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Naming is an important aspect of distributed system design. A naming system allows users and 
programs to assign character-string names to objects, and subsequently use the names to refer to 
those objects. With the interconnection of clusters of computers by wide-area networks and internet- 
works, the domain over which naming systems must function is growing to encompass the entire 
world. 


In this paper we address the problem of a global naming system, proposing a three-level naming 
architecture that consists of global, administrational, and managerial naming mechanisms, each 
optimized to meet the performance, reliability, and security requirements at its own level. We focus 
in particular on a decentralized approach to the lower levels, in which naming is handled directly by 
the managers of the named objects. Client-name caching and multicast are exploited to implement 
name mapping with almost optimum performance and fault tolerance. We also show how the naming 
system can be made secure. Our conclusions are bolstered by experience with an implementation in 
the V distributed operating system. 
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1. INTRODUCTION 


Naming is an important aspect of distributed system design. A naming system 
allows users and programs to assign character-string names to objects and 
subsequently use the names to refer to those objects. Named objects commonly 
include hosts, electronic mailboxes, and files, as well as (less commonly) programs 
in execution, display windows, and network connections. With the interconnec- 
tion of clusters of computers by wide-area networks and internetworks, the 
domain over which naming systems must function has grown to encompass the 
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entire world. For example, it is desirable to be able to name any mailbox anywhere 
in the world, and quite unacceptable to be unable to name a mailbox with which 
one could otherwise communicate. 


Large-scale naming systems are subject to challenging reliability, security, and 
administrative requirements. A large system must continue to function reliably 
in spite of the failure of individual hardware components. Moreover, a naming 
system must provide trustworthy service even though parts of the system may 
belong to many autonomous and mutually suspicious groups-different depart- 
ments, corporations, and even countries. Some progress on this large-scale design 
problem has been reported [2, 13, 16, 19, 221; however, the performance of these 
systems appears inadequate for file naming-at best, it is adequate for naming 
hosts, mailboxes, and other relatively infrequently accessed objects. 


Name lookup operations are a significant factor in system performance. For 
instance, Leffler et al. [17] attribute 40 percent of the system call overhead in 
UNIX to file-name resolution. Also, Mogul’s measurements of UNIX@ system 
call frequency [al] indicate that name-mapping operations (open, stat, lstat) 
constitute over 50 percent of the file system calls. The frequent use of these 
functions results from accessing many small files (so there are typically few read 
or write operations per file open), as well as the frequent need to access file 
property information, such as the time of last modification. 


In this paper, we describe a three-level naming architecture that consists of 
global, administrational, and managerial directory systems, each optimized to 
meet the performance, reliability, and security requirements at its own level. We 
focus in particular on a decentralized approach to the lower levels, in which 
naming is handled directly by the managers of the named objects; at the 
uppermost (global) level, we use familiar design ideas developed by others [13, 
161. Client name caching and multicast are exploited to implement name mapping 
with almost optimal performance and fault tolerance, recognizing that most 
named objects reside at the lower levels of a hierarchical name space. We also 
show how the naming system can be made secure. Based on our analysis of this 
design and our experience with its implementation in the V distributed operating 
system [6], we see the design as a sound basis for the implementation of a truly 
global naming system for distributed systems. 


Our naming system is intended to serve a fully connected internetwork that 
includes a multicast facility. Although the internetwork may be made up of many 
smaller component networks under separate administration, we assume that the 
(inter)network service can deliver a datagram from any connected host to any 
other, and that the address of the destination is independent of the location of 
the sender. We also assume that any set of hosts can form a group with a single 
address, to which any client can send (multicast) datagrams. Neither the hosts 
that send to the group nor the members themselves are required to possess a 
complete list of members; they need only know the group address. Datagram 
delivery to each group member succeeds or fails independently of delivery to the 
others, and failures are not necessarily reported to the sender. Multicast com- 
munication of this sort is available at the interprocess communication level in 


@UNIX is a trademark of AT&T Bell Laboratories. 
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the V system [lo], experimentally at the IP datagram level in the DARPA 
Internet [8, 11, 121, and at the data link level in the Ethernet [14].’ 


The next section describes the naming system design in some detail. Section 3 
evaluates the system’s performance, presenting an analytical model and validat- 
ing the model by comparing it with measurements on the V implementation. 
Section 4 analyzes the fault tolerance of the system, showing that (for nearby 
objects) the system achieves optimum resiliency, in the sense that whenever an 
object is accessible at all, it is accessible by name. Section 5 outlines the problem 
of making the naming system secure and describes a solution. Section 6 compares 
our approach with related work. Section 7 presents our conclusions, notes some 
open issues, and proposes directions for future work. 


2. THk NAMING SYSTEM DESIGN 


Our naming system provides the ability to give objects conventional, hierarchi- 
cally structured character string names and subsequently refer to the objects 
by these names. We use a name syntax in which the % character designates the 
root and the / character separates name components.2 For example, the name 
%edu/stanford/dsg/bin/listdir is an absolute name with five name 
components. 


The naming system provides three general classes of operations: 


Binding: binding a name to an object, removing such a binding, or altering a 
binding. 


Query: checking whether a given name is bound, listing the bound names in 
a given directory, etc. 


Mapping: looking up the binding of a given name and delivering an operation 
request to the bound object’s manager. A familiar example is the file 
open operation, where the requesting client specifies a file by name, 
and the naming system directs the request to the appropriate file 
server. 


The directories in our naming design fall into three classes, or levels-global, 
administrational, and managerial-as suggested by the small example in 
Figure 1. The levels are distinguished by their different performance, reliability, 
security, and administrative requirements. 


Directories at the highest level-the global level-contain entries that represent 
the organizations and groups of organizations participating in the naming system. 
In Figure 1, for example, %edu is the directory of educational institutions, whose 
entries include % edu / s tan f or d, designating the organization Stanford Uni- 
versity, and %edu/berkeley, designating the organization U. C. Berkeley. 
There is generally no administrative superstructure covering the organizations 
named in a global directory; they are independent and (to some degree) mutually 


1 Our naming system can also be adapted to work with more restricted multicast facilities, such as 
one that provides multicast only within individual component networks of the internetwork. 
‘Our present implementation uses [ in place of % for compatibility with an older V naming 
system 191. 
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n Adn 


Stanford 1 \ berkeley 


File 


fats-domino 


b%diddley 


Fig. 1. Three levels of the naming system. 


distrustful. Thus, security is an important consideration for these directories; for 
example, it is desirable to enforce the convention that Stanford does not use 
names starting with %edu/berkeley and Berkeley does not use names starting 
with % edu / s tan f or d. High availability is also. important because the failure 
of a global directory would make a large subtree of the naming system inaccessible; 
fortunately, the slow rate of change of naming information at this level makes a 
high degree of replication practical. Performance is less critical because clients 
keep cached copies of the information in these directories. 


Directories at the second level-the administrational level-are owned and 
administered by individual, unified organizations. The entries in an administra- 
tional directory represent lower-level directories and services belonging to the 
same administration. For example % edu / s tan f or d is Stanford University’s 
highest-level administrational directory, while %edu/s tanf ord/dsg is the root 
directory for a subordinate administration, the Distributed Systems Group. The 
administrational and global levels differ in three significant ways. First, trust is 
hierarchical at the administrational level, simplifying the security issues. That 
is, subordinate administrations may distrust one another, but they accept 
the authority of the parent administration in resolving name conflicts and 
other disagreements. Second, the administrational level in each administrative 
domain is critical to the functioning of that domain, while the global directory 
system is merely a connection to the outside world. Thus, each administrational 
directory should continue to be available to local clients in spite of failure of, 
or disconnection from, the global directory service. Finally, the entries of an 
ACM Transactions on Computer Systems, Vol. 7, No. 2, May 1989. 
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administrational directory represent more localized and dynamic information 
than those of the global level, making it feasible, if not necessary, to implement 
these directories using techniques such as multicast that would not be appropriate 
at the global level. As with the global level, performance is a secondary consid- 
eration because of client name caching. 


Each directory at the lowest level, the managerial level, is stored by a single 
object manager; its entries name objects and directories implemented by that 
manager.” For example (in Figure l), %edu/stanford/dsg/user/jonesis 
a managerial directory whose entries are files and directories belonging to a single 
user and stored on a single file server. The name %edu/stanford/dsg/ 
j ones /bin is Jones’s directory of binary program images, also a managerial 
directory managed by the same file server. Although files are the prime example, 
any kind of object can be named using a directory implemented by its object 
manager. In V, for example, display windows, programs in execution, and network 
connections are all named in this way. The requirements on the managerial level 
differ from the higher levels in several ways. First, high performance for both 
lookup and update are important because managerial directories are accessed and 
updated frequently. Caching has less performance benefit at this level because of 
the rapid update rate. Second, the required availability of managerial directories 
varies, depending on the objects they name. A highly available object manager, 
such as a replicated file system, must have equally highly available managerial 
directories; moreover, each object manager should be able to function in the 
absence of the administrational and global directory levels. But a managerial 
directory need not be available when the object manager itself is unavailable. For 
example, unreplicated files in the directory %edu/stanford/dsg/user/ 
j ones should remain accessible within Stanford as long as DSG file server 3 is 
up and accessible from the campus network, even if the global and administra- 
tional directory levels providing % e du / s tan f or d /d s g are temporarily unavail- 
able. However, if the file server is down or otherwise inaccessible, Jones’s 
directory can be unavailable as well. Third, the need for security in managerial 
directories also varies depending on the objects they name. A highly secure object 
manager should be able to carry the same security over to its directories. 
Conversely, an unprotected manager should not be forced to accept an unwanted 
and inappropriate security overhead on its directories. 


The following sections describe the realization of each level in our design as 
motivated by the above characteristics, proceeding from the managerial level to 
the global level. 


2.1 Managerial Directories 


A managerial directory is implemented by the object manager that implements 
the objects named in the directory. The directories implemented by one object 
manager represent one or more complete subtrees of the name space, covering 


’ A single object that is logically replicated or partitioned among several object managers is treated 
by the naming system as a collection of subobjects, all bound to the same name. The naming system 
supports locating at least one of the subobject managers. Object-specific protocols are required to 
access the other managers, such as is required for an update operation. 
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that portion of the name space.4 The object manager also stores the absolute 
name of the root of each subtree. For example (in Figure l), the subtrees rooted 
at the directories %edu/stanford/dsg/bin and %edu/stanford/dsg/ 
1 ib are both implemented by DSG file server 1, which thus covers all the names 
with prefixes %edu/stanford/dsg/bin and %edu/stanford/dsg/lib. 
Accordingly, file server 1 stores all the files and directories under these two 
subtrees. 


