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END-TO-END ARGUMENTS IN SYSTEM DESIGN


J.H. Saltzer, D.P. Reed and D.D. Clark*


M.I.T. Laboratory for Computer Science


This paper presents a design principle that helps guide placement of functions among the
modules of a distributed computer system. The principle, called the end-to-end argument,
suggests that functions placed at low levels of a system may be redundant or of little
value when compared with the cost of providing them at that low level. Examples
discussed in the paper include bit error recovery, security using encryption, duplicate
message suppression, recovery from system crashes, and delivery acknowledgement. Low
level mechanisms to support these functions are justified only as performance
enhancements.


Introduction
Choosing the proper boundaries between functions is perhaps the primary activity of the
computer system designer. Design principles that provide guidance in this choice of function
placement are among the most important tools of a system designer. This paper discusses one
class of function placement argument that has been used for many years with neither explicit
recognition nor much conviction. However, the emergence of the data communication network as
a computer system component has sharpened this line of function placement argument by making
more apparent the situations in which and reasons why it applies. This paper articulates the
argument explicitly, so as to examine its nature and to see how general it really is. The argument
appeals to application requirements, and provides a rationale for moving function upward in a
layered system, closer to the application that uses the function. We begin by considering the
communication network version of the argument.


In a system that includes communications, one usually draws a modular boundary around the
communication subsystem and defines a firm interface between it and the rest of the system.
When doing so, it becomes apparent that there is a list of functions each of which might be
implemented in any of several ways: by the communication subsystem, by its client, as a joint
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venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:


The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)


We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.


End-to-end caretaking


Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:


1. At host A the file transfer program calls upon the file system to read the file from the disk,
where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.


2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.


3. The data communication network moves the packets from computer A to computer B.


4. At host B a data communication program removes the packets from the data communication
protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.


5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.


With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:


1. The file, though originally written correctly onto the disk at host A, if read now may contain
incorrect data, perhaps because of hardware faults in the disk storage system.


2. The software of the file system, the file transfer program, or the data communication system
might make a mistake in buffering and copying the data of the file, either at host A or host
B.


3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.


4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.
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5. Either of the hosts may crash part way through the transaction after performing an unknown
amount (perhaps all) of the transaction.


How would a careful file transfer application then cope with this list of threats? One approach
might be to reinforce each of the steps along the way using duplicate copies, timeout and retry,
carefully located redundancy for error detection, crash recovery, etc. The goal would be to reduce
the probability of each of the individual threats to an acceptably small value. Unfortunately,
systematic countering of threat two requires writing correct programs, which task is quite
difficult, and not all the programs that must be correct are written by the file transfer application
programmer. If we assume further that all these threats are relatively low in probability – low
enough that the system allows useful work to be accomplished – brute force countermeasures
such as doing everything three times appear uneconomical.


The alternate approach might be called "end-to-end check and retry". Suppose that as an aid to
coping with threat number one, stored with each file is a checksum that has sufficient redundancy
to reduce the chance of an undetected error in the file to an acceptably negligible value. The
application program follows the simple steps above in transferring the file from A to B. Then, as
a final additional step, the part of the file transfer application residing in host B reads the
transferred file copy back from its disk storage system into its own memory, recalculates the
checksum, and sends this value back to host A, where it is compared with the checksum of the
original. Only if the two checksums agree does the file transfer application declare the transaction
committed. If the comparison fails, something went wrong, and a retry from the beginning might
be attempted.


If failures really are fairly rare, this technique will normally work on the first try; occasionally a
second or even third try might be required; one would probably consider two or more failures on
the same file transfer attempt as indicating that some part of the system is in need of repair.


Now let us consider the usefulness of a common proposal, namely that the communication
system provide, internally, a guarantee of reliable data transmission. It might accomplish this
guarantee by providing selective redundancy in the form of packet checksums, sequence number
checking, and internal retry mechanisms, for example. With sufficient care, the probability of
undetected bit errors can be reduced to any desirable level. The question is whether or not this
attempt to be helpful on the part of the communication system is useful to the careful file transfer
application.


The answer is that threat number four may have been eliminated, but the careful file transfer
application must still counter the remaining threats, so it should still provide its own retries based
on an end-to-end checksum of the file. And if it does so, the extra effort expended in the
communication system to provide a guarantee of reliable data transmission is only reducing the
frequency of retries by the file transfer application; it has no effect on inevitability or correctness
of the outcome, since correct file transmission is assured by the end-to-end checksum and retry
whether or not the data transmission system is especially reliable.


