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A VAXcluster is a highly available and extensible configuration of VAX computers that operate as a 
single system. To achieve performance in a multicomputer environment, a new communications 
architecture, communications hardware, and distributed software were jointly designed. The software 
is a distributed version of the VAX/VMS operating system that uses a distributed lock manager to 
synchronize access to shared resources. The communications hardware includes a 70 megabit per 
second message-oriented interconnect and an interconnect port that performs communications tasks 
traditionally handled by software. Performance measurements show this structure to be highly 
efficient, for example, capable of sending and receiving 3000 messages per second on a VAX-11/780. 
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1. INTRODUCTION 


Contemporary multicomputer systems typically lie at the ends of the spectrum 
delimited by tightly-coupled multiprocessors and loosely-coupled distributed 
systems. Loosely-coupled systems are characterized by physical separation of 
processors, low-bandwidth message-oriented inter-processor communication, and 
independent operating systems [l, 2, 5, 131. Tightly-coupled systems are char- 
acterized by close physical proximity of processors, high-bandwidth communi- 
cation through shared memory, and a single copy of the operating system 
[7,9, 151. 


An intermediate approach taken at Digital Equipment Corporation was to 
build a “closely-coupled” structure of standard VAX computers [16], called 
VAXc1uster.s. By closely-coupled, we imply that a VAXcluster has characteristics 
of both loosely- and tightly-coupled systems. On one hand, a VAXcluster has 
separate processors and memories connected by a message-oriented interconnect, 
running separate copies of a distributed VAX/VMS operating system. On the 
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other hand, the cluster relies on close physical proximity, a single (physical and 
logical) security domain, shared physical access to disk storage, and high-speed 
memory-to-memory block transfers between nodes. 


The goals of the VAXcluster multicomputer system are high availability and 
easy extensibility to a large number of processors and device controllers. In 
contrast to other highly available systems [3,4, 10, 111, VAXcluster is built from 
general-purpose, off-the-shelf processors and a general-purpose operating system. 
A key concern in this approach is system performance. Two important factors in 
the performance of a multicomputer system are the software overhead of the 
communications architecture and the bandwidth of the computer interconnect. 
To address these issues, several developments were undertaken, including: 


(1) A simple, low-overhead communications architecture whose functions are 
tailored to the needs of highly available, extensible systems. This architecture 
is called SCA (System Communication Architecture). 


(2) A very high speed message-oriented computer interconnect, termed the CI 
(Computer Interconnect). 


(3) An intelligent hardware interface to the CI, called the CI Port, that imple- 
ments part of SCA in hardware. 


(4) An intelligent, message-oriented mass storage controller that uses both the 
CI and the CI Port interface. 


This paper describes the new communications hardware developed for VAXclus- 
ters, the hardware-software interface, and the structure of the distributed VAX/ 
VMS operating system. The developments described in this paper are part of 
Digital’s VAXcluster product; there are, as of early 1985, approximately 2000 
VAXcluster systems in operation. 


2. VAXcluster HARDWARE STRUCTURE 


Figure 1 shows the topology of an example VAXcluster. The components of a 
VAXcluster include the CI, VAX hosts, CI Ports, and HSC-50 mass storage 
(i.e., disk and tape) controllers. For high reliability applications, a cluster must 
contain a minimum of two VAX processors and two mass storage controllers 
with dual-ported devices. The preferred method of attaching terminals is through 
a Local Area Terminal server (not shown in the figure), which allows a terminal 
to connect to any host in a VAXcluster. 


The CI is a dual path serial interconnect with each path supporting a 70 
Mbit/s transfer rate. The primary purpose of the dual paths is to provide 
redundancy in the case of path failure, but when both paths are available they 
are usable concurrently. Each path is implemented in two coaxial cables: one for 
transmitted and one for received signals. Baseband signaling with Manchester 
encoding is employed. 


While the CI is logically a bus, it is physically organized as a star topology. A 
central hub called the Star Coupler connects all of the nodes through radial CI 
paths of up to 45 meters. The current coupler is a passive device that supports a 
maximum of 16 nodes; node addresses are 8 bits providing an architectural limit 
of 256 nodes. 