Each object manager directly implements all operations on the names it covers. 
On receiving a naming-operation request, the manager looks among the subtrees 
it implements to find the one whose name is a prefix of the name supplied in the 
request. It then completes the operation using the directories in that subtree. 
(We assume for the moment that the requesting client knows which manager 
covers the name and thus sends the request directly to the right one.) 


Integrating naming with object management in this way has several advantages. 
First, when a client requests an operation on an object specified by name, both 
the name lookup and the object operation can be completed in a single message 
exchange. Further, the reliability of the naming matches that of the object 
implementation: an object’s name can be looked up whenever the object itself is 
available-whenever its manager is up and accessible. This property of our design 
contrasts with designs in which a file server can be up and connected to the 
network, but unavailable for use because the (separate) name server is down. 
Moreover, the replication of an object manager for added reliability results in the 
replication of the name bindings of its objects as well. The close coupling of the 
name and object implementations also facilitates maintaining consistency be- 
tween objects, object names, and object properties, because all the information 
for an object is maintained in one server. The naming implementation can be 
customized and optimized for each type of object manager, where this is of 
benefit.” Finally, the security mechanism for communicating with the manager 
and controlling access to information can automatically be applied to the naming 
operations as well. 


Taken together, the managerial directories record every name-to-object binding 
in the system, but several additional pieces are needed to construct a complete 
naming service. First, clients need a way to find out-efficiently, reliably, and 
securely-which manager covers any given name, so they can send their requests 
to the right manager. Next, clients need a practical way to tell when a name is 
unbound. With the mechanism described so far, some unbound names are not 
covered by any object manager, and clients have no way of distinguishing such 
names from names bound by a manager that is temporarily down or unavailable. 
In addition, some mechanism is needed to implement operations on directories 
above the managerial level-for example, a means to list the entries in %edu/ 
stanford/dsg, even though each entry is a managerial directory that is 
implemented by a different server machine. 


The following sections describe the parts of the design that implement these 
additional services. Efficient, fault-tolerant manager location is provided by name 


4 We say an entity covers a name if it authoritatively knows either the definition of the name or that 
the name is undefined. 
5 The V implementation also provides a standard library of manager-naming routines, for use when 
customization is not needed. 
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prefix caches and multicast, while coverage of unbound names and management 
of higher-level directories are provided by administrational and global directory 
managers. 


2.2 Name Prefix Caches and Multicast 


Each client of the naming system maintains a name prefix cache. The cache is a 
set of entries, each associating a name prefix” with a directory identifier. A 
directory identifier consists of two fields: manager identifier and specific directory 
identifier, where the specific directory identifier is assigned to the directory by 
the manager. When a client program invokes a name-mapping operation, a run- 
time library routine in the client’s address space searches the client’s cache for 
the longest entry that is a prefix of the given name, and uses the result to decide 
where to send the operation request. Binding and query operations also use the 
name cache to locate the right manager. 


A cache search is considered a hit when it returns a cache entry containing the 
name of a managerial directory. In this case, the client sends its request directly 
to the server machine on which the manager is running, using the manager 
identifier in the cache entry to address it. When the manager receives the request, 
it maps the given specific directory identifier to a directory descriptor, verifies 
that the name of that directory matches the name prefix specified in the request, 
and maps the rest of the name starting from the identified directory, thereby 
saving the work of looking up the entire name. It then carries out the requested 
operation, if possible, and returns the results to the client. 


When the cache does not hit on a managerial directory, but does return some 
information, we call the result a near miss. A near miss can either return a cache 
entry corresponding to a local administrational directory, or an entry correspond- 
ing to a directory outside the local administration. 


If the cache returns a local administrational entry, the client multicasts a probe 
request on the given name to the group of managers specified by the cache entry, 
adds the information in the response to its cache, and then proceeds as in the 
cache hit case. In general, a probe request takes a name as its argument, and 
returns a cache entry associating a prefix of the given name with a directory 
identifier. The prefix returned is the shortest one that names a managerial 
directory, if any does, otherwise the whole name; the response comes from the 
manager (or managers) that cover the prefix. For example (referring to Figure 
l),ifthe name being mapped is %edu/stanford/dsg/user/smith/mail, 
and the client’s cache contains an entry for %edu/stanford/dsg/user, then 
the cache returns a directory identifier (m, s) for this entry. The embedded 
manager identifier m addresses the group of object managers that collectively 
cover %edu/stanford/dsg/user-theparticipants in that directory-in this 
case including DSG file servers 2 and 3.7 The probe operation to the group m 
receives a response from file server 2 containing the directory identifier (m’, s’) 
for %edu/stanford/dsg/user/smith; this information is added to the 


a A pathname n, is considered a prefix of n2 if the components of n, respectively match the initial 
components of n,; so %a is a prefix of %a/b, but not of %ab. 
’ As discussed in Section 2.4 below, an administrational directory manager is also included among 
the participants; it covers the unbound names in the user directory. 
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client cache; and the client proceeds by sending its request to file server 2 using 
the address m’. 


If the name corresponds to a directory outside of the local administration, the 
cache returns a directory identifier that specifies a Liaison server, a local server 
that serves as a cache and front-end to the global directory system. The client 
then sends a probe request on the given name to the liaison server. As above, the 
probe request returns a name prefix and directory identifier for the first mana- 
gerial directory in the given pathname. (If the pathname is not long enough to 
reach a managerial directory, the probe operation returns a directory identifier 
specifying the liaison server itself as the manager.) 


The client ordinarily never experiences a complete miss, because the cache is 
primed with a cache entry associating the root directory name (‘I % ‘I) with a local 
liaison server. However, if this entry becomes stale (due to a liaison server crash, 
for example), as a last resort the client multicasts a probe request to all nearby 
object managers and liaison servers (say, all those within one hop on the 
internetwork). If any of those managers covers the name, it responds to the 
probe, just as in the local administrational near-miss case. In addition, if a liaison 
server receives the probe, it responds with a new cache entry for the root directory. 
This mechanism can be implemented using scoped multicast--the ability to 
restrict a multicast to those members of the addressed group that are within a 
specified distance from the sender [8]. 


Cache consistency is maintained by detecting and discarding stale cache entries 
on use. A cache entry becomes stale when its directory identifier is out of date; 
either the specified manager no longer covers the name associated with the cache 
entry or the specific directory identifier no longer identifies a directory by that 
name. Thus, when a client tries to use a stale cache entry, it ends up sending its 
name request or probe to the wrong manager (or group), or providing an incorrect 
specific directory identifier. If the manager no longer exists, the client receives 
no reply and times out. If the manager exists but no longer covers the given 
name, or the specific directory identifier is incorrect, the manager reports that 
fact back to the client. In either case, the client recognizes that its cache entry is 
(or may be) stale, deletes the entry, and issues a probe for up-to-date cache data. 
If the client originally received the cached information from a liaison server, it 
asks the liaison server to reverify the correctness of its information. This client 
feedback effectively causes the liaison server to detect stale data in its own cache 
on use (by clients) as well. 


The name-caching mechanism we have just described has three major 
advantages. 


First, matching on a prefix rather than on the full name allows a small number 
of cache entries to cover a large number of names, resulting in high cache-hit 
ratios and good performance, as detailed in Section 3. For example, if %edu/ 
stanford/dsg/lib is implemented on one manager, a single cache entry 
allows every naming operation on files in this subtree to go directly to the correct 
manager, without the overhead of a multicast or global directory lookup. The 
subtree rooted at 1 ib can reasonably contain thousands of files. 


Further, even when a client’s cache does not hit on a managerial directory, a 
near miss can still provide information that reduces the amount of work required 
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of the shared naming system. In particular, a near miss at the administrational 
level typically reduces the scope of multicast for the resulting probe to a small 
subset of the administration’s object managers, because the probe is only multi- 
cast to the participants in the directory returned by the cache search. The longer 
the prefix returned by a near miss, the more work is saved. For instance, the 
participant group of % edu/s t anf ord would include all object managers at 
Stanford-hundreds, if not thousands of computers-making a multicast to this 
group very expensive. But the participant group of %edu/stanford/dsg is 
much smaller, and that of %edu/stanford/dsg/user is smaller yet. 


Finally, with on-use cache consistency checking, there is no need to inform all 
clients when a cache datum they are storing becomes invalid, yet stale data never 
causes a name to be mapped to the wrong object. This consistency protocol 
exploits the fact that cache data is used only by clients to decide where to send 
messages, not to allow them to perform operations locally. Thus, the correctness 
of the cached information can be (and is) automatically checked on each use. 


2.3 Refinements 


Several important refinements on this basic caching scheme are incorporated 
into our V implementation. 


First, directory identifiers are temporary, volatile identifiers. Their binding to 
directories need not be preserved across server reboots, and they can be reused. 
In fact, a manager can freely invalidate a directory identifier at any time, the 
only penalty being poorer performance of name requests that subsequently use 
that identifier-cache entries that contain the identifier become stale and must 
be refreshed the next time they are used. On-use cache consistency checking 
ensures that invalidation and reuse of directory identifiers never causes names 
to be mapped incorrectly. For example, suppose a client adds to its cache an 
entry that associates the name %edu/stanford/foo with the identifier 
(142, 857), but (142, 857) is later invalidated by the object manager and reused 
to identify %edu/stanford/bar. Then suppose the client attempts to open a 
file called %edu/stanford/foo/output. Although the client does find the 
stale entry in its cache, prompting it to send object manager 142 a request citing 
specific directory identifier 857, the manager does not mistakenly open 
%edu/stanford/bar/output in place of the requested file. Instead, after 
looking up directory 857, the manager recognizes that the directory’s name does 
not match the name provided in the client’s request, and returns an error 
indication to the client. The client then discards its stale cache entry and probes 
for a new one. 


It is useful for both manager identifiers and specific directory identifiers to be 
volatile. On the DARPA Internet, for example, one might construct a manager’s 
identifier from the Internet address of the host currently running it, together 
with a socket number or other local identifier. With this representation, a 
manager’s identifier must change whenever it migrates to another host, and it 
may change whenever the manager program is restarted, depending on how 
socket numbers are allocated. Within each manager, one might allocate specific 
directory identifiers as hash indices into the manager’s internal memory data 
structures, pointing to the associated directories. Thus, management of directory 
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identifiers can be implemented entirely with in-memory data structures; they 
need no stable storage. We have found in-memory implementation to be partic- 
ularly convenient for object managers running at the guest level in existing 
operating systems, such as the one we have implemented on UNIX to provide 
file access from V. 


