) of a segment. The used
list and free list mentioned above are referred to as the
(PT, AS'rE)free list and the (PX, ASTE) used list.

A segment which has a (PT, ASTE) is said to be
active. Being active or not active is an attribute of the
segment and is recorded in the branch using the active
switch.

When the active switch is oN, both the segment map
and the segment length are no longer in the branch but
are to be found in the segment's (pa', ASTE) whose
address was recorded in the branch during "act ivat ion"
of the segment.

To activate a segment, the supervisor must:
Find a free (PT, ASTE). (Assume temporarily that at

least one is available).
Move the segment map and the segment length from

the branch into the ASa'E.
Set the active switch oN in the branch.
Record the pointer to (Pa', ASTE) in the branch.
By pairing an ASTE with a PX in core, the segment

fault handler has guaranteed that all segment attributes
needed by the page fault handier are core-resident,
permitting more efficient page fault servicing.

Connection. Once the segment is active, the corre-
sponding sDw must be "connected" to the segment. To

connect the sow to the segment the supervisor must:
Get the absolute address of the PT, using the (PX,

ASTE) pointer kept in the branch, and store it in sow.
Get the segment length from the ASTE and store it

in the SDW.
Get the access rights for the user from the branch

and store them in the SDW.
Turn off the missing segment switch in the SDW.
Having defined activation and connection, segment

fault handling can now be summarized as:
Use the segment number s to access the KST entry.
Use the KST entry to locate the branch.
I f the active switch in the branch is OFF, activate the

segment.
Connect the sow.
Note that the active switch and the (px, ASTE)

pointer in the segment branch "automatical ly" guar-
antee segment sharing in core since all SDW'S describ-
ing a given segment will point to the same PT.

Once the segment and its SDW have been connected,
the hardware can access the appropriate page table
word. If the page is not in core, a missing page fault
occurs, transferring control to the supervisor module
called the page fault handler.

8.4 The Page Fault Handler
When a page fault occurs the page fault handler is

given control with the PT address and the page number
of the faulting page. The information needed to bring
the page into core memory is the address of a free block
of core memory into which the page can be moved and
the address of the page in secondary memory. The
term page f r a m e is also used to denote a block of core
memory which holds a page of information [9].

A free block of core must be found. This is done by
using a data base called the core map. The core map is
an array of elements called core map entries (CME).
The n th entry contains information about the n th block
of core (the size of all blocks is 1,024 words). The
supervisor divides this core map into two lists; the core
map used list and the core map f r ee list.

The job of the page fault handler consists of the
following steps:

Find a free block of core and remove its core map
entry from the free list. (Assume temporari ly that t.he
free list is not empty.)

Access the ASTE associated with the Px and find the
address in secondary memory of the missing page.

If this address is a "null" address, initialize the
block of core with zeros and update the segment length
in the ASTE; this action is only taken the first time the
page is referenced since the segment was created and
provides for the automatic growing of segments. Other-
wise issue an I /o request to move the page from second-
ary memory into the free block of core and wait for
completion of the request via a call to the "traffic
controller" [14] which is responsible for processor
multiplexing.

315 Communications May 1972
of Volume 15
the ACM Number 5

Store the core address in the PTW, remove the fault
from the PTw, and place the core map entry in the used list.

8.5 Page Multiplexing
There are many more pages in virtual memory than

there are blocks of core in the real memory; therefore,
these blocks must be multiplexed among all pages. In
the description of page fault handling it was assumed
that a free block of core was always available. In order
to insure that this is nearly always true, the page fault
handler, upon removing a free block from the core map
free list, examines the number of remaining free list
entries; if this number is less than a preset minimum
value, a page removal mechanism is invoked a sufficient
number of times to ensure a nonempty core map free
list in all but the most unusual cases. A nonempty core
map free list eliminates waiting for page removal during
the handling of a missing page fault.

To get a free block of core, the page removal mech-
anism may have to move a page from core to secondary
memory. This requires: (a) an algorithm to select a
page to be removed; (b) the address of the PTW which
holds the address of the selected page, in order to set a
fault in it; and (c) a place to put the page in secondary
memory.