The selection of a star topology was chosen over a conventional linear topology 
for several reasons. First, the efficiency of a serial bus is related to the longest 
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Fig. 1. VAXcluster hardware 
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transit time between nodes. The star permits nodes to be located within a 45 
meter radius (about 6400 square meters) with a maximum node separation of 90 
meters. Typically, a linear bus threaded through 16 nodes in the same area would 
greatly exceed 90 meters. Second, the central coupler provides simple, electrically 
and mechanically safe addition andremoval of nodes. 


The CI port is responsible for arbitration, path selection, and data transmis- 
sion. Arbitration uses carrier sense multiple access (CSMA) but is different from 
the arbitration used by Ethernet [12]. Each CI port has a node-specific delay 
time. When wishing to transmit, a port waits until the CI is quiet and then waits 
its specific delay time. If the CI is still quiet the node has won its arbitration and 
may send its packet. This scheme gives priority to nodes with short delay times. 
To ensure fairness, nodes actually have two delay times-one relatively short 
and one relatively long. Under heavy loading, nodes alternate between short and 
long delays. Thus, under light loading the bus is contention driven and under 
heavy loading it is round robin. 


When a port wins an arbitration, it sends a data packet and waits for receipt 
of an acknowledgement. If the data packet is correctly received, the receiving 
port immediately returns an acknowledgement packet without rearbitrating the 
CI. This is possible because the CI port can generate an acknowledgement in less 
time than the smallest node-specific delay. Retries are performed if the sending 
CI port does not receive an acknowledgement. 


To distribute transmissions across both paths of the dual-path CI, the CI port 
maintains a path status table indicating which paths to each node are currently 
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good or bad. Assuming that both paths are marked good, the CI port chooses one 
randomly. This provides statistical load sharing and early detection of failures. 
Should repeated retries fail on one path, that path is marked bad in the status 
table and the other path is tried. 


3. THE Cl PORT ARCHITECTURE 


Each cluster host or mass storage controller connects to the CI through a CI 
port. CI ports are device specific and have been implemented for the HSC-50 
mass storage controller and the VAX 11/750, VAX 11/780, VAX 11/782, VAX 
11/785, and VAX/8600 hosts. All CI ports implement a common architecture, 
whose goals are to: 


(1) Offload much of the communications overhead typically performed by nodes 
in distributed systems. 


(2) Provide a standard, message-oriented software interface for both interpro- 
cessor communication and device control. 


The design of the CI port is based on the needs of the VMS System Commu- 
nications Architecture. SCA is a software layer that provides efficient commu- 
nications services to low-level distributed applications (e.g., device drivers, file 
services, and network managers). SCA supports three communications services: 
datagrams, messages, and block data transfers. 


SCA datagrams and messages are information units of less than 4 kbytes sent 
over a connection. They differ only in reliability. Delivery of datagrams is not 
guaranteed; they can be lost, duplicated, or delivered out of order. Delivery of 
messages is guaranteed, as is their order of arrival. Datagrams are used for status 
and information messages whose loss is not critical, and by applications such as 
DECNET that have their own high-level reliability protocols. Messages are used, 
for example, to carry disk read and write requests. 


To simplify buffer allocation, hosts must agree on the maximum size of 
messages and datagrams that they will transmit. VAXcluster hosts use standard 
sizes of 576 bytes for datagrams and 112 bytes for messages. These sizes are 
keyed to the needs of DECNET and the lock management protocol, respectively. 


To ensure delivery of messages without duplication or loss, each CI port 
maintains a virtual circuit with every other cluster port. A virtual circuit descrip- 
tor table in each port indicates the status of its port-to-port virtual circuits. 
Included in each virtual circuit descriptor are sending and receiving sequence 
numbers. Each transmitted message carries a sequence number enabling duplicate 
packets to be discarded. 


