

Anita K. Jones
Editor

16. Lampson, B, and Sturgis, H.K. Crash Recovery in a Distributed
System. (unpublished), Xerox Palo Alto Research Center, 1979.
17. Liskov, Barbara. Linguistic support for distributed programs: a
status report. Laboratory for Computer Science Computation
Structures Group Memo 201, MIT, Cambridge, 1980.
18. Metcalfe, R.M., and Boggs, D.R. Ethernet: distributed packet
switching for local computer networks. Comm. A CM 19, 7 (July
1976) 395-404.
19. Nelson, Bruce Jay. Remote Procedure Call. Ph.D. Dissertation,
Report CM U-CS-81-119, Carnegie-Mellon University, Pittsburgh,
PA, 1981.
20. Ousterhout, John K., Scelza, Donald, A., and Sindhu, Pradeep.
Medusa: an experiment in distributed operating system structure.
Comm. ACM 23, 2 (Feb. 1980), 92-105.
21. Peterson, James L. Notes on a workshop on distributed
computing. Operating Systems Review 13, 3 (July 1979), 18-27.
22. Popek, G., et al. Locus: A network transparent, high reliability
distributed system. Proc. 8th Syrup. on Operating System Principles,
Dec. 1981, 169-177.
23. Rawson, E.G., and Metcalfe R.M. Fibernet: muhimode optical
fibers for local computer networks. IEEE Trans. on Computer
Communication COM-26, 7 (July 1978), 983-990.
24. Sahzer, J.H. End-to-end arguments in system design. Proc. 2nd
Int. Conf. on Operating Systems. Paris (April 1981).
25. Saltzer, J.H., Clark, D., and Reed, D. Version Two Ring
Network. Laboratory for Computer Science Report, MIT,
Cambridge, 1981.
26. Spector, Alfred Z. Multiprocessing Architectures for Local
Computer Networks. Ph.D. Dissertation, Report STAN-CS-81-874,
Stanford University, 1981.
27. Swan, R.J., Fuller, S.H., and Siewiorek, D.P. Cm* A modular
multi-microprocessor. Proc. of the National Computer Conference.
June 1977, 636-644.
28. Thacker, C.P., McCreight, E.M., Lampson B.W., Sproull, R.F.,
and Boggs, D.R. Alto: A personal computer. In Siewiorek, O., Bell,
G., and Newell, A. Computer Structures: Readings and Examples.
Second ed. McGraw Hill, New York, 1981.
29. Wilkes, M.V., and Wheeler, D.J. The Cambridge digital
communication ring. Proc. Local Area Communication Network
Symposium. Boston, May 1979.
30. ALTO: A Personal Computer System Hardware Manual. Xerox
Palo Alto Research Center, 1979.
31. Zimmerman, H. OSI reference model--the ISO model of
architecture for open systems interconnection. IEEE Trans. on
Communication COM-28, 4 (Apr. 1980), 425-432.

Operating Systems

Grapevine: An Exercise in
Distributed Computing

A n d r e w D. Birrell, Roy Levin,
Roge r M. N e e d h a m , and Michae l D. Schroeder

Xerox Palo Alto Research Cente r

Grapevine is a multicomputer system on the Xerox
research internet. It provides facilities for the delivery of
digital messages such as computer mail; for naming
people, machines, and services; for authenticating people
and machines; and for locating services on the internet.
This paper has two goals: to describe the system itself
and to serve as a case study of a real application of
distributed computing. Part I describes the set of services
provided by Grapevine and how its data and function are
divided among computers on the internet. Part II pre-
sents in more detail selected aspects of Grapevine that
illustrate novel facilities or implementation techniques,
or that provide insight into the structure of a distributed
system. Part III summarizes the current state of the
system and the lessons learned from it so far.

CR Categories and Subject Descriptors: C.2.4 [Com-
puter-Communication Networks]: Distributed Systems--
distributed applications, distributed databases; C.4 [Per-
formance of Systems]--reliability, availability and ser-
viceabifity; D.4.7 [Operating Systems]: Organization and
Design--distributed systems; H.2.4 [Database Manage-
ment]: Systems--distributed systems; H.2.7 [Database
Management]: Database Administration; H.4.3 [Infor-
mation Systems Applications]: Communications Appli-
cations-electronic mail

General Terms: Design, Experimentation, Reliability

Part I. Description of Grapevine

260

1. Introduction

Grapevine is a system that provides message delivery,
resource location, authentication, and access control ser-

Authors' Present Addresses: Andrew D. Birrell, Roy Levin, and
Michael D. Schroeder, Xerox Palo Alto Research Center, Computer
Science Laboratory, 3333 Coyote Hill Road, Palo Alto, CA 94304;
Roger M. Needham, University of Cambridge Computer Laboratory,
Corn Exchange Street, Cambridge, CB2 3QG, United Kingdom.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
© 1982 ACM 0001-0782/82/0400-0260 $00.75.

Communications April 1982
of Volume 25
the ACM Number 4

vices in a computer internet. The implementation of
Grapevine is distributed and replicated. By distributed
we mean that some of the services provided by Grape-
vine involve the use of multiple computers communicat-
ing through an internet; by replicated we mean that some
of the services are provided equally well by any of several
distinct computers. The primary use of Grapevine is
delivering computer mail, but Grapevine is used in many
other ways as well. The Grapevine project was motivated
by our desire to do research into the structure of distrib-
uted systems and to provide our community with better
computer mail service.

Plans for the system were presented in an earlier
paper [5]. This paper describes the completed system.
The mechanisms discussed below are in service support-
ing more than 1500 users. Designing and building
Grapevine took about three years by a team that aver-
aged two to three persons.

1.1 Environment for Grapevine
Figure l'illustrates the kind of computing environ-

ment in which Grapevine was constructed and operates.
A large internet of this style exists within the Xerox
Corporation research and development community. This
internet extends from coast-to-coast in the U.S.A. to
Canada, and to England. It contains over 1500 computers
on more than 50 local networks.

Most computing is done in personal workstation com-
puters [12]; typically each workstation has a modest
amount of local disk storage. These workstations may be
used at different times for different tasks, although gen-
erally each is used only by a single individual. The
internet connecting these workstations is a collection of
Ethernet local networks [6], gateways, and long distance
links (typically telephone lines at data rates of 9.6 to 56
Kbps). Also connected to the internet are server com-
puters that provide shared services to the community,
such as file storage or printing.

Protocols already exist for communicating between
computers attached to the internet [11]. These protocols
provide a uniform means for addressing any computer

attached to any local network in order to send individual
packets or to establish and use byte streams. The indi-
vidual packets are typically small (up to 532 bytes), and
are sent unreliably (though with high probability of
success) with no acknowledgment. The byte stream pro-
tocols provide reliable, acknowledged, transmission of
unlimited amounts of data [1].

1.2 Services and Clients
Our primary consideration when designing and im-

plementing Grapevine was its use as the delivery mech-
anism for a large, dispersed computer mail system. A
computer mail system allows a group of human users to
exchange messages of digital text. The sender prepares
a message using some sort of text editing facility and
names a set of recipients. He then presents the message
to a delivery mechanism. The delivery mechanism moves
the message from the sender to an internal buffer for
each recipient, where it is stored along with other mes-
sages for that recipient until he wants to receive them.
We call the buffer for a recipient's messages an inbox.
When ready, the recipient can read and process the
messages in his inbox with an appropriate text display
program. The recipient names supplied by the sender
may identify distribution lists: named sets of recipients,
each of whom is to receive the message. We feel that
computer mail is both an important application of dis-
tributed computing and a good test bed for ideas about
how to structure distributed systems.

