

Memory Coherence in Shared Virtual
Memory Systems

KAI Ll
Princeton University

and

PAUL HUDAK

Yale University

The memory coherence problem in designing and implementing a shared virtual memory on loosely
coupled multiprocessors is studied in depth. Two classes of algorithms, centralized and distributed,
for solving the problem are presented. A prototype shared virtual memory on an Apollo ring based
on these algorithms has been implemented. Both theoretical and practical results show that the
memory coherence problem can indeed be solved efficiently on a loosely coupled multiprocessor.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Ar-
chitecture and Design--network communications; C.2.4 [Computer-Communication Networks]:
Distributed Systems-network operating systems; D.4.2 [Operating Systems]: Storage Manage-
ment-distributed memories; uirtuol memory; D.4.7 [Operating Systems]: Organization and
Design-distributed systems

General Terms: Algorithms, Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Loosely coupled multiprocessors, memory coherence, parallel
programming, shared virtual memory

1. INTRODUCTION

The benefits of a virtual memory go without saying; almost every high perfor-
mance sequential computer in existence today has one. In fact, it is hard to
believe that loosely coupled multiprocessors would not also benefit from virtual
memory. One can easily imagine how virtual memory would be incorporated into
a shared-memory parallel machine because the memory hierarchy need not be
much different from that of a sequential machine. On a multiprocessor in which
the physical memory is distributed, however, the implementation is not obvious.

This research was supported in part by National Science Foundation grants MCS-8302018, DCR-
8106181, and CCR-8814265. A preliminary version of this paper appeared in the Proceedings of the
5th Annual ACM Symposium on Principles of Distributed Computing [36].
Authors’ addresses: K. Li, Department of Computer Science, Princeton University, Princeton, NJ
08544; P. Hudak, Department of Computer Science, Yale University, New Haven, CT 06520.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1989 ACM 0734-2071/89/1100-0321$01.50

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989, Pages 321-359.

322 ’ K. Li and P. Hudak

The shared virtual memory described in this paper provides a virtual address
space that is shared among all processors in a loosely coupled distributed-memory
multiprocessor system. Application programs can use the shared virtual memory
just as they do a traditional virtual memory, except, of course, that processes can
run on different processors in parallel. The shared virtual memory not only
“pages” data between physical memories and disks, as in a conventional virtual
memory system, but it also “pages” data between the physical memories of the
individual processors. Thus data can naturally migrate between processors on
demand. Furthermore, just as a conventional virtual memory swaps processes, so
does the shared virtual memory. Thus the shared virtual memory provides a
natural and efficient form ofprocess migration between processors in a distributed
system. This is quite a gain because process migration is usually very difficult to
implement. In effect, process migration subsumes remote procedure calls.

The main difficulty in building a shared virtual memory is solving the memory
coherence problem. This problem is similar to that which arises with multicache
schemes for shared memory multiprocessors, but they are different in many
ways. In this paper we concentrate on the memory coherence problem for a
shared virtual memory. A number of algorithms are presented, analyzed, and
compared. A prototype system called IVY has been implemented on a local area
network of Apollo workstations. The experimental results of nontrivial parallel
programs run on the prototype show the viability of a shared virtual memory.
The success of this implementation suggests an operating mode for such archi-
tectures in which parallel programs can exploit the total processing power and
memory capabilities in a far more unified way than the traditional “message-
passing” approach.

2. SHARED VIRTUAL MEMORY

A shared virtual memory is a single address space shared by a number of
processors (Figure 1). Any processor can access any memory location in the
address space directly. Memory mapping managers implement the mapping
between local memories and the shared virtual memory address space. Other
than mapping, their chief responsibility is to keep the address space coherent at
all times; that is, the value returned by a read operation is always the same as
the value written by the most recent write operation to the same address.

A shared virtual memory address space is partitioned into pages. Pages that
are marked read-only can have copies residing in the physical memories of many
processors at the same time. But a page marked write can reside in only one
processor’s physical memory. The memory mapping manager views its local
memory as a large cache of the shared virtual memory address space for its
associated processor. Like the traditional virtual memory [17], the shared memory
itself exists only virtually. A memory reference causes a page fault when the page
containing the memory location is not in a processor’s current physical memory.
When this happens, the memory mapping manager retrieves the page from either
disk or the memory of another processor. If the page of the faulting memory
reference has copies on other processors, then the memory mapping manager
must do some work to keep the memory coherent and then continue the faulting
instruction. This paper discusses both centralized manager algorithms and

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

Memory Coherence in Shared Virtual Memory Systems l 323

Shared virtual memory

Fig. 1. Shared virtual memory mapping.

distributed manager algorithms, and in particular shows that a class of distributed
manager algorithms can retrieve pages efficiently while keeping the memory
coherent.

Our model of a parallel program is a set of processes (or threads) that share a
single virtual address space. These processes are “lightweight’‘-they share the
same address space, and thus the cost of a context switch, process creation, or
process termination is small, say, on the order of a few procedure calls (Roy
Levin, personal communication, 1986). One of the key goals of the shared virtual
memory, of course, is to allow processes of a program to execute on different
processors in parallel. To do so, the appropriate process manager and memory
allocation manager must be integrated properly with the memory mapping
manager. The process manager and the memory allocation manager are described
elsewhere [34]. We refer to the whole system as a shred virtual memory system.

The performance of parallel programs on a shared virtual memory system
depends primarily on two things: the number of parallel processes and the degree
of updating of shared data (which creates contention on the communication
channels). Since any processor can reference any page in the shared virtual
memory address space and memory pages are moved and copied on demand, the
shared virtual memory system does not exhibit pathological thrashing for un-
shared data or shared data that is read-only. Furthermore, updating shared data
does not necessarily cause thrashing if a program exhibits locality of reference.
One of the main justifications for traditional virtual memory is that memory
references in sequential programs generally exhibit a high degree of locality [16,
171. Although memory references in parallel programs may behave differently
from those in sequential ones, a single process is still a sequential program and
should exhibit a high degree of locality. Contention among parallel processes for
the same piece of data depends on the algorithm, of course, but a common goal
in designing parallel algorithms is to minimize such contention for optimal
performance.

There is a large body of literature related to the research of shared virtual
memory. The closest areas are virtual memory and parallel computing on loosely
coupled multiprocessors.

Research on virtual memory management began in the 1960s [15] and has
been an important topic in operating system design ever since. The research

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

324 l K. Li and P. Hudak

focused on the design of virtual memory systems for uniprocessors. A number of
the early systems used memory mapping to provide access to different address
spaces. The representative systems are Tenex and Multics [5, 131. In these
systems, processes in different address spaces can share data structures in
mapped memory pages. But the memory mapping design was exclusively for
uniprocessors.

Spector proposed a remote reference/remote operation model [42] in which a
master process on a processor performs remote references and a slave process on
another processor performs remote operations. Using processor names as part of
the address in remote reference primitives, this model allows a loosely coupled
multiprocessor to behave in a way similar to CM* [24, 291 or Butterfly [6] in
which a shared memory is built from local physical memories in a static manner.
Although implementing remote memory reference primitives in microcode can
greatly improve efficiency, the cost of accessing a remote memory location is still
several orders of magnitude more expensive than a local memory reference. The
model is useful for data transfer in distributed computing, but it is unsuitable for
parallel computing.

Among the distributed operating systems for loosely coupled multiprocessors,
Apollo Aegis [2, 32, 331 and Accent [20, 381 have had a strong influence on the
integration of virtual memory and interprocess communication. Both Aegis and
Accent permit mapped access to data objects that can be located anywhere in a
distributed system. Both of them view physical memory as a cache of virtual
storage. Aegis uses mapped read and write memory as its fundamental commu-
nication paradigm. Accent has a similar facility called copy-on-write and a
mechanism that allows processes to pass data by value. The data sharing between
processes in these systems is limited at the object level; the system designs are
for distributed computing rather than parallel computing.

Realistic parallel computing work on loosely coupled multiprocessors has been
limited. Much work has focused on message passing [ll, 19, 391. It is possible to
gain large speedups over a uniprocessor by message passing, but programming
applications are difficult [111. Furthermore, as mentioned above, message passing
has difficulties in passing complicated data structures.

Another direction has been to use a set of primitives, available to the program-
mer in the source language, to access a global data space for storing shared data
structures [8, 111. The chief problem with such an approach is the user’s need to
control the global data space explicitly, which’can become especially complex
when passing large data structures or when attempting process migration. In a
shared virtual memory such as we propose, no explicit data movement is required
(it happens implicitly upon memory reference), and complex data is moved as
easily as simple data. Another serious problem with the explicit global data space
approach is that efficiency is impaired even for local data since use of a primitive
implies at least the overhead of a procedure call. This problem becomes especially
acute if one of the primitive operations occurs in an inner loop, in which case
execution on one processor is much slower than that of the best sequential
program, that is, one in which the operation is replaced with a standard memory
reference. In contrast, when using our shared virtual memory, the inner loop
would look just the same as its sequential version, and thus the overhead for
accessing local data would be exactly the cost of a standard memory reference.
ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

Memory Coherence in Shared Virtual Memory Systems l 325

The point being that, once the pages holding a global data structure are paged
in, the mechanism for accessing the data structure is precisely the same as on a
uniprocessor.

The concept of a shared virtual memory for loosely coupled multiprocessors
was first proposed in [36] and elaborated in the Ph.D. dissertation [34]. Details
of the first implementation, IVY, on a network of workstations was reported in
[34] and [35]. On the basis of this early work, a shared virtual memory system
was later designed for the Lotus operating system kernel [21]. Most recently, the
concept has been applied to a large-scale interconnection network based shared-
memory multiprocessor [121 and a large-scale hypercube multiprocessor [37].

Other related work includes software caches and analysis of memory references.
The VMP project at Stanford implements a software virtual addressed cache
[lo] to provide multicomputers with a coherent shared memory space. Their
initial experience shows that a cache line size can be as large as 128 or 256 bytes
without performance degradation. The cache consistency protocol is similar to
the dynamic distributed manager algorithm for shared virtual memory in this
paper and its prelimmary version [34]. Finally, techniques for analyzing memory
references of parallel programs [18, 451 may be applicable to analyzing the
behaviors of parallel programs using a shared virtual memory system.