Block data is any contiguous data in a process’ virtual address space. There is 
no size limit except that imposed by the virtual and physical memory constraints 
of the host. CI ports are capable of copying block data directly from process 
virtual memory on one node to process virtual memory on another node. 


Delivery of block data is guaranteed. The sending and receiving ports cooperate 
in breaking up the transfer into data packets and ensuring that all packets are 
correctly transmitted, received, and placed in the appropriate destination buffer. 
Virtual circuit sequence numbers are used on the individual packets, as with 
messages. Thus, the major differences between block data and messages are the 
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size of the transfer and the fact that block data does not need to be copied by 
the host operating system. Block data transfers are used, for example, by disk 
subsystems to move data associated with disk read and write requests. 


3.1 Cl Port Interface 


The VAX CI Port interface is shown in Figure 2. The interface consists of a set 
of seven queues: four command queues, a response queue, a datagram free queue, 
and a message free queue. The queues and queue headers are located in host 
memory. When the port is initialized, host software loads a port register with the 
address of a descriptor for the queue headers. 


Host software and the port communicate through queued command and 
response packets. To issue a port command, port driver software queues a 
command packet to one of the four command queues. The four queues allow for 
four priority levels; servicing is FIFO within each queue. An opcode within the 
packet specifies the command to be executed. The response queue is used by the 
port to enqueue incoming messages and datagrams, while the free queues are a 
source of empty packets for incoming messages and a sink for transmitted 
message packets. 


For example, to send a datagram, software queues a SEND DATAGRAM packet 
onto one of the command queues. The packet contains an opcode field specifying 
SEND DATAGRAM, a port field containing the destination port number, the 
datagram size, and the text of the datagram. The packet is doubly linked through 
its first two fields. This structure is shown in Figure 3. 


If host software needs confirmation when the packet is sent, it sets a response 
queue bit in the packet. This bit causes the port to place the packet in the 
response queue after the packet has been transmitted. The response packet is 
identical to the SEND DATAGRAM packet, except that the status field indicates 
whether the send was successful. Had the response queue flag bit been clear in 
the SEND DATAGRAM command (as it typically is), the port would instead place 
the transmitted command packet on the datagram free queue. 


When a CI port receives a datagram, it takes a packet from its datagram free 
queue. Should the queue be empty, the datagram is discarded. Otherwise, the 
port constructs a DATAGRAM RECEIVED packet that contains the datagram text 
and the port number of the sending port. This packet is then queued on the 
response queue. 


Messages operate in a similar fashion, except that they have a different opcode 
and message buffers are dequeued from the message free queue. If the message 
free queue is empty when a message arrives, the port generates an error interrupt 
to the host. High level SCA flow control ensures that the message free queue 
does not become empty. 


Block transfer operations are somewhat more complicated. Each port has a 
data structure called a buffer descriptor table. Before performing a block transfer, 
host software creates a buffer descriptor that defines the virtual memory buffer 
to be used. The descriptor contains a pointer to the first VAX page table entry 
mapping the virtually contiguous buffer. In addition, the descriptor contains the 
offset (within the first page) of the first byte of the buffer, the length of the 
buffer, and a 16-bit key. The data structures for a block transfer are illustrated 
in Figure 4. 
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Fig. 3. Example CI Port command packet. 


Each buffer has a 32-bit name. The name consists of a 16-bit buffer descriptor 
table index and the 16-bit buffer key. The key is used to prevent dangling 
references and is modified whenever a descriptor is released. To transfer block 
data, the initiating software must have the buffer names of the source and 
destination buffers. The buffer names are exchanged through a high level message 
protocol. A host can cause data to be moved either to another node (SEND DATA) 
orfromanothernode (REQUESTDATA). A SENDDATAO~REQUESTDATA~O~~~~~ 
packet contains the names of both buffers and the length of the transfer. In 
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Fig. 4. CI Port block data memory mapping. 


either case (send or request), a single command packet causes the source and 
destination ports to perform the block transfer. When the last packet has been 
successfully received, the initiating port places a response packet on its response 
queue indicating that the transfer is complete. 


