

Data Security*

DOROTHY E. DENNING AND PETER J. DENNING

Computer Science Department, Purdue Unwers~ty, West Lafayette, Indiana 47907

The rising abuse of computers and increasing threat to personal privacy through data banks
have stimulated much interest m the techmcal safeguards for data. There are four kinds of
safeguards, each related to but distract from the others. Access controls regulate which
users may enter the system and subsequently whmh data sets an active user may read or
wrote. Flow controls regulate the dissemination of values among the data sets accessible to
a user. Inference controls protect statistical databases by preventing questioners from
deducing confidential information by posing carefully designed sequences of statistical
queries and correlating the responses. Statlstmal data banks are much less secure than most
people beheve. Data encryption attempts to prevent unauthorized disclosure of confidential
information in transit or m storage. This paper describes the general nature of controls of
each type, the kinds of problems they can and cannot solve, and their inherent limitations
and weaknesses. The paper is intended for a general audience with little background in the
a r e a .

Keywords and Phrases" security, data security, protection, access controls, information
flow, confidentiality, statistical database, statistical inference, cryptography, capabilities,
public-key encryption, Data Encryptmn Standard, security classes

CR Categortes. 4.35, 4.33, 1.3

INTRODUCTION
The white-collar criminal, the old adage
goes, is a man who has learned to steal with
a pencil. In the last decade or two, a few of
the more perceptive of these entrepreneurs
have discovered that the rewards are
greater and the risks lower if they steal with
a computer. There have already been some
spectacular thefts but, so far, computer
criminals have been handicapped by a lack
of technical know-how and by a certain
inability to think big. The sums involved in
typical cases of computer abuse would have
been front-page news had they been stolen
by armed desperados but have generally
been smaller than the haul that might have
been made by someone with more expertise
and boldness.

The records of hundreds of cases of com-
puter abuse have been analyzed by Parker

* This work was supported in part by National Science
Foundation Grant MCS77-04835.

[PARK76]. Parker believes many more cases
probably remain undetected or unreported.
Banks in particular are not eager to ac-
knowledge that they have been embezzled.
The median loss in reported cases was al-
most $500,000, and the total known loss
from all computer crime has been about
$100 million annually. These figures are
destined to rise unless effective counter-
measures are taken against the more expert
attacks of the second generation of com-
puter criminals, who are now learning their
trade.

About 40 percent of reported abuses were
data entry problems. Most of the rest were
thefts or embezzlements by a trusted em-
ployee who misused his access to the com-
puter. A few were malicious pranks or sab-
otage. Nearly all the known cases involve
breaches of external security. So far, very
few computer crimes have involved
breaches of internal security: design flaws

Permission to copy without fee all or part of this material is granted provided tha t the copies are not made or
dmtributed for dtrect commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copymg is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
© 1979 ACM 0010-4892/79/0900-0227 $00.75

Computing Surveys, Vpl. II, No. 3, September 1979

2 2

CONTENTS

• D.E. Denning and P. J. Denning

INTRODUCTION
I ACCESS CONTROLS

Controls for Transaetmn-Processmg Systems
Controls for General Purpose Systems
Example of an Object-Dependent Design
Llmltatlons of Access Controls

2 FLOW CONTROLS
Flow Policies
Mechanmms
Lmutatlons of Flow Controls

3 INFERENCE CONTROLS
Controls on Query Set Sizes and Overlaps
Rounding and Error Inoculation
Random Samples
Llmltatlons of Inference Controls

4 CRYPTOGRAPHIC CONTROLS
The Data Encryptlon Standard (DES)
Pubhc-Key Encryptlon

SUMMARY
ACKNOWLEDGMENTS
REFERENCES

within the computer system itself. But the
rapid proliferation of computers and the
increasing sophistication of users make
businesses and individuals increasingly vul-
nerable to abuse by computer experts. As
the potential rewards increase, so will the
sophistication of attacks on computer sys-
tems.

An expert criminal, for example, might
intercept electronic-funds-transfer mes-
sages between two banks; within a few
hours he could steal, without a trace, sev-
eral millions of dollars. An investigative
reporter might deduce from questions an-
swered by a medical information system
that a senatorial candidate once took drugs
for depression; if published, this informa-
tion might force the candidate to withdraw
from the election even though he had been
cured. An employee of a government
agency might blackmail citizens using in-
formation purloined from a confidential
data bank accessible over a federal com-
puter network.

These three speculations represent
breaches of internal security. Internal safe-
guards for data security have been actively
studied since the early 1960s, and in an-
ticipation of future security threats this

work has been intensified in the last few
years. Systems designers and engineers are
developing hardware and software safe-
guards, and theoreticians are studying the
inherent complexity of security problem~.
Although we have made considerable prog-
ress, there is still a wide gap between the
safeguards that can be implemented in the
laboratory--safeguards well within the
reach of current technology--and those
available in most commercial systems.
Some of the safeguards that users want are
theoretically impossible or would be pro-
hibitively expensive.

This last point is probably the most im-
portant. Absolute security is no more pos-
sible in computer systems than it is in bank
vaults. The goal is cost-effective internal
safeguards, sufficiently strong that com-
puter hardware and software are not the
weakest links in the security chain.

In this paper we summarize current re-
search in internal security mechanisms,
how they work, and their inherent limita-
tions. Internal security controls regulate
the operation of the computer system in
four areas: access to stored objects such as
files, flow of information from one stored
object to another, inference of confidential
values stored in statistical databases, and
encryption of confidential data stored in
flies or transmitted on communications
lines. The problems these four types of
mechanism attempt to control are illus-
trated in Figure 1.

We have not attempted to treat external
security controls, which affect operations
outside the main computing system; exam-
pies are personnel screening, limiting access
to the computer room and to certain ter-
minals, fire protection, and protection of
removable media against destruction or
theft. Some security mechanisms lie at the
interface between users and the system;
examples are user authentication, password
management, security monitoring, and au-
diting. These are discussed only in relation
to internal security mechanisms. Neither
have we attempted a treatment of privacy
and the law. Our objective is simply an
overview of four areas of security research.

Other papers and books that treat inter-
nal controls are ANDE72, GRAH72, HOFF77,
HSIA78, MADN79, POPE74, SALT75, and
SHAN77. The book D]~MI78 is a collection
of recent papers on security research.

Computing Surveys, VoL 11, No. 3, September 1979

i

JONES

FILE X

FILE Y

FILE Z

FIGURE la. ACCESS. Jones can be permitted to read
file Y and write m file X; he has no access to fde Z.

D a t a S e c u r i t y • 229

READ X I FILE X

SMITH

© ~COPY~TO~I F,LE

i
JONES

FIGURE lb. FLOW. Denied access to file Y, Smi th
gets confederate Jones to make a copy; flow controls
could prevent this.

FIGURE 1. Four kinds of security controls.

FIGURE lC. INFERENCE. A questioner used prior
knowledge to deduce confidential information from
a statmtical summary; inference controls could pre-
vent this.

O f
0 (HOW MANY BROWN- o

| EYED, F[VE-FOOT- O
| BLONDES HAVE

Oo L.H,ODEN MOLES?
0

>1
MEDICAL

INFORMATION

FILE

Overviews of external controls are given in
MADN79, NIEL76, PARK76, SALT75, and
SHAN77. The general concepts of all con-
trois are reviewed in GMN78. The issues of
privacy and the law and their technological

FIGURE ld, ENCRYPTION. Jones illicitly obtains a
copy of file X; but Its encrypted contents are mean-
ingless to him.

0
O o
0
0
o
o
o o o

I

READ X

FILE X

implications are discussed in PARK76,
RPP77, TURN76, and WEST72.

1. ACCESS CONTROLS

Access controls regulate the reading, chang-
ing, and deletion of data and programs.

Comput~lg Surveys, Vol. U, Nq. 3, September 1979

230 • D. E. Denning and P. J. Denning

These controls prevent the accidental or
malicious disclosure, modification, or de-
struction of records, data sets, and program
segments. They prevent malfunctioning
programs from overwriting segments of
memory belonging to other programs. They
prevent the copying of proprietary software
or confidential data.

Many access control systems incorporate
a concept of ownership--that is, a user may
dispense and revoke privileges for objects
he owns. This is common in file systems
intended for the long-term storage of one's
own data sets and program modules. Not
all systems include this concept; for exam-
ple, the patient does not own his record in
a medical information system. Access con-
trol systems for owned objects must effi-
ciently enforce privileges that are added,
changed, or revoked.

The effectiveness of access controls rests
on three assumptions. The first is proper
user identification; no one should be able
to fool the system into giving him the
capabilities of another. Authentication
schemes based on passwords are common
and simple, but they need safeguards to
thwart systematic penetration [GAIN78,
MORR78, PARK76, SALT75, SALT78].
Schemes based on identifying personal
characteristics such as voiceprints or dy-
namic signatures are more reliable, but
more expensive. The second assumption is
that unanticipated observers do not gain
access by stealing tapes or disk packs or by
wiretapping. The usual safeguard is encryp-
tion, which is discussed later--information
that could be monitored by strangers is
scrambled. The third assumption is that
privilege-information is heavily protected;
this is all the information that specifies the
access each program has to objects in the
system. No user's program can write into
the segment containing its own privilege
specifiers. Privilege-information is accessi-
ble only to authorized programs of the su-
pervisor, and the privilege to call these pro-
grams is itself controlled.

The following subsections consider two
important classes of access control mecha-
nisms for transaction-processing systems
and for general purpose programming sys-
tems. We intend our treatment as a guide
to the literature, not a detailed study of
the many trade-offs that must be faced in
practice.

Controls for Transaction-Processing Systems

The commands issued by the user of a
transaction-processing system are calls on
a small library of "transaction programs"
that perform specific operations, such as
querying and updating, on a database
[DEAN71]. The user is not allowed to write,
compile, and run arbitrary programs. In
such systems the only programs allowed to
run are the certified transaction programs.
Therefore it is possible to enforce the rules
of access at the interface between man and
machine.