A further extension of the cache mechanism provides a simple and efficient 
implementation of current working directory, as in UNIX [23]. In V, the run- 
time system in each client’s address space st’ores the absolute name and directory 
identifier for the client’s current working directory. When the run-time system 
syntactically recognizes a relative name, it prefixes it with the working directory’s 
absolute name, then (unless a longer prefix patch exists in the cache), sends off 
the request using the associated directory identifier. The client program is spared 
the inconvenience of supplying the absolute name on each request, and the object 
manager is spared the work of looking up the entire name. If the working 
directory identifier becomes invalid, the run-time system discards it and requests 
a new one using the stored absolute name, just as is done with stale cache entries. 


Finally, client caches can be preloaded with a number of commonly used entries 
on initialization to reduce the initial miss cost on startup. Cache preloading is 
particularly important in the V implementation, where every program has a 
separate cache in its own address spacel In this implementation, a program’s 
initial cache contents are inherited from its parent command interpreter or 
“shell.” Placing a name cache in the addressapace of every program makes the 
caches efficient to access, simplifies the implementation of on-use consistency 
checking, and facilitates transparent program migration [31]. 


2.4 Administrational Directories 


Administrational directories are implemented in a decentralized fashion using 
object managers and administrational directory managers; collectively the man- 
agers that cooperate in implementing an administrational directory are called its 
participants, and they form a multicast group called its participant group. An 
administrational directory manager covers the unbound names in each directory 
it manages, while the bound names are covered by the object managers that 
implement objects named relative to the directory. Figure 2 illustrates how 
information is distributed in the directory %edu/stanford/dsg/user of 
Figure 1. In the example, we say that file server 2 covers the name drake, 
because it knows what that name is bound to, while file server 3 covers the names 
j ones and smith. The administrational directory manager holds a list of bound 
names, but it is not considered to cover these names, because it does not know 
what objects they are bound to.’ The directory manager does, however, cover all 
the unbound names in the directory, because it knows that any name not on its 
list of bound names is unbound. 


As another example (again referring to Figure l), the participants in %edu/ 
stanford/dsg are file servers 1, 2, and 3, plus a directory manager. File server 
1 covers the names bin and 1 i b, while both, file servers 2 and 3 cover user. 
The directory manager covers the remaining unbound names. 


‘The directory manager may know which object manager covers each name on its list, but such 
information is not necessary for name mapping; it is primarily useful in fault diagnosis and recovery. 
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File Server 2 
Name list owner=drake. group=staff. . . 


I 


File Server 3 


jones ownercjones, group=students. . . . 


smith owner=smith, group=students, . . 


Fig. 2. Distribution of administrational directory information. 


Each participant in an administrational directory responds to probes on the 
names it covers. For example, file server 3 would respond to a probe on the name 
%edu/stanford/dsg/user/jones, while the directory manager would 
respond (with an error indication) to a probe on the unbound name %edu/ 
stanford/dsg/user/robinson. Every name is covered by at least one 
participant, so if a client probes a name and receives no response, it can infer 
that the manager that covers the name is down or inaccessible. To get more 
information about the problem, the client can then attempt to query the directory 
manager directly. For example, if a client receives no response to its probe on 
%edu/stanf ord/dsg/lib, it can then query the directory manager for %edu/ 
stanford/dsg. If the directory manager responds, it confirms that lib is 
bound and returns any information it has about lib’s manager. 


Administrational directory listing is coordinated by the directory’s manager. 
A client that needs only a list of names simply obtains it from the directory 
manager; if it needs more information about the named objects, it contacts their 
managers. Note that if all administrational directory managers fail, local clients 
can still obtain a “best efforts” partial directory listing by multicasting a request 
to the group of participants and collating the replies that come in. There is, 
however, no way to know if such a listing is complete-some names will be 
missing if one of the participating managers is down or inaccessible over the 
network. 


An administrational directory’s manager can serve to coordinate access to the 
directory by clients located outside the local administration. A client accesses a 
remote administrational directory through the local liaison server and the global 
directory system; these servers direct the client to the proper administrational 
directory manager. Thus, a client can list an administrational directory and probe 
names in the directory without having to multicast outside of its own adminis- 
trational domain. (There is, in fact, no need in this design to multicast over a 
domain larger than a single administration.) 


The main advantage of this technique for implementing administrational 
directories is that it insulates each object manager participating in an adminis- 
trational directory from faults in the other participants-even faults in the 
administrational directory manager itself. For example, even if file server 3 and 
the directory manager for %edu/stanford/dsg/user are both down, file 
server 2 can still respond to name-mapping requests and probes on %edu/ 
stanford/dsg/user/smith. The price one pays for this insulation is that 
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probes are multicast to all participants, imposing a load on all of them. Probes, 
however, are only generated when a client’s cache misses, and as we show in 
Section 3, it is easy to achieve high enough cache hit ratios to make the multicast 
load insignificant. 


Although name mapping in an administrational directory can continue in the 
absence of its directory manager, name binding and unbinding operations cannot 
(they require access to the list of bound names), so it is still useful to replicate 
the manager, or at least to replicate the information it stores. We believe it is 
most practical to implement an administrational directory manager as a simple, 
stateless program that can run on any host, accessing data kept in an underlying 
replicated storage system-perhaps in files on replicated file servers, or even in 
directories stored by the global directory servers. It seems convenient to include 
the functions of the liaison server in the same program as well, particularly if 
administrational directory data is stored in the global directory service. 


2.5 Global Directories 


Unlike the administrational and managerial levels, directories at the global level 
store information that is cooperatively managed and widely distributed among 
many administrations. Lampson [ 161 presents a credible design for a truly global 
(worldwide) directory system of this type, with a high degree of replication (using 
gradual propagation of updates) to support a high degree of availability. Demers 
et al. [13] also present some algorithms for relaxed update of replicated infor- 
mation. We believe these approaches are sound bases for the construction of a 
global directory system, and simply assume the existence of such a system with 
the required scale and availability. Thus, we focus on interfacing to such a global 
directory system, not on its design. 


The global directory system is accessed through the liaison servers, acting as 
front ends. They act as intermediaries for all client operations at the global level, 
translating if necessary between the client protocol (used at the managerial and 
administrative directory levels) and the global directory system client interface. 
Thus, our design can be used with existing global directory systems and can 
easily be modified to work with new directory systems. The caching performed 
by the liaison servers improves the expected response time for global level queries 
and reduces the load on the global directory system. An alternative approach 
would be to ask clients to deal with the global directory system directly. This 
approach requires that either the client know the specific protocol used by the 
global directory system, or that the global system use the same protocol as the 
managerial and administrational directory managers. It also eliminates the level 
of caching provided in the directory managers. 


If the global directory system becomes unavailable within some administration, 
that administration continues to function autonomously but loses its ability to 
reference remote objects (outside the administration). Given the degree of repli- 
cation used within the global directory system designs cited above, we expect this 
scenario to arise only when the administration is disconnected from the rest of 
the world, in which case remote objects would be inaccessible even if their names 
could be looked up. 
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This section has given a general description of our naming system design, 
partitioned into managerial, administrational, and global directory levels. The 
following sections examine the performance, reliability, and security aspects of 
this design. 


3. PERFORMANCE 


Decentralized naming relies heavily on prefix caching for performance; without 
caching, its name-mapping protocol would not be efficient enough for use in large 
systems. The inefficiency arises because each multicast to an administrational 
directory’s participant group imposes a load on every participant. With a high 
enough cache hit ratio, however, multicast is avoided on most requests, dramat- 
ically improving the average efficiency. The hit ratio also plays a large role in 
determining where the boundary between global and administrational directories 
should go. As it increases, multicasts become less frequent, so larger directories 
can be handled satisfactorily with administrational techniques. Our discussion 
of performance therefore focuses on the effectiveness of caching. 


To simplify the exposition, we initially discuss systems configured with no 
global directories-systems where even the root directory is implemented using 
administrational techniques-then extend the results to global configurations. 


3.1 Load Per Operation 


We evaluate the processing load imposed by naming operations by counting 
packet euents. A packet event is the transmission or reception of a network 
packet. Thus a unicast message costs two packet events-one at the sender and 
one at the recipient. A multicast with g recipients costs a total of g + 1 packet 
events-one at the sender, and one at each recipient. Packet events are a good 
metric here because the bulk of the processing overhead that naming operations 
impose is in the generation and reception of network packets. Our cost analysis 
assumes that no packets are dropped by the network and that responses are not 
delayed long enough to trigger retransmissions by the requestor. We evaluate the 
cost of name mapping only; name binding and the other naming operations are 
comparable [ 181. 


Equation 1 is a conservative estimate for Cmap, the average number of packet 
events required to map a name; its derivation is given below. 


c mm = 4h + (r + m + 7)(1 - h). (1) 


In this equation, h is the cache hit ratio, r is the number of retransmissions 
required to determine a host is down, and m is the number of object managers in 
the system. Both client and server packet events are counted. The equation is 
valid for names that are covered by exactly one manager (the normal case). 


The derivation of Equation 1 uses a simple “hit or miss” model of cache 
behavior, in which a cache lookup is considered to be a hit only if (1) the data it 
returns is still valid (not stale), and (2) the matched prefix refers to a managerial 
directory. All other outcomes are considered misses, and the worst-case miss cost 
is charged for each, yielding a simplified, conservative formula for Cmap.’ 


’ Such an estimate is quite accurate when misses are infrequent [ 181. 
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When there is a cache hit, name mapping costs four packet events. The client 
unicasts its operation request message directly to the correct object manager, and 
the manager unicasts its response. Thus the client sends one packet and receives 
one packet, and so does the manager, for a total of four packet events. 


When there is a cache miss, as many as r + m + 7 packet events may be 
needed. This worst-case cost is incurred when the cache returns stale data 
referring to a host that is no longer up, and after the stale data is discarded, 
there is no information about the given name left in the cache. In this case, the 
client first sends off a request to the address given in the stale cache entry. The 
client detects that the addressed host is down by retransmitting its request 
r times and receiving no response (r packet events). At this point the client 
discards its stale cache data, and is left (we have assumed) with no cached 
information about the given name-not even a shorter prefix that narrows down 
the lookup to an administrational directory below the root. Thus, the client 
next multicasts a probe request to all m object managers participating in the root 
directory (m + 1 packet events), and receives a unicast response from the object’s 
manager (2 packet events) containing a corrected cache entry. Finally, the 
client unicasts its request to the correct manager and receives a unicast 
response (4 packet events). Summing these values, the total cost for this case 
is r + m + 7. 