The goal of reducing VAX host interrupts is met through several strategies 
and mechanisms. First, the block transfer mechanism minimizes the number of 
interrupts necessary to transfer large amounts of data. Second, at the sending 
port, DATAGRAM SENT/MESSAGE SENT confirmation packets are typically gener- 
ated only when a failure occurs. Third, a receiving port interrupts the VAX only 
when it queues a received packet on an empty response queue. Thus, when 
software dequeues a packet in response to an interrupt, it always checks for more 
packets before dismissing the interrupt. 


4. MASS STORAGE CONTROL 


The move from Control and Status Register activated storage devices to message- 
oriented storage devices offers several advantages, including: 


(1) Sharing is simplified. Several hosts can queue messages to a single controller. 
In addition, device control messages can be transmitted to and executed by 
hosts with local disks. 
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(2) Ease of extension to new devices. In contrast to conventional systems, where 
there is a different driver for every type of disk and disk interface, a single 
disk class driver simply builds message packets and transmits them using a 
communications interface. The disk class driver is independent of drive 
specifics (e.g., cylinders and sectors). New disk and tape devices and con- 
trollers can be added with little or no modification to host software. 


(3) Improved performance. The controller can maintain a queue of requests from 
multiple hosts and can optimize disk performance in real time. The controller 
can also handle error recovery and bad block replacement. 


The HSC-50 (Hierarchical Storage Controller), shown in Figure 1, is the first 
CI-based controller for both disks and tapes. A single HSC controller can handle 
up to 24 disk drives. Multiple HSCs with dual-ported disks provide redundancy 
in case of failures. 


The protocol interpreted by the HSC is called the Mass Storage Control 
Protocol (MSCP). The MSCP model separates the flow of control and status 
information from the flow of data. This distinction has been used in other 
systems to achieve efficient file access [6] and corresponds to the CI port’s 
message and block data mechanisms; messages are used for device control 
commands while block transfers are used for data. 


For example, to perform a disk read, the disk class driver transmits an MSCP 
READ message to the controller using a CI port SEND MESSAGE command. The 
read request contains the device type and unit number, the device media address 
(e.g., the disk logical block number), the 32-bit buffer name of the requester’s 
buffer, and the length of the transfer. To process the request, the controller reads 
the specified data from disk and transmits it directly to host memory using a CI 
port SEND DATA command. When the data is successfully transferred, the 
controller sends a message to the host driver indicating the completion status of 
the request. 


The same control protocol is used to provide cluster-wide access to CI-based 
controllers such as the HSC, and to Unibus or Massbus disks connected privately 
to a VAX node. Messages are routed from the disk class driver in the requesting 
node to an MSCP server on the node with the private disk. This server then 
parses the MSCP message, issues requests to its local disk, and initiates the 
block transfer through its SCA interface. 


5. VAXcluster SOFTWARE 


From a user’s point of view, a VAXcluster is a set of nodes cooperating through 
VAX/VMS distributed operating system software to provide sharing of resources 
among users on all nodes. Shared resources include devices, files, records, and 
batch and print services. Typically, user account and password information 
resides in a single file shared by all cluster nodes. A user obtains the same 
environment (files, default directory, privileges, etc.) regardless of the node to 
which he or she is logged in. In many respects the VAXcluster feels like a single 
system to the user. 


Figure 5 shows an example of a small VAXcluster and some of the major 
software components. At the highest level, multiple user processes on each node 
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Fig. 5. VAXc1ust.m software structure. 


execute in separate address spaces. File and record management services are 
implemented as procedure-based code within each process. 


The file and record services rely on lower level primitives such as the lock 
manager and disk class driver. The lock manager is the foundation of all resource 
sharing in both clustered and single-node VMS systems. It provides services for 
naming, locking, and unlocking cluster-wide resources. The disk class driver, 
mentioned earlier, uses MSCP to communicate with disk servers. The disk class 
driver runs in both clustered and nonclustered environments and contains no 
knowledge of the VAXcluster. SCA software below the driver is responsible for 
routing driver messages to the correct device controller. 