A database management system is an
example. A user can identify a set of records
by a "characteristic formula" C, which is a
logical expression using the relational op-
erators (--, ~, <, etc.) and the Boolean
operators (AND, OR, NOT); these opera-
tors join terms which are indicators of val-
ues or compositions of relations. An exam-
ple is

C = "FEMALE AND PROFESSOR OR (SALARY
>_ $20K)."

The transaction program looks up a for-
mula R specifying restrictions that apply to
the given User; it then proceeds as ff the
user had actually presented a formula C
AND R. The concept of adding to the re-
quests of a user constraints that depend on
that user is common in data management
systems [BoNC77, STON74].

This form of access control is potentially
very powerful. The restrictions R may in-
clude data-dependent restrictions, which
are also functions of the current values of
the data [CoNw72], or history-dependent
restrictions, which are functions of the rec-
ords previously accessed [HART76]. Imple-
menting these kinds of restrictions can be
very difficult. We refer the reader to HSIA78
for details.

When the system allows owners of rec-
ords to revoke privileges that may have
been passed around among users, it must
be designed to revoke also any privileges
that emanated from the revoked privilege.
Griffiths, Wade, and Fagin have studied a
revocation method that stamps each privi-
lege-specifier with the time of its creation
[GRIF76, FAGI78].

Controls for General Purpose Systems

General purpose systems permit users to
write, compile, and run arbitrary programs.

Computing Surveys, Vol. 11, No. 3, September 1979

It is not possible to certify a priori that
arbitrary programs will forever meet the
(changing) access rules of the system, or
that there will never be program failures or
equipment malfunctions. Therefore, these
systems provide access control mechanisms
as part of the run-time environment, often
with hardware support for performing ac-
cess checks in parallel with the main com-
putation. These mechanisms are typically
based on object-dependent controls (as op-
posed to data-dependent controls), which
regulate access to an object irrespective of
the values stored in that object.

Object-dependent controls are also
needed in transaction-processing systems
to protect against faulty transaction pro-
grams, equipment malfunctions, and in-
t ruders-problems that cannot be pre-
vented simply by "certifying" the transac-
tion programs.

Object-dependent controls can be en-
forced by type-checking in compilers for
languages with abstract data types, or by
run-time checking in the hardware. A pro-
posal for compiler-based enforcement is
given by Jones and Liskov [JoNE76]. An
illustration of hardware-based enforcement
is given in the next section.

Example of an Object-Dependent Design

This section illustrates the architecture of
object-dependent access controls. The cen-
tral concept, capability addressing, has

Bose Length

DESCRIPTOR

FIGURE 2
memory.

I0

29

PORTION OF MEMORY

A descrlptor addressing a segment of

Presence
Bits

Key l Bose

Data Security • 231

Length

I I

KIo

DESCRIPTOR
TABLE

PORTION OF MEMORY
FIGURE 3. Multiple-segment storage.

been the subject of considerable research.
Detailed treatments of this design and its
trade-offs can be found in DESN76b,
FABR74, LIND76, ORGA72, ORGA73, and
SALT75.

Most systems have a large number of
segments (data sets and programs) which
are kept in the slow-speed bulk store under
the auspices of a file system. When an
active program requires access to a seg-
ment, the operating system provides that
program with a "capability" for the seg-
ment. All of a program's capabilities are
stored in a "capability list," which is used
by the addressing hardware when inter-
preting the program's virtual addresses. We
first describe the operation of the address-
ing hardware. Then we describe how a pro-
gram acquires capabilities.

Figures 2-4 summarize the mechanism
for verifying attempted accesses to seg-
ments stored in the main memory. Figure
2 shows a copy of a 20-word segment stored
in memory at the beginning (base) address
10. A descriptor of the form (B, L) records
the base address B and length L of the
segment. Programs refer to words in seg-

Computing Surveys. VoI~IN No. 3, September 1979

232 D. E. Denning and P. J. Denning

Segment
NO. Access

Code Key

I 'R la
IE I ' / \ ~r

I0

R I 3 t - -
E I ' I

"1
C . 7 t

• I

"")";" Rw .:! K

CAPABILITY LISTS

. , I ,o I 2o I- I] I I O0 25

= I , I 5o I 25 I
~ Iol - 16oo I

; • , i |

' i K Iol B L
| , i

DESCRIPTOR TABLE

B

B+L-

FIGURE 4. Capabi l i ty lists for accessing segments .

ments by displacements (line numbers).
The command "Read D" refers to the Dth
line of the segment--that is, memory ad-
dress B + D. A reference is valid only if the
displacement is in range--that is, if 0 _ D

<:L.
Figure 3 shows that descriptors of all

memory segments may be kept in a descrip-
tor table. Each descriptor is identified by a
unique key K. Now a program refers to a
segment by specifying the displacement
and the key-- thus "Read K, D" refers to
the Dth word in the segment whose key is
K. Each descriptor is stored with a "pres-
ence bit" that tells whether the associated
segment is in the main store; if it is not, as
for key 7 in Figure 3, an attempted refer-
ence will trigger a "missing segment fault"
that will cause the operating system to sus-
pend the program and load the segment.
This scheme confers considerable flexibility
because the operating system can freely

move segments between main and second-
ary memory merely by updating the de-
scriptors. Because the keys do not change,
no program is affected by relocations of
segments in the memory hierarchy.

Figure 4 shows the final step in the
scheme: the capability lists are associated
with programs. The access code of a capa-
bility specifies one or more kinds of access:
read (R), write (W), execute (E), or call (C).
Read access permits a program to copy a
value out of a memory segment; write ac-
cess permits a program to store a value in
a memory segment; execute access permits
a processor to fetch instructions from a
segment; and call access permits a program
to execute a procedure call instruction with
that segment as the target. Execute access
is valuable for restricting access to privi-
leged operations. A program actually refers
to a segment by a segment number S and
a displacement D. Thus "Read S, D" refers

Computinl Surveys, VoL 11,/40. 3, September 1979

to the Sth segment in the capability list of
the program. The reference is valid only if
the Sth capability specifies R-access and
contains key K, with D being within the
range specified in the Kth descriptor.

This strategy has special advantages
when segments are shared. Each program
can be given its own capability, with its own
access code, for the common segment; the
common segment can be used by different
programs whose authors require no prior
agreement on the local segment numbers.
In Figure 4, programs M and N share the
segment with key 3.

With this mechanism each program mod-
ule can have its own capability list. In Fig-
ure 4, program N's call access for program
P is stored in the tenth segment of N. If
program N executes the command "Call
10," control will pass to program P. This
resembles a standard subroutine call, but
with the important difference that the
called program has a capability list different
from that of the caller. Program P, whose
first capability designates the memory seg-
ment containing the descriptor table, would
be a certified program of the operating sys-
tem; it would screen all requests to update
descriptors. When program P executes a
"Return" command, program N resumes
execution after the call and its capability
list is again in control.

The concept of giving each program its
own set of capabilities supports the princi-
ple of least privilege [DENN76b, LIND76,
SALT75]. Each capability list need contain
entries only for the segments required for
the associated program to carry out its task.
Damage is confined in case the program
contains an error. Untrusted programs can
be encapsulated and cannot endanger un-
related programs. Critical data, such as the
descriptor table of Figure 4, can be hidden
away, tamperproof, in a domain accessible
only to the program certified to manipulate
it.

The foregoing discusses how capabilities
are used to limit access. We turn now to the
question of how programs obtain their ca-
pabilities in the first place.

Figure 5 illustrates how a file system
attaches privilege-specifiers to permanent
files. All users are registered in a master
directory. Each user lists all his files in a
personal directory, of which each entry
specifies the file's name (N), length (L),

Data Security • 233

address in the bulk store (BA), a list of
authorized users (AL), and the file's unique
identifier (K). Each entry in an authoriza-
tion list specifies the name and type of
access permitted of some individual desig-
nated by the owner. The figure shows that
Jones has granted read (R) permission for
his file Y to Smith and himself, write (W)
permission to himself alone, and no access
to Cox. If a program owned by Smith at-
tempts access to Jones's file Y, the operat-
ing system will intervene and insert a ca-
pability (R, K) at some position S in the
capability list of Smith's program; thereaf-
ter, Smith's program can access the file by
issuing read commands with the segment
number S. This is the essence of the scheme
used in MULTICS [OROA72, SALT75,
SCHR72].

It is also possible to create a program's
capability list during compilation. This is
natural in an environment where the pro-
gram modules correspond to managers of
extended-type objects, and the capabilities
point to the components of a particular
object. This view, proposed by Dennis and
Van Horn [DENV66], is used in the Hydra
system [COHE75], the CAP system
[NEED77], and the Plessey System 250
[ENGL74]. (See GEHR79 for a review.)

Some systems permit owners to revoke
privileges. If all privilege-specifiers are
stored in a central table, it is a relatively
simple matter to purge them [GRIF76,
FAGI78]. But if they are scattered through-
out the system in capability lists, revocation
becomes considerably harder: the descrip-
tor table must contain chains of descriptors
that can be broken by an owner; this
renders revoked capabilities useless but
does not purge them [NEED77, REDE74,
SALT75].

Limitations of Access Controls

Most security flaws in existing systems are
the consequences of design shortcuts taken
to increase the efficiency of the operating
system. Hardware designed to support ac-
cess control efficiently would go a long way
toward removing these flaws. An example
is the high overhead in managing small
memory segments. Users are forced to pack
data and subprograms into large segments,
which means that small program blocks
cannot be individually protected. This

Con~uting ~ VoL ~I,.No. 3,,Ssl~ber 1979

234 • D. E. Denning and P. J. Denning

MASTER LIST

Jones •

Cox e-- - -

Smith •

SMITH DIRECTORY/ ;OX DIRECTORY

DISK
FILE
STORE

JONES DIRECTORY

i,5ol ! _l_q

Name Code

Jones RW

Smith R

AUTHORIZATION
LIST

FIGURE 5. Access controls for permanent fries.

makes the ideal of a separate capability list
for every program very difficult to achieve.
Radical changes in computer architecture,
designed to bridge the "semantic gap" be-
tween concepts in the programming lan-
guage and concepts in the machine lan-
guage, may be needed to overcome this
difficulty. Myers's SWARD machine
[MYER78] and Gehringer's "typed mem-
ory" [GEHR79] point in the right direction.