3. MEMORY COHERENCE PROBLEM

A memory is coherent if the value returned by a read operation is always the
same as the value written by the most recent write operation to the same address.
An architecture with one memory access path should have no coherence problem.
A single access path, however, may not satisfy today’s demand for high perfor-
mance. The memory coherence problem was first encountered when caches
appeared in uniprocessors (see [40] for a survey) and has become more compli-
cated with the introduction of “multicaches” for shared memories on multipro-
cessors [9,23,25,31,43,46 and Chuck Thacher, personal communication, 19841.
The memory coherence problem in a shared virtual memory system differs,
however, from that in multicache systems. A multicache multiprocessor usually
has a number of processors sharing a physical memory through their private
caches. Since the size of a cache is relatively small and the bus connecting it to
the shared memory is relatively fast, a sophisticated coherence protocol is usually
implemented in the multicache hardware such that the time delay of conflicting
writes to a memory location is small. On the other hand, a shared virtual memory
on a loosely coupled multiprocessor has no physically shared memory, and the
communication cost between processors is nontrivial. Thus conflicts are not
likely to be solved with negligible delay, and they resemble much more a “page
fault” in a traditional virtual memory system.

There are two design choices that greatly influence the implementation of a
shared virtual memory: the granularity of the memory units (i.e., the “page size”)
and the strategy for maintaining coherence. These two design issues are studied
in the next two subsections.

3.1 Granularity

In a typical loosely coupled multiprocessor, sending large packets of data
(say one thousand bytes) is not much more expensive than sending small ones (say

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

326 l K. Li and P. Hudak

less than ten bytes) [41]. This similP&y in cost is usually due to the software
protocols and overhead of the virtual memory layer of the operating system. If
these overheads are acceptable, relatively large memory units are possible in a
shared virtual memory. On the other hand, the larger the memory unit, the
greater the chance for contention. Detailed knowledge of a particular implemen-
tation might allow the clients’ programmer to minimize contention by arranging
concurrent memory accesses to locations in different memory units. Either clients
or the shared Virtual memory storage allocator may try to employ such strategies,
but this may introduce inefficient use of memory. So, the possibility of contention
indicates the need for relatively small memory units.

A suitable compromise in granularity is the typical page as used in conventional
virtual memory implementations, which vary in size on today’s computers from
256 bytes to 8K bytes. Our experience indicates that a page size of about 1K
bytes is suitable with respect to contention, and as mentioned above should not
impose undue communications overhead. We expect that smaller page sizes
(perhaps as low as 256 bytes) work well also, but we are not as confident about
larger page sizes, due to the contention problem. The right size is clearly
application dependent, however, and we simply &o not have the implementation
experience to say what size is best for a sufficiently broad range of parallel
programs. In any case, choosing a page size consistent with that used in conven-
tional virtual memory implementations has the advantage of allowing one to use
existing page fault schemes. In particular, one can use the protection mechanisms
in a hardware Memory Management Unit (MMU) that allow single instructions
to trigger page faults and to trap appropriate fault handlers. A program can set
the access righta to the pages in such a way that memory accesses that could
violate memory coherence cause a page fault; thus the memory coherence problem
can be solved in a modular way in the page fault handlers and their servers;

3.2 Memory Coherence Strategies

It is helpful to first consider the spectrum of choices one has for solving the
memory coherence problem. These choices can be classified by the way in which
one deals with page synchronization and page own@rship, tie shown in Table I.

Page Synchronization. There are two basic approaches to page synchroniza-
tion: invalidation and write-broadcast. In the invalidation approach, there is only
one owner processor for each page. This processor has either write or read access
to the page. If a processor Q has a write fault to a page p, its fault handler then

-invalidates all copies of p,
-changes the access of p to write,
-moves a copy of p to Q if Q does not have one already, and
-returns to the faulting instruction.

After returning, processor Q “owns” page p and can proceed with the write
operation and other read or write operations until the page ownership is relin-
quished to some other processor. Processor Q, of course, does not need to move
the copy of the page if it owns the page for reading. If a processor Q has a read
ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

Memory Coherence in Shared Virtual Memory Systems l 327

Table I. Spectrum of Solutions to the Memory Coherence Problem

Page ownership strategy

Page
synchronization

method

Dynamic

Fixed
Centralized

manager

Distributed manager

Fixed Dynamic

Invalidation Not
allowed

Okay Good Good

Write-broadcast Very
expensive

Very
expensive

Very
expensive

Very
expensive

fault to a page p, the fault handler then

-changes the access of p to read on the processor that has write access to p,

-moves a copy of p to Q and sets the access of p to read, and
-returns to the faulting instruction.

After returning, processor Q can proceed with the read operation and other
read operations to this page in the same way that normal local memory does
until p is relinquished to someone else.

In the write-broadcast approach, a processor treats a read fault just as it does
in the invalidation approach. However, if a processor has a write fault, the fault
handler then

-writes to all copies of the page, and

-returns to the faulting instruction.

The main problems with this approach is that it requires special hardware
support. Every write to a shared page needs to generate a fault on the writing
processor and update all copies because the philosophy of a shared virtual memory
requires that pages be shared freely. To prevent the processor from having the
same page fault again when returning to the faulting instruction, the hardware
must be able to skip the faulted write cycle. We do not know of any existing
hardware with this functionality.

The theoretical analysis on “snoopy cache” coherence [30] suggests that
combining the invalidation approach with the write-broadcast approach may be
a better solution. However, whether this approach can apply to the shared virtual
memory is an open problem because the overhead of a write fault is much more
than a write on a snoopy cache bus. Since the algorithms using write-broadcast
do not seem practical for loosely coupled multiprocessors, they are not considered
further in this paper.

Page Ownership. The ownership of a page can be fixed or dynamic. In the
fixed ownership approach, a page is always owned by the same processor. Other
processors are never given full write access to the page; rather they must negotiate
with the owning processor and must generate a write fault every time they need
to update the page. As with the write-broadcast approach, fixed page ownership

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

328 l K. Li and P. Hudak

is an expensive solution for existing loosely coupled multiprocessors. Further-
more, it constrains desired modes of parallel computation. Thus we only consider
dynamic ownership strategies, as indicated in Table I.

The strategies for maintaining dynamic page ownership can be subdivided into
two classes: centralized and distributed. Distributed managers can be further
classified as either fixed or dynamic, referring to the distribution of ownership
data.

The resulting combinations of strategies are shown in Table I, where we have
marked as “very expensive” or “not allowed” all combinations involving write-
broadcast synchronization or fixed page ownership. This paper only considers
the remaining choices: algorithms based on invalidation using either a centralized
manager, a fixed distributed manager, or a dynamic distributed manager.

3.3 Page Table, Locking, and invalidation

All of the algorithms for solving the memory coherence problem in this paper are
described by using page fault handlers, their servers, and the data structure on
which they operate. The data structures in different algorithms may be different,
but they have at least the following information about each page:

-access: indicates the accessibility to the page,
-copy set: contains the processor numbers that have read copies of the page,

and

-lock: synchronizes multiple page faults by different processes on the same
processor and synchronizes remote page requests.

Following uniprocessor virtual memory convention, this data structure is called
a page table. Every processor usually has a page table on it, but the same page
entry in different page tables may be different.

There are two primitives operating on the lock field in the page table:

/ock(PTable[p].lock):
LOOP

IF test-and-set the lock bit THEN EXIT;
IF fail THEN queue this process;

un/ock(PTable[pJ.lock):
clear the lock bit;
IF a process is waiting on the lock THEN

resume the process;

These two primitives are used to synchronize multiple page fault requests on
the same processor or different processors.

Another primitive that we use in memory coherence algorithms is invalidate.
There are at least three ways to invalidate the copies of a page: individual,
broadcast, and multicast. The individual invalidation is just a simple loop:

Invalidate :
Invalidate(p, copy-set)

FOR i in copy-set DO
send an invalidation request to processor i;

Broadcast or multicast invalidation does not need a copy set; each just requires
a simple broadcast message.

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

Memory Coherence in Shared Virtual Memory Systems l 329

The server of the invalidation operation is simple:

Invalidate server:
PTable[p].access := nil;

Although there are many ways to implement remote operations, it is reasonable
to assume that any remote operation requires two messages, a request and a
reply, and that a reliable communication protocol is used so that once a processor
sends a request (no matter whether it is a point-to-point message, broadcast, or
multicast), it eventually receives a reply. With such an assumption, for m copies
on an N processor system, an individual invalidation requires 2m messages, m
for requests, and m for replies. A broadcast invalidation sends m + 1 messages
and receives N + m - 1 messages of which N - 1 messages are received in
parallel. A multicast invalidation needs to send m + 1 messages and receive 2m
messages of which m messages are received in parallel.

The cost of receiving k messages in parallel is greater than or equal to that of
receiving one message and less than or equal to that of receiving lz messages
sequentially. If all lz processors are idle, receipt of these messages in parallel costs
nothing since the idle time would otherwise be wasted. On the other hand, if all
k processors are busy, receipt of the messages would cost more since all lz
processors would need to be interrupted in order to process the messages. Clearly,
multicast invalidation has the best performance, although most loosely coupled
systems do not have a multicast facility that can use the page table information.
Broadcast invalidation is expensive when N is large.

A copy set can be represented by a bit vector [l] when N is small (e.g., less
than 64). When N is large, we may need to compact the copy set field. Three
simple compaction methods are considered:

--linked bit uector: represents a copy set as a linked list that only links meaningful
bit-vectors together to save space.

-neighbor bit vector: uses a bit vector as its copy set for neighbor processors
(directly connected processors). This method requires processors to propagate
invalidation requests.

-vaguely defined set: uses a tag to indicate whether there is a valid copy set.
This allows the shared virtual memory to dynamically allocate memory for
copy sets.

More detailed discussion on page table compaction can be found in [34].