The selection algorithm is based upon page usage.
It is a particularly easy-to-implement version [4] of the
"least-recently-used" algorithm [I, 8]. The hardware
provides valuable assistance by, each time a page is
referenced, setting ON a bit, called the used bit, in the
corresponding PTw. The selection algorithm will not be
described in detail here. However, it should be noted
that candidates for removal are those pages described
in the core map used list; therefore, each core map
entry which appears in the used list must contain a
pointer to the associated Pa-W (Figure 5) in order to
permit examination of the used bit. The action of storing
the PTW pointer in the core map entry must be added
to the list of actions taken by the page fault handler
when a page is moved into core (Section 8.4.).

Once the supervisor has selected the page to be
removed, it takes the following steps:

Set the missing page switch ON in the PTw.
If no secondary memory has been assigned yet for

this page, i.e. the segment map entry for this page holds
a "null" address, assign a block of secondary memory
and store its address in the segment map entry.

Issue an I /o request to move the page to secondary
storage.

Upon completion of the I/O request, move the core
map entry describing the freed block of core from the
core map used list to the core map free list. This may be
done in another process upon noticing the completion
of the l /o request.

8.6 (PT, ASTE) Multiplexing
Core blocks can be multiplexed only among pages

of active segments. The number of concurrently active

Fig. 6. Supervisor functional modules and data bases.

segments is limited to the number of (PT, ASTE) pairs,
which is, by far, smaller than the total number of
segments in the virtual memory. Therefore (PT, AS'rE)
pairs must be multiplexed among all segments in the
virtual memory.

When segment activation was described, a (PT,
AS'rE) pair was assumed available for assignment. In
fact, this is not always the case. Making one segment
active may imply making another segment inactive,
thereby disassociating this other segment from its
(PT, ASTE). Since all processes sharing the same segment
will have the address of the PX in an sow, it is essential to
invalidate this address in all sow's containing it before
removing the page table.

This operation requires: (a) an algorithm to select
a segment to be deactivated; (b) knowing all sow's that
contain the address of the page table of the selected
segment, in order to invalidate this address; (c) moving
the attributes contained in the ASTE back to the branch;
and (d) changing the status of the segment from active
to inactive in the branch.

The selection algorithm for deactivation, like the
selection algorithm for page removal, is based on
usage. When the last page of a segment is removed from
core, the segment becomes a candidate for deactivation.
The algorithm selects for deactivation the segment
which has had no pages in core for the longest period of
time, i.e. the segment which has been least recently used.
Since the number of (PT, ASTE) pairs substantially
exceeds the number of pageable blocks of core, it is
always possible to find an active segment with no pages
in core.

The ASTE must provide all the information needed
for deactivating a segment. This means that during
activation and connection, this information must be
made available. During activation, a pointer to the
branch must be placed in the ASTE; during connection,
a pointer to the sow must be placed in the ASTE. Since
more than one SOW is connected to the same PT when
the segment is shared by several processes, the super-
visor must maintain a list of pointers to all connected
SOW'S. This list is called a connection list. See Figure 5.

After the selection algorithm chooses a (PT, ASTE)
to be freed, the disassociation of the segment from its

316 Communications May 1972
of Volume 15
the ACM Number 5

(PT, ASTE) is done in two steps: disconnection and
deactivation.

Disconnection consists of storing a segment fault
in each sow whose address appears in the connection
list in the ASTE. Deactivation consists of moving the
segment map and the segment length from the ASTE
back to the branch, resetting the active switch in the
branch, and putting the (PT, ASTE) in the free list.

9. Structure of the Supervisor

Up to now supervisor functions have been described,
but not the supervisor structure. In this section, the
different components of the supervisor are presented
and the ability of portions of the supervisor to utilize
the virtual memory is discussed.

9.1 Functional Modules
Three functional modules can be identified in the

supervisor described in Section 8; they are called
directory control (DC), segment control (SC), and
page control (PC).

DC performs all operations on segment attributes;
it also maps pathnames into segment numbers in the
KST of the executing process. Data bases used by a
process executing DC procedures are the directories and
the KST of the process (Figure 6).

sc performs segment fault handling. Data bases used
by a process executing sc procedures are directories,
the KST of the process, descriptor segments and (PT,
ASTE) pairs.

PC performs page fault handling. Data bases used by
a process executing Pc procedures are (PT, ASTE) pairs
and the core map.