Another serious problem with existing
systems is excessive privilege vested in the
operating system. A supervisor mode of
operation takes over when the user's pro-
gram calls any operating system program.
The supervisor mode overrides all or most
of the storage protection mechanisms. The

supposedly correct and trustworthy super-
visor programs can manipulate capabili-
ties and segments without restriction
[WILK68]. This difficulty is ameliorated
somewhat in MULTICS, which has a linear
hierarchy of supervisor states, called rings,
that confer successively greater privilege;
the user can operate some untrusted
subprograms in rings of low privilege
[SCHR72]. Contrary to the principle of least
privilege, systems based on supervisor
states permit programs in higher rings to
run with much more privilege than they
require for their tasks. There is no efficient
way for two cooperating subprograms to
have nonoverlapping sets of privileges.

The supervisor mode problem is an in-

Computing Surveys, Vol. 11, No. 3, September 1979

stance of exposure to the general problem
of "trojan horses" [LIND76]. It arises when
a subprogram written by an outsider is
brought into the domain of a given user.
With all the user's privileges and possibly
more, the subprogram is free to wreak
havoc--for example, by erasing files or en-
tering erroneous data. A system capable of
running each subprogram with its own set
of capabilities offers the best practical de-
fense against trojan horses, because the
outsider's program can be confined to a
domain having the least privilege required
for the agreed task.

Access mechanisms as outlined here are
feasible today at reasonable cost. The in-
creasing importance of sharing information
among different users of a common data-
base, of encapsulating programs, and of
limiting damage in case of error or mal-
function all contribute to a growing pres-
sure on manufacturers to build better ma-
chines.

There are additional limitations that are
much more difficult to overcome: proving
that a computer system continually meets
its access specifications, proving that au-
thorizations are continually consistent with
owners' intentions, and proving that infor-
mation stored in files and segments remains
among authorized users. The possibility of
hardware malfunction, which can alter in-
formation stored in the memory, makes
rigorous proofs impossible because it sub-
verts the necessary assumption that all pos-
sible changes in system state are control-
lable. Arbitrarily low risks of damage can
be achieved only at correspondingly high
investments in error-checking equipment.

Proving that a computer system contin-
ually meets its access specifications is
straightforward in principle: the prover
must show that all programs and hardware
for enforcing the current authorizations and
for permitting changes in authorizations
work as specified. In practice this is easier
to say than do because the correctness of
many complex programs must be estab-
lished [GAIN78] and because automatic
"program proving" is a distant goal. Much
effort has been devoted to developing for-
mal access control models which can be
elaborated into the design of a system. At
SRI International, the PSOS (Provably Se-
cure Operating System) is structured as a
linear hierarchy of 14 nested abstract ma-

Data Security • 235

chines, each of which can be proved cor-
rect if the machines below are correct
[NEUM77]. This system is expressed in a
special language, called SPECIAL, that in-
corporates specifications explicitly into the
programs. Several other research groups
have adopted a less ambitious approach;
rather than try to prove that the entire
system meets all its specifications, they cen-
tralize all the operations affecting security
into a system nucleus called the "security
kernel." The correct operation of the kernel
implies that the entire system is secure.
(See MILL76, POPE78b, POPE78C, and
SCHR77.)

Proving that extant authorizations are
continually consistent with owner's inten-
tions is fraught with difficulties. Many sys-
tems permit users to grant others subsets
of their own privileges. In such systems an
owner might well he interested in the safety
problem, which seeks answers to questions
of the form "Can the programs of user X
ever gain read access to fde Y?" Safety
problems are easily answered in the special
case of systems conforming to the "take-
grant model" [SNYD77, LIPT78]. However,
Harrison, Ruzzo, and Ullman have shown
that the primitive operations of practical
access control systems are sufficiently pow-
erful to encode the state of an arbitrary
Turing machine into the extant access con-
trol privileges; the halting problem is
thereby reducible to the safety problem,
which means that the safety problem is
undecidable [HARR76]. This result is
mainly of theoretical interest, for it is usu-
ally possible to answer specific safety ques-
tions. However, this result explains why it
is impossible to devise a single approach for
all safety questions; each one must be ana-
lyzed separately.

Proving that stored information remains
among authorized users is also difficult be-
cause a user who may read a file may also
make a copy, perhaps in code, which he can
then pass along to someone who is denied
access to the original. However, this is not
a genuine defect of access controls, which
are intended to regulate access to stored
objects, but not what happens to the infor-
mation contained in these objects. Many
leaks based on copying can be eliminated
by augmenting an access control mecha-
nism with controls on information flow.
This is studied next.

Computing SurvCy~ ~oL 11, No. 3, S~ptember 1979

236

2. FLOW CONTROLS

A flow occurs from object X to object Y
when a sequence of instructions that reads
from X writes a value into Y. Copying file
X into file Y is an example of a simple flow.
Much more subtle flows are possible, as we
note shortly.

Active flow control research began in the
early 1970s. Most flow controls employ
some concept of security class; the transfer
of information from a sender to a receiver
is allowed only if the receiver's security
class is at least as privileged as the sender's
[DEsN76a]. A flow policy specifies the
channels along which information is al-
lowed to move. Flow controls can prevent
a service program from leaking a customer's
confidential data. They can block the trans-
mission of secret military data to an un-
classified user.

The most general flow controls monitor
the detailed data flows in programs. How-
ever such controls are often complex and
hard to use efficiently. Controls based on
security classes are usually efficient, though
often exasperatingly conservative.

• D.E. Denning and P. J. Denning

Flow Policies

The simplest flow policy specifies just two
classes of information: confidential (C) and
nonconfidential (N), and allows all flows
except those from class C to class N. This
policy can solve the confinement problem
that arises when a service program handles
customer data, some of which are confiden-
tial [FENT74, LAMP73, LIPN75]. The service
program may retain some or all of the cus-
tomer's nonconfidential data, but it must
be prevented from retaining or releasing to
its owner any of the confidential data. An
income-tax-computing service, for example,
might be allowed to retain a customer's
address and the bill for services rendered,
but not the customer's income or deduc-
tions.

Government and military computer sys-
tems have a more complex flow policy for
classified data. Each security class is rep-
resented by two parts (i, x) where i denotes
an authority level and x a category. There
are usually three authority levels: 1) confi-
dential, 2) secret, and 3) top secret. There
are 2 m categories, comprising all possible
combinations of m compartments; typical
compartments are U (unrestricted), R (re-

stricted), S (sensitive), and C (crypto). In-
formation is permitted to flow from an ob-
ject with security class (i, x) to one with
class (j, y) only if i _ j and only if the
compartments of x are also compartments
ofy. Transmissions from (2, RS) to (3, RS)
or to (2, RSC) are allowed, for example, but
those from (2, RS) to (1, RS) or to (3, R)
are not.

Mechanisms

Simple flow controls can be enforced by an
extended access control mechanism, which
involves assigning a security class (usually
called the clearance) to each running pro-
gram. The program is allowed to read a
particular memory segment only if its se-
curity class is as high as that of the segment.
It is allowed to write in a segment only if
its class is as low as that of the segment.
This automatically ensures that no infor-
mation transmitted by the program can
move from a higher to a lower class. A
military program with a secret clearance,
for example, can read only from objects
which are unclassified, confidential, or se-
cret; it can write only into objects which
are secret or top secret. It is forbidden to
write into unclassified or confidential ob-
jects, or to read from top secret objects.
Systems designed at SDC [WEIS69],
MITRE [MILL76], Case Western Reserve
U n i v e r s i t y [WALT75], and SRI Interna-
tional [NEUM77] are of this type.

The extended access control mechanism
has a tendency to overclassify data. Infor-
mation flows upward but never downward.
This problem can be mitigated by letting
the security class of a program rise while
running, so that it is only as high as the
highest security information that the pro-
gram has read. In this case the security
class of the program is a "high-water mark"
rather than a clearance. This reduces but
does not eliminate overclassification be-
cause the high-water mark cannot be low-
ered.

An important limitation of the extended
access control mechanism is its lack of gen-
erality. For example, if the income tax pro-
gram mentioned earlier is confidential, it
will be forbidden to process confidential
customer data; if it is confidential, it will be
forbidden to write nonconfidential infor-
mation into any of its fries. A usable oper-

Computing Surveys, Vol. 11, No. 3, September 1979

ating system could not be secured by this
mechanism--all its outputs would have to
be classified at least as high as every class
of information stored within. This limita-
tion results from the implicit assumption
that any input of a program can flow to any
output, which forces the designer to assume
that the confidentiality of each output is as
high or higher than the confidentiality of
every input.

To be free of this limitation, flow controls
must be able to examine the way informa-
tion flows through the statements and var-
iables of a program, determining precisely
how inputs flow to each output. This is not
straightforward. Suppose that x is 0 or 1
when this statement is executed:

if x -- 0 then y := 0 else y := 1.

This statement copies x to y implici t ly by
encoding the value of x into the control
flow. (Note that this program still transmits
some information from x to y even if the
initial value of x is unknown.) Implicit flows
of this type can be easily detected by asso-
ciating with the program counter a dynamic
security class corresponding to the Boolean
expressions which influence it.

Here is a program fragment specifying a
flow that is more difficult to detect:

while x ~ 0 do skip; print ('done'); stop.

This program will print 'done' only if x - 0;
otherwise it will enter an "infinite" loop,
which actually means it will eventually be
terminated abnormally. In this case the
output produced by the program reveals
the position of the program counter when
the program stops, thereby revealing the
information encoded therein. A partial so-
lution results if one can prove that the loops
of one's program all terminate [REIT78].
However, all types of abnormal program
termination present problems for flow de-
tectors [DENN76a, DENN77].