Cluster connection rnunagers are responsible for coordinating the cluster. 
Connection managers on all cluster nodes collectively decide upon cluster mem- 
bership, which varies as nodes leave and join the cluster. Connection managers 
recognize recoverable failures in remote nodes; they provide date transfer services 
that handle such failures transparently to higher software levels. 
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5.1 Forming a Cluster 


A VAXcluster is formed when a sufficient set of VAX nodes and mass storage 
resources become available. New nodes may boot and join the cluster, and 
members may fail or shut down and leave the cluster. When a node leaves or 
joins, the process of reforming the cluster is called a cluster transition. Cluster 
transitions are managed by the connection managers. 


In an operating cluster, each connection manager has a list of all member 
nodes. The list must be agreed upon by all members. A single node can be a 
member of only one VAXcluster; in particular, the same resource (such as a disk 
controller) cannot be shared by two clusters or the integrity of the resources 
could not be guaranteed. Therefore, connection managers must prevent the 
partitioning of a cluster into two or more clusters attempting to share the same 
resources. 


To prevent partitioning, VMS uses a quorum voting scheme. Each cluster node 
contributes a number of votes and the connection managers dynamically compute 
the total votes of all members. The connection managers also maintain a dynamic 
quorum value. As transitions occur, the cluster continues to run as long as the 
total votes present equals or exceeds the quorum. Should the total votes fall 
below the quorum, the connection managers suspend process activity throughout 
the cluster. When a node joins and brings the total votes up to the quorum, 
processes continue. 


Initial vote and quorum values are set for each node by a system manager, and 
can be used to determine the smallest set of resources needed to operate as a 
VAXcluster. In order to start the cluster, each node contains an initial estimate 
of what the quorum should be. However, as nodes join, connection managers 
increase the quorum value, if necessary, so it is at least (V + 2)/2, where V is the 
current vote total. 


A cluster member may have a recoverable error in its communications, that is, 
one that leaves the node’s memory intact and allows the operating system to 
continue running after the error condition has disappeared. Such errors can 
cause termination of a virtual circuit and a corresponding loss in communication. 
When cluster members detect the loss of communication with a node, they wait 
for a short period for the failing member to reestablish contact. The waiting 
period is called the reconnect interval and the system manager sets it, usually to 
about a minute. If the failing member recovers within the reconnect interval, it 
rejoins the cluster. During the time the failing member is recovering, some 
processes experience a delay in service. If the failing member does not rejoin 
within the reconnect interval, surviving members remove it from the cluster and 
continue if sufficient votes are present. A node that recovers after it has been 
removed from the cluster is told to reboot by other connection managers. 


5.2 Shared Files 


The VAXcluster provides a cluster-wide shared file system to its users. Cluster 
accessible files can exist on CI-based disk controllers or on disks local to any of 
the cluster nodes (e.g., connected via Unibus or Massbus). Each cluster disk has 
a unique name. A complete cluster file name includes the disk device name, the 
directory name, and the file name. Using the device name for a file, cluster 
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software can locate the node (either CPU or disk controller) on which the file 
resides. 


Cluster file activity requires synchronization: exclusive-write file opens, coor- 
dination of tile system data structures, and management of file system caches 
are a few examples. However, despite the fact that files can be shared cluster 
wide, file management services are largely unaware of whether they are executing 
in a clustered environment. The file managers synchronize through the VMS 
lock manager, to be described below. It is the lock manager that handles locking 
and unlocking of resources across the cluster. At the level of the file manager, 
then, cluster file sharing is similar to single-node file sharing. Lower levels handle 
cluster-wide synchronization and routing of physical-level disk requests to the 
correct device. 


5.3 Distributed Lock Manager 


As previously described, the VMS lock manager is the basis for cluster-wide 
synchronization. Several goals influenced the design of the lock manager for a 
distributed environment. First, programs using the lock manager must run in 
both single node and cluster configurations. Second, lock services must be 
efficient to support system-level software that makes frequent requests. There- 
fore, in a VAXcluster, the lock manager must minimize the number of SCA 
messages needed to manage locks. In a single node configuration, the lock 
manager must recognize the simpler environment and bypass cluster-specific 
overhead. Finally, the lock manager must recover from failures of nodes holding 
locks so that surviving nodes can continue to access shared resources in a 
consistent manner. 