Buffered delivery of a digital message from a sender
to one or more recipients is a mechanism that is useful
in many contexts: it may be thought of as a general
communication protocol, with the distinctive property
that the recipient of the data need not be available at the
time the sender wishes to transmit the data. Grapevine
separates this message delivery function from message
creation and interpretation, and makes the delivery func-
tion available for a wider range of uses. Grapevine does
not interpret the contents of the messages it transports.
Interpretation is up to the various message manipulation
programs that are software clients of Grapevine. A client

Fig. 1. An Example of a Small Internet.

r Wo,-kstation r I Workstat,oo I I
) ~ ~ Ethernet

I ~ ~]

Gateway ~ telephone line

Ethernet

J Workstation] Workstation

Server [Workstation

Gateway

I

I Server I I

Ethernet

Workstation

261 Communicat ions
of
the ACM

April 1982
Volume 25
Number 4

program implementing a computer mail user interface
will interpret messages as interpersonal, textual memos.
Other clients might interpret messages as print files,
digital audio, software, capabilities, or data base updates.

Grapevine also offers authentication, access control,
and resource location services to clients. For example, a
document preparation system might use Grapevine 's
resource location service to find a suitable printing server
attached to the internet (and then the message delivery
service to transfer a document there for printing) or a
file server might use Grapevine 's authentication and
access control services to decide if a read request for a
particular file should be honored.

Grapevine 's clients run on various workstations and
server computers attached to the internet. Grapevine
itself is implemented as programs running on server
computers dedicated to Grapevine. A client accesses the
services provided by Grapevine through the mediation
of a software package running on the client's computer.
The Grapevine computers cooperate to provide services
that are distributed and replicated.

2. Design Goals

We view distributed implementation of Grapevine
both as a design goal and as the implementation tech-
nique that best meets the other design goals. A primary
motivation for the Grapevine project was implementing
a useful distributed system in order to understand some
system structures that met a real set of requirements.
Once we chose message delivery as the functional do-
main for the project, the following specific design goals
played a significant role in determining system structure.

Grapevine makes its services available to many dif-
ferent clients. Thus, it should make no assumptions
about message content. Also, the integrity of these ser-
vices should not in any way depend on correctness of
the clients. Though the use of an unsatisfactory client
program will affect the service given to its user, it should
not affect the service given to others. These two goals
help determine the distribution of function between
Grapevine and its clients.

Two goals relate to Grapevine 's reliability properties.
First, a user or client implementor should feel confident
that if a message is accepted for delivery then it will
either be made available to its intended recipients or
returned with an indication of what went wrong. The
delivery mechanism should meet this goal in the face of
user errors (such as invalid names), client errors (such as
protocol violations), server problems (such as disk space
congestion or hardware failures), or communicat ion dif-
ficulties (such as internet link severance or gateway
crashes). Second, failure of a single Grapevine server
computer should not mean the unavailability of the
Grapevine services to any client.

The typical interval from sending a message to its
arrival in a recipient's inbox should be a few minutes at

most. The typical interactive delay perceived by a client
program when delivering or receiving a message should
be a few seconds at most. Since small additions to
delivery times are not likely to be noticed by users, it is
permissible to improve interactive behavior at the ex-
pense of delivery time.

Grapevine should allow decentralized administra-
tion. The users of a widespread internet naturally belong
to different organizations. Such activities as admission
of users, control of the names by which they are known,
and their inclusion in distribution lists should not require
an unnatural degree of cooperation and shared conven-
tions among administrations. An administrator should
be able to implement his decisions by interacting directly
with Grapevine rather than by sending requests to a
central agency.

Grapevine should work well in a large size range of
user communities. Administrators should be able to im-
plement decentralized decisions to adjust storage and
computing resources in convenient increments when the
shape, size, or load patterns of the internet change.

Grapevine should provide authentication of senders
and recipients, message delivery secure from eavesdrop-
ping or content alteration, and control on use and mod-
ification of its data bases.

3. Overview

3.1 Registration Data Base
Grapevine maintains a registration data base that

maps names to information about the users, machines,
services, distribution lists, and access control lists that
those names signify. This data base is used in controlling
the message delivery service; is accessed directly for the
resource location, access control, and authentication ser-
vices; and is used to configure Grapevine itself. Grape-
vine also makes the values in the data base available to
clients to apply their own semantics.

There are two types of entries in the registration data
base: individual and group. We call the name of an entry
in the registration data base an RName .

A group entry contains a set of RNames of other
data base entries, as well as additional information that
will be discussed later. Groups are a way of naming
collections of RNames. The groups form a naming net-
work with no structural constraints. Groups are used
primarily as distribution lists: specifying a group R N a m e
as a recipient for a message causes that message to be
sent to all RNames in that group, and in contained
groups. Groups also are used to represent access control
lists and collections of like resources.

An individual entry contains an authenticator (a pass-
word), a list of inbox sites, and a connect site, as well as
additional information that will be discussed later. The
inbox site list indicates, in order of preference, the
Grapevine computers where the individual's messages
may be buffered. The way these multiple inboxes are

262 Communications April 1982
of Volume 25
the ACM Number 4

used is discussed in Sec. 4.2. The connect site is an
internet address for making a connection to the individ-
ual. Thus, an individual entry specifies ways of authen-
ticating the identity of and communicating wi th - -by
message delivery or internet connect ion-- the named
entity. Individuals are used to represent human users
and servers, in particular the servers that implement
Grapevine. Usually the connect site is used only for
individuals that represent servers. Specifying an individ-
ual RName (either a human or a server) as a recipient of
a message causes the message to be forwarded to and
buffered in an inbox for that RName.

3.2 Functions
Following is a list of the functions that Grapevine

makes available to its clients. Responses to error condi-
tions are omitted from this description. The first three
functions constitute Grapevine 's delivery service.

Accept message:
[sender, password, recipients, message-body] ~ ok

The client presents a message body from the sender
for delivery to the recipients. The sender must be
RName of an individual and the password must au-
thenticate that individual (see below). The recipients
are individual and group RNames. The individuals
correspond directly to message recipients while the
groups name distribution lists. After Grapevine ac-
knowledges acceptance of the message the client can
go about its other business. Grapevine then expands
any groups specified as recipients to produce the com-
plete set of individuals that are to receive the message
and delivers the message to an inbox for each.

Message polling:
[individual] ~ (empty, nonempty}

Message polling is used to determine whether an
individual's inboxes contain messages that can be
retrieved. We chose not to authenticate this function
so it would respond faster and load the Grapevine
computers less.

Retrieve messages:
[name, password] ~ sequence of messages ~ ok

The client presents an individual's name and pass-
word. I f the password authenticates the individual
then Grapevine returns all messages from the corre-
sponding inboxes. When the client indicates "ok,"
Grapevine erases these messages from those inboxes.

Grapevine 's authentication, access control, and resource
location services are implemented by the remaining func-
tions. These are called the registration service, because
they are all based on the registration data base.

Authenticate:
[individual, password] ~ (authentic, bogus}

The authentication function allows any client to
determine the authenticity of an individual. An indi-

263

vidual/password combination is authentic if the pass-
word matches the one in the individual's registration
data base entry. 1

Membership:
[name, group] ~ (in, out}

Grapevine returns an indication of whether the
name is included in the group. Usually the client is
interpreting the group as an access control list. There
are two forms of the membership function. One indi-
cates direct membership in the named group; the other
indicates membership in its closure.

Resource location:
[group] --~ members
[individual] ~ connect site
[individual] ~ ordered list of inbox sites

The first resoucce location function returns a
group's membership set. i f the group is interpreted as
a distribution list, this function yields the individual
recipients of a message sent to the distribution list; if
the group is interpreted as the name of some service,
this function yields the names of the servers that offer
the service. For a group representing a service, com-
bining the first function with the second enables a
client to discover the internet addresses of machines
offering the service, as described in Sec. 5. The third
function is used for message delivery and retrieval as
described in Sec. 4.

Registration data base update and inquiry:

There are various functions for adding and deleting
names in the registration data base, and for inspecting
and changing the associated values.

3.3 Registries
We use a partitioned naming scheme for RNames.

The partitions serve as the basis for dividing the admin-
istrative responsibility, and for distributing the data base
among the Grapevine computers. We structure the name
space of RNames as a two-level hierarchy. An RName
is a character string of the form F.R where R is a registry
name and F is a name within that registry. Registries can
correspond to organizational, geographic, or other arbi-
trary partitions that exist within the user community. A
two-level hierarchy is appropriate for the size and orga-
nizational complexity of our user community, but a
larger community or one with more organizational di-
versity would cause us to use a three-level scheme. Using
more levels would not be a fundamental change to
Grapevine.