Several techniques are available for de-
tecting and verifying internal flows of pro-
grams. The most common employ tradi-
tional methods of program verification. The
allowable input/output dependencies of
program modules are stated as formal as-
sertions, which are then proved by tracing
data flows within the program. This ap-
proach was used for the systems at MITRE
[MILL76], UCLA [PoPE78c], and SRI
[NEuM77]. A simpler approach results

Data Secur i ty • 237

when security classes can be declared for
the variables in the program; using a tech-
nique similar to type-checking, the com-
piler can verify that each program state-
ment specifies flows that are consistent
with the given flow policy [DENN77]. Al-
though highly efficient, this method is also
highly conservative: it will reject programs
that would be certified under a traditional
flow analysis. Cohen's information-theo-
retic scheme relieves this difficulty by cer-
tifying all flows that will occur during
some execution of the program [CoH~.77,
COHE78]. Furtek and Millen have proposed
a theory of information flow using analogs
of prime implicants of switching theory
[FuRT78, MILL78]; it tOO can lead to more
precise certification. Reitman and Andrews
have incorporated the flow semantics of
DENN77 into the formalism of program ver-
ification for more precise certification
[REIT78].

The foregoing methods are based on
static analysis; they certify a program prior
to execution and require no run-time sup-
port. However we do not know how to
certify programs that use variables whose
security classes can change during execu-
tion or whose inputs can have different
security classes on different invocations.
These cases require a combination of static
analysis and run-time checking. A prelimi-
nary study of such a system was made by
Fenton, whose "data mark machine" tagged
every memory cell (and the program
counter) with a security class; the processor
would inhibit any instruction whose exe-
cution would violate the flow policy
[FENT74].

Limitations of Flow Controls

We suggested earlier that all mechanisms
based on security classes tend to overclas-
sify information, since only upward flow is
allowed. This problem can be mitigated by
permitting "downgrading"--the manual
lowering of security classes by an author-
ized person. It is also possible to permit
downward flows through certain informa-
tion-losing programs. Such programs are
supposed to filter out enough information
about their inputs that their results are of
lower confidentiality. Not much is known
about such programs except that, as we
shall observe in the discussion of inference

238 • D.E. Denning and P. J. Denning

control, many programs believed to filter
out information actually do not.

One type of flow cannot be controlled
easily, if at all. A program can convey in-
formation to an observer by encoding it
into some physical phenomenon without
storing it into the memory of the computer.
These are called flows on covert channels
[LAMP73, LIPId75]. A simple covert channel
is the running time of a program. A program
might read a confidential value, then enter
a loop that repeatedly subtracts 1 from the
value ~ntil it reaches zero, whereupon it
stops. The owner of the program can deter-
mine the confidential value simply by ob-
serving the running time. More complex
channels exploit other resource usage pat-
terns such as the electric power consumed
while running a program.

The only known technical solution to the
problem of covert channels requires that
the owner of a job state in advance what
resources his job will use and how much
time it will take. The requested resources
are dedicated to the job, and the results,
even if incomplete, are returned to the user
at precisely the time specified. This strat-
egy allows the user to deduce nothing from
running time or resource usage that he did
not know beforehand; but even then he can
deduce something from whether his pro-
gram was successfully completed. This
scheme can be prohibitively expensive.
Cost-effective methods of closing all covert
channels completely probably do not exist.

3. INFERENCE CONTROLS

When information derived from confiden-
tial data must be declassified for wider dis-
tribution, the rules of flow control must be
suspended. This is true of statistical data-
bases (data banks) which contain sensitive
information about individuals and must
provide various kinds of statistical sum-
maries about the population. The Bureau
of the Census, for example, is charged by
law to collect information on all citizens
and to report summaries of this information
without revealing any particulars. Simi-
larly, medical information systems are sup-
posed to produce health statistics but not
to release health data about any one pa-
tient.

The problem is that summaries contain
vestiges of the original information; a

snooper might be able to reconstruct this
information by processing enough summar-
ies. This is called deduction of confidential
information by inference. When the infor-
mation pertains to an individual, the de-
duction compromises his privacy. The ob-
jective of inference controls is to make the
cost of obtaining confidential information
unacceptably high.

When invoking a query program, a ques-
tioner supplies a characteristic formula C,
which is a logical formula whose terms are
joined by the Boolean operators (AND, OR,
NOT). The set of records whose contents
satisfy formula C is called the query set for
C. The query program's response is com-
puted from the query set; it may be the
count of the records, the sum of values in
the records, or the selection of a value, such
as a maximum or median.

A record is compromised if a questioner
can deduce its confidential values by cor-
relating responses to his queries using any
prior information he might have. Most
compromises are based on isolating a de-
sired record at the intersection of a set of
interlocking queries. Defenses include con-
trols that withhold response for improper
query set sizes and overlaps, controls that
distort the responses by rounding or falsi-
fying data, and controls that apply queries
to random samples of the database. Exam-
ples are given in the next subsections.

Controls on Query Set Sizes and Overlaps

When the questioner has complete control
over the query set and when responses are
undistorted, compromise is easy. This is
illustrated by a dialogue between a ques-
tioner and a medical database:

Q: How many patients have these char-
acteristics?

Male
Age 45-50
Married
Two children
Harvard law degree
Bank vice-president

A: 1.

Suppose the questioner knows that Fen-
wick has these characteristics; he now at-
tempts to discover something confidential
about Fenwick from this query:

C o m n . t i n t ~ , ~ . t ~ v ~ V n | I | N o 3 Sen t ember 1979

Q: How many patients have these char-
acteristics:

Male
Age 45-50
Married
Two children
Harvard law degree
Bank vice-president
Took drugs for depression

This query will respond wi th" 1" if Fenwick
has taken drugs for depression and "0"
otherwise.

The principle of this compromise is sim-
ple. The questioner finds a formula C whose
query set count is 1. He can then discover
whether the individual thus isolated has
any other characteristic X by asking, "How
many individuals satisfy C AND X?." (The
response ' T ' indicates that X is character-
istic of the individual and "0" indicates
not.) This attack was first reported by Hoff-
man and Miller [HOFF70].

It might seem that this compromise could
be prevented by a m i n i m u m query set con-
trol:

Do not respond to queries for which there
are fewer than k or more than n - k
records in the query set, where n is the
total number of records in the database.

The positive integer k in this control is a
design parameter specifying the smallest
allowable size of a query set. If the query
language permits complementation, a max-
imum size n - k of the query set must also
be enforced, for otherwise the questioner
could pose his queries relative to the com-
plement (NOT C) of the desired character-
istics (C).

Unfortunately, this control is ineffective.
Schlorer showed that compromises may be
possible even for k near n / 2 by the tech-
nique of a "tracker" [ScHL75, SCHL79]. The
basic idea is to pad small query sets with
enough extra records to make them an-
swerable, then subtract out the effect of the
extra records. Schl6rer called the formula
identifying the extra records the t racker
because the questioner can use it to "track
down" additional characteristics of an in-
dividual.

Suppose that a questioner, who knows
from external sources that an individual I
is characterized by the logical formula C, is
able to express C in the form C ffi (A AND

D a t a Secur i t y • 239

TABLE 1. POLITICAL CONTRIBUTION DATABASE

Name Sex Occupation Contribution
($)

Abel M Journalist 3000
Baker M Journalist 500
Charles M Entrepreneur 1
Darwin F Journalist 5000
Engel F Scientist 1000
Fenwick M Scientist 20000
Gary F Doctor 2000
Hart M Lawyer 10000

B) such that queries for the formulas A and
(A AND NOT B) are both answerable.
Schl6rer called the formula T ffi (A AND
NOT B) the tracker o f / . Table 1 shows a
database recording n ffi 8 secret political
contributions. Suppose that k ffi 2; then
responses are given only to queries applying
to at least two but not more than six indi-
viduals. Suppose further that the ques-
tioner believes that C ffi (JOURNALIST
AND FEMALE) uniquely identifies Dar-
win. The minimum query set control would
prevent direct questioning about Darwin.
The dialogue below shows how Darwin's
contribution can be deduced by using as
tracker the formula T ffi (JOURNALIST
AND NOT FEMALE) ffi (JOURNALIST
AND MALE).

Q: How many persons are JOURNAL-
IST?

A: 3
Q: How many persons are JOURNAL-

IST AND MALE?
A: 2

By subtracting the second response from
the first, the questioner verifies that
(JOURNALIST AND FEMALE) identifies
only one individual (Darwin). The ques-
tioner continues with

Q: What was the total of contributions
by all persons who are JOURNAL-
IST?

A: $8500
Q: What was the total of contributions

by all persons who are JOURNAL-
IST AND MALE?

A: $3500

Since Darwin is the only female journalist,
her contribution is the difference between
the response of the second query and the
response of the first ($5000).

Comnul~n~ Stu~w. V ~ L ~ & ~ D t s m b e r 1979

24O

It might seem that the effort to compro-
mise the entire database is very high be-
cause the questioner would have to know
identifying characteristics of each individ-
ual in order to construct a tracker for that
individual. However, if a questioner can
find any formula whose query set contains
at least 2k but not more than n - 2k rec-
ords, he can use that formula as a "general
tracker" to determine the answer to any
(unanswerable) query of the database
[DENN79a]. Schl6rer has shown that often
more than 99 percent of the possible for-
mulas will be general trackers, and that the
effort to retrieve data using trackers is usu-
ally quite low [SCHL79]. It is possible to
find a tracker with at most log2 S queries,
where S is the number of possible dis-
tinct configurations of characteristics
[DENN79b].

Tracker-based compromises employ
groups of records having high overlaps. The
compromise illustrated above works pre-
cisely because Darwin is the only JOUR-
NALIST excluded from the group (JOUR-
NALIST AND MALE). To protect against
trackers, one might consider a minimum
overlap control:

Do not respond to a query that has more
than a predetermined number of records
in common with every prior query.