4. CENTRALIZED MANAGER ALGORITHMS

4.1 A Monitor-Like Centralized Manager Algorithm

Our centralized manager is similar to a monitor [7, 271 consisting of a data
structure and some procedures that provide mutually exclusive access to the data
structure. The coherence problem in multicache systems has a similar solution
[9]. The centralized manager resides on a single processor and maintains a table
called Info which has one entry for each page, each entry having three fields:

(1) The owner field contains the single processor that owns that page, namely,
the most recent processor to have write access to it.

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

330 l K. Li and P. Hudak

Algorithm 1 MonitorCentralManager

Read fault handler:
Lo&(PTableC p I.lock 1;
IF I am manager THEN BEGIN

Lo&(InfoC p l.lock >;

InfoC p l.copyset
:= InfoC p 1 .copyset U {ManagerNode};

receive page p from Info[: p 1 .ouner;
Unlock(Info E p 1. lock > ;
END;

ELSE BEGIN
ask manager for read access to p and a copy of p;
receive p;
send confirmation to manager;
END;

PTable[p].access := read;
Unlock(PTableC p 1 .lock > ;

Read server:
Lock(PTable [p] . lock) ;
IF I am owner THEN BEGIN

PTable[p].access := read;
send copy of p;
END;

I/nlock(PTableC p 1 .lock 1;

IF I am manager THEN BEGIN

Lock(InfoC p 1 .lock 1;
InfoC p l.copyset

:= Info[p l.copyset U {RequestNode};
ask Info[p].ouner to send copy of p to RequestNode;
receive confirmation from RequestNode;
UnlockC Info C p I. lock > ;
END;

Write fault handler:
Lock(PTable [p 1. lock 1;

IF I am manager THEN BEGIN
Lock(InfoC p l.lock 1;
Invalidate(p. InfoC p l.copyset 1;
Infol: p l.copyset := {};
Unlock(Info1 p 1 .lock 1;
END;

ELSE BEGIN
ask manager for write access to p;
receive p;
send confirmation to manager;
END;

Figure 2

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

Memory Coherence in Shaped Virtual Memory Systems l 331

PTable[p I.access := write;
Unlock(PTable[p I.lock >;

Write server:
Lock(PTable [p 1 .lock) ;

IF I am owner THEN BEGIN
send copy of p;
PTable[p l.access := nil;
END;

Unlock(PTable[p 1. lock > ;

IF I am manager THEN BEGIN
Lock(Info[p].lock >;
Invalidale(p, Info C p 1. copyset) ;
Info[p J.copyset := {};
ask Info[p].ouner to send p to RequestNode;
receive confirmation from RequestNode;
UnlockC Info C p 1. lock > ;

END;

Figure 2. (continued)

(2) The copy set field lists all processors that have copies of the page. This allows
an invalidation operation to be performed without using broadcast.

(3) The lock field is used for synchronizing requests to the page, as we describe
shortly.

Each processor also has a page table called PTable that has two fields: access
and lock. This table keeps information about the accessibility of pages on the
local processor.

In this algorithm, a page does not have a fixed owner, and there is only one
manager that knows who the owner is. The owner of a page sends a copy to
processors requesting a read copy. As long as a read copy exists, the page is not
writeable without an invalidation operation, which causes invalidation messages
to be sent to all processors containing read copies. Since this is a monitor-
style algorithm, it is easy to see that the successful writer to a page always
has ownership of the page. When a processor finishes a read or write re-
quest, a confirmation message is sent to the manager to indicate completion of
the request.

Both Info table and PTable have page-based locks. They are used to synchronize
the local page faults (i.e., fault handler operations) and remote fault requests
(i.e., server operations). When there is more than one process on a processor
waiting for the same page, the locking mechanism prevents the processor from
sending more than one request. Also, if a remote request for a page arrives and
the processor is accessing the page table entry, the locking mechanism queues
the request until the entry is released.

As for all manager algorithms in this paper, the centralized manager algorithm
in Figure 2 is characterized by the fault handlers and their servers.

The confirmation message indicates the completion of a request to the manager
so that the manager can give the page to someone else. Together with the locking

ACM Transactions on Computer Systems, Vol. ‘7, No. 4, November 1989.

332 - K. Li and P. Hudak

mechanism in the data structure, the manager synchronizes the multiple requests
from different processors.

A read-page fault on the manager processor needs two messages, one to the
owner of the page, another from the owner. A read-page fault on a nonmanager
processor needs four messages, one to the manager, one to the owner, one from
the owner, and one for confirmation. A write-page fault costs the same as a read-
page fault except that it includes the cost of an invalidation.

Since the centralized manager plays the role of helping other processors locate
where a page is, a traffic bottleneck at the manager may occur as N becomes
large and there are many page faults. The number of messages for locating a
page is a measure of the complexity of the algorithm. When a nonmanager
processor has a page fault, it sends a message to the manager and gets a reply
message from the manager, so the algorithm has the following property:

PROPOSITION 1. The worst-case number of messages to locate a page in the
centralized manager algorithm is two.

Although this algorithm uses only two messages in locating a page, it requires
a confirmation message whenever a fault appears on a nonmanager processor.
Eliminating the confirmation operation is the motivation for the following
improvement to this algorithm.

4.2 An Improved Centralized Manager Algorithm

The primary difference between the improved centralized manager algorithm and
the previous one is that the synchronization of page ownership has been moved
to the individual owners, thus eliminating the confirmation operation to the
manager. The locking mechanism on each processor now deals not only with
multiple local requests, but also with remote requests. The manager still answers
the question of where a page owner is, but it no longer synchronizes requests.

To accommodate these changes, the data structure of the manager must change.
Specifically, the manager no longer maintains the copy set information, and a
page-based lock is no longer needed. The information about the ownership of
each page is still in a table called Owner kept on the manager, but an entry in
the PTable on each processor now has three fields: access, lock, and copy set. The
copy set field is valid if and only if the processor that holds the page table is the
owner of the page. The fault handlers and servers for this algorithm can be found
in Appendix A.

Although the synchronization responsibility of the original manager has moved
to individual processors, the functionality of the synchronization remains the
same. For example, consider a scenario in which two processors P, and Pz are
trying to write into the same page owned by a third processor P3. If the request
from PI arrives at the manager first, the request is forwarded to PB. Before the
paging is complete, suppose the manager receives a request from Pz, then forwards
it to P,. Since PI has not received ownership of the page yet, the request from
Pz is queued until PI finishes paging. Therefore, both P, and Pz receive access to
the page in turn.

Compared with the cost of a read-page fault in the monitor-like algorithm, this
algorithm saves one send and one receive per page fault on all processors, an

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

Memory Coherence in Shared Virtual Memory Systems - 333

obvious improvement. Decentralizing the synchronization improves the overall
performance of the shared virtual memory, but for large N there still might be a
bottleneck at the manager processor because it must respond to every page fault.

5. DISTRIBUTED MANAGER ALGORITHMS

In the centralized manager algorithms described in the previous section, there is
only one manager for the whole shared virtual memory. Clearly such a centralized
manager can be a potential bottleneck. This section discusses several ways of
distributing the managerial task among the individual processors.

5.1 A Fixed Distributed Manager Algorithm

In a fixed distributed manager scheme, every processor is given a predetermined
subset of the pages to manage. The primary difficulty in such a scheme is
choosing an appropriate mapping from pages to processors. The most straight-
forward approach is to distribute pages evenly in a fixed manner to all processors.
The distributed directory map solution to the multicache coherence problem [3]
is similar. For example, suppose there are M pages in the shared virtual memory
and that I = (1, . . . , M). An appropriate hashing function H could then be
defined by

H(p) = p mod N (1)

where p E I and N is the number of processors. A more general definition is

H(p) = p_ mod N
0 s

where s is the number of pages per segment. Thus defined, this function distrib-
utes manager work by segments.

Other variations include using a suitable hashing function or providing a
default mapping function that clients may override by supplying their own
mapping. In the latter case, the map could be tailored to a particular application
and its expected behavior with respect to concurrent memory references.

With this approach there is one manager per processor, each responsible for
the pages specified by the fixed mapping function H. When a fault occurs on
pagep, the faulting processor asks processor H(p) where the true page owner is,
and then proceeds as in the centralized manager algorithm.

Our experiments have shown that the fixed distributed manager algorithm is
superior to the centralized manager algorithms when a parallel program exhibits
a high rate of page faults. However, it is difficult to find a good fixed distribution
function that fits all applications well. Thus we would like to investigate the
possibility of distributing the work of managers dynamically.

5.2 A Broadcast Distributed Manager Algorithm

An obvious way to eliminate the centralized manager is to use a broadcast
mechanism. With this strategy, each processor manages precisely those pages
that it owns, and faulting processors send broadcasts into the network to find
the true owner of a page. Thus the Owner table is eliminated completely, and the
information of ownership is stored in each processor’s PTable, which, in addition
to access, copy set, and lock fields, has an owner field.

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

334 l K. Li and P. Hudak

More precisely, when a read fault occurs, the faulting processor P sends a
broadcast read request, and the true owner of the page responds by adding P to
the page’s copy set field and sending a copy of the page to P. Similarly, when a
write fault occurs, the faulting processor sends a broadcast write request, and the
true owner of the page gives up ownership and sends back the page and its copy
set. When the requesting processor receives the page and the copy set, it invali-
dates all copies. All broadcast operations are atomic. The fault handlers and
servers for such a naive algorithm are given in Appendix B.

The simplicity of this approach is appealing. Yet, the correctness of the
algorithm is not obvious at first. Consider the case in which two write faults to
the same page happen simultaneously on two processors PI and Pz, and consider
the instant when the owner of the page, P3, receives a broadcast request from PI
and gives up its ownership but PI has not yet received the message granting
ownership. At this point, P2 sends its broadcast request, but there is no owner.
However, this is not a problem because P2’s message is queued on PI waiting for
the lock on the page table entry; after PI receives ownership, the lock is released,
and P2’s message is then processed by PI (recall the definition of the lock and
unlock primitives given in Section 3.3).