This password-based authentication scheme is intrinsically weak.
Passwords are transmitted over the internet as clear-text and clients of
the authentication service see individuals' passwords. It also does not
provide two-way authentication: clients cannot authenticate servers.
The Grapevine design includes proper encryption-based authentication
and security facilities that use Needham and Schroeder's protocols [9]
and the Federal Data Encryption Standard [8]. These better facilities,
however, are not implemented yet.

Communicat ions April 1982
of Volume 25
the ACM Number 4

3.4 Distribution of Function
As indicated earlier, Grapevine is implemented by

code that runs in dedicated Grapevine computers, and
by code that runs in clients' computers. The code running
in a Grapevine computer is partitioned into two parts,
called the registration server and the message server.
Although one registration server and one message server
cohabit each Grapevine computer, they should be
thought of as separate entities. (Message servers and
registration servers communicate with one another
purely by internet protocols.) Several Grapevine com-
puters are scattered around the internet, their placement
being dictated by load and topology. Their registration
servers work together to implement the registration ser-
vice. Their message servers work together to implement
the delivery service. As we will see in Secs. 4 and 5,
message and registration services are each clients of the
other.

The registration data base is distributed and repli-
cated. Distribution is at the grain of a registry; that is,
each registration server contains either entries for all
RNames in a registry or no entries for that registry.
Typically no registration server contains all registries.
Also, each registry is replicated in several different reg-
istration servers. Each registration server supports, by
publicly available internet protocols, the registration
functions described above for names in the registries that
it contains. Any server that contains the data for a
registry can accept a change to that registry. That server
takes the responsibility for propagating the change to the
other relevant servers.

Any message server is willing to accept any message
for delivery, thus providing a replicated mail submission
service. Each message server will accept message polling
and retrieval requests for inboxes on that server. An
individual may have inboxes on several message servers,
thus replicating the delivery path for the individual.

If an increase in Grapevine's capacity is required to
meet expanding load, then another Grapevine computer
can be added easily without disrupting the operation of
existing servers or clients. If usage patterns change, then
the distribution of function among the Grapevine com-
puters can be changed for a particular individual, or for
an entire registry. As we shall see later this redistribution
is facilitated by using the registration data base to de-
scribe the configuration of Grapevine itself.

The code that runs in clients' machines is called the
Grapevine User package. There are several versions of the
GrapevineUser package: one for each language or op-
erating environment. Their function and characteristics
are sufficiently similar, however, that they may be
thought of as a single package. This package has two
roles: it implements the internet protocols for commu-
nicating with particular Grapevine servers; and it per-
forms the resource location required to choose which
server to contact for a particular function, given the data
distribution and server availability situation of the mo-
ment. GrapevineUser thus makes the multiple Grape-

vine servers look like a single service. A client using the
GrapevineUser package never has to mention the name
or internet address of a particular Grapevine server. The
GrapevineUser package is not trusted by the rest of
Grapevine. Although an incorrect package could affect
the services provided to any client that uses it, it cannot
affect the use of Grapevine by other clients. The imple-
mentation of Grapevine, however, includes engineering
decisions based on the known behavior of the
GrapevineUser package, on the assumption that most
clients will use it or equivalent packages.

3.5 Examples of How Grapevine Works
With Fig. 2 we consider examples of how Grapevine

works. If a user named P. Q were using workstation 1 to
send a message to X.Y., then events would proceed as
follows. After the user had prepared the message using
a suitable client program, the client program would call
the delivery function of the GrapevineUser package on
workstation I. GrapevineUser would contact some reg-
istration server such as A and use the Grapevine resource
location functions to locate any message server such as
B; it would then submit the message to B. For each
recipient, B would use the resource location facilities,
and suitable registration servers (such as A) to determine
that recipient's best inbox site. For the recipient X. Y, this
might be message server C, in which case B would
forward the message to C. C would buffer this message
locally in the inbox for X.Y. If the message had more
recipients, the message server B might consult other
registration servers and forward the message to multiple
message servers. If some of the recipients were distribu-
tion lists, B would use the registration servers to obtain
the members of the appropriate groups.

When X. Y wishes to use workstation 2 to read his
mail, his client program calls the retrieval function of the
GrapevineUser package in workstation 2. Grapevine-
User uses some registration server (such as D) that
contains the Y registry to locate inbox sites for X. Y, then
connects to each of these inbox sites to retrieve his
messages. Before allowing this retrieval, C uses a regis-
tration server to authenticate X. Y.

If X. Y wanted to access a file on the file server E
through some file transfer program (FTP) the file server
might authenticate his identity and check access control
lists by communicating with some registration server
(such as A).

3.6 Choice of Functions
The particular facilities provided by Grapevine were

chosen because they are required to support computer
mail. The functions were generalized and separated so
other applications also could make use of them. If they
want to, the designers of other systems are invited to use
the Grapevine facilities. Two important benefits occur,
however, if Grapevine becomes the only mechanism for
authentication and for grouping individuals by organi-
zation, interest, and function. First, if Grapevine per-

264 Communications April 1982
of Volume 25
the ACM Number 4

Fig. 2. Distribution of Function.

GRAPEVINE

Registration
Server "A"

/ \

authenticate, membership

Registration
Server "D"

a°ut~tee ti clte

Message
Server "B"

locate .~.../~sen d

I
I

GrapevineUser

Client program

user "P.Q"

forward

Workstation 1

authenticate/~ locate" \

+ !
Message 1
Server "C"

retrieve'] ~

GrapevineUser

Client program

user "X.Y"

GrapevineUser

File Server "E"
/ x

FTP
connection

Workstation 2

forms all authentications, then users have the same name
and password everywhere, thus simplifying many admin-
istrative operations. Second, if Grapevine is used every-
where for grouping, then the same group structure can
be used for many different purposes. For example, a
single group can be an access control list for several
different file servers and also be a distribution list for
message delivery. The groups in the registration data
base can capture the structure of the user community in
one place to be used in many ways.

4. Message Delivery

We now consider the message delivery service in
more detail.

4.1 Acceptance
To submit a message for delivery a client must estab-

lish an internet connection to a message server; any
operational server will do. This resource location step,
done by the GrapevineUser package, is described in
Sec. 5. Once such a connection is established, the
GrapevineUser package simply translates client proce-
dure calls into the corresponding server protocol actions.
If that particular message server crashes or otherwise
becomes inaccessible during the message submission,
then the GrapevineUser package locates another mes-
sage server (if possible) and allows the client to restart
the message submission.

The client next presents the RName and password of
the sender, a return To RName, and a list of recipient
RNames. The message server authenticates the sender
by using the registration service. If the authentication
fails, the server refuses to accept the message for delivery.
Each recipient RName is then checked to see if it

265

matches an RName in the registration data base. All
invalid recipient names are reported back to the client.
In the infrequent case thai no registration server for a
registry is accessible, all RNames in that registry are
presumed for the time being to be valid. The server
constructs a property list for the message containing the
sender name, returnTo name, recipient list, and a post-
mark. The postmark is a unique identification of the
message, and consists of the server's clock reading at the
time the message was presented for delivery together
with the server's internet address. Next, the client ma-
chine presents the message body to the server. The server
puts the property list and message body in reliable
storage, indicates that the message is accepted for deliv-
ery, and closes the connection. The client may cancel
delivery anytime prior to sending the final packet of the
message body, for example, after being informed of
invalid recipients.

Only the property list is used to direct delivery. A
client might obtain the property values by parsing a text
message body and require that the parsed text be syn-
tactically separated as a "header," but this happens
before Grapevine is involved in the delivery. The prop-
erty list stays with the message body throughout the
delivery process and is available to the receiving client.
Grapevine guarantees that the recipient names in the
property list were used to control the delivery of the
message, and that the sender RName and postmark are
accurate.

