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Abstract


Virtual memoy page translation tables provide mappings


from virtual to physical addresses. When the hardware


controlled Tratmlation L.ookaside Buffers (TLBs) do not contain


a translation, these tables provide the translation. Approaches


to the structure and management of these tables vary from full


hardware implementations to complete software based


algon”thms.


The size of the virtual aaliress space used by processes is


rapidly growing beyond 32 bits of address. As the utilized


address space increases, new problems and issues surjace.


Traditional methoak for managing the page translation tables


are inappropriate for large address space architectures.


The Hashed Page Table (HPI’), described here, provides a


very fast and space ejicient translation table that reduces


ovdwad by splitting TLB management responsibilities between


hardware and software. Measurements demonstrate its


applicability to a diverse range of operating systems and


workloads and, in particular, to large virtual address space


machines. In simulations of over 4 billion instructions,


improvements of 5 to IO% were observed.


1. Introduction


Virtual memory, VM, is a fundamental abstraction of storage


used by computer systems to support concurrent execution of


processes. Processes can be protected from other processes


execution and processes can view storage in a simplified,


uniform manner.


Virtual memory defines a mapping function from one


address space to some other address space. Traditionally, that


mapping is a single translation from a virtual address, local to


the process, to a physical address that directly accesses storage.


These mappings are termed translations. The instruction set


provides management instructions to enable and disable the


translations, change translations, and control the protection


model that is often associated with the translation mechanism.


Virtual memory translation is often specified by the


architecture in terms of a memory-based table with the


expectation that some intermediate storage element will hold a


subset of these translations. The translation lookaside buffer


(TLB) is the most common structure used to hold this subset.
The processor interrogates the TLB with a virtual address and


searches for the corresponding translation. If found, the


hardware uses the translation to validate the access and locate


the data. Many approaches to the design of TLBs have been


implemented and measurements taken of their behavior
[Clar85][Tay190].


If the TLB does not contain the translation (an event known


as a TM miss), then typically some type of memory based table,
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the page table, is accessed and the translation is entered into the


TLB.


Besides the translation, the page table entry usually holds


protection information that controls access (read/write/execute)


and status bits. The status bits might record if the page has been


recently referenced (reference bit) and if the page has been


written (dirty bit). The operating system may store additional


information in the page table not needed by the TLB, status bits,


or links to other software tables.


Overall performance of a computer system is dependent on


TLB access and management overhead. Measurements of large


scale applications, databases, networking, and operation systems


behavior indicate that a significmt number of the CPU cycles


can be consumed in TLB management. Later sections will


better quantify the costs; large scale data-base intensive


applications incur 5-189Z0 overheads. Extreme cases show


greater than 40% TLB overhead.


The page table structure of any VM system attempts to


optimize three different characteristics:


1. Minimize the time to service a TLB miss.


2. Minimize the physical memory space to maintain the


translations for the currently mapped pages.


3. Maximize the flexibility for software to support a variety


of VM mechanisms and capabilities.


Computer systems support the page table structure using


hardware, or hardware with some assistance by software, or


entirely by software. Hardware approaches seek the tilghest


performance while software only mechanisms retain the


flexibility to easily adapt the page table structures to changing


requirements.


No practical organization optimizes this set of


characteristics for all types of workloads. Organizations


effective for one workload may be a poor match for another.


Different operating systems make different demands on the


translation mechanisms.


The trends in computing point to changes in the utilization


of the address space. Object-oriented systems, mapped files,


shared objects, and distributed computing all increase the size of


the address space used by a process, encourage more sharing and


decrease the locality of the resulting virtual memory address


stream. The translation structure’s performance is influenced by


these changes. Later measurements quantify the very different


behavior of simple program and more complex operating system


execution.


Independent of the particular organization, all page tables
are simply a data structure that is primarily designed for


efficient retrieval of a translation using the virtual address as a


search key. Searching is a large field and well researched field.
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Many data structures and search techniques are possible.


Choosing a high performance implementation is dificnk The


addition of just a single extra memory reference may be very


costly. Each clock cycle of the TLB miss handler must be


csrefull y considered and measured. For example, some page


structures use a hash table for searching. Theory suggests that


hash tables should be a prime number in size. Practice dictates


that these tables are alf powers of 2 in size.