A read-page fault causes a broadcast request that is received by N - 1 processors
but is replied to by only one of them. The cost for a write-page fault is the same,
plus the overhead of an invalidation. Although the algorithm is simple, for a
large N, performance is poor because all processors have to process each broadcast
request, slowing down the computation on all processors. Our experiments show
that the cost introduced by the broadcast requests is substantial when N 1 4.
A parallel program with many read- and write-page faults does not perform well
on a shared virtual memory system based on a broadcast distributed manager
algorithm.

5.3 A Dynamic Distributed Manager Algorithm

The heart of a dynamic distributed manager algorithm is keeping track of the
ownership of all pages in each processor’s local PTable. To do this, the owner
field is replaced with another field, probowner, whose value can be either the
true owner or the “probable” owner of the page. The information that it contains
is just a hint; it is not necessarily correct at all times, but if incorrect it at least
provides the beginning of a sequence of processors through which the true owner
can be found. Initially, the probowner field of every entry on all processors is set
to some default processor that can be considered the initial owner of all pages. It
is the job of the page fault handlers and their servers to maintain this field as
the program runs.

In this algorithm a page does not have a fixed owner or manager. When a
processor has a page fault, it sends a request to the processor indicated by the
probowner field for that page. If that processor is the true owner, it proceeds as
in the centralized manager algorithm. If it is not, it forwards the request to the
processor indicated by its probowner field. When a processor forwards a request,
it need not send a reply to the requesting processor.

ACM Transactiona on Computer Systems, Vol. 7, No. 4, November 1989.

Memory Coherence in Shared Virtual Memory Systems l 335

The probowner field changes on a write-page fault as well as a read-page fault.
As with the centralized manager algorithms, a read fault results in making a copy
of the page, and a write fault results in making a copy, invalidating other copies,
and changing the ownership of the page. The probowner field is updated whenever
a processor receives an invalidation request, a processor relinquishes ownership
of the page, which can happen on a read- or write-page fault, or a processor
forwards a page-fault request.

In the first two cases, the probowner field is changed to the new owner of the
page. Changing ownership of the page on a read-page fault makes analysis
simpler. Later, we modify the algorithm so that a read-page fault no longer
changes ownership. In the last case, the probowner is changed to the original
requesting processor, which becomes the true owner in the near future. The
algorithm is shown in Figure 3.

The two critical questions about this algorithm are whether forwarding requests
eventually arrive at the true owner and how many forwarding requests are needed.
In order to answer these questions, it is convenient to view all the probowners
of a page p as a directed graph G,, = (V, E,,) where V is the set of processor
numbers 1, . . . , N, 1 EP 1 = N and an edge (i, j) E EP if and only if theprobowner
for page p on processor i is j. Using this approach, we can show

THEOREM 1. Using Algorithm 2, a page fault on any processor reaches the true
owner of the page using at most N - 1 forwarding request messages.

PROOF. See Appendix C. Cl

THEOREM 2. Using Algorithm 2, the worst-case number of messages for locating
the owner of a single page K times is O(N + K log N).

PROOF. See Appendix C. q

COROLLARY 1. Using the dynamic distributed manager algorithm, if qprocessors
have used a page, an upper bound on the total number of messages for locating the
owner of the page K times is O(p + K log q) if all contending processors are in the
q processor set.

This is an important corollary since it says that the algorithm does not degrade
as more processors are added to the system but rather degrades (logarithmically)
only as more processors contend for the same page. Our experiments show that
usually few processors are using the same page at the same time. Normally,
p = 2. Furthermore, an invalidation operation can collapse all the read-copy
paths in the graph. These facts suggest that the dynamic distributed manager
algorithm has the potential to implement a shared virtual memory system on a
large-scale multiprocessor system.

Note that in Algorithm 2, the read-fault handler and its server change the
probowner graph in the same way as the write-fault handler and its server, except
that the write-fault handler does invalidation according to the copy set field.
This was done primarily to make the cost analysis easier; for a real implemen-
tation, the read-fault handler and its server should be slightly modified to get

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

336 l K. Li and P. Hudak

Algorithm 2 DynamicDistributedManager

Read fault handler:
Lock{ PTable[: p l.lock 1;
ask PTableE p l.probOuner for read access to p;
PTable[p].probOuner := self;
PTable[p].access := read;
Unlock(PTable[p] .lock 1;

Read server:
Lock(PTable[p] .lock >;

IF I am owner THEN BEGIN
PTable[p].copyset

:= PTableC p l.copyset U {Self};
PTable[p].access := read;
send p and PTable[p].copyset;
PTable[p].probOuner := RequestNode;
END

ELSE BEGIN
forward request to PTableC p].probOwner;
PTable[p l.probOuner := RequestNode;
END;

Unlock(PTable[p].lock 1;

Write fault handler:
Lock(PTable[p l.lock 1;
ask pTable[p].probOwner for write access to page p;
Invalidate(p, PTableC p].copyset >;
PTable[p].probOwner := self;
PTable[p].access := write;
PTableC p 1 .copyset := {};
Unlock(PTable[: p 1 .lock > ;

Write server:
Lock(PTable[p I.lock 1;
IF I am owner THEN BEGIN

PTable[p].access := nil;
send p and PTable[p].copyset;
PTable[p].probOuner := RequestNode;
END

ELSE BEGIN
forward request to PTable[p l.probOuner;
PTable[p].probOuner := RequestNode;
END;

lJnlock(PTableE p].lock >;

Invalidate server:
PTable[p].access := nil;
PTable[p].probOwner := RequestNode;

Figure 3

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

Memory Coherence in Shared Virtual Memory Systems l 337

better performance:

Read-fault handler:
Lock(PTable[p].lock);
ask PTable[p].probOwner for read access to p;
PTable[p].probOwner := ReplyNode;
PTable[p].access := read;
Un/ock(PTable[p].lock);

Read server:
Lock(PTable[p].lock);
IF I am owner THEN BEGIN

PTable[p].copyset
:= PTable[p].copyset U (RequestNode];

PTable[p].access := read;
send p to RequestNode;
END

ELSE BEGIN
forward request to PTable[p].probOwner;
PTable[p].probOwner := RequestNode;
END;

Un/ock(PTable[p].lock);

The modified read-fault handler and its server still compress the access path
from the faulting processor to the owner, but they do not change the ownership
of a page; rather, they change itsprobowner field. The modified algorithm reduces
one message for each read-page fault, an obvious improvement. For the modified
algorithm, the worst case number of messages for locating K owners of a single
page is difficult to define cleanly because the read-fault handler and its server
behave as a pure forwarding address scheme, which can be reduced to the set
union find problem of a compressing path with naive linking [22], while the
write-fault handler and its server behave differently.

The algorithm proposed in this section needs a broadcast or multicast facility
only for the invalidation operation. If the invalidation is done by sending
individual messages to the copy holders, there is no need to use the broadcast
facility at all, and the benefits of the general approach can still be gained.

5.4 An improvement by Using Fewer Broadcasts

In the previous algorithm, at initialization or after a broadcast, all processors
know the true owner of a page. The following theorem gives the performance for
K page faults on different processors in this case:

THEOREM 3. After a broadcast request or a broadcast invalidation, the total
number of messages for locating the owner of a page for Kpage faults on different
processors is 2K - 1.

PROOF. This can be shown by the transition of a probowner graph after a
broadcast. The first fault uses 1 message to locate a page and every fault after
that uses 2 messages. Cl

This theorem suggests the possibility of further improving the algorithm by
enforcing a broadcast message (announcing the true owner of a page) after
every A4 page faults to a page. In this case, a counter is needed in each entry
of the page table and is maintained by its owner. The necessary changes to

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

338 l K. Li and P. Hudak

Table II. Longest Path First Finds

Number of nodes
Average number of messages/find

n M=N/4 M=N/2 M = 3N/4 M=N

4 1.00 1.50 1.30 1.75

8 1.50 1.75 2.00 2.13

16 1.75 2.13 2.42 2.63

32 2.13 2.63 2.83 3.00

64 2.63 3.00 3.25 3.45

128 3.00 3.45 3.71 3.88

256 3.45 3.88 4.14 4.35

512 3.88 4.35 4.62 4.80

1,024 4.35 4.80 5.05 5.26

Algorithm 2 are fairly straightforward, and we leave the details to the reader. It
is interesting to note that when M = 0, this algorithm is functionally equivalent
to the broadcast distributed manager algorithm, and when M = N - 1, it is
equivalent to the unmodified dynamic distributed manager algorithm.

In order to choose the value of M, it is necessary to consider the general case
in which the same processor may have any number of page faults because
Theorem 3 only shows the performance for page faults on distinct processors. In
the last section we showed that the worst-case number of messages for locating
K owners for a single page is O(N + K log N), but our intuition says that the
performance of K page faults right after a broadcast message should be better
because in the startingprobOwner graph, all the processors know the true owner.

Since it is difficult to find a function describing the relationship between M
and N for the general case, two simulation programs were run for two different
situations: approximated worst-case and approximated random-case behavior.
The initial probowner graph used in both programs is the graph after a broadcast
in which all the processors know the true owner. The programs record the number
of messages used for each find (locating an owner) operation.

The first program approximates the worst case by choosing at each iteration a
node with the longest path to the owner. Table II shows the average number of
messages for each find operation for M = N/4, M = N/2, M = 3N/4, and
M = N. The table shows that the average number of messages steadily increases
as N gets large. Although picking the node with the longest path does not always
generate the worst-caseprobowner graph, our experiments show that the program
actually converges when M is very large. For example, the average number of
messages becomes stable when N = 64 and M > 1024 from our experiments.
Whether the case in which the average number of messages becomes stable is
the worst case is an open problem.

The second program approximates random behavior by choosing a node
randomly at each iteration. The average number of messages for each find
operation is shown in Table III. The table was produced by running the program
four times and computing the average values among all the executions. In

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

Memory Coherence in Shared Virtual Memory Systems l 339

Table III. Random Finds

Number of nodes
N

4

8

16

Average number of messages/find

M=N/4 M=N/2 M = 3N/4 M=N

1.00 1.50 1.67 1.75

1.50 1.75 1.99 2.08

1.75 1.96 2.22 2.53

32 1.93 2.39 2.79 2.90

64 2.09 2.78 2.90 3.12

128 2.06 2.68 2.80 3.16

256 2.20 2.77 3.18 3.39

512 2.46 3.09 3.32 3.56

1,024 2.34 3.08 3.34 3.64

comparing Table II with Table III, note that, on average, random finds use fewer
numbers of messages.