The VMS lock manager services allow cooperating processes to define shared 
resources and synchronize access to those resources. A resource can be any object 
an application cares to define. Each resource has a user-defined name by which 
it is referenced. The lock manager provides basic synchronization services to 
request a lock and release a lock. Each lock request specifies a locking mode, 
such as exclusive access, protected read, concurrent read, concurrent write, null, 
etc. If a process requests a lock that is incompatible with existing locks, the 
request is queued until the resource becomes available. 


The lock manager provides a lock conversion service to change the locking 
mode on an existing lock. Conversions are faster than new lock requests because 
the database representing the lock already exists. For this reason, applications 
frequently hold a null lock (a no access place holder) on a resource and then 
convert it to a more restricted access mode later. 


In many applications resources may be subdivided into a resource tree, as 
illustrated in Figure 6. In this example, the resource Disk Volume contains 
resources File 1 through File 3; resource File 3 contains resources Record 1 and 
Record 2, and so on. The first locking request for a resource can specify the 
parent of the resource, thereby defining its relationship in a tree. A process 
making several global changes can hold a high-level lock (e.g., the root) and make 
them all very efficiently; a process making a small low-level change (e.g., a leaf) 
can do so while still permitting concurrent access to other parts of the tree [8]. 
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The lock manager’s implementation is intended to distribute the overhead of 
lock management throughout the cluster, while still minimizing the inter-node 
traffic needed to perform lock services. The database is therefore divided into 
two parts-the resource lock descriptions and the resource lock directory sys- 
tem-both of which are distributed. Each resource has a master node responsible 
for granting locks on the resource; the master maintains a list of granted locks 
and a queue of waiting requests for that resource. The master for all operations 
for a single tree is the node on which the lock request for the root was made. 
While the master maintains the lock data for its resource tree, any node holding 
a lock on a resource mastered by another node keeps its own copy of the resource 
and lock descriptions. 


The second part of the database, the resource directory system, maps a resource 
name into the name of the master node for that resource. The directory database 
is distributed among nodes willing to share this overhead. Given a resource name, 
a node can trivially compute the responsible directory as a function of the name 
string and the number of directory nodes. 


In order to lock a resource in a VAXcluster, the lock manager sends a lock 
request message via SCA to the directory for the resource. The directory responds 
in one of three ways: 


(1) If the directory is located on the master node for the resource, it performs 
the lock request and sends a confirmation response to the requesting system. 


(2) If the directory is not on the master node but finds the resource defined, it 
returns a response containing the identity of the master node. 


(3) If the directory finds the resource to be undefined, it returns a response 
telling the requesting node to master the resource itself. 


In the best cases (1 and 3) two messages are required to request a lock, whereas 
case 2 takes four messages. An unlock is executed with one message. If the lock 
request is for a subresource in a resource tree, the requesting process will either 
be located on the master node (i.e., the request is local) or will know who the 
master for its parent is, allowing it to bypass the directory lookup. In all cases, 
the number of messages required is independent of the number of nodes in the 
VAXcluster. 


In addition to standard locking services, the lock manager supports data 
caching in a distributed environment. Depending on the frequency of modifica- 
tions, caching of shared data in a distributed system can substantially reduce the 
I/O and communications workload. 


A 16-byte block of information, called a value block, can be associated with a 
resource when the resource is defined to the lock manager. The value in the value 
block can be modified by a process releasing a lock on the resource, and read by 
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a process when it acquires ownership. Thus, this information can be passed along 
with the resource ownership. 


As an example, assume two processes are sharing some disk data and use the 
value block as a version number of the data. Each process caches the data in a 
local buffer and holds the version number of the cached data. To modify the 
data, a process locks it and compares the latest version returned with the lock 
with the version of the cached data. If they agree, the cache is valid, if the 
versions disagree, then the cache must be reloaded from disk. After modifying 
the data, the process writes the modified data back to disk and releases the lock. 
Releasing the lock increments the version number. 