4.2 Transport and Buffering
Once a message is accepted for delivery, the client

may go about its other business. The message server,
however, has more to do. It first determines the complete
list of individuals that should receive the message by

Communicat ions April 1982
of Volume 25
the ACM Number 4

recursively enumerating groups in the property list. It
obtains from the registration service each individual's
inbox site list. It chooses a destination message server for
each on the basis of the inbox site list ordering and its
opinion of the present accessibility of the other message
servers. The individual names are accumulated in steer-
ing lists, one for each message server to which the mes-
sage should be forwarded and one for local recipients.
The message server then forwards the message and ap-
propriate steering list to each of the other servers, and
places the message in the inboxes for local recipients.
Upon receiving a forwarded message from another
server, the same algorithm is performed using the indi-
viduals in the incoming steering list as the recipients, all
of which will have local inboxes unless the registration
data base has changed. The message server stores the
property list and body just once on its local disk and
places references to the disk object in the individual's
inboxes. This sharing of messages that appear in more
that one local inbox saves a considerable amount of
storage in the server. 2

With this delivery algorithm, messages for an indi-
vidual tend to accumulate at the server that is first on
the inbox site list. Duplicate elimination, required be-
cause distribution lists can overlap, is achieved while
adding the message into the inboxes by being sure never
to add a message if that same message, as identified by
its postmark, was the one previously added to that inbox.
This duplicate elimination mechanism fails under certain
unusual circumstances such as servers crashing or the
data base changing during the delivery process, but
requires less computation than the alternative of sorting
the list of recipient individuals.

In some circumstances delivery must be delayed, for
example, all of an individual's inbox sites or a registry's
registration servers may be inaccessible. In such cases
the message is queued for later delivery.

In some circumstances delivery will be impossible:
for example, a recipient RName may be removed from
the registration data base between validation and deliv-
ery, or a valid distribution list may contain invalid
RNames. Occasionally delivery may not occur within a
reasonable time, for example, a network link may be
down for several days. In such cases the message server
mails a copy of the message to an appropriate RName
with a text explanation of what the problem was and
who did not get the message. The appropriate RName
for this error notification may be the returnTo name
recorded in the message's property list or the owner of
the distribution list that contained the invalid name, as
recorded in a group entry in the registration data base.
Even this error notification can fail, however, and ulti-

2 As another measure to conserve disk storage, messages from an
inbox not emptied within seven days are copied to a file server and the
references in the inbox are changed to point at these archived copies.
Archiving is transparent to clients: archived messages are transferred
back through the message server when messages from the inbox are
retrieved.

mately such messages end up in a dead letter inbox for
consideration by a human administrator.

4.3 Retrieval
To retrieve new messages for an individual, a client

invokes the GrapevineUser package to determine the
internet addresses of all inbox sites for the individual,
and to poll each site for new messages by sending it a
single inbox check packet containing the individual's
RName. For each positive response, GrapevineUser con-
nects to the message server and presents the individual's
name and password. I f these are authentic, then the
message server permits the client to inspect waiting
messages one at a time, obtaining first the property list
and then the body. When a client has safely stored the
messages, it may send an acknowledgment to the mes-
sage server. On receipt of this acknowledgment, the
server discards all record of the retrieved messages.
Closing the retrieval connection without acknowledg-
ment causes the message server to retain these messages.
For the benefit of users who want to inspect new mes-
sages when away from their personal workstation, the
message server also allows the client to specify that some
messages from the inbox be retained and some be dis-
carded.

There is no guarantee that messages will be retrieved
in the order they were presented for delivery. Since the
inbox is read first-in, first-out and messages tend to
accumulate in the first inbox of an individual's inbox site
list, however, this order is highly likely to be preserved.
The postmark allows clients who care to sort their mes-
sages into approximate chronological order. The order is
approximate because the postmarks are based on the
time as perceived by individual message servers, not on
any universal time.

4.4 Use of Repfication in Message Delivery
Replication is used to achieve a highly available

message delivery service. Any message server can accept
any message for delivery. Complete replication of this
acceptance function is important because the human
user of a computer mail client may be severely incon-
venienced if he cannot present a message for delivery
when he wants to. He would have to put the message
somewhere and remember to present it later. Fortu-
nately, complete replication of the acceptance function
is cheap and simple to provide. Message transport and
buffering, however, are not completely replicated. Once
accepted for delivery, the crash of a single message server
can delay delivery of a particular message until the server
is operational again, by temporarily trapping the message
in a forwarding queue or an inbox. 3 Allowing multiple
inboxes for an individual replicates the delivery path.
Unless all servers containing an individual's inbox sites

3 The servers are programmed so any crash short of a physical disk
catastrophe will not lose information. Writing a single page to the disk
is used as the primitive atomic action.

266 Communications April 1982
of Volume 25
the ACM Number 4

are inaccessible at once, new messages for that individual
can get through. We could have replicated messages in
several of an individual's inboxes, but the expense and
complexity of doing so does not seem to be justified by
the extra availability it would provide. If the immediate
delivery of a message is important then its failure to
arrive is likely to be noticed outside the system; it can be
sent again because a delivery path for new messages still
exists.

5. The Registration Data Base

The registration data base is used by Grapevine to
name registration servers, message servers, and indeed,
registries themselves. This recursive use of the registra-
tion data base to represent itself results in an implemen-
tation that is quite compact.

5.1 Implementing Registries
One registry in the data base is of particular impor-

tance, the registry named GV (for _Grape_vine). The GV
registry is replicated in every registration server; all
names of the form *.gv exist in every registration server.
The GV registry controls the distribution and replication
of the registration data base, and allows clients to locate
appropriate registration servers for particular RNames.

Each registration server is represented as an individ-
ual in the GV registry. The connect site for this individ-
ual is the internet address where clients of this registra-
tion server can connect to it. (The authenticator and
inbox site list in the entry are used also, as we will see
later.)

The groups of the GV registry are the registries them-
selves; reg is a registry if and only if there exists a group
reg.gv. The members of this group are the RNames of
the registration servers that contain the registry. The GV
registry is represented this way too. Since the GV registry
is in every registration server, the membership set for
gv.gv includes the RNames of all registration servers.

5.2 Message Server Names
Each message server is represented as an individual

in the MS registry (for message servers). The connect
site in this entry is the internet address where clients of
this message server can connect to it. (The authenticator
and inbox site list in the entry are used also, as we will
see later.) It is message server RNames that appear in
individuals' inbox site lists.

A group in the MS registry, Maildrop.ms, contains as
members some subset (usually, but not necessarily, all)
of the message server RNames. This group is used to
find a message server that will accept a message for
delivery.

5.3 Resource Location
The registration data base is used to locate resources.

In general, a service is represented as a group in the data

base; servers are individuals. The members of the group
are the RNames of the servers offering the service; the
connect sites of the individuals are the internet addresses
for the servers. To contact an instance of the service, a
client uses the GrapevineUser package to obtain the
membership of the group and then to obtain the connect
site of each member. The client then may choose among
these addresses, for example, on the basis of closeness
and availability.

The GrapevineUser package employs such a resource
location strategy to find things in the distributed regis-
tration data base. Assume for a moment that there is a
way of getting the internet address of some operational
registration server, say Cabernet.gv. GrapevineUser can
find the internet addresses of those registration servers
that contain the entry for RName f .r by connecting to
Cabernet.gv and asking it to produce the membership of
r.gv. GrapevineUser can pick a particular registration
server to use by asking Cabernet.gv to produce the con-
nect site for each server in r.gv and attempting to make
a connection until one responds. If f.r is a valid name,
then any registration server in r.gv has the entry for it.
At this point GrapevineUser can extract any needed
information from the entry off.r, for example, the inbox
site list.

Similarly, GrapevineUser can obtain the internet
addresses of message servers that are willing to accept
messages for delivery by using this resource location
mechanism to locate the servers in the group
MailDrop.ms. Any available server on this list will do.

In practice, these resource location algorithms are
streamlined so that although the general algorithms are
very flexible, the commonly occurring cases are handled
with acceptable efficiency. For example, a client may
assume initially that any registration server contains the
data base entry for a particular name; the registration
server will return the requested information or a name
not found error if this registration server knows the
registry, and otherwise will return a wrong server error.
To obtain a value from the registration data base a client
can try any registration server; only in the case of a
wrong server response does the client need to perform the
full resource location algorithm.