To choose an appropriate value of M, the two tables should be used together
with the information about the expected number of contending processors
because the performance of the dynamic distributed manager algorithm is only
related to such a number rather than the number of processors in the system
(Corollary 1).

5.5 Distribution of Copy Sets

Note that in the previous algorithm, the copy set of a page is used only for the
invalidation operation induced by a write fault. The location of the set is
unimportant as long as the algorithm can invalidate the read copies of a page
correctly. Further note that the copy set field of processor i contains j if processor
j copied the page from processor i, and thus the copy set fields for a page are
subsets of the real copy set.

These facts suggest an alternative to the previous algorithms in which the copy
set data associated with a page is stored as a tree of processors rooted at the
owner. In fact, the tree is bidirectional, with the edges directed from the root
formed by the copy set fields and the edges directed from the leaves formed by
probowner fields. The tree is used during faults as follows: A read fault collapses
the path up the tree through the probowner fields to the owner. A write fault
invalidates all copies in the tree by inducing a wave of invalidation operations
starting at the owner and propagating to the processors in its copy set, which, in
turn, send invalidation requests to the processors in their copy sets, and so on.

The algorithm in Figure 4 is a modified version of the original dynamic
distributed manager algorithm.

Since a write-page fault needs to find the owner of the page, the lock at the
owner synchronizes concurrent write-page fault requests to the page. If read
faults on some processors occur concurrently, the locks on the processors from
which those faulting processors are copying synchronize the possible conflicts of

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

340 ’ K. Li and P. Hudak

Algorithm 3 DynamicDistributedCopySet

Read fault handler:
Lo&(PTable[p].lock 1;
ask PTable[p].probOuner for read access to p;
PTable[p].probOuner := ReplyNode;
PTable[p 1 .access := read;
UnZock(PTableC p] .lock 1;

Read server:
Lock(PTable[p].lock >;
IF PTable[p].access # nil THEN BEGIN

PTable[p].copyset
:= PTable[p].copyset U {RequestNode

PTableI: p 1 .access := read;
send p;
END

ELSE BEGIN
forward request to PTable[p].probOwner;
PTable[p].probOwner := RequestNode;
END;

Unlock(PTable[p].lock >;

Write fault handler:
Lock(PTableC p 1 .lock > ;

ask PTable[p].probOwner for Write access to p;
Invalidate(p, PTableC p 1. copyset 1;
PTable[P].probOuner := self;

PTable[p].access := write;
PTable[p 1 .copyset := {};
Unlock(PTable [p] .lock > ;

Write server:
Lock(PTable [p 1. lock 1;

IF I am owner THEN BEGIN
PTable[p].access := nil;
send p and PTableC p 1 .copyset;
PTable[p].probOvner := RequestNode;
END

ELSE BEGIN
forward request to PTable[p].probOuner;
PTable[p].probOwner := RequestNode;
END;

Unlock(PTableC p].lock >;

Figure 4

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

Memory Coherence in Shared Virtual Memory Systems - 341

Invalidate server:
IF PTable[p 1 . access # nil THEN BEGIN

Invalidate(p, PTableL’ p 1 .copyset > ;
PTable[p 1 .access := nil;
PTable [p 1 .probOuner :* RequestNode;
PTable[p 1 .copyset := {};
END;

Figure 4. (continued)

the write-fault requests and read-fault requests. In this sense, the algorithm is
equivalent to the original one.

Distributing copy sets in this manner improves system performance for the
architectures that do not have a broadcast facility in two important ways. First,
the propagation of invalidation messages is usually faster because of its “divide
and conquer” effect. If the copy set tree is perfectly balanced, the invalidation
process takes time proportional to log m for m read copies. This faster invalidation
response shortens the time for a write fault.

Second, and perhaps more important, a read fault now only needs to find a
single processor (not necessarily the owner) that holds a copy of the page. To
make this work, recall that a lock at the owner of each page synchronizes
concurrent write faults to the page. A similar lock is now needed on processors
having read copies of the page to synchronize sending copies of the page in the
presence of other read or write faults.

Overall this refinement can be applied to any of the foregoing distributed
manager algorithms, but it is particularly useful on a multiprocessor lacking a
broadcast facility.

6. EXPERIMENTS

Since parallel programs are complex and the interactions between parallel pro-
cesses are often unpredictable, the only convincing way to justify a shared virtual
memory on loosely coupled multiprocessors is to implement a prototype system
and run some realistic experiments on it. We have implemented a prototype
shared virtual memory system called IVY (Integrated shared Virtual memory at
Yale). It is implemented on top of a modified Aegis operating system of the
Apollo DOMAIN computer system [2, 331. IVY can be used to run parallel
programs on any number of processors on an Apollo ring network.

We have tested a number of memory coherence algorithms, including the
improved centralized manager, the dynamic distributed manager, and the fixed
distributed manager. To exercise the system we selected a set of benchmark
programs that represent a spectrum of likely practical parallel programs that
have a reasonably fine granularity of parallelism and side effects to shared data
structures. Our goal in using these criteria was to avoid weighing the experiments
in favor of the shared virtual memory system by picking problems that suit the
system well.

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

342 l K. Li and P. Hudak

In this paper we present the results of running four parallel programs. All of
them are written in Pascal and transformed manually from sequential algorithms
into parallel ones in a straightforward way. In order to measure performance,
each processor at run time records statistical information into a file, including
the number of read page faults, the number of write page faults, process migration
data, and memory page distribution data. Information about disk paging and
network traffic is obtained from the Aegis operating system.

6.1 Four Parallel Programs

The first is a parallel Jacobi program for solving three dimensional partial
differential equations (PDEs). It solves a linear equation Ax = b where A is an
n-by-n sparse matrix. In each iteration, ~@+l) is obtained by

@+I) =
Xi

i

bi - Ci;: UiiXlk’ - Cyci+l UijXy)

aii)*

The parallel algorithm creates a number of processes to partition the problem by
the number of rows of matrix A. All the processes are synchronized at each
iteration by using an event count. Since matrix A is a sparse matrix and it is
never updated, we adopt the standard technique in scientific computing of
encoding its contents in-line (William Gropp, personal communication, 1985).
The vectors x and b are stored in the shared virtual memory, and thus the
processes access them freely without regard to their location. Such a program is
much simpler than that which results from the usual message-passing paradigm
because the programmer does not have to perform data movement explicitly at
each iteration. The program is written in Pascal and transformed manually from
the sequential algorithm into a parallel one in a straightforward way.

The second program is parallel sorting; more specifically, a variation of the
block odd-even based merge-split algorithm described in [4]. The sorted data is
a vector of records that contain random strings. At the beginning, the program
divides the vector into 2N blocks for N processors, and creates N processes, one
for each processor. Each process sorts two blocks by using a quicksort algorithm
[26]. This internal sorting is naturally done in parallel. Each process then does
an odd-even block merge-split sort 2N - 1 times. The vector is stored in the
shared virtual memory, and the spawned processes access it freely. Because the
data movement is implicit, the parallel transformation is straightforward.

The third program is a parallel matrix multiply that computes C = AB where
A, B, and C are square matrices. A number of processes are created to partition
the problem by the number of rows of matrix C. All the matrices are stored in
the shared virtual memory. The program assumes that matrix A and B are on
one processor at the beginning and that they are paged to other processors on
demand.

The last program is a parallel dot-product program that computes
R

i=l

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

Memory Coherence in Shared -Virtual Memory Systems l 343

A number of processes are created to partition the problem. Process i computes
the sum

S is obtained by summing up the sums produced by the individual processes

where m is the number of processes. Both vectors x and y are stored in the shared
virtual memory in a random manner, under the assumption that x: and y are not
fully distributed before doing the computation. The main reason for choosing
this example is to show the weak side of the shared virtual memory system; dot-
product does little computation but requires a lot of data movement.

6.2 Speedups

The speedup of a program is the ratio of the execution time of the program on a
single processor to that on the shared virtual memory system. The execution
time of a program is the elapsed time from program start to program end, which
is measured by the clock in the system. The execution time does not include the
time of initializing data structures in the program because the initialization has
little to do with the algorithm itself. For instance, the initialization of the merge-
split sort program initializes an unsorted vector of records with random strings
in their key fields. The time spent on the initialization depends on the generation
of random strings; a complicated random string generating algorithm can well
consume a lot of time. Indeed, if this initialization is included in the execution
time of the program, and such an initialization is performed in parallel, it is
possible to get a better speedup than the ideal speedup since ideally this parallel
algorithm does not yield a linear speedup.

In order to obtain a fair speedup measurement, all the programs in the
experiments partition their problems by creating a certain number of processes
according to the number of processors used. As a result of such a parameterized
partitioning, each program does its best for a given number of processors. If a
fixed partitioning strategy were used, one could demonstrate better (or worse)
speedups, but such an approach is unreasonable. To help assess overall system
performance, all the speedups are compared against the ideal.

The results for the parallel 3-D PDE solver are shown in Figure 5, where
n = 503. The dashed line in the figure is the ideal (linear) speedup curve. Note
that the program experiences super-linear speedup.

At first glance this result seems impossible because the fundamental law of
parallel computation says that a parallel solution utilizing p processors can
improve the best sequential solution by at most a factor of p. Something must be
interacting in either the program or the shared virtual memory implementation.
Since the algorithm in the program is a straightforward transformation from the
sequential Jacobi algorithm and all the processes are synchronized at each

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

344 l K. Li and P. Hudak

cl t 1 I I
0 2 I Ll I

Number of processors

Fig. 5. Speedups of a 3-D PDE where n = 503.

iteration, the algorithm cannot yield super-linear speedup. So, the speedup must
be in the shared virtual memory implementation.