Combining the two cases yields Equation 1 above. 
It is clear from Equation 1 that Cmap is close to the optimum value 4 if the miss 


ratio 1 - h is small compared to l/(r + m + 7), as illustrated in Figure 3.” For 
example, Cmap is about 4.17 in an installation with 50 object managers, 
r = 4, and h = 99.7 percent. 


Because it includes the cache hit ratio as a parameter, Equation 1 says nothing 
in itself about the practical usefulness of decentralized naming. Therefore we go 
on to consider what hit ratios can be expected in real systems, and what those 
hit ratios imply about the practicality and scalability of decentralized naming 
techniques. 


3.2 Cache Performance Model 


In this section, we develop a statistical model from which the expected cache hit 
ratio for a given decentralized naming installation can be computed in terms of 
other system parameters, and show that hit ratios of well over 99 percent can be 
expected under realistic assumptions about those parameters. The input param- 
eters are (1) the number of name-mapping requests issued per unit time; (2) the 
average length of time a name-cache entry is valid; (3) the average length of time 
a client cache remains in use before it is discarded; and (4) the “locality of 
reference” observed in name usage. We begin by obtaining a formula for the 
steady-state hit ratio, then evaluate the ratio for some typical parameter values, 
and finally discuss startup misses, which can make the observed hit ratio less 
than the steady-state hit ratio. 


I” The optimum is 4 because of the definition of name mapping: at least one message from client to 
manager is required to carry the operation request, and one return message is required to acknowledge 
the request and carry the results, for a total of four packet events. 
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Fig. 3. Average cost of mapping as a function of number of managers. 


3.2.1 Steady-State Hit Ratio. The steady-state hit ratio is the hit ratio for 
client caches that have been in existence long enough to have gathered a (possibly 
stale) entry for every manager the client ever references. Section 3.2.3 below 
shows that the hit ratio for an initially empty cache rapidly approaches the 
steady-state ratio after a few startup misses. 


We derive the following formula for h, the steady-state cache hit ratio averaged 
across all clients: 


The generation of name-mapping requests is assumed to be a Poisson process, 
and the average interarrival time for requests generated by clientj that reference 
a name in managerial subtree k is denoted as p,,,.” The symbol uk represents the 
expected validity time for a cache entry that identifies which manager implements 
names in subtree k; that is, the average interval from the time such a cache entry 
is acquired to the time it becomes invalid. The summation is taken over all clients 
and all subtrees that exist at the moment for which the hit ratio is being evaluated. 
Finally, ,B represents the global average interarrival time for name-mapping 
requests; it is equal to (& Ck fl,TL)-‘. Equation 2 is derived as follows. 


First, observe that the steady-state hit ratio for a single pair (j, k) is given by 


(3) 


because the average time between misses is P,,k + uk, as illustrated in Figure 4. 
Whenever a miss occurs, the client acquires a new cache entry that remains valid 
for a time v’. The next miss occurs on the first request that arrives after the 
entry becomes invalid-that is, at time v’ + 0’ for some p’ 1 0. Now, we know 
that the average value of v ’ is vh, and because we have assumed that the 


” A managerial subtree of the global naming hierarchy is a complete subtree whose root is a managerial 
directory, and whose root’s parent is an administrational (or global) directory. 
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Fig. 4. Average intermiss time equals u + 0. 


generation of requests is a Poisson process, we also know that the average time 
from the end of u’ to the next request (i.e., the expected value of p’) is equal 
to the Poisson parameter P,,h. Therefore, the average time between misses is 
/3,,k + uh. The miss ratio can now be computed as the average number of misses 
per unit time divided by the average number of requests per unit time, and the 
hit ratio as 1 minus the miss ratio, yielding Equation 3 above. 


Equation 2 is then obtained by taking the average steady-state hit ratio across 
all client/subtree pairs, weighted by the frequency with which requests are 
generated involving that pair. The average is formed by multiplying each pairwise 
miss ratio by the corresponding request rate ,B,ik, summing these terms, dividing 
the result by the global request rate PM’, and simplifying. 


3.2.2 Typical Values. We argue that it is reasonable to expect values of k in 
the range 99.00-99.98 percent for typical systems using decentralized naming. 
We first show that values in this range can be expected for individual 
client/subtree pairs with high traffic, and then contend that such pairs should 
dominate the global average due to locality of reference. 


The graph in Figure 5 illustrates how the steady-state hit ratio for a given 
client/subtree pair varies with the average validity time of cache data. In the 
graph, the average time between requests /3j,k is normalized to 1 unit, and 
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Fig. 5. Hit ratio as a function of validity time. 


the average validity time uk (plotted on the x-axis) varies from 100 to 5,000. The 
steady-state hit ratio 6j.k is plotted on the y-axis. At uh = 100, hJ,k = 0.9901, while 
at v/? = 5,000, &,k = 0.99%. 


One expects a strong locality of reference property to hold in applications of 
naming to large distributed systems. For example, in a distributed system 
containing a mixture of personal workstations and shared file servers, it is 
reasonable to expect a given user’s workstation to use two or three file servers 
almost exclusively during the course of a day, even if hundreds of servers are 
available. The user probably keeps all his personal files on one file server, all in 
the same managerial subtree, perhaps loads standard system programs (text 
editor, compiler, etc.) from a subtree implemented by a second file server, and 
perhaps references a third server to access shared files belonging to his work 
group. There may be a few references to other servers, but most are to this small 
subset of the total available. Let us call (j, h) an active client/subtree pair if 
subtree k is a member of the subset that client j is using frequently. 


When this locality property holds, the vast majority of all name references 
involve active client/subtree pairs, so their pairwise hit ratios hi.,, dominate the 
global average hit ratio h. For example, suppose that a given client j accesses 
subtrees 1, 2, and 3 frequently (once per unit time); subtrees 4, 5, and 6 
infrequently (once per 100 time units); and subtrees 7, 8, and 9 very rarely (once 
per 10,000 time units). If uk = 1,000 for all nine subtrees, j’s overall average hit 
ratio is 99.8 percent, quite close to its hit ratio with respect to 1, 2, or 3, which is 
99.9 percent. The hit ratio with respect to 7, 8, or 9 is only 9.1 percent, but these 
misses have little effect on the overall average since the subtrees are accessed so 
infrequently. 


Finally, it seems quite reasonable to expect the ratio of uk to fl,& to be 1,000 or 
more for active client/subtree pairs, putting the global average hit ratio into the 
desired range. Basically, only two types of event can cause a cache entry to 
become invalid: (1) a server may crash and be restarted with a new low-level 
identifier, or (2) the assignment of subtrees to servers may change. Both these 
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events should be rare compared to name-mapping requests. In a production 
system, crashes should be infrequent, so that it is quite reasonable to expect each 
of a server’s regular clients to access it more than 1,000 times between successive 
crashes. It is also reasonable to expect a subtree newly assigned to a particular 
server to (on average) be referenced more than 1,000 times by each of its regular 
clients before it (or a part of it) is reassigned to a new server. For example, one 
does not frequently move trees of files from one server to another, because this 
typically involves copying a substantial amount of data from one disk to another 
or physically moving disk packs. 


3.2.3 Startup Misses. The true hit ratio h for a decentralized naming instal- 
lation is less than the steady-state hit ratio h, because the latter does not count 
the initial misses that occur when a new, empty cache is created. Let us call such 
misses startup misses. Startup misses have little effect on h if client caches have 
long lifetimes compared to Pj,h, but can reduce h substantially if the caches have 
short lifetimes. This effect is quantified below. 


Modifying Equation 2 to reflect the initial misses that occur after a client 
cache is created can be shown to yield Equation 4: 


h=l--CC ’ . 
j h fi1.h + uh 


max(O,l- y). (4) 


In this equation, the symbol 1, represents the lifetime of client cache j; that is, 
the number of time units between the time it is created as an empty cache and 
the time it is discarded. Each term of the original summation has been multiplied 
by maxto, 1 - P,.d,). 


The basic insight leading to Equation 4 is that for each client/subtree pair 
(j, h), j’s first name reference to k following the creation of its cache is always a 
miss, while the remainder are hits with probability Kj.k. Thus the probability of 
a reference from (j, h) being a startup miss is min(1, /3j.k/l,). Equation 4 is then 
obtained by writing an expression for the probability that a given reference is 
neither a startup miss nor a steady-state miss (i.e., that it is a hit), then computing 
the weighted average over all client/subtree pairs. Note that, as with h, one can 
expect the global average h to be dominated by the pairwise hit ratios of active 
client/subtree pairs. 


It is clear from Equation 4 that the observed hit ratio h depends strongly on 
the lifetimes of client caches. If a typical client cache lives long enough for the 
client to make 1,000 name references to each of the subtrees it is actively using, 
hj,k equals 0.999 . h,,,-only a small reduction. On the other hand, if a typical 
client cache only iives long enough for the client to make one name reference to 
each subtree, hj,fi is reduced to nearly zero. Thus, it is clearly important for an 
implementation of decentralized naming to preserve client cache information as 
long as possible. 


The V implementation uses cache inheritance to give cached data a long 
lifetime. Although each client program has a separate cache in its own address 
space, it inherits its initial cache contents from its parent program (usually the 
V command interpreter or “shell”). Our measurements indicate that this tech- 
nique gives nearly as high an overall hit ratio as a per-machine cache would. 
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3.3 Measurements 


To validate our cache model and to give a concrete example of how decentralized 
naming performs, we now present some measurements taken on the V imple- 
mentation. 


At the time the measurements were taken, our installation at Stanford con- 
sisted of about 35 Sun and MicroVAX-II workstations, three file servers running 
the V kernel, and five VAX/UNIX systems providing additional file service, all 
interconnected by Ethernet. During the measurement period, the workstations 
were being used in their normal fashion to support day-to-day tasks including 
software development, word processing, and remote access to other hosts on the 
DARPA Internet. 


3.3.1 Hit Ratio. The measured hit ratios were excellent, and in good agreement 
with the analytical model of Section 3.2. Over about 24 days of 24-hour operation, 
our V installation showed an average cache hit ratio of 99.70 percent. During the 
half hour for which the arrival rate of name requests was highest, the average hit 
ratio was 99.97 percent. Based on measurements of the request arrival rate, and 
estimates of the rate of client and server reboots, the model predicts hit ratios of 
approximately 99.71 and 99.997 percent for these two periods. 