We are left with the problem of determining the
internet address of some registration server in order to
get started. Here it is necessary to depend on some more
primitive resource location protocol. The appropriate
mechanism depends on what primitive facilities are
available in the internet. We use two mechanisms. First,
on each local network is a primitive name lookup server,
which can be contacted by a broadcast protocol. The
name lookup server contains an infrequently updated
data base that maps character strings to internet ad-
dresses. We arrange for the fixed character string
GrapevineRServer to be entered in this data base and
mapped to the internet addresses of some subset of the
registration servers in the internet. The GrapevineUser
package can get a set of addresses of registration servers

267 Communications April 1982
of Volume 25
the ACM Number 4

using the broadcast name lookup protocol, and send a
distinctive packet to each of these addresses. Any acces-
sible registration server will respond to such packets, and
the client may then attempt to connect to whichever
server responds. Second, we broadcast a distinctive
packet on the directly connected local network. Again,
any accessible registration server will respond. This sec-
ond mechanism is used in addition to the first because,
when there is a registration server on the local network,
the second method gives response faster and allows a
client to fred a local registration server when the name
lookup server is down.

Part II. Grapevine as a Distributed System

Fig. 3. A Group from the Registration Data Base.

Prefix: [l-Apr-81 12:46:45, 3# 14], type = group, Laurellmp~.pa

Remark: (stamp=[22-Aug-80 23:42:14, 3#22]) Laurel Team

Members: Birrell.pa Brotz.pa, Horning.pa, Levin.pa, Schroeder.pa
Stamp-list: [23-Aug-80 17:27:45, 3#22], [23-Aug-80 17:42:35, 3#22],

[23-Aug-80 19:04:54, 3#22], [23-Aug-80 19:31:01, 3#22], [23-Aug-
80 20:50:23, 3#22]

DelMembers: Butterfield.pa
Stamp-list: [25-Mar-81 14:15:12, 3#14]

Owners: Brotz.pa
Stamp-list: [22-Aug-80 23:43:09, 3# 14]
DelOwners: none
Stamp-list: null

Friends: LaurellmpT.pa
Stamp-list: [1-Apr-81 12:46:45, 3# 14]
DelFriends: none
Stamp-list: null

6. Updating the Registration Data Base

The choice of methods for managing the distributed
registration data base was largely determined by the
requirement that Grapevine provide highly available,
decentralized administrative functions. Administrative
functions are performed by changing the registration
data base. Replication of this data base makes high
availability of administrative functions possible. An in-
appropriate choice of the method for ensuring the con-
sistency of copies of the data, however, might limit this
potential high availability. In particular, if we demanded
that data base updates be atomic across all servers, then
most servers would have to be accessible before any
update could be started. For Grapevine, the nature of
the services dependent on the registration data allows a
looser definition of consistency that results in higher
availability of the update function. Grapevine guarantees
only that the copies of a registration data base entry
eventually will have the same new value following an
update to one of them. If all servers containing copies
are up and can communicate with one another, conver-
gence will occur within a few minutes at most. While an
update is converging, clients may detect inconsistency by
reading the value of an entry from several servers.

6.1 Representation
The value for each entry in the registration data base

is represented mainly as a collection of lists. The mem-
bership set of a group is one such list. Each list is
represented as two sublists of items, called the active
sublist and the deleted sublist. An item consists of a string
and a timestamp. A particular string can appear only
once in a list, either in the active or the deleted sublist.
A timestamp is a unique identifier whose most significant
bits are a time and least significant bits an internet
address. The time is that perceived by the server that
placed the item in the list; the address is that server's.
Because a particular server never includes the same time
in two different timestamps, all timestamps from all
servers are totally ordered. 4

For example, Fig. 3 presents the complete entry for
a group named "Laurellmpl ' .pa" from the registration
data base as it appeared in early April 1981. There are
three such lists in this entry: the membership set labeled
members and two access control lists labeled owners and
friends (see Sec. 6.5 for the semantics of these). There
are five current members followed by the corresponding
five timestamps, and one deleted member followed by
the corresponding timestamp. The owners and friends
lists each contain one name and no deletions are recorded
from either.

A registration data base entry also contains a version
timestamp. This timestamp, which has the same form as
an item timestamp, functions as an entry's version num-
ber. Whenever anything in an entry changes the version
timestamp increases in value, usually to the maximum
of the other timestamps in the entry. When interrogating
the data base, a client can compare the version timestamp
on which it based some cached information with that in
the data base. If the cached timestamp matches then the
client is saved the expense of obtaining the data base
value again and recomputing the cached information.
The version timestamp appears in the prefix line in Fig.
3.

6.2 Primitive Operations
Grapevine uses two primitive operations on the lists

in a registration data base entry. An update operation
can add or delete a list item. To add/delete the string s
to / f rom a list, any item with the matching string in either
of the sublists first is removed. Then a timestamp t is
produced from the server's internet address and clock.
Finally the item (s, t) is added to the active/deleted
sublist. A merge operation combines two versions of a
complete list to produce a new list with the most recent
information from both. Each string that appears in either

4 The item timestamps in the active sublist are used to imply the
preference order for the inbox site list in an individual's entry; older
items are preferred. Thus, deleting then adding a site name moves it to
the end of the preference ordering.

Communications April 1982
of Volume 25
the ACM Number 4

version will appear precisely once in the result. Each
string will be in the active or deleted sublist of the result
according to the largest timestamp value associated with
that string in either version. That largest timestamp value
also provides the timestamp for the string in the result.
Keeping the sublists sorted by string value greatly in-
creases the speed with which the merge can be per-
formed. The update and merge operations are atomic in
each particular server.

6.3 Propagation
The administrative interface to Grapevine is pro-

vided by client software running in an administrator's
computer. To make a change to the data of any registry,
a client machine uses the resource location facilities of
the GrapevineUser package to find and connect to some
registration server that knows about that registry. That
registration server performs an update operation on the
local copy of an entry. Once this update has been com-
pleted the client can go about its other business. The
server propagates the change to the replicas of the entry
in other servers. The means used to propagate the change
is Grapevine's delivery service itself, since it gives a
guarantee of delivery and provides buffering when other
servers are temporarily inaccessible. As described in Sec.
5.1, the members of the group that represent a registry
are the registration servers that contain a copy of the
data for that registry. Thus, if the change is to an entry
in the reg registry, the accepting server sends a change
message to the members, other than itself, of the distri-
bution list reg.gv. A change message contains the name
of the affected entry and the entire new value for the
entry. Registration servers poll their inboxes for new
messages every 30 seconds. When a change message is
received by a server it uses merge operations to combine
the entry from the change message with its own copy.

With this propagation algorithm, the same t'mal state
eventually prevails everywhere. When a client makes
multiple updates to an entry at the same server, a com-
patible sequence of entry values will occur everywhere,
even if the resulting change messages are processed in
different orders by different servers. If two administra-
tors perform conflicting updates to the data base such as
adding and removing the same member of a group,
initiating the updates at different servers at nearly the
same time, it is hard to predict which one of them will
prevail; this appears to be acceptable, since the admin-
istrators presumably are not communicating with each
other outside the system. Also, since copies will be out of
step until the change messages are received and acted
upon, clients must be prepared to cope with transient
inconsistencies. The algorithms used by clients have to
be convergent in the sense that an acceptable result will
eventually ensue even if different and inconsistent ver-
sions of the registration data appear at various stages in
a computation. The message delivery algorithms have
this property. Similar update propagation techniques
have been proposed by others who have encountered

269

situations that do not demand instantaneous consistency
[10, 13].

If deleted items were never removed from an entry,
continued updates would cause the data base to grow.
Deleted items are kept in an entry so that out-of-order
arrival of change messages involving addition followed
by deletion of the same string will not cause the wrong
final state. Deleted items also provide a record of recent
events for use by human administrators. We declare an
upper bound of 14 days upon the clock asynchrony
among the registration servers, on message delivery de-
lay, and on administrative hindsight. The Grapevine
servers each scan their local data base once a day during
inactive periods and purge all deleted items older than
the bound.