Such a control is obviously infeasible: be-
fore responding, the query program would
have to compare the latest query group
against every previous one. But even ff
feasible, this control can be subverted in
databases where each confidential value ap-
pears just once [DOBK79]. This dialogue
illustrates such compromise using queries
that overlap by one record:

Q: What was the largest of the contri-
butions by persons who are JOUR-
NALIST?

A: $5000.
Q: What was the largest of the contri-

butions by persons who are FE-
MALE?

A: $5000.

Because each contribution is unique, there
can be only one person who is JOURNAL-
IST, FEMALE, and contributed $5000
(Darwin). Indeed, the same compromise
works even if the query program occasion-

• D. E, Denning and P. J. Denning

ally returns the contribution of the wrong
person [D~,MI77]:

Q: What was the smallest of the contri-
butions by persons who are JOUR-
NALIST?

A: $5000 (lying).
Q: What was the largest of the contri-

butions by persons who are FE-
MALE?

A: $5000 (truthfully).

A minimum overlap control may also be
subverted by solving a linear system of
equations for an unknown data value
[DOBK79, SCHW79].

These examples illustrate compromises
that use the combinatorial principle of in-
clusion and exclusion to isolate a record. A
design that can prevent this is aparti t ioned
database [Yu77]:

Store the records in groups, each contain-
ing at least some predetermined number
of records. Queries may apply to any set
of groups~ but never to subsets of records
within any group.

With this control, attacks based on inclu-
sion and exclusion can, at best, isolate one
of the groups--but queries for single groups
are allowed. "Microaggregation" is a form
of partitioning: groups of individuals are
aggregated into synthetic "average individ-
uals" and statistics are computed for the
synthetic individuals rather than the real
ones [FEm70]. The partitioned database
has two practical limitations that can be
quite severe. First, the legitimate free flow
of statistical summaries can be inhibited by
excessively large groups or by ill-considered
groupings. Second, forming and reforming
groups as records are inserted, updated, and
deleted from the database leads to excessive
bookkeeping.

Rounding and Error Inoculation

The second class of inference controls is
based on distorting the responses. These
are usually called rounding controls be-
cause the exact answer to a query is per-
turbed by a small amount before it is re-
ported to the questioner.

Rounding by adding a zero-mean random
value is insecure, since the correct answer
can be deduced by averaging a sufficient
number of responses to the same query.

Rounding by adding a pseudorandom value
that depends on the data is preferable, since
a given query always returns the same re-
sponse. Although reasonably effective, this
method can sometimes be subverted with
trackers [SCHL77], by adding dummy rec-
ords to the database [KARP70], or simply
by comparing the responses to several quer-
ies [AcHu78].

A perturbation can also be achieved with
error inoculation: the value in a record is
randomly perturbed or replaced by another
value before it is used to compute a statistic
[BECK79, BORU71, CAMP77]. Data could be
modified before being stored in a record, in
which case the original data are discarded.
This can have serious adverse conse-
quences if the correct data are supposed to
be available for authorized users of the
database. Alternatively, a "perturbation
factor" can be stored permanently in the
record along with the original data; it is
applied when the data are used in a query.

Like rounding, error inoculation reduces
the quality of the statistics released. To
prevent compromise, large errors may have
to be introduced into the data.

A variation of this approach, which may
yield more accurate statistics, is data swap-
ping: the values of fields of records are
exchanged so that all /-order statistics
(which involve i attributes) are preserved
for i _ d and some d [DALE78, SCHL78].
Even if a questioner succeeds in isolating a
value, he has no way of knowing with which
individual it is actually associated. The
problem with the approach is the difficulty
of finding sets of records whose values can
be swapped. It remains to be seen whether
this control can be cost effective.

Random Samples

The third group of controls is based on
applying queries not to the entire database
but to a "random sample"--a subset of
records chosen at random. This group is
potentially the most effective because it
deprives the questioner of control over the
contents of query sets. The 1960 U.S. Cen-
sus, for example, was distributed on tape as
a random sample of one record in one thou-
sand; each sample record contained no
name, and it specified location only by size
of city in one of nine geographic regions
[HANs71]. The cleverest snooper would

Data Security • 241

have at best 1/1000 chance of associating a
given sample record with the fight individ-
ual. These odds are too poor for compro-
mise of the sample to be worthwhile.

Commercial data management systems
now permit the construction of small- to
medium-scale databases which change con-
stantly through insertion, deletion, and
modification of records. A small random
sample would be useless because it would
not be statistically significant and because
it would not represent the current state of
the database. For these reasons random
samples have been ignored as an inference
control in such databases.

However, when combined with a mini-
mum query set control, random sample
queries can be an effective defense
[DENN79C]. The scheme works as follows.
As it locates each record satisfying a given
formula C, the query program determines
whether or not to keep that record for the
"sampled query set." This determination
should ideally be pseudorandom so that the
same sampled query set is computed any
time the given formula C is presented. Each
queried record is selected independently for
the sampled query set with a given, fixed
probability. Statistics then are computed
from the sampled query set. A minimum
query set control inhibits the response if
the true query set's size is too small or too
large.

With a simulated database and p ffi
0.9375, this method estimated counts (and
sums) of answerable query sets to within
1 percent of their true values [DENN79C].
However, the estimates of counts (and
sums) estimated with trackers contained
errors of several hundred percent; this is
because the questioner must estimate small
counts (or sums) by subtracting large
counts (and sums). (An illustration: The
questioner tries to find the count for C by
subtracting the response 100 from the re-
sponse 101, both of which have error ±1;
the difference, 1, has error ±2.)

Limitations of Inference Controls

Because queries inevitably carry some in-
formation out of the database, one cannot
reasonably hope to design a system that is
impossible to compromise. The objective of
research on inference controls is to discover
how much computational work, measured

ComputiBg Survey~ V~l~l~ ~S~tember 1979

242 D. E. Denning and P. J. Denning

Insecure Channel

-1' M Enc ipher Decipher

Decipher Enc ipher

Secure Channel

FIGURE 6. Encryptmn using one key (traditional view).

~ M

by computer time or by dollars spent, would
be required to compromise a particular sys-
tem. This would enable designers either to
raise the cost of compromise beyond a spe-
cific threshold, or to declare that the de-
sired level of security could not be imple-
mented with the given cost constraints.

The query functions of many commercial
database systems seem to release much
more information about confidential rec-
ords than many people have suspected.
Without proper controls, databases subject
to simple compromises will be the rule
rather than the exception. When combined
with minimum query set restrictions, ran-
dom sample queries appear to offer the best
defense.

A final defense against snooping is threat
monitoring--inspection of logs or audit
trails for unusual patterns of queries, espe-
cially many queries for the same records
[HoFF70]. Although it does not at tempt to
control the flow of information through
query programs, monitoring threatens ex-
posure of illegal activity.

4. CRYPTOGRAPHIC CONTROLS

Access, flow, and inference controls may
not prevent accidental or malicious disclo-
sures of sensitive data. None of these con-
trols helps if an operator leaves a listing of
the password file on a desk, if confidential
data are moved off-line during backup or
maintenance, if transmissions are tapped or
played back, or if hardware and software
are faulty. Encryption is a common safe-

guard for data stored in, or in transit
through, media whose security cannot be
guaranteed by these other controls. With
the help of a secret key (K) the sensitive
plaintext (M) is scrambled into unintelligi-
ble ciphertext (M K) before being put in the
insecure medium.

In a traditional cryptosystem, illustrated
in Figure 6, there is a slow-speed secure
channel by which the sender can inform the
receiver of the key K used to encode the
message. The message itself, transmitted at
high speed through the insecure medium, is
secure as long as the key is secret. Simmons
calls this symmetric encryption because the
same key is used at both ends of the channel
[SIMM79]. The code is broken if an intruder
can deduce the key by analyzing the ciph-
ertexts. Keys are changed regularly, usually
more often than the time in which the
cleverest intruder is believed capable of
locating the key systematically.

The code will be unbreakable if the key
is a sequence of random bits as long as the
message (pseudorandom generation will
not do!); each key bit specifies whether the
corresponding message bit is comple-
mented or not. With such a key, called a
one-time pad, each bit of ciphertext is
purely random and uncorrelated with all
other bits of ciphertext. Practical crypto-
systems are based on keys that are much
shorter than the messages; because the in-
truder may know the enciphering and de-
ciphering algorithms, the security of these
cryptosystems depends on the secrecy of
the keys and the computational difficulty

Computing Surveys, Vol. 11, No. 3, September 1979

Data Security
KG

243

AI

List of
Secret Keys

A sA

B S e

FIGURE 7.

A to KG" (A , (I , B) SA)

KG to A: (I , K, (K ,A)SS) SA

A to B: (K, A) Ss
Protocol for allocating A and B a common key K for exchanging messages.

of inverting the enciphering algorithms.
Overviews of cryptosystems are given by
Diffie and Hellman [DIFF76], Gardner
[GARD77], Hoffman [HOFF77], Konheim
[KONH78], Lempel [LF.MP79], and Sim-
mons [SIMM79]. Fascinating accounts of
codes and their breakings have been writ-
ten by Kahn [KAHN67].

It is reasonable to suppose that military
and diplomatic experts have secure chan-
nels for exchanging encryption keys--for
example, secret couriers. Therefore the se-
curity of the traditional cryptosystem is
properly measured as the work required for
an intruder to invert the code through
cryptanalysis.