Table I summarizes the statistics from which the 24-day average hit ratio was 
computed. Statistics were reported for a total of 6.033 . lo7 seconds of workstation 
running time, with an average of 25.15 workstations reporting each half hour. 
During this time, 386,626 name-mapping requests were issued, of which 385,466 
were cache hits (i.e., they were carried out with no need for a multicast probe), 
for a hit ratio of 99.7 percent. Note that this measurement counts references to 
uncovered names (resulting in a failing multicast probe) as cache misses, resulting 
in a conservative estimate of hit ratio.” 


Table II summarizes the statistics for the peak half hour of the measurement 
period. During this period, 30,300 names were mapped-fully 7.8 percent of the 
24-day total, and more than in any other half-hour slice of the measurement 
period. There were only 9 cache misses, for a hit ratio of 99.97 percent. 


A rough computation based on the model of Section 3.2 shows reasonable 
agreement with these measurements. Let us assume that each client made about 
the same number of name-mapping requests during the experiment, and that the 
global hit ratio was dominated by their interaction with our most frequently used 
file servers. The computation also assumes that name caches are per-workstation 
to avoid the complication of modeling V’s per-program caches with inheritance. 
Currently, two servers provide the bulk of all file service to our V installation, 
and they are each rebooted twice a week after dumps are taken, so let us assume 
that vh is equal to 3.5 days for each. Workstations are rebooted more frequently, 
often more than once a day, so let us take 1, to be 18 hours for each workstation. 
From the data in Tables I and II we can compute p,,,; to be 156.04 for the 24-day 
experiment, and 1.7288 for the peak half hour. Plugging these figures into 
Equation 4 yields hit ratio estimates of 99.708 and 99.9968 percent, respectively. 


I2 The reason so many uncovered names were mapped is that, at the time these measurements were 
taken, the V implementation did not include online administrational directory managers, so every 
undefined name in an administrational directory appeared uncovered. 
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Table I. Overall Statistics. 


Experimental period: Oct. 17-Nov. 9, 1985 
Workstation-seconds: 6.033 . lo7 
Average workstations reporting: 25.15 
Total names mapped: 386626 
Successful multicast probes: 780 (0.20%) 
Failing multicast probes: 380 (0.10%) 
No probe required: 385466 (99.70%) 


Table II. Statistics for Peak Half Hour. 


Experimental period: 11:41-12:11, Nov. 4, 1985 
Workstation-seconds: 52383 
Workstations reporting: 27 
Total names mapped: 30300 
Successful multicast probes: 8 (0.026%) 
Failing multicast probes: 1 (0.0033%) 
No probe required: 30291 (99.97%) 


Several factors could account for the difference between the measured and 
predicted hit ratios. The discrepancy in the 24-day value is small, and could 
easily be accounted for by slightly inaccurate estimates of uk and lj, by the fact 
that V uses per-program caches with inheritance rather than per-machine caches, 
or the other shortcuts taken in computing the prediction. The predicted hit ratio 
for the peak half hour is, however, quite a bit higher than the observed value. 
This difference could be due to unusual behavior during that particular half hour; 
for example, several references to little-used servers, or several workstation 
reboots. 


These figures also indicate that name mapping is a common enough operation 
that it is important to optimize its performance. During the peak half hour, for 
example, there were 0.578 name-mapping operations performed per workstation 
per second, for a total of 15.6 operations per second over all 27 workstations. In 
a larger installation, of course, the overall total would be proportionately higher. 


3.3.2 CPU Cost. Table III reports the results of an experiment performed to 
measure the CPU cost of decentralized name mapping. The experiment measured 
the time required to perform a trivial operation (GetContextId) on an object 
referenced by name, for each of three cases of interest. In the hit case, a cache 
hit allowed the operation to be completed in a single unicast message transaction. 
In the misslcouered case, the given name missed in the cache but was covered by 
some object manager, which responded to a multicast probe. In the miss/ 
uncovered case, the given name was not covered by any object manager-the 
client multicasted and received no response.“’ CPU time measurements were 
taken on the client workstation, on the server covering the specified name, and 


” The cost of detecting stale cache data was not measured. Detecting and replacing a stale cache 
entry that maps to an existing server adds to the miss case approximately the time for mapping a 
name in the hit case; an entry that maps to a nonexistent server adds approximately the time for the 
miss/uncovered case. 
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Table III. CPU Cost Measurements. 


Case Client (ms) Server (ms) Bystander (ms) 


Nit 3.38 + 0.13 3.89 + 0.082 0 
Miss/covered 26.7 + 5.5 11.6 k 0.30 6.42 -c 0.21 
Miss/uncovered 16.0 f 1.1 - 9.29 f 0.75 


on another server participating in the naming system but not covering the 
specified name (a “bystander”). 


The experiment was structured as follows. A test program, linked with the 
standard client-naming library, ran in a loop, repeatedly trying to map the same 
name. (For the miss/couered case, the program cleared the name cache before 
each trial.) CPU usage measurements were taken on the test program running 
on one workstation, and on instances of a server program running on two other 
workstations. The server was the V in-memory file server (“RAM disk”). The 
tests were run on Sun-2/50 workstations with 10 MHz MC68010 processors and 
Ethernet interfaces based on the Intel 82586 chip. A test run measured the total 
time for 100 to 10,000 trials; the average time per trial was obtained by dividing 
this total by the number of trials. The table gives the means and sample standard 
deviations of the times obtained on four test runs. 


These figures, together with the statistics of Section 3.3.1, show that servers 
in our V installation spend only a small fraction of their available CPU time in 
bystander processing. Assuming there are enough servers so that most servers 
are bystanders even on successful probes, we can compute an average of 0.0221 
ms per naming operation consumed on each server in processing operations in 
which it is a bystander. During the experimental period, there were 386,626 
name-mapping operations observed in 6.033 . 10’ workstation-seconds, for an 
average rate of 6.4 . lo-” operations per workstation per second-or taking the 
average number of workstations to be 25, 0.16 operations per second. Thus on 
the average, 0.000355 percent of each server’s time was consumed in bystander 
processing over a 24-hour period-a negligible amount. The peak load observed 
over any half hour of the experimental period was 16.5 operations per second 
(with 27 workstations reporting). During this period the cache miss ratio was 
only 0.025 percent and the uncovered ratio only 0.00625 percent, both much 
lower than the daily average. Repeating the above computation with these peak 
load figures, it appears that 0.00361 percent of each server’s time was consumed 
in bystander processing during the peak period-still negligible. 


These measurements provide support for the practicality of decentralized 
naming by showing that, in our installation, only a small fraction of the available 
client and server CPU time is consumed in processing name-mapping requests. 
The small amount of time spent in bystander processing is of particular interest, 
because (as discussed in Section 3.4 below) the cost of such processing is the 
major obstacle limiting the size of administrational directories in large systems. 


3.3.3 Elapsed Time. Table IV lists the elapsed times required for name map- 
ping in the same three cases measured in Section 3.3.2. The experiment was 
performed using the same test program and the same hardware described in that 
section. 
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Table IV. Elapsed Time For Name Mapping. 


Case Elapsed Time (ms) 


Hit 9.23 f 0.24 
Miss/covered 47.7 + 9.2 
Miss/uncovered 5379 f 92 


Although the elapsed times for the hit and miss/covered cases are comparable 
to the sums of the client and server CPU times, the time for the miss/uncouered 
case is quite long (over 5 seconds), because it includes a timeout by the client. In 
general, such a timeout requires r . t, seconds, with r (the number of retransmis- 
sions, counting the initial transmission) determined by the required resiliency of 
name mapping as compared with the frequency of omission faults in the com- 
munication medium, and t, (the time interval between retransmissions) deter- 
mined by the expected time to receive a response. In our Ethernet-based V 
installation, both the retransmission interval and the number of retransmissions 
could be reduced significantly were it not for the need to communicate with a 
guest-level implementation of the V interkernel protocol running on our UNIX 
systems (outside the UNIX kernel). Fortunately, uncovered names are rarely 
encountered-even in the preliminary implementation we measured, with no 
directory servers to cover the unbound names in administrational directories, 
only 0.10 percent of all names mapped were uncovered. In a full implementation, 
a name appears uncovered only when the server that covers it is down or 
inaccessible over the network. 


3.3.4 Space Cost. One might expect decentralized naming to have a substantial 
space cost, because it places some global naming information in every server, a 
name cache in every client, and some naming code in both clients and servers. 
Experience with the V implementation, however, has shown that the cost is 
low-low enough that there has been no need to put a size limit on the cache, 
and there apparently will be no need to do so even in much larger installations. 


In servers, the space cost for naming support is not large relative to the overall 
size of the servers. For example, in the case of the V disk file server, the server 
naming library (which compiles to 12,408 bytes of code and static data on the 
MC68000) represents only 14 percent of the total static size of the server, and is 
an insignificant fraction of its run-time size, which consists mostly of disk buffers. 


The static space cost in client programs is also small in comparison with their 
total size. The client-naming library for V occupies 4,936 bytes on the MC68000 
if all of its routines are used (not normally the case). This space cost is comparable 
to that imposed by other standard library routines-for comparison, doprnt 
(the main module that implements the C formatted printing routine pr intf) 
alone compiles to 1,276 bytes on the MC68000. 


The run-time space cost in client programs is due mostly to the name cache, 
which never grows very large. Recall that a client’s cache contains at most one 
entry for each managerial subtree that the client has referenced. Because of 
locality, a given client is quite likely to reference only a small fraction of the 
available subtrees during its lifetime, and to be actively using less than 5-10 at 
any given moment. In the V implementation, each name-cache entry occupies 
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22 bytes of memory plus the length of the name prefix it refers to, which is 
typically less than 32 bytes. Thus a name cache of 10 entries occupies less than 
540 bytes of memory. 


3.4 Limits to Growth 


There are some practical limits to how large a system can be built with an 
administrational directory at its root. For example, although the V implementa- 
tion works well on our network at Stanford, it would be quite impractical to 
extend it to a nationwide or worldwide internetwork without adding a global 
directory level. This section takes a detailed look at the limits to growth in 
decentralized naming systems without global directories (administrational sys- 
tems). The following section applies these observations to systems that include 
global directories (global systems), where they set a practical limit on how large 
a directory can grow before it must be implemented using global, rather than 
administrational, techniques. 