If a change message gets destroyed because of a
software bug or equipment failure, there is a danger that
a permanent inconsistency will result. Since a few de-
stroyed messages over the life of the system are inevita-
ble, we must provide some way to resynchronize the data
base. At one point we dealt with this problem by detect-
ing during the merge operation whether the local copy
of the entry contained information that was missing from
the incoming copy. Missing information caused the
server to send the result of the merge in a change message
to all servers for the registry. While this "anti-entropy"
mechanism tended to push the data base back into a
consistent state, the effect was too haphazard to be useful;
errors were not corrected until the next change to an
entry. Our present plan for handling long-term incon-
sistencies is for each registration server periodically, say
once a night, to compare its copy of the data base for a
registry with another and to use merges to resolve any
inconsistencies that are discovered. The version time-
stamp in each entry makes this comparison efficient: if
two version timestamps are equal then the entries match.
Care must be taken that the comparisons span all regis-
tration servers for a registry, or else disconnected regions
of inconsistency can survive.

6.4 Creating and Deleting Names
The rule that the latest timestamp wins does not deal

adequately with the creation of new names. If two ad-
ministrators connect to two different registration servers
at about the same time and try to create a new data base
entry with the same name, it is likely that both will
succeed. When this data base change propagates, the
entry with the latest time timestamp will prevail. The
losing administrator may be very surprised, if he ever
fmds out. Because the later creation could be trapped in
a crashed registration server for some time, an adminis-
trator could never be sure that his creation had won. For
name creation we want the earlier creation to prevail. To
achieve this effect, we faced the possibility of having to
implement one of the known and substantial algorithms
for atomic updates to replicated databases [3], which
seemed excessive, or of working out a way to make all
names unique by appending a hidden timestamp, which

Communications April 1982
of Volume 25
the ACM Number 4

seemed complex. We instead fell back on observations
about the way in which systems of this nature are used.
For each registry there is usually some human-level
centralization of name creation, if only to deal with
questions of suitability of RNames (not having a junior
clerk preempt the RName which everyone would asso-
ciate with the company president). We consider this
centralization enough to solve the problem. Note that
there is no requirement that a particular server be used
for name creation: there is no centralization at the ma-
chine level.

Deleting names is straightforward. A deleted entry is
marked as such and retained in the data base with a
version timestamp. Further updates to a deleted entry
are not allowed. Recreation of a deleted entry is not
allowed. Sufficiently old deleted entries are removed
from the data base by the purging process described in
Sec. 6.3.

6.5 Access Controls
An important aspect of system administration is con-

trol of who can make which administrative changes. To
address this need we associate two access control lists
with each group: the owners list and the f r iends list. These
lists appear in the example entry in Fig. 3. The interpre-
tation of these access lists is the responsibility of the
registration server. For ordinary groups the conventions
are as follows: membership in the owners list confers
permission to add or remove any group member, owner,
or friend; membership in the friends list confers permis-
sion to add or remove oneself. The names in the owners
and friends lists may themselves be the names of groups.
Quite separately, clients of the registration server have
freedom to use membership in groups for access control
purposes about which the registration server itself knows
nothing at all. The owners and friends lists on the groups
that represent registries are used to control name creation
and deletion within registries; these lists also provide the
default access controls on groups whose owners list is
empty. While we have spent some time adjusting the
specific semantics of the Grapevine access controls, we
do not present further details here.

6.6 Other Consequences of Changes
The registration servers and message servers are nor-

mal clients of one another's services, with no special
relationship. Registration servers use message server de-
livery functions and message servers use the registration
service to authenticate clients, locate inboxes, etc. This
view, however, is not quite complete. If a change is made
to the inbox locations of any individual, notice has to be
given to all message servers that are removed, so they
can redeliver any messages for that individual buffered
in local inboxes. Notice is given by the registration server
delivering a message to the message servers in question
informing them of the change. Correctness requires that
the last registration server that changes its copy of the

entry emit the message; we achieve this effect by having
each registration server emit such a message as the
change is made. A message server receiving an inbox
removal message simply redelivers all messages in the
affected inbox. Redelivery is sufficient to rebuffer the
messages in the proper server. In the system as imple-
mented a simplification is made; inbox removal messages
are sent to all inbox sites for the affected individual, not
just to removed sites. While this may appear to be
wasteful, it is most unusual for any site other than the
primary one to have anything to redeliver.

Other registration service clients that use the registra-
tion data base to control resource bindings may also
desire notification of changes to certain entries. A general
notification facility would require allowing a notification
list to be associated with any data base entry. Any change
to an entry would result in a message being sent to the
RNames on its notification list. We have not provided
this general facility in the present implementation, but
would do so if the system were reimplemented.

7. Finding an Inbox Site

The structure and distribution of the Grapevine reg-
istration data base are quite complex, with many indi-
rections. Algorithms for performing actions based on this
data base should execute reliably in the face of admin-
istrative changes to the registration data base (including
those which cause dynamic reconfiguration of the sys-
tem) and multiple servers that can crash independentlY.
In their full generality such algorithms are expensive to
execute. To counter this, we have adopted a technique
of using caches and hints to optimize these algorithms.
By cache we mean a record of the parameters and results
of previous calculations. A cache is useful if accessing it
is much faster than repeating the calculation and fre-
quently produces the required value. By hint we mean a
value that is highly likely to be correct and that is faster
to check than to recalculate. To illustrate how caches
and hints can work, we describe here in some detail how
the message server caches hints about individuals' inbox
sites.

The key step in the delivery process is mapping the
name of an individual receiving a message to the pre-
ferred inbox site. The mapping depends upon the current
state of the registration data base and the availability of
particular message servers. To make this mapping pro-
cess as efficient as possible, each message server main-
tains an inbox site cache that maps RNames of individ-
uals to a hint for the currently preferred inbox site. Each
message server also maintains a down server list contain-
ing the names of message servers that it believes to be
inaccessible at present. A message server is placed on
this list when it does not accept connections or fails
during a connection. The rules for using the inbox site
cache to determine the preferred message server for a
recipient I are:

270 Communications April 1982
of Volume 25
the ACM Number 4

1. If an entry for I is in the cache and the site indicated
for I in the cache is not on the down server list, then
use that site;
Otherwise get the inbox site list for 1 from the
registration service; cache and return for use the first
site not on the down server list; if the selected site is
not first on the list, mark the entry as "secondary."

There has to be a rule for removing message servers
from the down server list; this happens when the server
shows signs of life by responding to a periodic single
packet poll.

When a message server is removed from the down
server list, the inbox site cache must be brought up to
date. Any entry that is marked as "secondary" and that
is not the revived site could be there as a substitute for
the revived site; all such entries are removed from the
cache. This heuristic removes from the cache a superset
of the entries whose preferred inbox site has changed
(but not all entries in the cache) and will cause recalcu-
lation of the preferred inbox site for those entries the
next time they are needed.

We noted earlier that changing an individual's inbox
site list may require a message server to redeliver all
messages in that individual's inbox, and that this redeliv-
ery is triggered by messages from registration servers to
the affected message servers. The same changes also can
cause site caches to become out-of-date. Part of this
problem is solved by having the inbox redelivery mes-
sages also trigger appropriate site cache flushing in the
servers that had an affected inbox. Unfortunately any
message server potentially has a site cache entry made
out-of-date by the change. Instead of sending a message
to all message servers, we correct the remaining obsolete
caches by providing feedback from one message server
to another when incorrect forwarding occurs as a result
of an out-of-date cache. Thus, the site cache really does
contain hints.

To summarize the cache flushing and redelivery ar-
rangements, then, registration servers remove servers
from an inbox site list and send messages to all servers
originally on the list. Each responds by removing any
entry for the subject individual from its site cache and
redelivering any messages found in that individual's
inbox. During this redelivery process, the cache entry
will naturally be refreshed. Other message servers with
out-of-date caches may continue to forward messages
here for the subject individual. Upon receiving any
message forwarded from another server, then, the target
message server repeats the inbox site mapping for each
name in the steering list. If the preferred site is indeed
this target message server, then the message is added to
the corresponding inbox. If not, then the target site does
the following:
1. Forwards the message according to the new mapping

result;
2. Sends a cache flush notification for the subject in-

dividual back to the server that incorrectly forwarded
the message here.