The following section describes the two common page table


structures and analyzes their characteristics. This is followed by


the proposed alternative. The final section quantifies the


performance of these structures over a range of workloads and


operating systems.


2. Existing Virtual Memory Architectures


Two styles of page table organization dominate virtual


memory architectures today forward-mapped and inverted.


Forward-mapped page tables are the most common structure


used for 32-bit or less virtwd memory architectures. Inverted,


or alternatively reverse-mapped, page tables - IPTs - have been


typically used by large address space architectures.


2.1 Fotward-mapped page tables


Forward-mapped or alternatively multi-level page tables


generally use bits out of the virtual address to index a Klerarchy


of tables. The final level of the hierarchy, the leaf, contains a


vahdity indicator, the physical page number, and any status or


protection bits. For a particular virtual address, there is one


single location that holds the translation. Most architectures


with this structure allow portions of the hierarchy to be


unallocated by using vrdidit y bits in the higher levels. Some


architectures provide a short circuit approach that promotes leaf


pages to a higher place in the hierarchy when the address space


is sparsely used. Figure 1 shows an example table illustrating


this mechanism. The root pointer is used to start the search.


Each index merges bits from the entry with more of the virtual


address bits. The complete physical address is formed with the


page offset bits in the virtnaf address and physicaJ page number


in the leaf page.


The forward-mapped table is generally a per-process table.


Some control register holds a pointer to the first level of the


table. The amount of storage being used for the page tables is a


function of the amount of allocated virtusf memory. Portions of


the table need not be resident if none of its entries are mapped.


The page table itself can be referenced virtually or


physically. If physically referenced, then some table manager


controls the amount of physical memory being used.


As an example, to map 32-bits of address space with 4Kbyte


pages, a system might allocate 1024 entries in the root table.


Each root table entry in turn points to leaf pages each containing
1024 entries.


Since these per process page tables map the same virtual


address values, the virtual address is often augmented in the


TLB with an address space identifier (ASID) or process


identifier. The ASID acts to form a unique global address for


each process and avoids the need to purge the TLB on context


switch by preventing erroneous matching of a virtual address


from one process with a translation owned by another process.


Forward-mapped page table


Virtual Address
t 1 a 1 1


Root Physical
Pointer


Root page Firstlevel pages


II
I I


Figure 1 Leaf Pages


By duplicating entries on a per process basis, forwsrd-


mapped page tables offer a very flexible VM structure to the


operating system. It has full support for aliasing, copy-on-write,


and independent protection views (different protection mode for


different virtual addresses).


Thmx Servicing a TLB miss requires the loading of pointers


from each of the upper levels of the hierarchy and finally the


loading the last entry. The total cost to service a miss involves:


CPU overhead to suspend execution and step


through each part of the algorithm,


Memory and/or cache references to each level,


Possible TLB miss with virtnaf tables,


Possible page fault on the table itself, and


Possible updates of the dirty and reference bits.


In the earlier example, a TLB miss requires 2 memory


references and perhaps additional TLB misses if the page table


itself is virtually referenced.


Minimizing the miss time requires careful design of the


system. Some multiprocessing systems require bypassing the


cache for page structure references to avoid synchronization


problems with table management [Appo88]. Even on systems


that use the cache, relatively high miss rates occur. Later


measurements quantify these values.


The nature of the TLB miss address stream is an important


determinant of the system’s performance. Largely sequential or


densely packed TLB miss addresses match the characteristics of


forward-mapped page tables. On the other hand, more sparse


and distributed TLB miss addresses can result itI longer miss


service times.


An interesting variant on the forward-mapped table is a
single flat table that is indexed by the virtual page number


[DEC83]. The table is very large but only the used pages need


to be allocated. From a time standpoint, only one memory


reference and potentially one nested TLB miss is possible. For


sequential miss patterns the extra TLB miss only occurs on page


crossings on the table itself. For sparse accesses, this can


require both an expensive memory reference and an expensive


nested TLB miss.


In general, the introduction of just a single additionrd cache


miss in TLB miss handling can greatly reduce performance.


With cache miss times increasing from 10-20 cycles toward


40







30-70 cycles, this time could easily double or triple typical TLB


miss times. Later measurements quantify some of these effects.


One additional time issue is the hlt rate of the TLB itself.