With computer networks it is no longer
reasonable to suppose that individual
senders and receivers have secure means of
exchanging secret keys. Needham and
Schroeder [NEED78] and Popek [Pope78a]
have outlined methods, called "protocols,"
for simulating a secure key-exchange chan-
nel. Figure 7 gives the central idea of the
protocol suggested by Needham and
Schroeder. A sending computer A and a
receiving computer B seek a secret key K

from a secure key-generating facility (KG).
The computer KG contains a list of special
secret keys, one assigned to each computer
of the network; thus A and KG can ex-
change secret messages encrypted with key
SA known only to the two. Having decided
to send a message to B, A first transmits
the message (A, (I, B) sA) to KG, wherein I
is message identifier chosen arbitrarily by
A. Since A's name is a plaintext prefix of
this message, KG can locate A's secret key,
SA, and decipher the component (I, B) sA.
Then KG generates a key K and responds
to A with the message (I, K, (K, A}sR) s~.
Only A can decode this message and obtain
the newly generated key K and the embed-
ded ciphertext T ffi (K, A)sR; A can also
check that this message is a unique re-
sponse from KG by verifying that I is one
of his own (recent) message identifiers.
Then A forwards the ciphertext T to B,
who is the only one capable of decoding it.
After these exchanges, both A and B have
the key K and can begin transmitting di-
rectly to each other in code.

The security of this system clearly de-
pends on the security of the key-generating

Computing Smvey~ Vol. 11, No. ~, September 1979

244 • D.E. Denning and P. J. Denning

facility. Both A and B must trust KG to
generate a unique key K, to keep all keys
secret, and to not monitor any of their
private transmissions.

This example illustrates why key man-
agement is essential to secure crypto-
graphic control in computer networks. The
security of these cryptosystems is often less
dependent on the indecipherability of the
code than it is on the ability to secure the
keys. Saltzer has argued that our demon-
strated inability to protect passwords in file
systems suggests that many cryptosystems
will be easily broken not by cryptanalysis
but by elementary attacks on the key man-
ager. (See SALT78 and also DENS79d,
EHRS78, GAIN78, MATY78, MORR78, and
PoPz78a.)

The Data Encryption Standard (DES)

In 1977 the National Bureau of Standards
announced a standard encryption algo-
rithm (DES) to be used in unclassified U.S.
Government communications [NBS77].
The algorithm was developed by IBM,
which offers products that use DES
[EHRS78, LENN78, MATY78]. Each 64-bit
block of plaintext undergoes a complex
transformation comprising 16 levels of sub-
stitutions and permutations, all controlled
by a 56-bit key. The algorithm can be im-
plemented cheaply as an LSI chip, which
would allow it to operate at a high data
rate.

The DES can be used as in Figure 6,
providing "end-to-end encryption" on the
channel between the sender A and receiver
B. A user can also use DES to encipher
fries for storage in removable or insecure
media. However, the data must usually be
deciphered for processing; other mecha-
nisms, such as access and flow controls, are
needed to protect the data while they are
plaintext. Rivest has studied cryptosystems
which allow a limited number of operations
which can be performed directly on the
ciphertext; however, t!,ese systems must
exclude compare operations if they are to
be highly secure [RIvE78b].

The DES can also be used as a one-
way cipher to secure fries containing pass-
words [EVAN74, MORR78, WILE68]. F~ch
password X is used as the key to encipher
a predetermined plaintext C; the resulting
ciphertext C X is placed in the password file

along with the name of the password's
owner. When a user N presents a password
X, the password is accepted only if C X is
already in the password file with name N.
Because no password is actually stored as
plaintext in the system, passwords are pro-
tected even if the file is disclosed.

The DES is not universally regarded as
a highly secure cryptosystem. Diffie and
Hellman argue that it is possible for about
$20 million to build a highly parallel com-
puter that will locate a key by exhaustive
search in about 12 hours [DIFF77]. At the
1978 National Computer Conference, Hell-
man showed how to use about $4 million of
conventional equipment with a heuristic
search to find a key within 24 hours. Diffie
and Hellman maintain that a 128-bit key
(not the 56 bits in the standard) would
make the DES virtually unbreakable. IBM
maintains that two DES chips in series can,
with double encryption, simulate a single
DES chip with a 128-bit key [HOFF77].
IBM also maintains that even with 56-bit
keys DES is not likely to be the weak link
in the security chain.

Public-Key Encryption

In 1976 Diffie and Hellman proposed a new
kind of cryptosystem, which they called
public-key encryption [DIFF76]. Each user
has a matched pair of keys, the "public
key" P and the "secret key" S. Each user
publishes his public key to everyone
through a directory but reveals his secret
key to no one. As with the DES, the en-
cryption algorithm need not be secret.

Enciphering a message M with the public
key P gives a ciphertext M P which can be
sent to the owner of the public key. The
recipient deciphers the ciphertext using his
secret key S to retrieve the message: (M P) s
-- M. Since P and S are a matched pair, no
one but the owner of the public key can
decipher M p. The operations of P and S
are commutative; that is, (M P) s •ffi (MS) p
ffi M. It is infeasible to compute one key
given the other. Figure 8 illustrates com-
munication between two computers by this
scheme. Simmons calls this asymmetric en-
cryption because different keys are used at
the ends of the channel [SIMS79]. Exam-
ples of specific algorithms are in DIFF76,
-~-~;LL78, KONH78, LEMP79, MERK78, and
RIVE78a.

Compu/dng Surveys; Vol. 11, No. 3, September 1979

Public-key cryptosystems also present an
easy solution to "digital signatures," the
problem of proving that a particular mes-
sage was in fact transmitted by the person
claiming to have transmitted it. To create
a signature, one enciphers a predetermined
message M with his secret key S, offering
M S as the signature. Anyone challenging
the signature need only apply the public
key P of the purported signer, for only then
will (MS) P = M . (See DIFF76, RIVE78a,
KONH78, and LEMP79.) Digital signatures
can also be implemented with single-key
cryptosystems, but the solution is much less
elegant [NE~J)78, RABZ77].

A result by Shamir, Rivest, and Adleman
suggests that a modification of public-key
encryption could also be an approximate
one-time pad [SHAM79]. Users A and B
each select a matched pair of keys but keep
both secret. Then A sends the enciphered
message M SA to B, who then enciphers it
and returns (M sR)sA = (MSA)SR to A. Then
A applies his second key, PA, to obtain
MsB = ((MSA)s~)PA, which he returns to B.
Finally, B obtains the message M by apply-
ing his PB, since M -- (M sR)P~. This is not
a true one-time pad because three messages
are actually sent using the four keys.

Its proponents argue that public-key en-
cryption is more secure than DES because
no user need rely on the security of the
computer network to safeguard his secret
key. Indeed, a user's local, personal com-
puter can interface with the network
through the encryption device as in Figure
8, and his secret key can be engraved elec-
tronically into a memory chip that can be

D a t a S e c u r i t y • 245

plugged into the encryption device; he
could then guard his encryption key to the
same extent as any other key in his posses-
sion [DENN79d].

It is true that the public keys can be
distributed by a public directory without
endangering the secret keys. However, a
user still needs assurances that the key
received from the (purported) public direc-
tory is in fact the public key of the re-
quested individual. Confidence in correct
distribution of public keys can be increased
if the public directory signs its responses
[KONF78, NEED 78].

5. SUMMARY

The four kinds of internal security con-
trols--access, flow, inference, and crypto-
graphic--complement each other. No one
of them can solve the problems handled by
the other three.

Access controls operate at the external
interface, verifying that an individual at-
tempting to use the system is authentic,
and internally, verifying that each running
program generates references only to au-
thorized segments of memory. The ideal
access control operates each program in a
domain having the minimum privilege re-
quired for the immediate task. The princi-
ple of minimum privilege contributes
greatly to security by protecting against
"trojan horses," and to reliability by mini-
mizing the extent of possible damage by a
malfunctioning program.

Flow controls regulate the dissemination
or copying of information by prohibiting
derived data from having lower confiden-

Encipher

Decgpher

S
A

COMPUTER A

FIGURE 8.

Insecure Chonnel

s~

Decipher

Encipher

t
COMPUTER B

Public-key encryption.

M

Computing Survo~ Vol. 11, No. 3, Septembe¢ 1979

246 • D, E. Denning and P. J. Denning

BONC77 tiality than the original. The higher the
data's confidentiality, the stricter the rules
on their dissemination. When applied to
program input-to-output flow, these con-
trols offer a partial solution to the "confine- BoRv71
ment problem."

Inference controls prevent "leakage" CAMP77
through programs that produce summaries
of groups of confidential records. They re-
duce the risk that by correlating the re-
sponses from many summaries, a user can COHE75
deduce the confidential values denied him
by access and flow controls.

Cryptographic controls protect informa-
tion stored or transmitted in insecure me- COHE77
dia. The data encryption standard (DES) is
efficient and economical, though it has been
criticized as being breakable and overly de-
pendent on secure key management. Pub- COHE78
lic-key encryption does not rely on any
central manager for safeguarding secret
keys, though it requires secure distribution
of public keys.

All these controls are subject to practical
(and sometimes theoretical) limitations
which keep them from achieving their ob- DALE78
jectives under all conditions. No mecha-
nism is perfectly secure. A good mechanism
reduces the risk of compromise to an ac-
ceptable level.

CONW72

DEMI77

ACKNOWLEDGMENTS

A preliminary version of this paper appeared under
the title "The Limits of Data Security," in the pilot
issue of ABA C US, the Scientific-American-style mag-
azine for the computing community undertaken by the
American Federation of Information Processing Soci-
eties (AFIPS). We are grateful to AFIPS for permis-
sion to use parts of the pilot article in this one.

We are grateful to William E Boggs, whose jour-
nahstic genius considerably improved most of the
draft We are also grateful to Adele Goldberg and the
referees for their comments and suggestions.

DEMI78

DENN71

DENN76a

DENN76b

DENN77

ACHU78

ANDE72

BECK79

REFERENCES
ACHUGBUE, J.O., AND CHIN, F.Y. Out-
put perturbation for protectmn of statis-
tical data bases, Dept. Computing Sci-
ence, Univ. Alberta, Edmonton, Canada,
Jan. 1978.
ANDERSON, J.P. "Information security
in a multi-user computer environment,"
in Advances m computers, Vol. 12, Morris
Rubinoff (Ed.), Academic Press, New
York, 1972.
BECK, L.L. A security mechanism for
stattstical databases, Dept. Computer
Science and Engineering, Southern Meth-
odist Univ., Dallas, Tex., Jan. 1979.