.

The cache flush notification is a single packet sent un-
reliably: if it fails to arrive, another one will be provoked
in due course. This strategy results in the minimum of
cache flush notifications being sent--one to each mes-
sage server whose cache actually needs attention, sent
when the need for attention has become obvious. This
mechanism is more economical than the alternative of
sending cache flush notifications to all message servers,
and even if that were done it would still be necessary to
cope with the arrival of messages at old inbox sites.

8. System Configuration

As described in Sec. 5, the configuration of the
Grapevine system is controlled by its registration data
base. Various entries in the data base define the servers
available to Grapevine and the ways in which the data
and functions of Grapevine are distributed among them.
We now consider procedures for reconfiguring Grape-
vine.

8.1 Adding and Deleting Registry Replicas
The set of registration servers that contain some

registry is defined by the membership set for the corre-
sponding group in the GV registry. When a change
occurs to this membership set, the affected server(s) need
to acquire or discard a copy of the registry data. To
discover such changes, each registration server simply
monitors all change messages for groups in the GV
registry, watching for additions or deletions of its own
name. A registration server responds to being deleted by
discarding the local replica of the registry. With the
present implementation, a registration server ignores
being added to a registry site list. Responding to a
registry addition in the obvious way- -by connecting to
another registration server for the registry and retrieving
the registry data-- is not sufficient. Synchronization
problems arise that can lead to the failure to send change
messages to the added server. Solving these problems
may require the use of global locks, but we would prefer
a solution more compatible with the looser synchroni-
zation philosophy of Grapevine. For the present obtain-
ing a registry replica is triggered manually, after waiting
for the updates to the GV registry to propagate and after
ensuring that other such reconfigurations are not in
progress.

8.2 Creating Servers
Installing a new Grapevine computer requires creat-

ing a new registration server and a new message server.
To create the new registration server named, say, Zinfan-
del.gv, a system administrator first creates that individual
(with password) in the registration data base, and gives
it a connect site that is the internet address of the new
computer. Next, Zinfandel.gv is added to the membership
set of all registries that are to be recorded in this new
registration server. To create the new message server

271 Communications April 1982
of Volume 25
the ACM Number 4

named, say, Zinfandel.ms, the administrator creates that
individual with the same connect site, then adds Zinfan-
del.ms to MailDrop.ms. Both servers are assigned inbox
sites.

Once the data base changes have been made, the
registration and message servers are started on the new
computer. The first task for each is to determine its own
name and password so that it may authenticate itself to
the other Grapevine servers. A server obtains its name
by noting its own internet address, which is always
available to a machine, then consulting the data base in
a different registration server to determine which server
is specified to be at that address: the registration server
looks for a name in the group gv.gv, the message server
looks for a name in the group MailDrop.ms. Having
found its name, the server asks a human operator to type
its password; the operator being able to do this correctly
is the fundamental source of the server's authority. The
server verifies its password by the authentication proto-
col, again using a registration server that is already in
operation, and then records its name and password on
its own disk. The new registration server then consults
some other registration server to obtain the contents of
the GV registry in order to determine which groups in
the GV registry contain its name: these specify which
registries the new server should contain. It then contacts
appropriate other servers to obtain copies of the data
base for these registries. Because the new server can
authenticate itself as an individual in the GV registry,
other registration servers are willing to give it entire data
base entries, including individuals' passwords.

Obtaining the registry replicas for the new registra-
tion server suffers from the same synchronization prob-
lems as adding a registry replica to an existing server.
We solve them the same way, by waiting for the admin-
istrative updates to the GV registry to propagate before
starting the new computer and avoiding other simulta-
neous reconfigurations.

8.3 Stopping and Restarting Servers
Stopping a server is very easy. Grapevine computers

can be stopped without disturbing any disk write in
progress. The message and registration servers are pro-
grammed so that, when interrupted between disk page
writes, they can be restarted without losing any perma-
nent information. While a message or registration server
is not running, messages for it accumulate in its inboxes
in message servers elsewhere, to be read after it restarts.

Whenever a message and registration server restart,
each verifies its name and password by consulting other
servers, and verifies that its internet address corresponds
to the connect site recorded for it in the data base; if
necessarry it changes the connect site recorded in the
data base. Updating the connect site allows a server to
be moved to a new machine just by moving the contents
of the disk. After restarting, a registration server acts on
all accumulated data base change messages before de-
claring itself open for business.

272

Using the internet, it is possible, subject to suitable
access controls, to load a new software version into a
remote running Grapevine computer, stop it, and restart
it with the new version.

8.4 Other Reconfigurations
One form of reconfiguration of the system requires

great care: changing the location of inbox sites for a
registration server. Unless special precautions are taken,
the registration server may never encounter the change
message telling it about a new inbox site, because that
message is waiting for it at the new site. A similar
problem arises when we change the internet address of
a message server that contains a registration server's
inbox. Restrictions on where such data base changes can
be initiated appear to be sufficient to solve these prob-
lems, but we have not automated them. Although this
resolution of this problem is somewhat inelegant, the
problem is not common enough to justify special mech-
anisms.

Part III. Conclusions

9. Present State

The Grapevine system was first made available to a
limited number of clients during 1980. At present (Fall
1981) it is responsible for most of the mail traffic and
distribution lists on the Xerox research internet. There
are five dedicated Grapevine computers, each containing
a registration server and a message server. The computers
are physically distributed among northern and southern
California and New York. The registration data base
contains about 1500 individuals and 500 groups, divided
mainly into four major registries; there are two other
registries used by nonmail clients of the registration
service, plus the GV and MS registries. The total message
traffic amounts to some 2500 messages each working
day, with an average of 4 recipients each; the messages
average about 500 characters, and are almost exclusively
text.

The registration data base also is used for authenti-
cation and configuration of various file servers, for au-
thentication and access control in connection with main-
tenance of the basic software and data bases that support
our internet gateways, and for resource location associ-
ated with remote procedure call binding. The registration
data base is administered almost exclusively by non-
technical staff. There are at least three separate computer
mail interface programs in use for human-readable mail.
Most mail system users add and delete themselves from
various distribution lists, removing this tiresome job from
administrative staff.

The Grapevine registration and message servers are
programmed in Mesa [7]. They contain some 33,000 lines

Communications April 1982
of Volume 25
the ACM Number 4

of custom written code, together with standard packages
for runtime support and PUP-level communications. The
Grapevine computers are Altos [12] with 128K bytes
of main memory and 5M bytes of disk storage. A running
Grapevine computer has between 40 and 70 Mesa pro-
cesses [4], and can handle 12 simultaneous connections.
The peak load of messages handled by a single message
server so far exceeds 150 per hour and 1000 messages
per day. One server handled 30,000 messages while
running for 1000 hours. The maximum number of pri-
mary inboxes that have been assigned to a server is 380.

10. Discussion

The fundamental design decision to use a distributed
data base as the basis for Grapevine's message delivery
services has worked out well. The distributed data base
allowed us to meet the design goals specified in Sec. 2,
and has not generated operational difficulties. The dis-
tributed update algorithms that trade atomic update for
increased availability have had the desired effect. The
temporary inconsistencies do not bother the users or
administrators and the ability to continue data base
changes while the internet is partitioned by failed long-
distance links is exercised enough to be appreciated.

In retrospect, our particular implementation of the
data base for Grapevine was too inflexible. As the use of
the system grew, the need for various extensions to the
values recorded in individual and group entries has
become apparent. Reformatting the existing distributed
data base to include space for the new values is difficult
operationally. In a new implementation we would con-
sider providing facilities for dynamic extension of the
value set in each entry. With value set extension, how-
ever, we would keep the present update algorithm and
its loose consistency guarantees. These guarantees are
sufficient for Grapevine's functional domain, and their
simplicity and efficiency are compelling. There is a re-
quirement in a message system for some data base which
allows more flexible descriptions of recipients or distri-
bution lists to be mapped onto message system RNames
(such as the white or yellow page services of the tele-
phone system), but in our view that service falls outside
of Grapevine's domain. A system which provides more
flexibility in this direction is described in [2].