9.2 Use of PC in the Supervisor
One can observe that the page fault handler need not

know if a missing page belongs to a user segment or to
a supervisor segment; it only expects to find the in-
formation it requires in the (PT, ASTE) of the segment
to which the missing page belongs. Therefore, if all
segments used in sc and DC are always active, then their
pages need not be in core since PC can load them when
they are referenced.

In order to make use of PC in the rest of the super-
visor the following (temporary) assumption must be
made.

Assumption 1
(a) All segments used in PC are always in core and are
connected to the descriptor segment of each process.
(b) All segments used in sc and PC are always active
and are connected to the descriptor segment of each
process.

9.3 Use of SC in the Supervisor
Assumption 1 is satisfactory in the Multics imple-

mentation except for directories.

The number of directory segments in the system may
be very large and keeping them always active is not a
realistic approach, since a large number of (pT, AS'rE)
pairs would have to be permanently assigned to them.
I t would be desirable to use sc to activate and connect
directory segments only as needed.

A necessary condition for handling a segment fault
for segment x in a process is that segment x be known
to that process. Assuming that all directories are known
to all processes, but not necessarily active, reference to
a directory x may cause a segment fault. When handling
this fault, the segment fault handler must reference the
parent directory of segment x, where the branch for x
is located. This reference to the parent of x could, in
turn, cause a recursive invocation of the segment fault
handler. These recursive invocations can propagate
from directory to parent directory up to the root. I f the
root directory is always active and connected to each
process, then the recursion is guaranteed to be finite and
a segment fault for any directory can be handled.

The first assumption can be replaced by the follow-
ing more satisfactory assumption (again temporary).

Assumption 2
(a) All segments used in Pc are always in core and are
connected to the descriptor segment of each process.
(b) All nondirectory segments used in sc and DC are
always active and are connected to the descriptor seg-
ment of each process.
(c) The root directory is always active and connected
to each process.
(d) All directories are always known to each process.

9.4 Use of the Make Known Facility in the Supervisor
However, it is unsatisfactory to keep all directories

known to all processes because of the space that would
be required in each KST. It would be more attractive if
a directory could be made known to a process only
when needed by the process.

Making a segment x known implies searching for its
pathname in the KST. I f not found, the parent of x must
first be made known and so on up to the root. I f the
root directory is always known to all processes, then
any directory can be made known to a process by calling
recursively the Make Known facility of the supervisor.

Assumption 2 will now be replaced by the final
assumption:

Final Assumption
(a) All segments used in pc are always in core and are
connected to the descriptor segment of each process.
(b) All nondirectory segments used in sc and DC are
always active and are connected to the descriptor seg-
ment of each process.
(c) The root directory is always active and connected
to each process.
(d) The root directory is always known to each process.

Given the above assumption, supervisor segments, as

317 Communications May 1972
of Volume 15
the ACM Number 5

well as user segments, can be stored in the virtual
memory that the supervisor provides.

10. Summary

The most important points discussed in this paper
are summarized below. They are grouped into two
classes: the point of view of the user of the virtual
memory, and the point of view of the supervisor itself.

User Point of View
The Multics virtual memory can contain a very

large number of segments that are referenced by
symbolic names.

Segment attributes are stored in special segments
called directories, which are organized into a tree
structure; by a naming convention known to the user,
the symbolic name of a segment must be the pathname
of the segment in the directory tree structure.

Any operation on directory segments must be done
by calling the supervisor.

Any operation on a nondirectory segment can be
done directly in accordance with the access rights that
the user has for the segment; any word of any segment
which resides in the virtual memory can be referenced
with a pair (pathname, i) by the user.

Supervisor Point of View
The supervisor must simulate a large segmented

memory which is directly addressable by symbolic
name and such that any access to the memory is sub-
mitted to access rights checking.

The supervisor maintains a directory tree where it
stores all segment attributes. It can retrieve the attri-
butes of a segment, given the pathname of that segment.

The supervisor itself is organized into segments
and runs in the address space of each user process.

Any segment, be it a directory or a nondirectory
segment, is identified by its pathname but can be ac-
cessed only using a segment number. For each segment
name the supervisor must assign a segment number by
which the processor will address the segment in the
process.