Thus the argument: in order to achieve careful file transfer, the application program that performs
the transfer must supply a file-transfer-specific, end-to-end reliability guarantee – in this case, a
checksum to detect failures and a retry/commit plan. For the data communication system to go
out of its way to be extraordinarily reliable does not reduce the burden on the application
program to ensure reliability.


A too-real example


An interesting example of the pitfalls that one can encounter turned up recently at M.I.T.: One
network system involving several local networks connected by gateways used a packet checksum
on each hop from one gateway to the next, on the assumption that the primary threat to correct
communication was corruption of bits during transmission. Application programmers, aware of
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this checksum, assumed that the network was providing reliable transmission, without realizing
that the transmitted data was unprotected while stored in each gateway. One gateway computer
developed a transient error in which while copying data from an input to an output buffer a byte
pair was interchanged, with a frequency of about one such interchange in every million bytes
passed. Over a period of time many of the source files of an operating system were repeatedly
transferred through the defective gateway. Some of these source files were corrupted by byte
exchanges, and their owners were forced to the ultimate end-to-end error check: manual
comparison with and correction from old listings.


Performance aspects


It would be too simplistic to conclude that the lower levels should play no part in obtaining
reliability, however. Consider a network that is somewhat unreliable, dropping one message of
each hundred messages sent. The simple strategy outlined above, transmitting the file and then
checking to see that the file arrived correctly, would perform more poorly as the length of the file
increases. The probability that all packets of a file arrive correctly decreases exponentially with
the file length, and thus the expected time to transmit the file grows exponentially with file
length. Clearly, some effort at the lower levels to improve network reliability can have a
significant effect on application performance. But the key idea here is that the lower levels need
not provide "perfect" reliability.


Thus the amount of effort to put into reliability measures within the data communication system
is seen to be an engineering tradeoff based on performance, rather than a requirement for
correctness. Note that performance has several aspects here. If the communication system is too
unreliable, the file transfer application performance will suffer because of frequent retries
following failures of its end-to-end checksum. If the communication system is beefed up with
internal reliability measures, those measures have a performance cost, too, in the form of
bandwidth lost to redundant data and delay added by waiting for internal consistency checks to
complete before delivering the data. There is little reason to push in this direction very far, when
it is considered that the end-to-end check of the file transfer application must still be implemented
no matter how reliable the communication system becomes. The "proper" tradeoff requires
careful thought; for example one might start by designing the communication system to provide
just the reliability that comes with little cost and engineering effort, and then evaluate the residual
error level to insure that it is consistent with an acceptable retry frequency at the file transfer
level. It is probably not important to strive for a negligible error rate at any point below the
application level.


Using performance to justify placing functions in a low-level subsystem must be done carefully.
Sometimes, by examining the problem thoroughly, the same or better performance enhancement
can be achieved at the high level. Performing a function at a low level may be more efficient, if
the function can be performed with a minimum perturbation of the machinery already included in
the low-level subsystem, but just the opposite situation can occur – that is, performing the
function at the lower level may cost more – for two reasons. First, since the lower level
subsystem is common to many applications, those applications that do not need the function will
pay for it anyway. Second, the low-level subsystem may not have as much information as the
higher levels, so it cannot do the job as efficiently.


Frequently, the performance tradeoff is quite complex. Consider again the careful file transfer on
an unreliable network. The usual technique for increasing packet reliability is some sort of per-
packet error check with a retry protocol. This mechanism can be implemented either in the
communication subsystem or in the careful file transfer application. For example, the receiver in
the careful file transfer can periodically compute the checksum of the portion of the file thus far
received and transmit this back to the sender. The sender can then restart by retransmitting any
portion that arrived in error.
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The end-to-end argument does not tell us where to put the early checks, since either layer can do
this performance-enhancement job. Placing the early retry protocol in the file transfer application
simplifies the communication system, but may increase overall cost, since the communication
system is shared by other applications and each application must now provide its own reliability
enhancement. Placing the early retry protocol in the communication system may be more
efficient, since it may be performed inside the network on a hop-by-hop basis, reducing the delay
involved in correcting a failure. At the same time, there may be some application that finds the
cost of the enhancement is not worth the result but it now has no choice in the matter* . A great
deal of information about system implementation is needed to make this choice intelligently.