The shared virtual memory system can indeed provide super-linear speedups
because the fundamental law of parallel computation assumes that every proces-
sor has an infinitely large memory, which is not true in practice. In the parallel
3-D PDE example above, the data structure for the problem is greater than the
size of physical memory on a single processor, so when the program is run on
one processor there is a large amount of paging between the physical memory
and disk.

Figure 6 shows the disk paging performance on one and two processors. The
solid line in the figure shows the number of disk I/O pages when the program
runs on one processor. The dashed and dotted lines show the numbers of disk
I/O pages when the program runs on two processors-the dashed line for the
processor with initialized data (processor 1) and the dotted line (which can hardly
be seen) for the processor without initialized data (processor 2). The two curves
are very different because the program initializes its data structures only on one
processor. Since the virtual memory paging in the Aegis operating system
performs an approximated LRU strategy, and the pages that move to processor
2 are recently used on processor 1, processor 1 had to page out some pages that
it needs later, causing more disk I/O page movement. This explains why the
number of disk I/O pages on processor 1 decreases after the first few iterations.

The shared virtual memory, on the other hand, distributes the data structure
into individual physical memories whose cumulative size is large enough to
inhibit disk paging. It is clear from this example alone that the shared virtual
memory can indeed exploit the combined physical memories of a multiprocessor
system.

Figure 7 shows another speedup curve for the 3-D PDE program, but now with
n = 403, in which case the data structure of the problem is not larger than the
ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989

Memory Coherence in Shared Virtual Memory Systems l 345

I .,. ___ _.,,,..... _- -.. ..-
Ol’ ”

1 . I
z 3 . 6 8

Number of iterations

Fig. 6. Disk paging on one processor and two processors.

I I I I
0 2 I I a

Number of processors

Fig. 7. Speedups of a 3-D PDE where n = 403.

physical memory on a processor. This curve is what we see in most parallel
computation papers. The curve is quite similar in fact to that generated by similar
experiments on CM*, a pioneer shared memory multiprocessor [14, 24, 281.
Indeed, the shared virtual memory system is as good as the best curve in the
published experiments on CM* for the same program, but the efforts and costs
of the two approaches are dramatically different. In fact, the best curve in CM*
was obtained by keeping the private program code and stack in the local memory

ACM Transactions on Computer Systems, Vol. ‘7, No. 4, November 1989.

346 . K. Li and P. Hudak

Number of processors

Fig. 8. Speedup of the merge-split sort.

on each processor. The main reason that the performance of this program is so
good in the shared virtual memory system is that the program exhibits a high
degree of locality on each execution path. While the shared virtual memory
system pays the cost of local memory references, CM* pays the cost of remote
memory references across its K maps.

Parallel sorting on a loosely coupled multiprocessor is generally difficult. The
speedup curve of the parallel merge-split sort of 200K elements shown in Fig-
ure 8 is not very good. In theory, even with no communication costs, this
algorithm does not yield linear speedup. Thus, to provide a better comparison of
performance we added the dashed line in the figure to show the speedup when
the costs of all memory references are the same. Also recall that our program
uses the best strategy for a given number of processors. For example, one merge-
split sorting is performed when running the program on one processor, four when
running on two processors, and n2 when running on an n processor. Using a fixed
number of blocks for any number of processors would result in a better speedup,
but such a comparison would be unfair.

Figure 9 shows the speedup curve of the parallel dot-product program in which
each vector has 128K elements. It is included here so as not to paint too bright
a picture. To be fair, the program assumes that the two vectors have a random
distribution on each processor. Even with such an assumption, the speedup curve
is not good, as indicated by the solid line in Figure 9. If the two vectors are
located on one processor, there is no speedup at all, as indicated by the dotted
curve in Figure 9, because the ratio of the communication cost to the computation
cost in this program is large. For programs like dot-product, a shared virtual
memory system is not likely to provide significant speedup.
ACM Transactions on Computer Systems, Vol. ‘7, No. 4, November 1989.

Memory Coherence in Shared Virtual Memory Systems l 347

0 . 8 8

Number of processors

Fig. 9. Speedup of the dot-product program.

I 1 I J
0 I . . 8

Number of processors

Fig. 10. Speedup of the matrix multiplication program.

Figure 10 shows the speedup curve of the matrix multiplication program for
C = AB where both A and B are 12%by-128 square matrices. This example shows
the good side of the shared virtual memory system. The speedup curve is close
to linear because the program exhibits a high degree of localized computation,
even though the input matrices are shared heavily.

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

348 . K. Li and P. Hudak

fixed dist.
impr. cent.

dyn. dist.

Number of processors

Fig. 11. Forwarding requests.

In general, the experimental results show that a shared virtual memory
implementation is indeed practical even on a very loosely coupled architecture
such as the Apollo ring.

6.3 Memory Coherence Algorithms

Our experiments indicate that all three memory coherence algorithms have
similar numbers of page faults. Due to the limitation on the number of processors,
we could not show explicit differences among the three algorithms by comparing
their system performance. The alternative approach we took was to measure the
total number of messages used in an algorithm. In fact, the number of forwarding
requests was used as a criterion for comparing algorithms.

Figure 11 shows the number of forwarding requests for locating true pages
during the first six iterations of the 3D PDE program using the improved
centralized manager algorithm, the fixed distributed manager algorithm, and the
dynamic distributed manager algorithm.

In the fixed distributed manager algorithm, the manager mapping function is
H(p) = p mod N, where p is a page number and N is the number of processors.
The curve of the forwarding requests of the fixed distributed manager algorithm
is similar to that of the improved centralized manager algorithm because both
algorithms need a forwarding request to locate the owner of the page for almost
every page fault that occurs on a nonmanager processor. Since the workload of
the fixed distributed manager algorithm is a little better than that of the improved
centralized manager algorithm, the performance of the former is a little better
than the latter as the number of processors increases.

The figures show that the overhead of the dynamic distributed manager
algorithm is much less than that of the other two algorithms. This confirms the

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

Memory Coherence in Shared Virtual Memory Systems l 349

analysis on the dynamic distributed manager algorithm. The main reason it is
better is that the prob-owner fields usually give correct hints (thus the number
of forward requests is very small) and within a short period of time the number
of processors sharing a page is small.

7. CONCLUSIONS

This paper has studied two general classes of algorithms (centralized manager
and distributed manager) for solving the memory coherence problem, and both
of them have many variations. The centralized manager algorithm is straightfor-
ward and easy to implement, but it may have a traffic bottleneck at the central
manager when there are many page faults. The fixed distributed manager
algorithm alleviates the bottleneck, but, on average, a processor still needs to
spend about two messages to locate an owner. The dynamic distributed manager
algorithm and its variations seem to have the most desirable overall features. As
mentioned earlier, the dynamic distributed manager algorithm may need as little
as one message to locate an owner. Furthermore, Theorem 3 shows that by using
fewer broadcasts the average number of messages for locating a page is a little
less than two for typical cases. Further refinement can also be done by distributing
copy sets.

In general, dynamic distributed manager algorithms perform better than other
methods when the number of processors sharing the same page for a short period
of time is small, which is the normal case. The good performance of the dynamic
distributed manager algorithms shows that it is possible to apply it to an
implementation on a large-scale multiprocessor.

Our experiments with the prototype system indicate that many parallel pro-
grams exhibit good speedups on loosely coupled multiprocessors using a shared
virtual memory. Performance is generally good even for parallel programs that
share data in a fine-grained way, as long as most of the references are read-only.
We conjecture that the main class of parallel programs that would perform poorly
are those with frequent updates to shared data or those with excessively large
data sets that are only read once (such as the dot-product example).

Because of resource limitations we could not run our experiments on more
than eight processors. Thus we do not know for sure how well the shared virtual
memory system will scale. On the other hand, the data we have gathered on the
distributed manager algorithms gives us every reason to believe that it will scale
well, as argued earlier. A more difficult question is what the best page size should
be. Currently we only have experience with two sizes: 1K byte and 32K bytes.
Since this parameter is not only system dependent but also applications depen-
dent, much more experience with a real implementation is necessary before all
of the trade-offs are fully understood.

The memory coherence algorithms proposed in this paper and the success of
our experiments on our prototype system suggest the possibility of using a shared
virtual memory system to construct a large-scale shared memory multiprocessor
system. Such a project is, in fact, underway at Princeton in collaboration with
the DEC Systems Research Center. Through this project we intend to address
many of the unanswered questions raised by this research.

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

350 l K. Li and P. Hudak

APPENDIX A
IMPROVED CENTRALIZED MANAGER ALGORITHM

CentralManager

Read fault handler:
Lo&(PTableC p 1. lock);
IF I am manager THEN

receive page p from 0wnerC p 1;
ELSE

ask manager for read access to p and a copy of p;
PTable[p I.access := read;
Unlock(PTable[p].lock);

Read server:
Lock(PTable[p].lock 1;
IF I am owner THEN BEGIN

PTableC p 1 .copyset
:= PTable[p l.copyset U {RequestNode};

PTable[p].access := read;
send p;
END

ELSE IF I am manager THEN BEGIN
Lock(ManagerLock >;
forward request to ownerC p I;
Unlock (ManagerLock 1;
END;

Unlock(PTable[p 1 .lock > ;

Write fault handler:
Lock(PTable[p].lock);
IF I am manager THEN

receive page p from ownerl: p 1;
ELSE

ask manager for write access to p and p's copyset;

Invalidated p, PTableC p 1 .coppet) ;
PTable[p].access := write;
PTableC p 1 .copyset := {};
Unlock(PTableC p 1 .lock > ;

Write server:
Lock(PTableC p 1 . lock 1;
IF I am owner THEN BEGIN

send p and PTableC p].copyset;
PTable[p].access := nil;
END

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

Memory Coherence in Shared Virtual Memory Systems - 351

ELSE IF I am manager THEN BEGIN
Lo&(ManagerLock 1;
forward request to ovnerC p 1;
ouner[: p] := RequestNode;
Unlock(ManagerLock 1;
END;

UnZock(PTableC p 1 .lock 1;

APPENDIX B
BROADCAST DISTRIBUTED MANAGER ALGORITHM

BroadcastManager

Read fault handler:
Lock(PTableC p 1 .lock > ;

broadcast to get p for read;
PTable[p].access := read;
Unlock(PTableC p l.lock 1;

Read server:
Lock(PTableC p 1 .lock >;
IF I am owner THEN BEGIN

PTable[p].copyset :=
PTable[p].copyset U [RequestNode 1;

PTable[p].access := read;
send p;
END;

Unlock(PTableC p].lock >;

Write fault handler:
Lock(PTable C p 1. lock 1;
broadcast to get p for Vrite;

Invalidate(p. PTableC p 1. copyset 1;
PTable [p].access := write;
PTable[p 1 .copyset := {};
PTable[p].ovner := self;
Unlock(PTable[: p 1 .lock) ;

Write server:
Lock(PTableC p 1. lock 1;
IF I am ovner THEN BEGIN

send p and PTableC p 1 .copyset;
PTable[p].access := nil;
END;

Unlock(PTable[p].lock);

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

352 - K. Li and P. Hudak

APPENDIX C
PROPERTIES OF DYNAMIC DISTRIBUTED MANAGER ALGORITHMS

In the following, we first show some properties of the probowner graph by
assuming that page faults are generated and processed sequentially. In other
words, it is assumed that if processor i has a fault on page p, then no other
processor has a fault on page p until processing the page fault on processor i is
complete. We then show the correctness of the concurrent page fault case by
reducing it to a sequential case.