DENN79a

DENN79b

DENN79C

BONCZEK, R.H., CASH, J.I., AND WmN-
STON, A.B. "A transformational gram-
mar-based query processor for access con-
trol in a planning system," ACM Trans.
Database Syst. 2, 4 (Dec. 1977), 326-338.
BORUCH, R.F. "Mamtaining confiden-
tiality in educational research: A sys-
tematic analysis," Am. Psychol. 26 (1971),
413--430.
CAMPBELL, D.T., ET AL. "Confiden-
tiality-preserving modes of access to files
and to interfile exchange for useful statis-
tical analysis," Eval. Q. 1, 2 (May 1977),
269-299.
COHEN, E., AND JEFFERSON, D. "Pro-
tection in the HYDRA operating system,"
in Proc. 5th Symp. Operating Systems
Principles, (special issue) Oper. Syst. ReD.
(ACM) 9, 5 (Nov. 1975), 141-160.
COHEN, E. "Information transmission in
computational systems," Proc. 6th Symp.
Operating Systems Principles, (special is-
sue) Oper. Syst. ReD. (ACM) 11, 5 (Nov.
1977), 133-139.
COHEN, E. "Information transmission in
sequential programs," in Foundations of
secure computation, R.A. DeMillo et al.
(Eds.), Academic Press, New York, 1978,
pp. 297-335.
CONWAY, R.W., MAXWELL, W.L., AND
MORGAN, H.L. "On the nnplementation
of security measures in information sys-
tems," Commun. ACM 15, 4 (April 1972),
211-220.
DALENIUS, T., AND REISS, S.P. Data-
swappmg--A technique for disclosure
control, Computer Science, Brown Univ.,
Providence, R.I., (1978).
DEMILLO, R.A., DOBKIN, D., AND LIP-
TON, R.J. "Even data bases that lie can
be compromised," IEEE Trans. Software
Eng. SE-4, 1 (Jan. 1977) 73-75.
DEMILLO, R.A., DOBKIN, D.P., JONES,
A.K., AND LIPTON, R.J. (Eds.) Foun-
dations of secure computation, Academic
Press, New York, 1978.
DENNING, P.J. "Third generation com-
puter systems," Comput. Surv. 3, 4 (Dec.
1971), 175-216.
DENNING, D.E. "A lattice model of se-
cure information flow," Commun. A CM
19, 5 (May 1976), 236-243.
DENNING, P.J. "Fault tolerant operat-
ing systems," Comput. Surv. 8, 4 (Dec.
1976), 359-389.
DENNING, D.E., AND DENNING, P.J.
"Certification of programs for secure in-
formation flow," Commun. ACM 20, 7
(July 1977), 504-513.
DENNING, D.E., DENNING, P.J., AND
SCHWARTZ, M.D. "The tracker: A threat
to statistical database security," ACM
Trans. Database Syst. 4, 1 (March 1979),
76-96.
DENNING, D.E., AND SCHLORER, J. A
fast procedure for finding a tracker m a
statistical database, Computer Science
Dept., Purdue Univ., W. Lafayette, Ind.
and Inst. Medizinlsche Statistik und Dok-
umentation, Unlv Giessen, W. Germany,
Feb. 1979.
DENNING, D.E. Securing databases un-
der random sample queries, Computer
Science Dept., Purdue Univ., W. Lafay-
ette, Ind., April 1979.

Computing Surveys, Vol. 11, No. 3, September 1979

DENN79d

DENV66

DIFF76

DIFF77

DOBK79

EHRS78

ENGL74

EVAN74

FAER74

FAGI78

FEIG70

PENT74

FURT78

GAIN78

GARD77

GEHR79

GRAH72

GRIP76

DENNING, D.E "Secure personal corn- HANS71
putmg in an insecure network," Commun.
ACM 22, 8 (Aug 1979), 476-482.
DENNIS, J.B., AND VAN HORN,
E.C. "Programming semantics for mul-
tlprogrammed computations," Commun.
ACM 9, 3 (March 1966), 143-155. HARR76
DIFFIE, W., AND HELLMAN, M. "New
directions in cryptography," IEEE Trans.
Inf Theory IT-22, 6 (Nov. 1976), 644-654.
DIFFIE, W., AND HELLMAN, M E "Ex- HART76
haustive cryptanalysls of the NBS Data
Encryptlon Standard," Computer 10, 6
(June 1977), 74-84.
DOBKIN, D., JONES, A.K., AND LIPTON,
R.J. "Secure databases" Protection HELL78
against user inference," ACM Trans. Da-
tabase Syst. 4, 1 (March 1979), 97-106.
EHRSAM, W.F, MATYAS, S.M., MEYER,
C.H., AND TUCHMAN, W.L. "A crypto-
graphic key management scheme for ira- HOFF70
piGmenting the Data Encryption Stan-
dard," IBM Syst. J. 17, 2 (1978), 106-125.
ENGLAND, D.M. "Capability concept
mechanism and structure in system 250," HOFF77
in Proc. Int. Workshop on Protection in
Operating Systems, Inst. Recherche
d'Informatique et d'Automatique, Roc- HSIA78
quencourt, Le Chesnay, France, Aug.
1974, pp. 63-82.
EVANS, A. JR., KANTROWITZ, W., AND
WEISS, E. "A user authentication
scheme not reqmrmg secrecy in the corn- JONE76
puter," Commun. ACM 17, 8 (Aug. 1974),
437-442.
FABRY, R.S. "Capability-based address-
ing," Commun. ACM 17, 7 (July 1974),
403-412.
FAGIN, R. "On an authorization mecha-
msm," ACM Trans. Database Syst. 3, 3
(Sept. 1978), 310-319.
FEIGE, E.L., AND WATTS, H.W.
"Protection of privacy through microag-
gregatlon," in Data bases, computer, and
the social sciences, R.L. Bmco (Ed.),
Wiley-Interscience, New York, 1970.
FENTON, J.S. "Memoryless subsys-
tems," Comput. J 17, 2 (May 1974). 143-
147.
FURTEK, F. "Constraints and compro- LAMP73
mine," in Foundattons of secure compu-
tation, R.A. DeMfllo et al. (Eds.), Aca-
demic Press, New York, 1978, pp. 189-204. LEMP79
GAINES, R.S., AND SHAPIRO, N.Z.
"Some security principles and their apph-
cation to computer security," in Founda- LENN78
t~ons of secure computatton, R.A. De-
Millo et al. (Eds.), Academic Press, New
York, 1978, pp 223-236; also m Oper. Syst. LIND 76
ReD. 12, 3 (July 1978), 19-28.
GARDNER, M. "Mathematical games,"
Scz. Am. 237, 2 (Aug. 1977), 120-124.
GEHRINGER, E. "Functionality and per- LIPS75
formance in capability-based operatmg
systems," Ph.D. Thesis, Computer Sci-
ence Dept., Purdue Umv., W. Lafayette,
Ind, May 1979.
GRAHAM, G S, AND DENNING, P.J. LIPT78
"Protection--Principles and practice," in
Proc. 1972 AFIPS Spring Jt. Computer
Conf., Vol. 40, AFIPS Press, Montvale,
N.J., pp. 417-429.
GRIFFITHS, P.P., AND WADE, B.W. "An
authorizatmn mechanism for a relational
database system," ACM Trans. Database
S~st 1, 3 (Sept. 1976), 242-255.

KAHN67

KARP70

KONF78

KONH78

MADN 79

MATY78

Data Security • 247

HA~SEN, M.H. "Insuring confidentiality
of individual records in data storage and
retrieval for statistical purposes," in Proc.
1971 AFIPS Fall Jt. Computer Conf., Vol.
39, AFIPS Press, Montvale, N.J., pp. 579-
585.
HARRISON, M.A., R~zzo, W.L., AND UL-
MAN, J.D. "Protection in operating sys-
tems," Commun. ACM 19, 8 (Aug. 1976),
461-471.
HARTSON, H R., AND HSIAO, D.K. "Full
protection specifications in the semantic
model for database protection languages,"
in Proc. 1976 ACM Annual Conf., Oct.
1976, pp. 90-95.
HELLMAN, M.E. "Security in communi-
cations networks," in Proc. AFIPS 1978
Nat. Computer Conf., Vol. 47, AFIPS
Press, Montvale, N.J., 1978, pp. 1131-
1134.
HOFFMAN, L.J., AND MILLER, W.F.
"Getting a personal dossier from a statis-
tical data bank," Datamation 16, 5 (May
1970), 74-75.
HOFFMAN, L.J. Modern methods for
computer security and privacy, Prentice-
Hall, Englewood Chffs, N.J., 1977.
HslAO, D.K., KERR, D.S., AND MADNICK,
S.E. "Privacy and security of data com-
munications and data bases," in Proc.
Int Conf. Very Large Data Bases,
Sept. 1978.
JONES, A.K., AND LISKOV, B.H. "A lan-
guage extension mechanism for control-
ling access to shared data," in Proc. 2nd
Int. Conf. Software Engineering, 1976,
pp. 62-68.
KAHN, D. The codebreakers, Macmillan
Co., New York, 1967.
KARPINSKI, R.H. "Reply to Hoffman and
Shaw," Datamation 16, 10 (Oct. 1970), 11.
KONFELDER, L.M. "A method for certi-
fication," Lab. Computer Science, MIT,
Cambridge, Mass., May 1978.
KONHEIM, A.G. "Cryptographic meth-
ods for data protection," Res. Rep. RC
7026 (#30100), IBM Thomas J. Watson
Research Center, Yorktown Heights,
N.Y., March 1978.
LAMPSON, B.W. "A note on the confine-
ment problem," Commun. ACM 16, 10
(Oct 1973), 613-615.
LEMPEL, A. "Cryptography in transi-
tion," to appear in Comput. Surv. 11, 4
(Dec. 1979).
LENNON, R.E. "Cryptography architec-
ture for information security," IBM Syst.
J. 17, 2 (1978), 138-150.
LINDEN, T.A. "Operating system struc-
tures to support security and reliable soft-
ware," Comput. Surv. 8, 4 (Dec. 1976),
409-445.
LIPNER, S.B. "A comment on the con-
finement problem," in Proc 5th Symp
Operating Systems Principles, (special is-
sue) Oper. Syst. ReD. (ACM) 9, 5 (Nov.
1975) 192-196.
LIPTON, R.J., AND BUDD, T.A. "On
classes of protection systems," in Foun.
dattons of secure computation, R.A.
DeMillo et al. (Eds.), Academic Press,
New York, 1978, pp. 281-296.
MADNICK, S.E. Computer security, Ac-
ademic Press, New York, 1979.
MATYAS, S.M., AND MEYER, C.H.
"Generation, distribution, and installation