Forward-mapped tables generally use address aliasing to share


data and require multiple entries in the TLB for the shared


pages. This effect reduces the apparent size of the TLB vs a


system that uses a single entry to map all access to a shared


page. AU even more costly approach, requires the purging of


translations between every context switch. Programming trends


to access mapped files, and shared memory objects will increase


the occurrence of this sharing. Forward-mapped systems


sometimes allow global sharing with some restrictions on the


allowed protection model. For example, the VAX architecture


allows all processes to share an address in system address space


in the same way, say, read-only.


Space: The space required for page tables is a function of the


amount and distribution of allocated virtual memory. In the


best case, all entries of the leaf pages are used. In the example,


this implies 1 word of overhead for every mapped page (4


bytes/4K bytes = .1%). In the worst case, sparse allocation


would only utilize one word of a leaf page to map each page


(4W4K = 100%)!


Perhaps a more typical case of the virtual address space


requirements for a process:


128K of instructions,


128K of static and dynamic data, and


16K of stack data.


This requires the root page, 1 leaf page for text and data and


another leaf page for the stack (3*4K/272K=4’%o overhead). The


root page might be shared with other root pages and reduce the


total overhead.


As the address space grows, the number of table levels needs


to grow or the page size needs to increase. Three or four table


levels may be needed for even modest growth in the virtual


memory range (say 40-48 bits). The best case overhead remains


similar. The entry size probably needs to iocrease to address a


large physical address size. In the worst case, the overhead


becomes n hundreds of percent with n being the number of table


levels. A fully supported 64-bit address space with 4K pages


and 8-b yte pointers and entries would require roughly 5 page


levels. The time and space implications of large address space


systems suggest the consideration of alternative structures and


approaches.


2.2 Inverted page tables


Implementations of large address space machines have


utilized the inverted page table structure [Lee89] [Chan88]


[IBM78]. It is a single table with one entry per physical page.


Each entry contains the virtual address currently mapped to a


physical page as well as some protection and status bits.


Discovering the virtual address given a physical address is


trivially determined by iodexittg the table with the physical


page number and examining the entry.


To determine the reverse mapping, namely virtual to


physical, a hash structure, the hash author table (HAT), is first


indexed by some function on the virtual address. The HAT


provides a pointer to a linked list of potential IPT entries. A


quick linear search comparing the desired virtual address with


the IPT entry’s virtual address completes the look-up. If no


match is found, the virtual address is not mapped and page fault


handling is itdiated. Figure 2 illustrates this structure.


Inverted Page Translation Table


Virtual Address


~ Physical Address


PDIR


VA I


We


PDIR


Base


u Figure 2


This global table is shared by all the processors. In a sense,


the ASID of the forward-mapped table is included in the address


itself. Protection in thk kind of architecture is either supported


by some kind of address isolation or by the use of storage keys.


The biggest difficulty with the IPT is the support for address


aliasing. Only one virtual to physical mapping may exist at one


time. Whenever aliasing is only used for sharing, most IPT


systems accomplish the same function with a global address. To


support aliasing for other reasons, the entries must be changed.


Tm& TLB miss handling performance is primarily a function


of the number of probes to find the translation. The very nature


of a hash table suggests one cache miss to reference the HAT


pointer. Given a fairly uniform random distribution of virtual to


real mappings, each element of the chain is another cache miss.


To minimize the average length of the chains, a large HAT is


used. Analysis of this type of hash structure allows the designer


to trade-off between average hash chain length and number of


entries in the HAT. The total cost of the TLB miss involves:


It is


CPU overhead to suspend execution and step


through each part of the algorithm,


Memory reference to the HAT pointer,


Memory reference to the IPT,


Possible memory references for chain elements, and


Possible update to the duty and reference bits.


~ossible to minimixe some of the HAT cache misses for


sequential TLB misses, but generally the memory references
have high cache miss rates. Later measurements quantify thk


parameter.


When sharing with global addresses, it is sometimes possible


to reduce the total number of TLB misses. Multiple processes


can re-use the same TLB entry and avoid misses.


Space: The size of storage for the mappings is a linear function


of the amouot of physical memory, with an overhead of roughly


(size of etttry)/(size of page). Independent of the amount of
allocated virtual memory, the physical memory overhead for the


mappings remains constant. This storage must be contiguous.