LEMMA 1. If page faults of page p occur sequentially, every probowner graph
GP = (V, E,,) has the following properties :

(1) there is exactly one node i such that (i, i) E EP;
(2) graph GL = (V, EP - (i, i)) is acyclic; and
(3) for any node x, there is exactly one path from x to i.

PROOF. By induction on the number of page faults on page p. Initially, all
the probowners of the processors in V are initialized to a default processor.
Obviously, all three properties are satisfied.

After k page faults, the probowner graph GP satisfies the three properties
as shown in Figure 12(a). There are two cases when a page fault occurs on
processor j.

(1) If it is a read-page fault, the path from j to i is collapsed by the read-fault
handler and its server in the algorithm such that all the nodes on the path now
point to j (Figure 12(b)). The resulting graph satisfies 1 since (i, i) is deleted
from EP and (j, j) is added to EP. It satisfies 2 because the subgraphs gj, g,, . . . ,
g,, gi (gX is a subgraph of GP rooted at node 3~) are acyclic and they are not
changed. For any node x E V, there is exactly one path to i. Suppose the first
node in the path (in the node set (j, u, . . . , v, i)) is y. The edge from y is changed
to (y, j), so there is no other path from y to j.

(2) If it is a write-page fault and there is no read-only copy of page p, then the
resulting graph is the same as the read-page fault case. If it is a write-page fault
and there are r read-only copies on processors vl, . . . , u,, then in addition to
collapsing the path from j to i, the invalidation procedure makes nodes vl, . . . ,
vr point to j (Figure 12(c)). The resulting graph satisfies 1 since (i, i) is deleted
from the graph and (j, j) is added. A subgraph g, is not equal to g: only if there
is a node w in g, such that w E (vl, . . . , v,]. However, g: is acyclic because
making w point to j does not isolate the subgraphg, fromg,. Hence, the subgraphs
.d,g:, . * .,gL,gl andgul, gUr are acyclic, and the resulting graph satisfies 2.
Similar to the read fault case, any node x E V has exactly one path to i. Suppose
that the first node in the path (in the node set (j, u, . . . , v, i, vl, . . . , v,)) is y.
The edge from y is changed to (y, j), so there is no other path from y to j. 0

Lemma 1 demonstrates that any page fault can find the true owner of the page
if the page faults to the same page are processed sequentially. This shows the
correctness of the algorithm in the sequential case.
ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

Memory Coherence in Shared Virtual Memory Systems

u
i

AT

!7u
Si

i

U

, ’

zm

9i
sv

. 353

(a)

i

(b)

i

Fig. 12. Induction of a prob Owner graph.

The worst-case number of forwarding messages for the sequential case is given
by the following corollary:

COROLLARY 2. In the N-processor shared virtual memory system, it takes at
most N - 1 messages to locate a page if page faults are processed sequentially.

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

354 - K. Li and P. Hudak

PROOF. By Lemma 1, there is only one path to the true owner and there is
no cycle in the probOwner graph. So, the worst case occurs when the probowner
graph is a linear chain

Ep = ((Ul, uz), (u2, u3), * * *, (w-1, hv), (UN, Kv,l

in which case a fault on processor u1 generates N - 1 forwarding messages in
finding the true owner UN. 17

At the other extreme, we can state the following best-case performance (which
is better than any of the previous algorithms):

LEMMA 2. There exists a probowner graph and page-fault sequence such that
the total number of messages for locating N different owners of the same page
is N.

PROOF. Such a situation exists when the a prob-owner graph is the same
chain that caused the worst-case performance in Corollary 2 in which page faults
occur on processors UN, UN-1, . . . , ul sequentially. q

It is interesting that the worst-case single-fault situation is coincident with the
best-case N-fault situation. Also, once the worst-case situation occurs, all pro-
cessors know the true owner. The immediate question that now arises is what is
the worst-case performance for K faults to the same page in the sequential case.
The following lemma answers the question:

LEMMA 3. For an N-processor shared virtual memory, using Algorithm 2, the
worst-case number of messages for locating the owner of a single page K times as a
result of K sequential page faults is O(N + K log N).

PROOF. The algorithm reduces to the type-0 reversal find operation for solving
the set union-find problem [44].’ For aprobowner graph GP = (V, E,), define the
node set V to be the set in the set union-find problem and define the node i E V
such that (i, i) E EP to be the canonical element of the set. A read-page fault of
page p on processor j is then a type-0 reversal find operation Find (j, V) in which
the canonical element of the set is changed to j. A write-page fault of page p on
processor j is a type-0 reversal find operation plus the collapsing (by an invali-
dation) of the elements in the copy set of the page. Although the collapsing
changes the shape of the graph, it does not increase the number in the find
operation. Then, according to the proof by Tarjan and Van Leeuwen [44],
the worst-case number of messages for locating K owners of a page is
O(N + K log N). 0

Note that without changing the ownership on a read-page fault, the algorithm
still works correctly, but the worst-case bound increases when N is large. In that
case, the total number of messages for locating K owners depends on the
configuration of the probOwner graph. If the graph is a chain, then it can be as
bad as O(K N). On the other hand, if the graph is a balanced binary true it is

1 The reduction to set-union tind was motivated by Fowler’s analysis on finding objects [22], though
the reduction methods are different.

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

Memory Coherence in Shared Virtual Memory Systems l 355

O(K log N), and if the graph is at a state in which every processor knows the
owner, it is O(K).

All the lemmas and corollaries above are for the sequential page-fault case. In
practice, however, the sequential page-fault case is unlikely to happen often, so
it is necessary to study the concurrent page-fault case. An important property of
the algorithm is the atomicity of each fault handler and its server, provided by
the locking and unlocking mechanism. For convenience, we state it in the
following lemma:

LEMMA 4. If a page fault for page p traverses a processor q, then other faults
for p that need to traverse processor q, but have yet to, cannot be completed until
the first fault completes.

PROOF. Suppose processing a page fault that occurred on processor i has
traversed processor u. The server of the fault handler atomically sets the prob-
Owner field in the page table entry on processor u to i. The requests for processing
other page faults are forwarded to processor i. Since the page table entry on
processor i is locked, these requests are queued on processor i until processing
the page for processor i is complete. q

Our intention is to show that there exists a sequential page fault processing
sequence that matches any given concurrent page fault processing so that the
results for the sequential case apply to the concurrent case. Processing concurrent
page faults that occur on processors ul, . . . , uk (it is possible that Ui = Uj when
i # j) is said to be matched by a sequential processing of a K page fault sequence
(Ul, **a, vk) if processing the page fault on processor Ui in the concurrent case
traverses the same processors in the same order as in the sequential processing
case.

Consider an example in which the owner of a page is v and page faults occur
on processor i and processor j concurrently. Suppose that the first common node
in the probowner graph that the requests for processing both page faults need to
traverse is u (Figure 13(a)). If the request from processor i traverses u first, the
algorithm sets the probowner field in the page table entry on processor u to i.
When the request from processor j arrives at processor u, it is forwarded to
processor i, but the page table entry on processor i is locked until processing the
page fault for processor i is complete. So, the request from processor j is queued
at the page table entry of processor i, while the request from processor i is
traversing the rest of the path from u to v. The probowner graph when the
processing is complete is shown in Figure 13(b). When the lock on processor i is
released, the request from processor j continues. The resulting graph is shown in
Figure 13(c). Thus, the request from processor i traversed the path i, . . . , u, . . . ,
v and the request from processor j traversed the path j, . . . , u, i. This is equivalent
to the case in which the following events occur sequentially:

-a page fault occurs on processor i;
-the system processes the page fault;
-a page fault occurs on processor j; and
-the system processes the page fault.

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

356 . K. Li and P. Hudak

(a)

(b)

Fig. 13. Two concurrent page faults.

The matched sequential page-fault processing sequence is therefore (i, j). Ob-
viously, if the request from processor j traverses processor LL first, then the
matched sequential page-fault processing sequence is (j, i).

LEMMA 5. For any concurrent page-fault processing, there exists a matched
sequential page-fault processing sequence.

PROOF. By induction on the number of page faults. For one page fault, it is
obviously true. For k + 1 page fault processing, we look at a page fault on
ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

Memory Coherence in Shared Virtual Memory Systems - 357

processor i. By Lemma 4, the following is true:

(1) lzl page fault processing activities are done before processing the page fault
for processor i is complete;

(2) there are kz page fault processing activities after processing the page fault
for processor i is complete; and

(3) k.1 + lzz = k.