Computing Surveys, VoL 11, No. 3, September 1979

248

MEEK78

MILL76

MILL78

MORR78

MYER78

NBS77

NEED77

NEED78

NEUM77

NIEL76

OEGA72

ORGA73

PARK76

POPE74

POPE78a

POPE78b

POPE78c

RAEI78

REDE74

• D.E. Denning and P. J. Denning

of cryptographic keys," IBM Syst. J. 17,
2 (1978), 126-137.
MERKLE, R.C., AND HELLMAN, M.E. REIT78
"Hiding information and signatures in
trap door knapsacks," IEEE Trans.
Inf. Theory, It-24, 5 (Sept. 1978), 525-
530.
MILLEN, J.K. "Security kernel valida-
tion in practice," Commun. ACM 19, 5
(May 1976), 243-250.
MILLEN, J.K. "Constraints and multil-
evel security," in Foundations of secure
computation, R.A. DeMillo et al. (Eds.),
Academic Press, New York, 1978, pp 205-
222.
MORRIS, R., AND THOMPSON, K.
Password security: A case history, CS-
TR-71, Bell Labs, Murray Hill, N.J.,
April 1978. RPP77
MYERS, G. Advances in computer ar-
chitecture, Wiley, New York, 1978.
NATIONAL BUREAU OF STANDARDS, Data
Encryption Standard, FIPS PUB 46, Jan. SALT75
1977.
NEEDHAM, R.M., AND WALKER, R.D.H.
The Cambridge CAP computer and its

protection system," in Proc. 6th Syrup. SALT78
Operating Systems Principles, (special is-
sue) Oper. Syst. ReD. (ACM) 11, 5 (Nov. SCHL75
1977), 1-10.
NEEDHAM, R.M., AND SCHROEDER, M.D.
"Using encryption for authentication in
large networks of computers," Commun. SCHL77
ACM 21, 12 (Dec. 1978), 993-999.
NEUMANN, P.G., ET AL. "A probably se-
cure operating system: The system, its
applications, and proofs," Project 4332 SCHL78
Final Rep., SRI International, Menlo
Park, Calif., Feb. 1977.
NIELSEN, N.R., RUDER, B., AND BRAN-
DIN, D.H. "Effective safeguards for com-
puter system integrity," in Proc. AFIPS SCHL79
Nat. Computer Conf. Vol. 45, AFIPS
Press, Montvale, N.J., 1976, pp. 75-84.
ORGANICK, E.I. The multics system: An
examination of its structure, MIT Press,
Cambridge, Mass., 1972.
ORGANICK, E.I. Computer system orga- SCHR72
nization: The B5700/B6700 series, Aca-
demic Press, New York, 1973.
PARKER, D.B. Crime by computer,
Scribner's, New York, 1976. SCHR77
POPEK, G.J. "Protection structures,"
Computer 7, 6 (June 1974), 22-31.
POPEK, G.J., AND KLINE, C.S. "Design
issues for secure computer networks," in
Operating systems, an advanced course,
R. Bayer, R.M. Graham, and G. Seeg- ScHw79
muller (Eds.), Springer-Verlag, New
York, 1978.
POPEK, G.J., AND KLINE, C.S. "Issues in
kernel design, Proc. AFIPS Nat. Com- SHAM79
puter Conf. Vol. 47, AFIPS Press, Mont-
vale, N.J., 1978, pp. 1079-1086.
POPEK, G.J., AND FARBER, D.A. "A
model for verification of data security in SHAN77
operating systems," Commun. ACM 21, 9
(Sept. 1978), 737-749.
RABIN, M. "Digital signatures using SIMM79
conventional eneryption algorithms," in
Foundations of secure computing, R.A.
DeMillo et al. (Eds.), Academic Press, SNYD77
New York, 1978, pp. 155-166.
REDELL, D.R., AND FABRY, R.S.
"Selective revocation of capabilities,"
Proc. Int. Workshop Protection m Oper-
ating Systems, Inst. Recherche d'In- STON74

RIVE78a

RivE78b

formatique et d'Automatique, Rocquen-
court, Le Chesnay, France, Aug. 1974
REITMAN, R.P., AND ANDREWS, G.R.
Certifying information flow properties of
programs: An axiomatic approach, Syr-
acuse Univ., Syracuse, N.Y., and Cornell
Univ., Ithaca, N.Y., 1978.
RIVEST, R.L., SHAMIR, A., AND ADLEMAN,
L. "A method for obtaining digital sig-
natures and public-key cryptosystems,"
Commun. ACM 21, 2 (Feb. 1978), 120-
126.
RIVEST, R.L., ADLEMAN, L., AND DER-
TOUZOS, M.L. "On data banks and pri-
vacy homomorphisms," in Foundations
of secure computing, R.A. DeMillo et al.
(Eds.), Academic Press, New York, 1978,
pp. 169-179.
"The report of the privacy protection
study commission," Appendix 5, in Tech-
nology and privacy, U.S. GoD. Prmting
Office, Washington, D.C. July 1977.
SALTZER, J.H., ANn SCHROEDER, M.D.
"The Protection of information in com-
puter systems," Proc IEEE 63, 9 (Sept.
1975), 1278-1308.
SALTZER, J. "On digital signatures,"
Oper. Syst. ReD. 12, 2 (April 1978), 12-14.

CHL()RER, d. "Identification and re-
trieval of personal records from a statis-
tical data bank," Methods Inf. Med 14, 1
(Jan. 1975), 7-13.
SCHL•RER, J. "Confidentiality and se-
curity in statistical data banks," Proc.
Workshop on Data Documentation, Ver-
lag Dokumentation, 1977, pp. 101-123.
SCHLORER, d. Security of statistical da-
tabases: Multidimensmnal transforma.
lion, TB-IMSD 2/78, Inst. Medizinische
Statistik und Documentation, Univ. Gies-
sen. W. Germany, 1978.
SCHLORER, J. Disclosure from statist¢.
cal databases: Quantitative aspects of
trackers, Inst. Medizinische Statistik und
Dokumentation, Univ. Giessen, W. Ger-
many, March 1979; to appear in ACM
Trans. Database Syst.
SCHROEDER, M.D., AND SALTZER, J.H.
"A hardware architecture for implement-
ing protection rings," Commun ACM 15,
3 (March 1972), 157-170.
SCHROEDER, M.D., CLARK, D.D., AND
SALTZER, J.H. "The MULTICS kernel
design project," in Proc. 6th Symp, Oper-
ating Systems Principles, (special issue)
Oper. Syst. ReD. (ACM) 11, 5 (Nov. 1977),
43-56.
SCHWARTZ, M.D., DENNING, D.E., AND
DENNING, P.J. "Lmear queries in statis-
tical databases," ACM Trans Database
SsYSt. 4, 2 (June 1979), pp. 156-167

HAMIR, A., RIVEST, R.L., AND ADLEMAN,
L.M. "Mental poker," Lab. Computer
Science, MIT, Cambridge, Mass., Jan.
1979.
SHANKAR, K.S. "The total computer se-
curity problem: An overview," Computer
10, 6 (June 1977), 50-73.
SIMMONS, G.J., '"'Symmetric and asym-
metric encryption," to appear m Comput.
Surv. 11, 4 (Dec. 1979).
SNYDER, L. "On the synthesis and anal-
SiS of protection systems," Proc. 6th

rap. Operating Systems Principles,
(special issue) Oper. Syst. ReD. (ACM) 11,
5 (Nov. 1977), 141-150.
STONEBRAKER, M., AND WONG, E.

Computing Surveys, Vol. II, No. 3, September 1979

TURN76

WALT75

WEIS69

"Access control in a relational data base
management system by query modifica-
tion," in Proc. 1974 ACM Annual Conf.,
pp. 180-186.
TURN, R., AND WARE, W.H. "Privacy
and security issues m information sys-
tems," IEEE Trans. Comput. C-25, 12
(Dec 1976), 1353-1361.
WALTER, K.G., ET AL. "Structured spec-
ification of a security kernel," Proc. Int.
Conf. Rehable Software, (special issue)
SIGPLAN Notwes (ACM) 10, 6 (June
1975), 285-293.
WEISSMAN, C. "Security controls in the

WEST72

WILK68

Yu78

RECEIVED OCTOBER 1978; FINAL REVISION ACCEPTED MAY 1979

Data Security ° 249

ADEPT-50 time-sharing system," Proc.
1969AFIPS Fall Jt. Computer Conf., Vol.
35, AFIPS Press, Montvale, N.J., pp. 119-
133.
WESTIN, A.F., AND BAKER, M.A.
Databanks in a free society, Quadrangle
Books, New York, 1972.
WILKES, M.V. Time sharing computing
systems, Elsevier/MacDonald, New York,
1968; 3rd ed., 1975.
Yu, C.T., ANY CHIN, F.Y. A study on
the protection of statistical data bases,
Proc ACM SIGMOD Int. Conf. Manage-
ment of Data, 1977, pp. 169-181.

Cemputmg Stwve~ ~ ~ 1~. 8, September 1979