3.4.1 Availability of Multicast. The availability of multicast is currently a 
technological limit on the size of network that an administrational directory can 
span, but this limit may not exist for long. Today’s network technology provides 
multicast only within a local-area network, such as a single Ethernet cable, not 
across long-haul networks or even across multiple Ethernets connected by 
gateways. This problem would seem to set a practical limit of around 1,000 hosts 
on the maximum size of an administrational decentralized naming system. 
However, techniques for internetwork multicast are currently under investigation 
[8], and of course techniques for internetwork broadcast have long been known 
[3, 331. Thus, it makes sense to assume the technological limits will be overcome, 
and to ask what other limits are encountered as systems are expanded well 
beyond 1,000 hosts. 


3.4.2 Load per Operation. Another limit to the growth of an administrational 
system arises from the linear increase of name mapping cost with system size. 
The graph in Figure 3 illustrates the problem: if the number of managers in the 
system is increased while the hit ratio remains constant, the average load imposed 
by mapping a name increases linearly, with the slope of the cost function equal 
to the miss ratio 1 - h. At some size, Cmap becomes unacceptably large. Increasing 
the hit ratio raises this limit but does not eliminate it. 


In a system using global directory managers, on the other hand, the number of 
packet events required to map a name in the cache-miss case is proportional to 
the number of directory managers in the path from the global root name server 
to an object, not to the total number of object managers. It therefore increases 
only as the log of the system size, assuming directory managers at each level 
have about the same fanout (number of links to managers at the next level). This 
growth property suggests that global directory managers should be used for the 
uppermost levels of large hierarchical naming systems. 


3.4.3 Load per Manager. A further difficulty in scaling up an administrational 
decentralized naming system arises because the average naming load per object 
manager contains a term that is proportional to the number of clients, but not 
inversely proportional to the number of managers. That is, as the number of 
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Fig. 6. Load per server as a function of system size (with constant K). 


clients increases, there is a component of the load on each server that increases 
proportionately and cannot be reduced by increasing the number of object 
managers. (“Load” here is measured in packet events per unit time.) This load 
component arises directly from the use of multicast to handle cache misses. 


A computation similar to those of Section 3.1 yields the following expression 
for L, the average nalning load per manager, in a system with c clients and m 
object managers. 


Here CY is the average activity level of each client; that is, each client, on the 
average, generates 01 name-mapping requests per unit time. In the notation we 
have been using, cx = c-’ C, Ck P,<L. A s b f e ore, h is the cache hit ratio. 


One way of interpreting Equation 5, illustrated in Figure 6, is that it implies a 
linear increase in the naming load on each server as a system increases in size, 
with the slope of the increase depending on the cache hit ratio. The graph plots 
the number of clients on the x-axis and the number of name-mapping packet 
events per server per unit time on the y-axis. It assumes that the ratio of client 
hosts to server hosts remains constant as the system grows (that is, c = Km for 
some constant K), and that o( also remains constant; in this figure, K = 10 clients 
per server and a = 1 request per time unit. 


As the system continues to grow, the servers eventually become saturated by 
the increased naming load, and it becomes necessary to reduce the number of 
clients per server to compensate. This observation leads to another way of looking 
at the growth problem, illustrated in Figure 7. The graph assumes that (1) each 
server has a fixed load-handling capacity L of 150 packet events per unit time; 
(2) there are an average of 8 non-naming packet events generated for every client 
name-mapping request (so that naming represents 20 percent of the packet. 
events when there are no cache misses); and (3) the number of clients per server 
K is set just low enough to keep the servers within that capacity. It plots K on the 
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y-axis against c on the x-axis. Under these assumptions, the number of clients 
that can be handled per server decreases linearly, but slowly, as the total number 
of clients grows. 


In light of the results of this and the previous section, it is clear that 
administrational decentralized naming systems cannot be scaled up indefinitely; 
however, it appears that systems including thousands of hosts can be quite 
practical, at least from a performance standpoint. 


3.5 Extension to Global Systems 


We argue that the above results for administrational systems can be used to 
establish a limit on how high in a global naming hierarchy the boundary between 
administrational and global directories can be drawn. That is, they determine 
which directories must be made global. 


A global decentralized naming system can be viewed as a set of administrational 
subtrees hanging from the common global directory mechanism.14 Each subtree 
can then be analyzed as an independent system-the global directory managers 
direct each client-name request to exactly one subtree, so each one receives some 
fraction of the total mass of requests. 


The above analysis of name mapping in an administrational system applies 
almost without change to an administrational subtree S in a global system, with 
the total number of managers (m) replaced by the total number of participants 
in the root of the subtree (ms).‘” The only difference is that a worst-case miss 
costs r + d + m + 7 instead of r + m + 7, where d is the number of packet events 
incurred in going through the global directory managers to find the participant 
group for S. The term d is at most equal to twice the path length from the global 
root to the root of S (because each global directory could be kept at a different 
directory manager, requiring one unicast packet from each directory’s manager 


I4 An administrational subtree is a complete subtree of the global naming hierarchy, whose root is an 
administrational directory that has a global directory as its parent. 
‘,‘Recall that a directory’s participant set includes the union of the participant sets of all its 
descendants, so every manager that names anything in a subtree participates in a subtree’s root. 
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to the next). The path length is roughly proportional to the log of the total 
number of global directories in the system; thus it is small enough compared to 
m that it can be treated as a constant. It therefore has no more effect on the 
analysis or results than would a change in the value of r. 


Therefore, in a global system with similar parameters to the administrational 
systems discussed earlier, any directory with more than a few thousand partici- 
pants should be made global rather than administrational. The exact cutover 
point depends on the relative values that are placed on performance and resili- 
ency. Performance is improved by switching to global techniques in directories 
with fewer participants; but as shown in the next section, these techniques 
give poorer resiliency. On the other hand, resiliency is improved by using admin- 
istrational techniques, but as was shown above, these techniques give poorer 
performance. 


4. FAULT TOLERANCE 


A distributed naming system of the size we are interested in must be prepared to 
deal with faults in the object manager hosts, client hosts, and communication 
network. In fact, some fraction of the total system resources can be expected to 
be faulty at all times. We show that our decentralized naming design is both 
highly reliable and highly resilient in the presence of faults. We say an operation 
is reliable with respect to some class of faults F if, in spite of the occurrence of 
faults in F, it either succeeds, performing the requested action and returning 
correct results to the invoker, or fails, returning an error message, as laid out in 
its specification.16 An operation is resilient with respect to some class of faults F 
if a fault in this class cannot cause the operation to fail. (A fault is said to cause 
an operation to fail if there is some set of arguments and initial conditions under 
which the operation’s specification permits it to succeed, but in the presence of 
the fault, the operation sometimes fails.) 


We focus primarily on network omission (packet loss) and server crash faults. 
Client crash faults are not considered, but present no additional problems for 
our algorithms. We concentrate on the problem of achieving resiliency, given 
that reliability is relatively straightforward to achieve under this fault model. 
Some remarks on tolerating Byzantine faults are included at the end of this 
section. We argue informally throughout; for a more formal and complete treat- 
ment of this material, the reader is referred to Mann’s thesis [18]. 


The next three sections discuss the fault tolerance of the three classes of 
decentralized naming operations-mapping, query, and binding. In the first 
section, we show that decentralized name mapping achieves optimum resiliency 
for names bound to objects with nearby managers-managers that are within 
range of the multicast sent out when a client’s cache misses. For other names, 
the resiliency of name mapping is dependent on the resiliency of the global 
directory system. The next section shows that query operations would require 
full replication to achieve optimum resiliency, yet in practice provide acceptable 
resiliency if the global directory system is acceptably resilient. The third section 


leThis concept of failure is similar to the notion of exception in programming languages or abort in 
transaction systems. A failure is undesirable, but not catastrophic, because the system reports it and 
is prepared to deal with it. 
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discusses the binding and unbinding operations, focusing on the problem that 
increased replication can make these operations less resilient and more costly. A 
final section discusses Byzantine faults. 


4.1 Name Mapping 


The name-mapping operation accepts a name n and a message m as its arguments. 
If n is bound to an object O,, the operation sends the name and message to the 
object’s manager M(0,) and returns a reply, or else fails, returning an error 
indication. If n is unbound, the operation always fails.17 


The optimum achievable resiliency for any implementation of name mapping 
is ABMA-resiliency. ABMA stands for “all but manager access”: an operation’s 
implementation is said to be ABMA-resilient if the only fault combinations that 
can cause it to fail are manager access faults-faults that preclude communication 
with the specified object’s manager, such as a crash fault on the object manager 
or a network omission fault that prevents communication with it. No implemen- 
tation of name mapping can be more than ABMA-resilient, because the definition 
of name mapping requires round-trip communication with the named object’s 
manager. But ABMA-resiliency is achievable (at least in theory); for example, 
one could achieve it by multicasting all name-mapping requests to a group 
including every object manager. 


Decentralized name mapping does not achieve ABMA-resiliency for all objects, 
but it does achieve such resiliency for a limited class of objects-those with 
nearby managers. As described in Section 2, a client attempting to map a name 
n repeatedly examines its cache, discards (apparently) stale data, and issues 
probes for more cache data. It does not stop until it has either (1) received a 
reply to its name-mapping request, (2) been informed that n is unbound, or 
(3) timed out on a multicast probe to the group of nearby object managers. If n 
is bound to a nearby object, case (1) means success, case (2) cannot occur, and 
case (3) can occur only if an access fault prevents the multicast from reaching 
the object’s manager or prevents the manager’s reply from reaching the client. 
Thus, name mapping for nearby objects is resilient against all but manager access 
faults. 


For objects that are not nearby, a larger class of faults can cause name mapping 
to fail. First, of course, manager access faults can cause failure. In addition, faults 
that affect the global directory servers can cause failure by making necessary 
information inaccessible. For example, if a client at Berkeley attempts to map 
the name %edu/stanford/dsg/smith, but all servers holding copies of the 
%edu directory are inaccessible and the client does not have any information 
about %edu/stanford in its cache, the name mapping fails. Finally, if all 
copies of an administrational directory’s manager fail, clients in remote admin- 
istrations can no longer map names in that directory, because (as mentioned in 


” Name mapping on a replicated or distributed object-one that consists of multiple subobjects with 
distinct managers-is considered to succeed if it communicates with at least one subobject manager. 
Any additional protocol required to communicate with other managers for consistent access or update 
is object-type specific; it is implemented by the subobject managers, not by the naming system. For 
example, in the UIO interface [5], each manager of a replicated object maintains a list of the other 
managers storing replicas. 
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Section 2.4), such clients are not able to multicast to the directory’s participants- 
they send their requests to the directory manager instead. For example, if the 
administrational directory manager for %edu/stanf ord fails, clients at Stan- 
ford can continue to map names in this directory using multicast, but clients at 
Berkeley cannot. In practice, we expect a reasonable level of replication to make 
these additional failure modes rare. 