The processor accesses a word of a segment through
the appropriate sow and PTW, subject to the access
rights recorded in the sDw.

A segment fault is generated by the processor when-
ever the page table address or access rights are missing
in the sow. The supervisor then, using the Ks-r entry as
a stepping stone, accesses the branch where it finds the
needed information. If a P-r is to be assigned, the super-
visor may have to deactivate another segment.

A page fault is generated by the processor whenever
a PTW does not contain a core address. The supervisor
then, using the AS'rE associated with the P-r, moves the
missing page from secondary storage to core. This may
require the removal of another page.

Acknowledgments. This paper would be incomplete
without acknowledgment of the people who worked
so hard to build the virtual memory supervisor portion
of Multics. Special mention goes to G.F. Clancy, M.R.
Thompson, and S.H. Webber who, under the design
leadership of R.C. Daley, have been involved in a major
portion of the design and implementation effort. They
were aided in earlier designs and implementations by
C.A. Cushing, S.M. Jones, G.B. Krekeler, N.I. Morris,
P.G. Neumann, R.K. Rathbun, J.D. Van Hausan, M.R.
Wagner, and L.D. Whitehead. Recent implementations
have also benefited from the contributions of S.D.
Dunten and M.C. Turnquist. Contributions in the form
of analyses and discussions have been made by F.J.
Corbat6, E.L. Glaser, J.H. Saltzer, and V.A. Vys-
sotsky.

Finally, our thanks go to P.A. Belmont, M.A. Meer,
and D.L. Stone, who participated in studies leading to
this formalized description of the Multics virtual
memory.

Received April 1970; revised July 1971

References

1. Belady, L.A. A study of replacement algorithms for a virtual-
storage computer, lBMSystems J.5, 2 (1966), 78-101.
2. Comfort, W.T. A computing system design for user service.
Proc. AFIPS 1965 FJCC, Vol. 27, Pt. 1, Spartan Books, New York,
pp. 619-628.
3. Corbat6, F.J., and Vyssotsky, V.A. Introduction and
overview of the Multics system. Proc. AFIPS 1965 FJCC, Vol.
27, Pt. 1. Spartan Books, New York, pp. 185-196.
4. Corbat6, F.J. A paging experiment with the Multics system.
Included in a Festschrift published in honor of Prof. P.M.
Morse. MIT Press, Cambridge, Mass., 1969.
5. Crisman, P.A. Ed. The Compatible Time-Sharing System: A
Programmer's Guide, 2rid Ed., MIT Press, Cambridge, Mass.,
1965.
6. Daley, R.C., and Neumann, P.G. A general-purpose file
system for secondary storage. Proc. AF1PS 1965 FJCC, Vol. 27,
Pt. 1. Spartan Books, New York, pp. 213-229.
7. Daley, R.C., and Dennis, J.B. Virtual memory, processes,
and sharing in Multics. Comm. ACM 11, 5 (May 1968), 306-312.
8. Denning, P.J. The working set model for program behavior.
Comm. ACM 11, 5 (May 1968), 323-333.
9. Denning, P. J. Virtual memory. Computing Surveys 2, 3
(Sept. 1970), 153-189.
10. Dennis, J.B. Segmentation and the design of
multiprogrammed computer systems. J.ACM 12, 4 (Oct. 1965),
589-602.
11. Fotheringham, J. Dynamic storage allocation in the Atlas
computer, including an automatic use of a backing store. Comm.
ACM4, 10 (Oct. 1961), 435-436.
12. Glaser, E.L., Couleur, J.F., and Oliver, G.A. System design
of a computer for time sharing applications. Proc. AFIPS 1965,
FJCC, Vol. 27, Pt. 1. Spartan Books, New York, pp. 197-202.
13. Graham, R.M. Protection in an information processing
utility. Comm. ACM 11, 5 (May 1968), 365-369.
14. Saltzer, J. H. Traffic Control in a Multiplexed Computer
System. Tech. Rep. No, MAC-TR-30 (Ph.D. Thesis), Project
MAC, MIT, Cambridge, Mass., 1964.
15. The Descriptor--A definition of the B5000 Information
Processing System. Burroughs Corp., Detroit, Mich., 1961.

318 Communications May 1972
of Volume 15
the ACM Number 5