Other examples of the end-to-end argument


Delivery guarantees


The basic argument that a lower-level subsystem that supports a distributed application may be
wasting its effort providing a function that must by nature be implemented at the application
level anyway can be applied to a variety of functions in addition to reliable data transmission.
Perhaps the oldest and most widely known form of the argument concerns acknowledgement of
delivery. A data communication network can easily return an acknowledgement to the sender for
every message delivered to a recipient. The ARPANET, for example, returns a packet known as
"Request For Next Message" (RFNM)[1] whenever it delivers a message. Although this
acknowledgement may be useful within the network as a form of congestion control (originally
the ARPANET refused to accept another message to the same target until the previous RFNM
had returned) it was never found to be very helpful to applications using the ARPANET. The
reason is that knowing for sure that the message was delivered to the target host is not very
important. What the application wants to know is whether or not the target host acted on the
message; all manner of disaster might have struck after message delivery but before completion
of the action requested by the message. The acknowledgement that is really desired is an end-to-
end one, which can be originated only by the target application – "I did it", or "I didn't."


Another strategy for obtaining immediate acknowledgements is to make the target host
sophisticated enough that when it accepts delivery of a message it also accepts responsibility for
guaranteeing that the message is acted upon by the target application. This approach can
eliminate the need for an end-to-end acknowledgement in some, but not all applications. An end-
to-end acknowledgement is still required for applications in which the action requested of the
target host should be done only if similar actions requested of other hosts are successful. This
kind of application requires a two-phase commit protocol[5,10,15], which is a sophisticated end-
to-end acknowledgement. Also, if the target application may either fail or refuse to do the
requested action, and thus a negative acknowledgement is a possible outcome, an end-to-end
acknowledgement may still be a requirement.


Secure transmission of data


Another area in which an end-to-end argument can be applied is that of data encryption. The
argument here is threefold. First, if the data transmission system performs encryption and
decryption, it must be trusted to manage securely the required encryption keys. Second, the data
will be in the clear and thus vulnerable as it passes into the target node and is fanned out to the
target application. Third, the authenticity of the message must still be checked by the application.
If the application performs end-to-end encryption, it obtains its required authentication check, it


* For example, real time transmission of speech has tighter constraints on message delay than on bit-error rate.
Most retry schemes significantly increase the variability of delay.
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can handle key management to its satisfaction, and the data is never exposed outside the
application.


Thus, to satisfy the requirements of the application, there is no need for the communication
subsystem to provide for automatic encryption of all traffic. Automatic encryption of all traffic
by the communication subsystem may be called for, however, to ensure something else – that a
misbehaving user or application program does not deliberately transmit information that should
not be exposed. The automatic encryption of all data as it is put into the network is one more
firewall the system designer can use to ensure that information does not escape outside the
system. Note however, that this is a different requirement from authenticating access rights of a
system user to specific parts of the data. This network-level encryption can be quite
unsophisticated – the same key can be used by all hosts, with frequent changes of the key. No
per-user keys complicate the key management problem. The use of encryption for application-
level authentication and protection is complementary. Neither mechanism can satisfy both
requirements completely.


Duplicate message suppression


A more sophisticated argument can be applied to duplicate message suppression. A property of
some communication network designs is that a message or a part of a message may be delivered
twice, typically as a result of time-out-triggered failure detection and retry mechanisms operating
within the network. The network can provide the function of watching for and suppressing any
such duplicate messages, or it can simply deliver them. One might expect that an application
would find it very troublesome to cope with a network that may deliver the same message twice;
indeed it is troublesome. Unfortunately, even if the network suppresses duplicates, the
application itself may accidentally originate duplicate requests, in its own failure/retry
procedures. These application level duplications look like different messages to the
communication system, so it cannot suppress them; suppression must be accomplished by the
application itself with knowledge of how to detect its own duplicates.


A common example of duplicate suppression that must be handled at a high level is when a
remote system user, puzzled by lack of response, initiates a new login to a time-sharing system.
For another example, most communication applications involve a provision for coping with a
system crash at one end of a multi-site transaction: reestablish the transaction when the crashed
system comes up again. Unfortunately, reliable detection of a system crash is problematical: the
problem may just be a lost or long-delayed acknowledgement. If so, the retried request is now a
duplicate, which only the application can discover. Thus the end-to-end argument again: if the
application level has to have a duplicate-suppressing mechanism anyway, that mechanism can
also suppress any duplicates generated inside the communication network, so the function can be
omitted from that lower level. The same basic reasoning applies to completely omitted messages
as well as to duplicated ones.