Holes in the physical address space wastes entries in the IPT in


order to preserve the index as the physical address. Memory


mapped I/O systems can waste significant storage in an IPT if it


cannot be efficiently packed.


For example, to map a 32Mbyte physicrd memory system


with 4Kbyte pages, a HAT of 16K entries is used to index a SK


entry IPT. Assume 32-bit physical addresses. 64-bit virtual
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addresses carI be nicely packed into a 16byte entry for a


(8x16 Kbyte+16K*4byte)/4K = .6% overhead.


2.3 A combined hash table and IPT: The Hashed
Page Table


An alternative to the IPT is to combine the hash table and


IPT into a single hashed structure, termed - Hashed Page Table


(HPT), both time and space improvements to the traditional


inverted table are possible, Fewer memory references are


required and better utilization of memory is possible. Each


entry, HPTE, contains both the virtual address and the physical


address. No longer can the physical address be computed from


the index. Figure 3 shows the structure of this table.


Hashed Page Translation Table
Virtual Address


1 1


J


Physical Address


Collision Resolution
Table


HPT
Base


t


1


Figure 3


On a TLB miss, some hash of the virtual address is used as


an index into the table. The faulting virtual address is compared


with the virtual address in the entry. If equal, then the


translation is directly loaded. If not equal, then the link is used


to chaio all of the hash collisions together. Reaching the end of


chain indicates a page fault. Collisions can be chained dxectly


into the unused hash entries or chained into an overflow table.


Aliasing is simply supported. Whenever shared global


addresses can not be used, the alias is added to the table. This


creates multiple dirty and reference bits but does allow different


protection attributes. A global address space reduces the need


for aliasing and minimizes the number of extra entries.


Tmcv Serviciog a TLB miss requires a reference to the HPT


entry and avoids the reference to a separate HAT entry.


Eliminating a memory reference is a significant improvement


over the IPT structure.


The potential for a chain walk is a function of the size of the


HPT. The more entries relative to the number of translations,


the lower the likelihood of a chain walk. Choosing a 2 to 1 ratio


of entries to physical pages results in average chain lengths of


approximately 1.25 entries[Knut73].


Space: Similar to the IPT structure, independent of the virtual


memory utilization, there is a fixed overhead that scales with the


amount of physical memory. For a table with twice the number


of entries as physical pages, the overhead is


(16bytes/entry)*2/4Kbytes < 1?6. A table with four times the


number pages uses < 2% of physical memory.


Address aliasing will reduce the HPT’s effectiveness, require


a larger size, or require some special handling of certain entries.


For example, aliases associated with suspended or swapped


processes can migrate to the end of a chain or be deleted and


The HPT also efficiently handles holes in the physical


address space. This has become much more common with


graphics adaptors and other I/O devices that take a fixed large


amount of address space and use a subset based on the system


configuration. This characteristic gives the HPT a significant


space advantage over the traditional IPT. For example, a 50


Megabyte un-used segment of physical I/O address space can


waste 200Kbytes in unused page directory entries with 4K


pages.


Further Dwcussion: Many variations on the management of a


hash table such as the HPT are possible. Collisions can chain to


another structure. Secondary hashes could be considered. For


example, the MONADS project [Rose85] described a structure


similar to the HPT except it was implemented in a separate


memory, was managed as a primary TLB, and used internal


chaining.


Earlier releases of PA-RISC operating systems, which used


the standard IPT structure, had an optional software TLB -


swfl’LB - that is first interrogated using just the low 10 to 12 bits


of the virtmd page number as an index. An entry in that table


was equivalent to an HPT entry for validation purposes, but the


sflLB used a secondary hash to resolve collisions into the


original IPT. The SWTLB proved very effective in emly PA-


RISC machines for two reasons. The first PA-RISC systems had


large direct-mapped hardware TLBs. The software TLB was


two-way associative and greatly reduced the cost of thrashing.


A slightly later PA-RISC machine had a small two-way


associative hardware TLB. The ‘software TLB is very effective


since the software TLB had such a high hit rate. This


compensated for the lower hit rate in the small hardware TLB,


and had faster access because of its simplicity, in CPU


overhead, than the IPT table.


By making the HPT very large, it acts as a complete


replacement for the older hash table and IPT structure.