Another mechanism useful for caching data with deferred writeback is a 
software interrupt option. This is similar to the Mesa file system call-back 
mechanism [ 141, but is used for a different purpose. When requesting an exclusive 
lock, a process can specify that it should be notified by software interrupt if 
another lock request on the resource is forced to block. Continuing the example 
of cached disk data, a process owning the lock can cache and repeatedly modify 
the data. It writes the data back to disk and releases the lock when notified that 
it is blocking another process. 


In the case of cluster transitions (e.g., failure of a node), the connection 
manager notifies the lock manager that a transition has started. Each lock 
manager performs recovery action, and all lock managers must complete this 
activity before cluster operation can continue. 


As the first step in handling transitions, a lock manager deallocates all locks 
acquired on behalf of other systems. Only local lock and resource information is 
retained. Temporarily, there are no resource masters or directory nodes. In the 
second step, each lock manager reacquires each lock it had when the cluster 
transition began. This establishes new directory nodes based on a new set of 
eligible cluster members and rearranges the assignment of master nodes. If a 
node has left the cluster, the net result is to release locks held by that node. If 
no node has left the cluster but nodes have joined, this recovery is not necessary 
from an integrity point of view. However, it is performed to distribute directory 
and lock mastering overhead more fairly. 


Some resources, depending on how they are modified, can be left in an 
inconsistent state by a cluster transition. One method of handling this problem 
would be to mark the locks for such resources to prevent access following a 
transition. A special process can then search for such locks and perform needed 
consistency checks before releasing them. 


5.4 Batch And Print Services 


In a VAXcluster, users may either submit a batch job to a queue on a particular 
node (not necessarily their own node), or submit a job to a cluster-wide batch 
queue. Jobs on the cluster-wide queue are routed to queues attached to specific 
nodes for execution. The algorithm for assigning jobs to specific nodes is a simple 
one based on the ratio of executing jobs compared to the job limit of the queue. 


Management of batch jobs is the responsibility of a VMS process called the 
job controller. Each VMS node runs a job controller process. The process acquires 
work from one or more batch queues. Batch queues are stored in a disk file that 
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may be shared by all nodes. Synchronization of queue manipulation is handled 
with lock manager services. 


Print queues are similar to batch queues. Users may queue a request for a 
specific printer (not necessarily physically attached to their own node) or may 
let the operating system choose an available printer from those in the cluster. 


Both batch and print jobs can be declared restartable. If a node fails, restartable 
jobs are either requeued to complete on another node in the cluster, or will 
execute when the failed node reboots (for jobs that required to execute on a 
specific node). 


6. TERMINAL SUPPORT 


The optimum method for connecting users’ terminals to a VAXcluster is through 
the Local Area Terminal Server (LAT). Terminals are connected to LAT, which 
is attached to VAXs by Ethernet. Users command LAT to connect them to a 
specific node or to any node in the cluster. The ease of switching nodes leads 
users to find and use the least busy node. It also allows users to quickly move 
from a failed node to one that is still running. If LAT is directed to select a node, 
it attempts to find the least busy node. Its choice is based on node CPU type 
(a measure of processing power) and recent idle time. 


7. PERFORMANCE 


Performance of the system communications architecture (SCA) and the under- 
lying hardware interconnect was measured using operating system processes 
running on clustered VAX nodes. By operating system processes, we mean that 
these programs run at the same level as the connection manager shown in Figure 
5. These processes measured the datagram, message, and block transfer through- 
put for various message sizes. All numbers are approximate, as performance may 
vary due to different command options. 


Table I shows the CPU time used on a VAX 11/780 to send and receive a reply 
to a 576-byte datagram and a 96-byte message. These sizes were used because 
they were representative of the sizes used by VMS. The CPU time to initiate a 
block transfer and receive the response is the same as that for a sequenced 
message (i.e., 320 ps) independent of the transfer size. Round trip elapsed time 
is also shown. In general, for a given transfer size the performance of datagrams 
and messages is approximately the same. The results also depend on the amount 
of buffering and the number of messages queued to the port before waiting for a 
response. 