Guaranteeing FIFO message delivery


Ensuring that messages arrive at the receiver in the same order they are sent is another function
usually assigned to the communication subsystem. The mechanism usually used to achieve such
first-in, first-out (FIFO) behavior guarantees FIFO ordering among messages sent on the same
virtual circuit. Messages sent along independent virtual circuits, or through intermediate
processes outside the communication subsystem may arrive in an order different from the order
sent. A distributed application in which one node can originate requests that initiate actions at
several sites cannot take advantage of the FIFO ordering property to guarantee that the actions
requested occur in the correct order. Instead, an independent mechanism at a higher level than the
communication subsystem must control the ordering of actions.
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Transaction management


We have now applied the end-to-end argument in the construction of the SWALLOW distributed
data storage system[15], where it leads to significant reduction in overhead. SWALLOW
provides data storage servers called repositories that can be used remotely to store and retrieve
data. Accessing data at a repository is done by sending it a message specifying the object to be
accessed, the version, and type of access (read/write), plus a value to be written if the access is a
write. The underlying message communication system does not suppress duplicate messages,
since a) the object identifier plus the version information suffices to detect duplicate writes, and
b) the effect of a duplicate read request message is only to generate a duplicate response, which is
easily discarded by the originator. Consequently, the low-level message communication protocol
is significantly simplified.


The underlying message communication system does not provide delivery acknowledgement
either. The acknowledgement that the originator of a write request needs is that the data was
stored safely. This acknowledgement can be provided only by high levels of the SWALLOW
system. For read requests, a delivery acknowledgement is redundant, since the response
containing the value read is sufficient acknowledgement. By eliminating delivery
acknowledgements, the number of messages transmitted is halved. This message reduction can
have a significant effect on both host load and network load, improving performance. This same
line of reasoning has also been used in development of an experimental protocol for remote
access to disk records[6]. The resulting reduction in path length in lower-level protocols was
important in maintaining good performance on remote disk access.


Identifying the ends
Using the end-to-end argument sometimes requires subtlety of analyis of application
requirements. For example, consider a computer communication network that carries some
packet voice connections, conversations between digital telephone instruments. For those
connections that carry voice packets, an unusually strong version of the end-to-end argument
applies: if low levels of the communication system try to accomplish bit-perfect communication,
they will probably introduce uncontrolled delays in packet delivery, for example, by requesting
retransmission of damaged packets and holding up delivery of later packets until earlier ones
have been correctly retransmitted. Such delays are disruptive to the voice application, which
needs to feed data at a constant rate to the listener. It is better to accept slightly damaged packets
as they are, or even to replace them with silence, a duplicate of the previous packet, or a noise
burst. The natural redundancy of voice, together with the high-level error correction procedure in
which one participant says "excuse me, someone dropped a glass. Would you please say that
again?" will handle such dropouts, if they are relatively infrequent.


However, this strong version of the end-to-end argument is a property of the specific application
– two people in real-time conversation – rather than a property, say, of speech in general. If one
considers instead a speech message system, in which the voice packets are stored in a file for
later listening by the recipient, the arguments suddenly change their nature. Short delays in
delivery of packets to the storage medium are not particularly disruptive so there is no longer any
objection to low-level reliability measures that might introduce delay in order to achieve
reliability. More important, it is actually helpful to this application to get as much accuracy as
possible in the recorded message, since the recipient, at the time of listening to the recording, is
not going to be able to ask the sender to repeat a sentence. On the other hand, with a storage
system acting as the receiving end of the voice communication, an end-to-end argument does
apply to packet ordering and duplicate suppression. Thus the end-to-end argument is not an
absolute rule, but rather a guideline that helps in application and protocol design analysis; one
must use some care to identify the end points to which the argument should be applied.
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History, and application to other system areas
The individual examples of end-to-end arguments cited in this paper are not original; they have
accumulated over the years. The first example of questionable intermediate delivery
acknowledgements noticed by the authors was the "wait" message of the M.I.T. Compatible
Time-Sharing System, which the system printed on the user's terminal whenever the user entered
a command[3]. (The message had some value in the early days of the system, when crashes and
communication failures were so frequent that intermediate acknowledgements provided some
needed reassurance that all was well.)


The end-to-end argument relating to encryption was first publicly discussed by Branstad in a
1973 paper[2]; presumably the military security community held classified discussions before
that time. Diffie and Hellman[4] and Kent[8] develop the arguments in more depth, and
Needham and Schroeder[11] devised improved protocols for the purpose.