Alternatively, making the HPT smaller, it acts as a software


cache for some other representation of the remainder of the


translations. For example, a small HPT cm be used in front of a


forward-mapped page table.


A final observation: since the HPT entry is nearly identical


in form to a TLB entry, it is simple to build a hardware TLB


miss handler. It must compute the hash index, accesses the table


entry, and faults to software if the entry is not valid or some


update to the Such a hardware handler still allows great


flexibility for the software. Different page-table policies and


organizations are still open to the software since the hardware


does not do updates to the table. The designers of a recent PA-


RISC CPU chip [Dela92] found the implementation of an HPT


hardware miss handler similar to the complexity of the previous


generation’s 2 level TLB.


By uot restricting the size of the HPT or the organization of


the overflow table, a VM system has complete flexibility to


implement a variety of mechanisms and policies.


3. Data Structures and Implementation


The following sub-sections describe in more detail the


format of the measured translation data structures, their


requirements, hardwarelsoftware interactions, and miss


algorithms. Understanding the actual data structures prototype


and simulated along with the operating system environments


will aid in the interpretation of the simulation results. Thisfaulted back onto the chain.
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should help the reader to understand how to adapt the results to


alternative data structures and search algorithms.


3.1 Operating systems environments


HP’s Unix - HP-UX and the proprietary MPE/ii operating


system support text and data sharing through a global address


model. Objects are shared between different tasks using the


same 64-bit virtual address. It is the responsibility of the


operating system to manage the address space to enforce the


desired level of protection for each application. Copy-on-write


is implemented as copy-on-access. In the MPE/ii environment


64-bit pointers may be directly manipulated by end-user


applications. Under MPE/iX the database and the file system are
memory mapped and accessed directly through a 64-bit address.


Each opa file is mapped in its entirety within the 64-bit address


space. Both HP-UX and MPE/ii originally used an inverted


page table as their primary translation data structure. The trace


data used in the simulations was obtained from these two


operating system environments.


Most Unix implementations use a more traditiomd sharing


model where each task is given it’s own private 32-bit flat


address space. If two tasks share code or data, it is


accomplished through aliasing multiple virtual addresses to the


same physical address. A forward mapped page table is


commonly used as the primary translation data structure. These


per-task page tables are simple to implement and support


arbitrary aliasing. The acronym ASM, for aliased sharing


model, is used to represent an operating system that uses


aliasing and a forward mapped page table. This model is


included in the simulation due to its use in existing


implementations of the OSF/Mach based operating system.


3.2 Forward-mapped page table model


A two level page table is selected over a three level table to


determine a lower bound on TLB miss times for the ASM


model. Deeper forward mapped page tables, which are required


for larger than 32-bit address spaces, will only increase the miss


overhead. The structure of the simulated forward mapped table


and search algorithm is based on TLB miss handler code used in


an OSF-UPA-RISC port. The layout of the ASM forward


mapped table simulated is as follows:


Root Table entries


RootEntry


I real address of leaf PTE I
*


*


Leaf table entries


r x t m x rpn[O: 19]


r x t m x rpn[O19]


r x t n x rpn[O:19] Ooooo


I= Ref bit, m= Modify bit, rpn= Real page number,


x= Other unrelated bits


Utilizing a per task 32-bit flat address model reduces the


amount of data which must be retained in the tables. Per process


protection information and high order address bits (upper 32


bits of 64 bit address) can be maintained in a global or control


register, and need not be duplicated in each page table entry,


The algorithm to handle a user TLB miss is outlined below.


Each step may require one or more instructions. Exact cycle


counts attributed to each algorithm are provided in the


measurement section.


TLB software miss algorithm (user TLB miss): Move the


faulting address to general registers. Determine if the reference


is to system or user space. Move the User Root table pointer to


a general register. Determine the privilege level. Determine if


the reference is to a different process’s 32-bit space. Calculate


the index into the root table. Load the root table entry.


Calculate an index into the leaf page. Load Page table entry.


Check reference bit. Form protection information. Insert


address, rpn, and protection information into the hardware TLB.


Finally, return from interrupt.


There is no need for a valid bit in the page table entry.


Invalid entries are initialized with an entry which will generate


a protection fault if loaded into the TLB and then accessed. The


specified algorithm could have been shortened by several cycles


if the hardware were capable of delivering system and user TLB


miss exceptions on distinct interrupt vectors.