Providing all naming semantics by indirection
through the registration data base has been very power-
ful. It has allowed us to separate the concept of naming
a recipient from that of addressing the recipient. For
example, the fact that a recipient is named Birrell.pa says
nothing about where his messages should be sent. This
is in contrast to many previous message systems. Indi-
rections also provide us with flexibility in configuring
the system.

One feature which recurs in descriptions of Grape-
vine is the concept of a "group" as a generalization of a

273

distribution list. Our experience with use of the system
confirms the utility of use of the single "group" mecha-
nism for distribution lists, access control lists, services,
and administrative purposes.

Clients other than computer mail interfaces are be-
ginning to use Grapevine's naming, authentication, and
resource location facilities. Their experience suggests that
these are an important set of primitives to provide in an
internet for constructing other distributed applications.
Message transport as a communication protocol for data
other than textual messages is a useful addition to our
set of communication protocols. The firm separation
between Grapevine and its clients was a good decision;
it allows us to serve a wide variety of clients and to give
useful guarantees to our clients, even if the clients operate
in different languages and in different computing envi-
ronments.

At several points in Grapevine, we have defined and
implemented mechanisms of substantial versatility. As a
consequence, the algorithms to implement these mecha-
nisms in their full generality are expensive. The tech-
niques of caches and hints are powerful tools that allow
us to regain acceptable efficiency without sacrificing
"correct" structure. The technique of adding caches and
hints to a general mechanism is preferable to the alter-
native style of using special case short cut mechanisms
whose existence complicates algorithmic invariants.

Grapevine was built partly to demonstrate the asser-
tion that a properly designed replicated system can pro-
vide a very robust service. The chance of all replicas
being unavailable at the same time seems low. Our
experience suggests that unavailability due to hardware
failure follows this pattern. No more than one Grapevine
computer at a time has ever been down because of a
hardware problem. On the other hand, some software
bugs do not exhibit this independence. Generally all
servers are running the same software version. If a client's
action provokes a bug that causes a particular server to
fail, then in taking advantage of the service replication
that client may cause many servers to fail. A client once
provoked a protocol bug when attempting to present a
message for delivery. By systematically trying again at
each server in MailDrop.ms, that client soon crashed all
the Grapevine computers. Another widespread failure
occurred as a result of a malformed registration data
base update propagating to all servers for a particular
registry. We conclude that it is hard to design a replicated
system that is immune from such coordinated software
unreliability.

Our experience with Grapevine has reinforced our
belief in the value of producing "real" implementations
of systems to test ideas. At several points in the imple-
mentation, reality forced us to rethink initial design
proposals: for example, the arrangements to ensure long-
term consistency of the data base in the presence of lost
messages. There is no alternative ~o a substantial user
community when investigating how the design performs
under heavy load and incremental expansion.

Communications April 1982
of Volume 25
the ACM Number 4

Acknowledgments. Many people have contributed to
the success of the Grapevine project. Bob Taylor and
Bob Metcalfe recognized early the need for work on
computer mail systems and encouraged us to develop
Grapevine. Ben Wegbreit participated in the initial sys-
tem design effort. Many colleagues have helped the
project in various ways: Dave Boggs, Doug Brotz, Jeremy
Dion, Jim Homing, Robert Kierr, and Ed Taft deserve
special mention. Jerry Saltzer and several anonymous
referees have made valuable commentaries on earlier
drafts of the paper.

Operating Systems
Anita K. Jones

Editor

Cryptographic Sealing for
Information Secrecy and
Authentication
David K. Gifford
Stanford University and
Xerox Palo Alto Research Center

Received 9/81; revised 11/81; accepted 12/81

References
1. Boggs, D.R., Shoch, J.F., Taft, E.A., and Metcalfe, R.M. PUP:
An internetwork architecture. IEEE Trans. on Communications 28, 4
(April 1980), 612-634.
2. Dawes, N., Harris, S., Magoon, M., Maveety, S., and Petty, D.
The design and service impact of COCOS--An electronic office
system. In Computer Message Systems. R.P. Uhlig (Ed.) North-
Holland, New York, 1981, pp 373-384.
3. Gifford, D.K. Weighted voting for replicated data. In Proc. 7th
Symposium on Operating Systems Principles. (Dec. 1979), ACM Order
No. 534 790, pp 150-162.
4. Lampson, B.W., and Redell, D.D. Experience with processes and
monitors in Mesa. Comm. ACM 23, 2 (Feb. 1980), 105-117.
5. Levin, R., and Schroeder, M.D. Transport of electronic messages
through a network. Telelnformatics 79, North Holland, 1979, pp. 29-
33; also available as Xerox Palo Alto Research Center Technical
Report CSL-79-4.
6. Metcalfe, R.M., and Boggs, D.R. Ethernet: Distributed packet
switching for local computer networks. Comm. A CM 19, 7 (July
1976), 395-404.
7. Mitchell, J.G., Maybury, W., and Sweet, R. Mesa language
manual (Version 5.0) Technical Report CSL-79-3, Xerox Palo Alto
Research Center, 1979.
8. National Bureau of Standards, Data encryption standard. Federal
Information Processing Standards 46, Jan. 1977.
9. Needham, R.M., and Schroeder, M.D. Using encryption for
authentication in large networks of computers. Comm. A CM 21, 12
(Dec. 1978), 993-999.
10. Rothnie, J.B., Goodman, N., and Bernstein, P.A. The redundant
update methodology of SDD-1: A system for distributed databases
(The fully redundant case). Computer Corporation of America, June
1977.
I t . Shoch, J.F. Internetwork naming, addressing and routing. In
Proc. 17th IEEE Computer Society International Conference, Sept.
1978, IEEE Cat. No. 78 CH 1388-8C, pp 72-79.
12. Thacker, C.P., McCreight, E.M., Lampson, B.W., SprouU, R.F.,
and Boggs, D.R. Alto: A personal computer. In D.P. Siewiorek, C.G.
Bell, and A. Newell, Computer Structures: Principles and Examples.
(2nd Ed.) McGraw-Hill, New York 1981.
13. Thomas, R.H. A solution to the update problem for multiple
copy data base which used distributed control. Bolt, Beranek and
Newman Technical Report #3340, July 1976.

A new protection mechanism is described that pro-
vides general primitives for protection and authentica-
tion. The mechanism is based on the idea of sealing an
object with a key. Sealed objects are self-authenticating,
and in the absence of an appropriate set of keys, only
provide information about the size of their contents. New
keys can be freely created at any time, and keys can also
be derived from existing keys with operators that include
Key.And and Key-Or. This flexibility allows the protec-
tion mechanism to implement common protection mech-
anisms such as capabilities, access control lists, and
information flow control. The mechanism is enforced
with a synthesis of conventional cryptography, public-key
cryptography, and a threshold scheme.

CR Categories and Subject Descriptors: D.4.6 [Op-
erating Systems[: Security and Protection--access con-
trois, authentication, cryptographic controls, information
flow controls; E.3 IData]: Data Encryption--public-key
cryptosystems

General Term: Security
Additional Key Words and Phrases: cryptographic

sealing, seal, unseal, key, secrecy, conventional crypto-
systems

I. Introduction

In order to trust computers with sensitive information
it is necessary to take steps to ensure that information
stored in them will only be disclosed to authorized users.
Personal information is now routinely stored in com-
puters, and thus computer security is a necessary precon-
dition for privacy. In addition, it is widely recognized
that information can be sold as a product. In this case,
it is important to be able to restrict information access to
paying customers.

This research was supported in part by the Fannie and John Hertz
Foundation and by the Xerox Corporation.

Author's Present Address: David K. Gifford, Xerox Palo Alto
Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
© 1982 ACM 0001-0782/82/0400-0274 $00.75.

274 Communications April 1982
of Volume 25
the ACM Number 4