No other classes of faults can cause name mapping to fail. For example, failure 
of a liaison server cannot cause name mapping to fail, because liaison servers are 
stateless-a new liaison server can be started up any time an old one fails, on 
any host (assuming a copy of the server program is available). The loss of cached 
data in the liaison server can only cause performance degradation, not name- 
mapping failure. 


We believe this level of resiliency is reasonable, even though it is not optimum. 
Optimum resiliency requires that each client be able to map any object’s name, 
even if that client and object manager are the only hosts in the system that are 
up and communicating. This in turn is possible only if each client is able to 
multicast to every object manager (or at least, to every object manager for which 
the client does not have complete, correct name coverage information). As was 
shown in Section 3, multicast to all managers is too expensive to be practical in 
systems containing more than a few thousand manager hosts. 


A name-mapping request can fail with the return value “failure: no response,” 
indicating that the client run-time system was unable to get a response at some 
step of the name-mapping protocol. For example, the manager of the named 
object may have crashed. As another example, the name may be invalid at the 
administrational level, but the administrational directory manager is unavailable 
and thus unable to indicate the invalidity. In such cases, the name mapping fails 
without determining whether the name is bound or not, information the client 
might require. We refer to this as the binding check problem, discussed in the 
next section. 


4.2 Query 


We discuss two query operations in this section: binding check and directory 
listing. The binding check operation takes a name n and returns the name’s 
binding status (bound or unbound), or else fails, returning an error message. 
Logically, whenever a server is binding a new name, a binding check is required 
to determine whether the name is already defined, to prevent ambiguous names. 
Also, binding check can provide additional information when a client’s name- 
mapping request times out-the client may be able to determine that the name 
is bound even though the object manager that binds the name is down. The 
directory listing operation takes a name n and lists the names that are bound in 
the directory specified by n, or fails, returning an error message. We show that 
it is impractical to implement these operations with optimum resiliency, discuss 
the actual resiliency provided by a decentralized implementation, and argue that 
the latter resiliency is a reasonable compromise for practical systems. 


For a system in which every name is covered, optimum resiliency for binding 
check and directory listing is achieved if (and only if) every host has complete, 
correct knowledge of which names are bound and which are unbound. In this 
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case, binding check and directory listing are purely local operations at each 
client-no external servers or network communication are required-so they are 
resilient against all faults.” On the other hand, if some client host C does not 
have information about some name n, C’s implementation of binding check on n 
(or directory listing on the directory containing n) cannot be resilient against all 
faults-in particular, it is not resilient against a set of faults that completely cuts 
C off from the network. Clearly, however, it is not practical to replicate knowledge 
of every name’s binding status at every node in a large system where names are 
bound and unbound frequently. 


As a practical compromise, decentralized naming provides a resiliency for 
binding check that is just slightly better than the resiliency of name mapping, 
using a protocol that is a slight variant of the name-mapping protocol. When the 
name-mapping protocol would call for a multicast probe, which can be answered 
only by a manager that covers the name in question, the binding check protocol 
multicasts a query that can be answered by any manager knowing the name’s 
binding status. For example, if %x/y is an administrational directory and 
%x/y/z is a managerial directory on manager M, the administrational directory 
manager responds bound to a binding check query on %x/y/z even if manager 
M is down. The protocols are otherwise identical. Thus for bound names, binding 
check succeeds whenever name mapping would succeed, plus the additional case 
just mentioned. For unbound names, binding check succeeds whenever a manager 
that covers the name is accessible-generally, the manager of directory corre- 
sponding to the name’s longest bound prefix. For example, if %x/y is bound but 
%x/y/w is unbound, binding check on %x/y/w succeeds (returning unbound) if 
the manager of %x/y is accessible. 


This level of resiliency is arguably a reasonable choice for practical implemen- 
tations of naming. For file names, it is similar to that provided by other naming 
services. For example, in Lampson’s design [16], the global name service records 
the binding of each file server’s name, but not the names of individual files on 
the servers. So when an (unreplicated) file server is down, binding check on its 
own name-that is, on the name of its root directory-can still succeed, but on 
any file below its root, the operation fails. The same is true of decentralized 
naming. 


In our design, each directory is assigned a manager (or replicated across several 
managers), so directory listing is as resilient as name mapping-a directory can 
be listed whenever its manager can be contacted, and a directory’s manager is 
contacted by applying the name-mapping protocol to the directory name. In 
addition, administrational directory listing can be made more resilient at some 
cost in reliability. That is, a client can multicast to an administrational directory’s 
participants when the directory’s manager is unavailable, obtaining a list of the 
names each participant binds. Collating these lists produces a directory listing. 
This protocol is unreliable, in the sense that it can produce an incomplete listing 
with no warning to the client: the client has no way of knowing whether all 


lR Resiliency against all faults is possible for binding check and directory listing, though it is impossible 
for name mapping, because the specification of name mapping requires communication with the 
object manager that binds the name, while the specifications of binding check and directory listing 
do not. 
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participating managers received and responded to its request. Nonetheless, 
information obtained in this way can be useful. 


Although these query operations can be made more resilient, in general, 
increasing their resiliency requires increasing the replication of directory infor- 
mation; this in turn increases the overhead for binding operations, as described 
in the next section. 


4.3 Binding 


Viewed abstractly, binding operations-operations that add, remove, or modify 
name bindings-are update operations on (possibly) replicated data. The degree 
of replication varies across the managerial, administrational, and global directory 
levels. Managerial directories are often not replicated; where they are, the choice 
of replication and crash-recovery mechanisms is manager-specific. An adminis- 
trational directory’s entries are partitioned across its participating managers; the 
list of bound names held by its directory manager may or may not be replicated, 
depending on the manager implementation. Similarly, the degree to which global 
directories are replicated is a design and configuration choice for that part of the 
system. 


With conventional techniques for managing replicated data, such as weighted 
voting [15], a high degree of replication results in either a large write quorum, 
making updates expensive, or a large read quorum, making queries expensive, or 
both. The techniques of Lampson [16] and Demers et al. [13] appear to be 
effective ways to trade off strict correctness (allowing temporary inconsistency) 
to obtain better resiliency and performance for updates to global directories. It 
is less clear whether these techniques are necessary or acceptable at the admin- 
istrational or managerial level. 


4.4 Other Fault Classes 


Our naming design makes no attempt to handle Byzantine faults in their full 
generality. Although Byzantine faults in distributed systems can in general be 
tolerated using replication coupled with Byzantine agreement protocols, we 
expect many simple, unreplicated servers to use our naming system, and we 
expect that nearly all clients will be unreplicated. Moreover, in many applications, 
the cost of running a multiround Byzantine agreement protocol outweighs the 
benefits of tolerating Byzantine faults, particularly given the rarity of such 
faults.lg Implementations of our design can, however, tolerate some fault classes 
beyond simple omission and crash faults. 


First, our V implementation handles timing faults by using timeouts and 
sequence numbers to convert them to omission faults, a well-known technique. 
That is, a packet that is delivered too late is recognized as such and discarded by 
the recipient. Such packets appear to have been dropped by the network. 


Further, a large class of “malicious” faults is handled by the security mechanism 
we discuss in the next section. Using this mechanism, authorization to cover any 
given name can be granted to some object managers and denied to others, 
preventing the unauthorized managers from compromising the reliability of 
operations on that name. For example, when a client multicasts a probe request, 


” Up to t + 1 rounds of messages among all replicas are required to tolerate t Byzantine faults [29]. 
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faulty or malicious object managers that receive the request could issue incorrect 
responses. The security mechanism provides a reliable way for the client to filter 
out incorrect responses from unauthorized managers. 


5. SECURITY 


A naming system is secure if it ensures that (1) servers do not provide information 
to clients that are not authorized to have it, (2) servers do not accept unauthorized 
updates, and (3) clients do not accept information from servers that are not 
authorized to provide it. The latter requirement is of particular concern in a 
decentralized naming system, where it implies that clients must recognize and 
discard counterfeit responses to their multicast naming requests. (We define a 
counterfeit response to a naming request to be a response sent by a manager that 
is not authorized to cover the portion of the name space in question.) We assume 
that the system has some well-defined security policy that specifies (1) which 
clients are authorized to access each directory, and (2) which servers are author- 
ized to cover each portion of the name space. 


Providing secure directory access is straightforward; the access-control mech- 
anism for directories can be modeled after the mechanism used for file-access 
control. That is, a manager checks each incoming naming request and rejects 
those for which the requesting client does not appear on the access lists for the 
directories involved.20 


Counterfeit rejection is the reverse problem-it requires clients to check the 
authorization on information coming from managers. The counterfeit problem is 
similar to the classic problem of “authenticating the system to the user” when 
logging onto a centralized computer system, but is more complex-there is not 
just one system to authenticate, but many different object managers, owned by 
different administrations and authorized to cover different parts of the name 
space. Moreover, the client does not know in advance which manager it wants to 
hear from, only that it wants the authorized manager for the name it is presenting. 


We favor an approach in which each manager caches an unforgeable capability 
describing the portion of the name space it is authorized to cover, which it 
returns in its response to each naming request. Conceptually, a capability K is a 
document stating that “principal p(K) is authorized to perform action a(K) until 
time t(K),” signed by some principal s(K), where s(K) is authorized to issue 
capabilities for a(K). Whenever a manager p(K) responds to a client C’s naming 
request, it includes an appropriate capability K with its response, and applies its 
own signature to the whole package to certify that it is in fact coming from p(K). 
These capabilities cannot be revoked, but they can be made to expire, allowing 
coverage authorization to be changed from time to time. Every client is initialized 
with enough information to be able to check incoming capabilities for validity. 
Thus, clients do not incur extra network traffic. A manager only incurs additional 
network traffic when it receives a client request for which all its capabilities have 
expired, forcing it to request a new capability before it can answer the request. 
Capabilities can be implemented using RSA [24] or any other cryptosystem that 
provides digital signatures. Further details are given in Mann’s thesis [18]. 