Table II shows the number of message round trips per second achieved on a 
cluster with between 2 and 12 communicating nodes. Each node was communi- 
cating with one other node; for example, in the 12 node case there were 6 pairs 
of communicating nodes, each pair engaged in sending and receiving a single 
stream of 112-byte messages. These experiments were run on VAX 11/785 nodes. 
As can be seen from Table II, the total number of messages increases nearly 
linearly. Once again, performance depends on the number of messages queued at 
a time. While one message was queued at a time in this experiment, previous 
experiments have shown that by queueing four messages at a time, it is possible 
to achieve 3000 message round trips per second on two VAX 11/78Os. 
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Table I 


Send/receive 
CPU time 


Send/receive 
Round trip 
Elapsed time 


Datagram 


290 ps 
(576 byte) 


1500 /Is 
(576 byte) 


Message 


320 ps 
(96 byte) 


1000 ps 
(96 byte) 


Table II 


Number Cluster round-trip 
of nodes (messages/s) 


2 1090 
4 2170 
6 3250 
8 4330 


10 5420 
12 6480 


Table III 


Number 
of nodes 


2 
4 
6 


Cluster block transfer 
thruput (mbytes/s) 


2.65 
5.28 
7.70 


Table IV 


Request lock 
Convert lock 
Release lock 


Single-CPU Clustered 
system system 


400 ps 3000 ps 
250 ps 1000-2300 ps 
300 ps 700 /.ls 


Throughput results are shown in Table III. In this experiment, 4 streams of 
64-kbyte block transfers were initiated between 2, 4, and 6 VAX 11/785 nodes. 
Again, throughput increases almost linearly. Throughput measurements for 
datagrams and messages show that a throughput of about 2.4 Mbytes per second 
can be achieved between two VAX 11/780 nodes sending 900-byte messages or 
datagrams. 


These throughputs do not represent real workloads, which produce less traffic 
than the contrived test programs. It is clear that the 8.75 Mbyte per second (per 
path) CI is not the bottleneck. For this test, we believe that the limiting factor 
is the speed of the CI port and the memory bandwidth of the host. Of course, the 
reason for having a high-speed interconnect is to provide bandwidth for multiple 
hosts. 


This performance provides a basis for efficient execution of higher level 
distributed services, such as the lock manager. Table IV lists approximate 
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performance values for lock operations in both clustered and nonclustered 
environments. As previously stated, lock conversions are faster than new lock 
requests because the database already exists. The measured elapsed time for a 
conversion depends upon the existing mode and new mode. 


8. CONCLUSIONS 


A principal goal of VAXclusters was the development of an available and 
extensible multicomputer system built from standard processors and a general- 
purpose operating system. Much was gained by the joint design of distributed 
software, communications protocols, and hardware aimed to meet this goal. For 
example: 


(1) The CI interconnect supports fast message transfer needed by system soft- 
ware. 


(2) The CI port implements many of the functions needed by SCA software. 
(3) The HSC-50 with its message protcol and request queueing optimization 


logic provides direct network access to a large pool of disks for multiple hosts. 


Designing hardware and software together allows for system-level tradeoffs; the 
software interface and protocols can be tuned to the hardware devices. 


An important simplifying aspect of the VAXcluster design is the use of a 
distributed lock manager for resource synchronization. In this way, higher level 
services such as the file system do not require special code to handle sharing in 
a distributed environment. However, performance of the lock manager becomes 
a crucial factor. Distributed lock manager performance has been attacked with 
the design of a locking protocol requiring a fixed number of messages, independent 
of the number of cooperating nodes. 


Finally, we believe that the performance measurements presented show the 
extent to which the VAXcluster system has succeeded in implementing an 
efficient communications architecture. These numbers are particularly impres- 
sive when considering that VMS is a large, general-purpose operating system. 
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