3.3 Inverted page table model


The inverted page table model supports 64-bit global


addressing as follows:


HashTableEntry


wordO rpn&link 0000001 Next PDE Index Ioa)oo


PageDirectoryEntry


wordO rpn&link Mooooool Next PDE Index 1000oo1,
wordl tagl Upper VA


word2 tag2 Lower VA IOooooooooooo
I t I


word3 prot t rights 0000 key(15)
M


r = Ref bit, m = Modify bit, x = Other software bits


TLB MISS Algorithm


1.


2.


3.


4.


5.


6.


7.


8.


9.


10.


Move 64-bit faulting address and hash table base into


general registers. Hash the faulting address and compute


an address into the hash table.


Load hash tabie entry (word O).


Check H bit to see if end of chain.


Calculate the page dwectory entry from the page


directory base, and hash table pde index loaded in step2.


Load virtual address tag 1 from page directory wordl.


Compare faulting address with virtual address tag. If not


equal load Next Pde index (wordO), goto step 3.


Load the virtual address tag2 from page directory entry


word2.


Compare faulting address with virtual address tag. If not


equal load Next Pde index (wordO) and goto step 3.


Load protection fields (word3), and check reference bit.


Insert address, rpn, and protection information into the


hardware TLB. Return from interrupt.
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The layout of the hash table entry and first word of each page


directory are identical. Word O of the page directory and hash


table encodes both the next link and the physicrd page number


(rpn) for the following entry. While this encoding scheme is


more compact and saves memory it also restricted the page


directory to a physically contiguous table and allows no


aliasing. Each page directory entry resides within one 16-byte


cache line. The hash function provides an even distribution of


addresses over the hash table.


3.4 Hashed page table model


The format of the HPT is the same regardless of whether it is


being used as a native translation table or if it is being used as a


cache fronting the ASM forward mapped page tables. The


structure supports a full 64-bit global address space and is layed


out as follows:


HashedPageTableEntry


word O tagl v offset[O:14] space[16:31]


word 1 protl r t rights key(15) k


word 2 rpnl 00000001 rpn[O:19]


word 3 linkl real address of next hpt entry


A second 4 word entry was combined with the first for a 32-


byte aligned entry when investigating alternate formats.


word 4 tag2 v offset[O:14] space[16:31]


word 5 prot2 r t key(15) b


word 6 rpn2 0000000] rpn[O19] 10tMOo


word 7 link2 real addres of next hpt entry


TLB Miss Algorithm:


1.


2.


3.


4.


5.


Move 64-bit faulting address and hashed page table base


into general registers. Hash the faulting address and


compute an address into the HPT.


Load HPTE tag wordO.


Compare faulting address with virtual address tag. If not


equal read the next link from word3 and go back to step


2)


Load protection fields (wordl), and check reference bit.


Load the rpn.


Insert address, rpn, and protection information into TLB.


Retrim from interrupt.


One or two four word entries are contained in one 32-byte


cache line. The preceding data structure was simulated with


several variations; two are described in detail:


● 16-byte entries each containing one translation.


● 32-byte entries each containing two independent 16-byte


entries which checked in parallel or serially for a match (a


2-way associative HPT).


Each of these was evaluated based on the hardware costs and


performance. The best solution for the intermediate hash table


will depend, in part on the hardware organization of the on-


cbip TLB. A direct mapped on-chip TLB might do better with a


two-way associative table.


Optimization were made to the hash algorithm of both the


HPT and inverted page table to further streamline the miss path.


The original software hash function was 5 instructions. It was


chosen to give an even distribution of addresses in the hash


table. It made no assumptions about the address stream. Since


the operating system allocates the ASIDS (on PA-RISC an ASID


is the upper 32 bits of the 64-bit address and is stored in a space


register), rather then just assigning them in a sequential manner,


they can be allocated in a pseudo random sequence. This


randomization allows a simpler hash function and still


approximates a random uniform distribution in the hash table.


A single XOR of the upper virtual address bits and the lower


virtual page number bits is effective.


The hardware needs to generate a hash table address, so the


hash table is aligned to its size (which is a power of two).


Hardware can simply OR in the base HPT table address with the


hashed index bits to calculate the effective address of the hash


bucket.