“I We assume an authentication mechanism (cryptographic signatures, for example) that allows the 
requesting client to prove its identity. 
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Capability-based security does have some cost, both in performance and in 
resiliency. The security mechanism reduces resiliency because, if the authoriza- 
tion service fails or becomes inaccessible, servers can no longer operate once 
their capabilities expire. It also introduces some performance overhead because 
of the need for managers to include capabilities in their naming responses and 
for clients to verify them, and the need for managers to acquire new capabilities 
after old ones expire. A trade-off arises-between, on the one hand, performance 
and resiliency, and on the other hand, flexibility and strength in the security 
mechanism-for two reasons. First, capabilities can be made short-lived to make 
it possible to cancel authorization on short notice and reduce the danger of 
compromise-but doing so imposes a higher performance and resiliency cost on 
the managers. Similarly, one can improve security by strengthening the crypto- 
system used to implement capabilities-but doing so will typically also increase 
their size and increase the processing time needed to generate and check them. 


In general, reduced performance and resiliency are an unavoidable cost in any 
counterfeit-secure implementation of decentralized naming that allows coverage 
authorization to be granted and revoked dynamically. Whenever a client and 
manager communicate, one or the other must contact a security authority 
occasionally to verify that the server is (still) authorized to respond to the client’s 
requests. 


The above security mechanism has not been implemented to date; however, 
we do not see any significant difficulty in doing so. We have described it here to 
demonstrate the feasibility of making a decentralized naming implementation 
secure. 


6. RELATED WORK 


We have concentrated in this paper on the administrational and managerial 
levels of our naming design, under the assumption that directories at the global 
level can be implemented using known name server technology. Perhaps the most 
advanced work of that kind to date has been Lampson’s design [l, 161, an 
outgrowth of the work on Grapevine [2, 271 and the Clearinghouse [22]. The 
Domain Name service [19, 201 of the DARPA Internet is a more limited system 
in the same class.” Additional work in this area is surveyed in Terry’s thesis 
[30]. These global name services are typically used to map from names to unique 
identifiers for hosts, mailboxes, or services. As mentioned previously, the relia- 
bility, security, and scalability requirements on these systems impose a significant 
performance cost on name-lookup operations, so that the systems are only 
practically applicable to names that do not need to be looked up frequently-it 
is too expensive to invoke the global name service every time a file is opened. 


Our work can be viewed as extending these global directory system designs in 
three important ways. The first, basic extension is that each object manager in 
our system knows the full global names of the objects it maintains, making the 
other two extensions possible. Second, for improved performance, clients use a 
name prefix cache, with consistency maintained by on-use detection of stale 
entries. On-use detection is made possible by the first extension-the manager 


” The Domain Name service design assumes manual addition or deletion of name bindings as well 
as manual placement and update of directory replicas, simplifying the design over the other examples. 
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receiving a request detects the client’s use of a stale entry by checking the client- 
supplied global name against the global names of the objects it implements. 
Third, for improved resiliency, clients use multicast to locate objects with nearby 
managers, thereby functioning independently of the global directory system for 
most cache misses. This technique is also made possible by the first extension, 
which enables an object’s manager to recognize the object’s global name without 
help from the remainder of the directory system. In addition to developing 
these extensions, this paper contributes a careful examination of the per- 
formance, reliability, and security properties of our design by analysis and 
measurement. 


Welch and Ousterhout [34] describe an extension of the UNIX file system 
using prefix tables. Their prefix tables are similar to our name prefix caches, but 
are less flexible. In their implementation, each prefix table is statically loaded 
with a set of prefixes at boot time-although the referent for a prefix can change 
during operation, new prefixes cannot be added to the table, nor can old ones be 
deleted.” Apart from the prefix tables, their system is quite different from ours. 
In particular, their system includes no administrational or global directories; 
instead, file servers near the root of the directory tree use remote links to mount 
file systems on other servers as subtrees. In general, the Welch-Ousterhout 
design seems to be targeted for a campus-sized environment; it does not address 
the global issues we have considered paramount in our design. 


The Locus [32] naming facility provides a similar network transparent name 
space for objects stored by multiple servers, but its implementation differs 
markedly from ours. The Locus directory hierarchy is built up of disjoint subtrees 
called file groups, each stored by one or more server hosts. The file groups 
correspond to UNIX file systems, and as in UNIX, they are assembled into a 
single tree by designating one group as the root and mounting others below it. 
The root file group is replicated at every node; it thus serves as a sort of prefix 
cache for the file groups mounted below it-that is, when mapping a name, a 
client looks up the first few components in its local copy of the root file group, 
then references (possibly remote) directories in other file groups for the rest. 
The record of where each file group is mounted is also replicated at every node. 
The scalability of this design is limited by its replication of the root file system 
and the mount table at every node. It is also limited by the use of atomic update 
across all sites to maintain the consistency of the root file system (and other 
replicated file groups).” A performance problem also arises from the fact that 
clients read direct,ories over the network to look up names in file groups that are 
not stored locally. Sheltzer’s thesis [28] proposes a directory-caching technique 
to solve this problem; however, his design maintains cache consistency by 
requiring a directory’s storage site to notify each holder of a cached directory 
page whenever the page changes. As compared with on-use consistency, this 
technique places a significant bookkeeping and communication burden on each 


22 Their paper does discuss a planned extension to allow adding new prefixes at run time. 
“’ Locus ameliorates this problem to some degree by allowing directory updates to proceed even if 
some copies are unreachable-in fact, even if the system is partitioned-and using an automatic 
merge procedure to reconcile the partitions after they are rejoined and detect any name clashes that 
have arisen. 
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directory storage site, further limiting the system’s scalability. Overall, we are 
skeptical about the applicability of Locus techniques to systems of the scale we 
are contemplating. 


The remote “mount” mechanism is also used by simple network file systems 
such as Sun Microsystems’ NFS [26], the Newcastle Connection [4], and Cocanet 
UNIX [25]. Each of the cited systems links together a network of UNIX [23] 
hosts by allowing hosts to mount foreign file systems as subtrees of their own 
local file systems. As an example, host Laurel might mount host Hardy’s root 
file system as /hardy, allowing Laurel to access Hardy’s /usr/spool/news 
directory under the name /hardy/usr/spool/news. This approach is simple 
and adequate in the limited scenario of a cluster of hosts accessing a set of shared 
files. It does not, however, provide a consistent global name space for all files- 
the only way to ensure that all hosts use the same name for the same file is by 
careful manual management of each host’s mount table. Systems using this 
approach also do not scale well, because if every host mounts every other, the 
number of mount points in the system is proportional to n2, producing a 
significant management and computing overhead. 


In general, we see our work as bridging the gap between conventional name 
service and file directory system technology. We have capitalized on the scala- 
bility, reliability, and security provided by global name services, while maintain- 
ing the efficiency and resiliency of local file directory systems. 


7. CONCLUSIONS 


The decentralized naming architecture presented in this paper extends earlier 
work on global host and mailbox naming systems, providing a fast and flexible 
naming facility for performance-critical objects in distributed systems, such as 
files, programs in execution, and windows. Both expected and observed perform- 
ance are close to optimum in terms of message traffic and response time. 
Resiliency against crash and omission faults is also close to optimum-the 
optimum is achieved for nearby objects, while for more distant objects resiliency 
is limited only by the fault-tolerance of the global directory servers. The name 
service can also be made secure against unauthorized behavior among the naming 
servers. Further, the design allows existing name spaces (such as existing file 
systems) to be incorporated as subtrees in the global name space with no 
modification to the existing system. These properties stem from several note- 
worthy aspects of the design. 


The efficiency of the design derives from the fact that name handling for each 
object is implemented in the manager that implements the object, enabling name 
mapping to be performed as part of each operation that references an object by 
name. In contrast, implementing name handling as a separate lookup operation 
increases network traffic, server processing time, and response time to the client. 
Client-based name prefix caching allows the client, in the common case, to send 
each of its name-mapping requests directly to the manager that implements the 
named object, performing as though it had an oracle providing this information. 
Name references relative to a client’s working directory take even greater advan- 
tage of the caching mechanism, shifting some of the processing load of name 
mapping from servers to clients. Finally, when a client’s cache misses, multicast 
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provides parallel name lookup across a set of managers that might cover the 
name. 


Some of these same features in the design also support fault tolerance. Because 
name handling is decentralized among all the object managers, and object 
managers can be located using multicast, a nearby object is accessible by name 
whenever the object manager implementing the object is accessible. 


These aspects of the design also contribute to its extensibility and flexibility. 
The name-handling implementation at each object manager is independent of 
the global directory service and other managers, allowing the incorporation of 
pre-existing services into the name space. Naming conventions and even name 
syntax within each manager’s subtree can vary from one manager to another. 


The design makes the global character-string name of an object its only unique 
identifier, thereby avoiding the implementation difficulties and cost associated 
with using low-level unique identifiers. The directory identifiers used as cached 
hints in our design can be invalidated and reused at any time. 


Our experience has also shown that the naming system works well in conjunc- 
tion with file caching on client machines, a service recently added to V. In the V 
implementation, aliases for selected name prefixes are placed in each client’s 
name cache, thereby directing requests for names in those subtrees of the name 
space to the local file caching server. For example, aliasing % bin to % local/ 
filecache/edu/stanford/dsg/bin causes files from the DSG directory 
of system binaries to be cached under the name %bin. Each open request on a 
filename with the %bin prefix is presented to the file-caching server, which 
satisfies the request if it has the file cached, or else opens the file on the remote 
server and adds it to the cache. In this application, the name cache provides a 
convenient place to store the aliases that redirect client requests to the file- 
caching server. The name cache also functions in its normal role, reducing the 
name-lookup load on the file caching server and reducing the need for multicast 
or name server access to locate remote resources. 


There are two aspects to the design that we would cite as potential disadvan- 
tages. First, some name-handling code is duplicated in each object manager and 
in each client. Although this is a legitimate concern, the amount of code for both 
servers and clients is modest, especially considering the current and expected 
future cost of memory. Second, the design relies for its resiliency on a multicast 
facility. In applications where lower resiliency is acceptable, the design could be 
modified to eliminate the dependence on multicast, relying entirely on the global 
directory service to respond to cache misses, but we do not believe such a change 
is necessary or desirable. We regard multicast as an important facility for building 
robust, flexible distributed systems, and we are working to make it more widely 
available [ 7, 81. 


The design we have presented is primarily a protocol between clients and 
servers. An important next step is to carefully specify this protocol and offer it 
as an candidate for widespread use. Further work is also needed on replication 
techniques for global directories. In addition, we would like to implement and 
gain experience with the secure version of the design. Nevertheless, based on the 
analysis we have presented in this paper and the experience we have gained with 
the V implementation, we feel confident that the design is a sound basis for 
large-scale, efficient, reliable, and secure naming. 
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