The two-phase-commit data update protocols of Gray[5], Lampson and Sturgis[10] and Reed[13]
all use a form of end-to-end argument to justify their existence; they are end-to-end protocols that
do not depend for correctness on reliability, FIFO sequencing, or duplicate suppression within
the communication system, since all of these problems may also be introduced by other system
component failures as well. Reed makes this argument explicitly in the second chapter of his
Ph.D. thesis on decentralized atomic actions[14].


End-to-end arguments are often applied to error control and correctness in application systems.
For example, a banking system usually provides high-level auditing procedures as a matter of
policy and legal requirement. Those high-level auditing procedures will uncover not only high-
level mistakes such as performing a withdrawal against the wrong account, it will also detect
low-level mistakes such as coordination errors in the underlying data management system.
Therefore a costly algorithm that absolutely eliminates such coordination errors may be arguably
less appropriate than a less costly algorithm that just makes such errors very rare. In airline
reservation systems, an agent can be relied upon to keep trying, through system crashes and
delays, until a reservation is either confirmed or refused. Lower level recovery procedures to
guarantee that an unconfirmed request for a reservation will survive a system crash are thus not
vital. In telephone exchanges, a failure that could cause a single call to be lost is considered not
worth providing explicit recovery for, since the caller will probably replace the call if it
matters[7]: All of these design approaches are examples of the end-to-end argument being
applied to automatic recovery.


Much of the debate in the network protocol community over datagrams, virtual circuits, and
connectionless protocols is a debate about end-to-end arguments. A modularity argument prizes a
reliable, FIFO sequenced, duplicate-suppressed stream of data as a system component that is easy
to build on, and that argument favors virtual circuits. The end-to-end argument claims that
centrally-provided versions of each of those functions will be incomplete for some applications,
and those applications will find it easier to build their own version of the functions starting with
datagrams.


A version of the end-to-end argument in a non-communication application was developed in the
1950's by system analysts whose responsibility included reading and writing files on large
numbers of magnetic tape reels. Repeated attempts to define and implement a "reliable tape
subsystem" repeatedly foundered, as flaky tape drives, undependable system operators, and
system crashes conspired against all narrowly focused reliability measures. Eventually, it became
standard practice for every application to provide its own application-dependent checks and
recovery strategy; and to assume that lower-level error detection mechanisms at best reduced the
frequency with which the higher-level checks failed. As an example, the Multics file backup
system[17], even though it is built on a foundation of a magnetic tape subsystem format that
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provides very powerful error detection and correction features, provides its own error control in
the form of record labels and multiple copies of every file.


The arguments that are used in support of reduced instruction set computer (RISC) architecture
are similar to end-to-end arguments. The RISC argument is that the client of the architecture will
get better performance by implementing exactly the instructions needed from primitive tools; any
attempt by the computer designer to anticipate the client's requirements for an esoteric feature
will probably miss the target slightly and the client will end up reimplementing that feature
anyway. (We are indebted to M. Satyanarayanan for pointing out this example.)


Lampson, in his arguments supporting the "open operating system,"[9] uses an argument similar
to the end-to-end argument as a justification. Lampson argues against making any function a
permanent fixture of lower-level modules; the function may be provided by a lower-level module
but it should always be replaceable by an application's special version of the function. The
reasoning is that for any function you can think of, at least some applications will find that by
necessity they must implement the function themselves in order to meet correctly their own
requirements. This line of reasoning leads Lampson to propose an "open" system in which the
entire operating system consists of replaceable routines from a library. Such an approach has only
recently become feasible in the context of computers dedicated to a single application. It may be
the case that the large quantity of fixed supervisor function typical of large-scale operating
systems is only an artifact of economic pressures that demanded multiplexing of expensive
hardware and therefore a protected supervisor. Most recent system "kernelization" projects, in
fact, have focused at least in part on getting function out of low system levels[16,12]. Though
this function movement is inspired by a different kind of correctness argument, it has the side
effect of producing an operating system that is more flexible for applications, which is exactly
the main thrust of the end-to-end argument.


Conclusions
End-to-end arguments are a kind of "Occam's razor" when it comes to choosing the functions to
be provided in a communication subsystem. Because the communication subsystem is frequently
specified before applications that use the subsystem are known, the designer may be tempted to
"help" the users by taking on more function than necessary. Awareness of end-to-end arguments
can help to reduce such temptations.


It is fashionable these days to talk about "layered" communication protocols, but without clearly
defined criteria for assigning functions to layers. Such layerings are desirable to enhance
modularity. End-to-end arguments may be viewed as part of a set of rational principles for
organizing such layered systems. We hope that our discussion will help to add substance to
arguments about the "proper" layering.
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