According to the assumption, there is a matched sequential page-fault sequence
(Ul, **a, uk,) for the kl concurrent page-fault processings and there is a
matched sequential page-fault sequence (uI, . . . , uk,) for the Kz concurrent
page-fault processings. The matched page-fault processing sequence is therefore
(Ul, . . . , u/a,, i, Ul, . . . , u/J. 0

PROOF OF THEOREMS 1 AND 2. This lemma not only enables us to apply all
the results for the sequential case to the general case but also shows that the find
operations in the set-union problem can be done in parallel if each find can be
broken into small atomic operations in the same manner as this algorithm. We
can therefore prove the two theorems, one for the correctness (Theorem 1 by
Lemma 5 and Corollary 2) and one for the worst-case performance of the
algorithm (Theorem 2 by Lemma 5 and Lemma 3). 0

ACKNOWLEDGMENTS

We wish to thank John Ellis for his invaluable suggestions and helpful discussions
in the early stages of this research. We also wish to thank Professor Alan Perlis
for his continual help and inspiration.

REFERENCES

1. AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass. 1974.

2. APOLLO COMPUTER. Apollo DOMAIN Architecture. Apollo Computer, Inc., Chelmsford, Mass.,
1981.

3. ARCHIBALD, J., AND BAER, J. An economical solution to the cache coherence problem. In
Proceedings of the 11th Annual Symposium on Computer Architecture (Ann Arbor, Mich., June
1984). pp. 355-363.

4. BITTON, D., DEWITT, D. J., HSAIO, D. K., AND MENON, J. A taxonomy of parallel sorting. ACM
Comput. Suru. 16, 3 (Sept. 1984), 287-318.

5.. BOBROW, D. G., BURCHFIEL, J. D., MURPHY, D. L., AND TOMLINSON, R. S. TENEX: A paged
time-sharing system for the PDP-10. Commun. ACM 15,3 (Mar. 1972), 135-143.

6. BOLT, BERANEK, AND NEWMAN. Butterfly Parallel Processor Overview. Bolt, Beranek, and
Newman, Advanced Computers Inc., Cambridge, Mass., 1985.

7. BRINCH, H. Operating System Principles. Prentice-Hall, Englewood Cliffs, N.J., 1973.
8. CARRIERO, N., AND GELERNTER, D. The S/Net’s Linda kernel. ACM Trans. Comput. Syst. 4, 2

(May 1986), 110-129.
9. CENSIER, L. M., AND FEAUTRIER, P. A new solution to coherence problems in multicache

systems. IEEE Trans. Comput. C-27,12 (Dec. 1978), 1112-1118.
10. CHERITON, D. R. The VMP multiprocessor: Initial experience, refinements and performance

evaluation. In Proceedings of the 14th Annual Symposium on Computer Architecture (Pittsburgh,
Pa., June 1987).

11. CHERITON, D. R., AND STUMM, M. The multi-satellite star: Structuring parallel computations
for a workstation cluster. J. Distributed Comput. To appear.

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

358 l K. Li and P. Hudak

12. COX, A. L., AND FOWLER, R. J. The implementation of a coherent memory abstraction on a
NUMA multiprocessor: Experiences with PLATIMUM. Tech. Rep. 263, Dept. of Computer
Science, University of Rochester, Rochester, N.Y., Mar. 1989.

13. DALEY, R. C., AND DENNIS, 3. B. Virtual memory, processes, and sharing in MULTICS.
Commun. ACM 11, 5 (May 1968), 306-312.

14. DEMINET, J. Experience with multiprocessor algorithms. IEEE Trans. Comput. C-31, 4
(Apr. 1982).

15. DENNING, P. J. Virtual memory. ACM Comput. Suru. 2,3 (Sept. 1970), 153-189.
16. DENNING, P. J. On modeling program behavior. In Proceedings on the Spring Joint Computer

Conference (Atlantic City, N.J., May 16-18, 1972). AFIPS Press, Montudle, N.J., 1972, pp.
937-944.

17. DENNING, P. J. Working sets past and present. IEEE Trans. Softw. Eng. SE-6, 1 (Jan. 1980),
64-84.

18. EGGERS, S. J., AND KATZ, R. H. A characterization of sharing in parallel programs and its
applications to coherence protocol evaluation. In Proceedings of the 15th Annual International
Symposium on Computer Architecture (Honolulu, June 1988).

19. FINKEL, R., AND MANBER, U. BIB-A distributed implementation of backtracking. In The 5th
International Conference on Distributed Computing Systems (Denver, Colo., May 1985).

20. FITZGERALD, R., AND RASHID, R. F. The integration of virtual memory management and
interprocess communication in Accent. ACM Trans. Comput. Syst. 4, 2 (May 1986) 147-177.

21. FLEISCH, B. D. Distributed shared memory in a loosely coupled distributed system. In Proceed-
ings of the ACM SIGCOMM 87 Workshop, Frontiers in Computer Communications Technology
(Stowe, Vt., Aug. 11-13, 1987). ACM, New York, 1987, pp. 317-327.

22. FOWLER, R. J. Decentralized object finding using forwarding addresses. Ph.D. dissertation,
Dept. of Computer Science, Univ. of Washington, Seattle, 1986.

23. FRANK, S. J. Tightly coupled multiprocessor system speeds memory-access times. Electronics
57,l (Jan. 1984), 164-169.

24. FULLER, S., OUSTERHOUT, J., RASKIN, L., RUBINFELD, P., SINDHU, P., AND SWAN,
R. Multimicroprocessors: An overview and working example. In Proceedings of the IEEE 66, 2
(Feb. 1978) pp. 214-228.

25. GOODMAN, J. R. Using cache memory to reduce processor-memory traffic. In Proceedings of the
10th Annual Symposium on Computer Architecture (Stockholm, June 1983), pp. 124-131.

26. HOARE, C. A. R. Quicksort. Comput. J. 5, 1 (1962), 10-15.
27. HOARE, C. A. R. Monitors: An operating system structuring concept. Commun. ACM 17, 10

(Oct. 1974), 549-557.
28. JONES, A. K., AND SCHWARZ, P. Experience using multiprocessor systems-A status report.

ACM Comput. Suru. 12,2 (June 1980), 121-166.
29. JONES, A. K., CHANSLER, R. J., DURHAM, I. E., SCHWANS, K., AND VEGDAHL, S. StarOS, a

multiprocessor operating system for the support of task forces. In Proceedings of the 7th
Symposium on Operating Systems Principks (Pacific Grove, Calif., Dec. lo-12,1979). ACM, New
York, 1979, pp. 117-127.

30. KARLIN, A. R., MANASSE, M. S., RUDOLPH, L., AND SLEATOR, D. D. Competitive snoopy
caching. In Proceedings of the 27th Symposium on Foundation of Computer Science (Toronto,
1986). pp. 244-254.

31. KATZ, R. H., EGGERS, S. J., WOOD, D. A., PERKINS, C. L., AND SHELDON, R. G. Implementing
a cache consistency protocol. In Proceedings of the 12th Annual Symposium on Computer
Architecture (Boston, Mass., June 1985). pp. 276-283.

32. LEACH, P. J., STUMPF, B. L., HAMILTON, J. A., AND LEVINE, P. H. UIDs as internal names in
a distributed file system. In Proceedings of the ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing (Ottawa, Ontario, Canada, Aug. 18-20, 1982). ACM, New York, 1982,
pp. 34-41.

33. LEACH, P. J., LEVINE, P. H., DOUROS, B. P., HAMILTON, J. A., NELSON, D. L., AND STUMPF,
B. L. The architecture of an integrated local network. IEEE J. Selected Areas in Commun.
SAC-l, 5 (1983).

34. LI, K. Shared virtual memory on loosely coupled multiprocessors. Ph.D. dissertation, Dept. of
Computer Science, Yale University, New Haven, Conn., Oct. 1986. Also Tech. Rep. YALEU-RR-
492.

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

Memory Coherence in Shared Virtual Memory Systems l 359

35. LI, K. IVY: A shared virtual memory system for parallel computing. In Proceedings of the 1988
International Conference on Parallel Processing (Aug. 1988). Pennsylvania State University Press,
1988, pp. 94-101.

36. LI, K., AND HUDAK, P. Memory coherence in shared virtual memory systems. In Proceedings
of the 5th Annual ACM Symposium on Princip/es of Distributed Computing (Calgary, Alberta,
Aug. ll-13,1986). ACM, New York, 1986, pp. 229-239.

37. LI, K., AND SCHAEFER, R. A hypercube shared virtual memory. In Proceedings of the 1989
International Parallel Processing Conference (Dufage, Ill., Aug. 1989).

38. RASHID, R. F., AND ROBERTSON, G. G. Accent: A communication oriented network operating
system kernel. In Proceedings of the 8th Symposium on Operating Systems Principles (Pacific
Grove Calif., Dec. 14-16). ACM, New York, 1981, pp. 64-75.

39. SEITZ, C. L. The cosmic cube. Commun. ACM 28,1 (Jan. 1985), 22-33.
40. SMITH, A. J. Cache memories. ACM Comput. Surv. 14, 3 (Sept. 1982), 473-530.
41. SPECTOR, A. Z. Multiprocessing Architectures for Local Computer Networks. Ph.D. disserta-

tion, STAN-CS-81-874, Stanford University, Dept. of Computer Science, Stanford, Calif., Aug.
1981.

42. SPECTOR, A. Z. Performing remote operations efficiently on a local computer network. Commun.
ACM 25,4 (Apr. 1982), 260-273.

43. TANG, C. K. Cache system design in the tightly coupled multiprocessor system. In Proceedings
of AFZPS National Computer Conference (New York, N.Y., June 7-10, 1976). AFIPS Press,
Montvale, N.J. 1976, pp. 749-753.

44. TARJAN, R. E., AND VAN LEEUWEN, J. Worst-case analysis of set union algorithms. J. ACM
32,2 (Apr. 1984), 245-281.

45. THOMPSON, J. Efficient analysis of caching systems. Ph.D. dissertation, University of California
at Berkeley, Dept. of Computer Science, Oct. 1987. Also Tech Rep. UCB/CSD 87/374.

46. YEN, W. C., YEN, D. W. L., AND FU, K. Data coherence problem in a multicache system. IEEE
Tram. Comput. C-34, 1 (Jan. 1985), 56-65.

Received February 1987; revised December 1987; October 1988, and May 1989; accepted May 1989

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989.