To reduce the size of an HPT entry representing a 64-bit


address, the tag is compressed from 52 bits to 32 bits. This


allows a more compact table and requires less overhead to


determine if there is a match. To guarantee that the tag is


unique in a hash chain the extra bits which are not a part of the


page offset must be used in the hash to generate a unique


position within the table. This leads to several restrictions on


the table. First it can be no smaller then 32 entries (given the


4K page size) and a 48-bit global address space. Each


subsequent bit of virtual address space allocated by the


operating system requires a doubling of the table size. Even a


modest 4K entry table allows the use of 56 bits of virtual


address.


3.5 Hardware HPT and the software interface


A final implementation issue is to properly split hardware


and software responsibilities to balance the performance, cost,


and flexibi$y’. The term nutive HPT is used to describe the


scenario where the operating system’s translation tables map


directly onto the HPT format. Overflow buckets which are


searched by software have the same format as the head HPT


bucket. When using a hashed page table with HP-UX, hardware


searches the head bucket of the operating system’s native


translation table. On failure, a trap to software allows HP-UX to


continue the seaxch. The term hybrid HPT describes a scenario


where hardware searches an HPT cache and traps to a software


managed table if the entry is not found.


Both approaches can be unified in the same hardware


handler. The hardware does the same work to search the first


bucket of a hash table in either the native or hybrid HPT. The


main difference is the action that software takes on a miss. To


maximize the benefit an efficient hand-off mechanism is needed


which reduces the amount of re-work required when a software


trap occurs.


When using the hashed page table as the native tables, the


operating system needs to determine where to continue the


search. When using a forward-mapped table in conjunction


with the hash table, the operating system needs an efficient


mechanism to update the hash table once the normal page walk


has finished.


Hardware provides the necessary data to the operating


system through a control register when it determines it cannot


resolve the TLB fault with the entry stored at the front of the


HPT.







On a TLB miss, hardware hashes into the HPT and checks


for a hit. If the reference bit and modify bit are set to allow the


access then the entry is inserted into the TLB. If there is a


virtual tag mismatch then hardware deposits word 3 of the


HPTE into a control register. Word 3 is not interpreted by


hardware and it’s value is maintained by softwwe. In the case


where the HPT is a part of the native translation table (e.g. HP-


UX) word 3 contains the address of the overflow bucket. When


the HPT is being used as a cache in conjunction with a foreign


table, word 3 will be written by the operating system to point to


the entry itself. Thk will give the software miss handler a


handle on where to write the entry in the HPT cache after


installing the translation in the hardware TLB.


If hardware detects an invalid virtual tag, a reference or


modtiy bit exception, it haps to software and deposits the


address of the head HPT entry into the control register (rather


then word 3). J.n this scenario sofb,vare needs to inspect the


contents of the head bucket. Software attempts to resolve the


fault by setting the appropriate bits in the HPT entry and


retrying, or trapping to higher level software.


3.6 Software update of table entries


The task of modtiying the translation tables in each model is


given to software to simplify hardware and give software more


flexibility when modifying an entry. It also allows the operating


system to keep track of additional information on the types of


accesses which are made to a page.


Allowing the operating system to intervene in the first


reference and first modification of a translation allows the


operating system to break out the standard reference and dirty


bits into additional (modified, accessed, and execute)


information bits based on the type of access being performed.


On systems wtdch have virtually indexed caches and non-


coherent I/O systems, this allows important cache flushing


optimization. Not only can this reduce overhead on the single


CPU it can reduce communication overhead in an MP system.


Without software management of the reference and


modification bits this information would have not been possible


to collect. The overhead to manage these bits is small given that


they were stored in the HPT and are not manipulated in the


typical miss path.


4. Measurements


The HPT analysis suggests that it will perform uniformly


better than the inverted table. The performance benefits of the


HPT when used to cache a different page table structure is not


obvious. This section measures and compares the performance


of the HPT with the traditional inverted and forward-mapped


page table structures. Measurements of the HPT’s performance


when used as a cache for a forward-mapped page table are also


presented.


Data measurements for events such as TLB misses is a


difficult task. This work combines 2 common approaches -


hardware monitoring and software simulation - to measure


meaningful workloads for systems that were not available


[Jain91][Ston88].


The selected benchmarks are executed on a specially
modified CPU to trace each cycle of execution. It is possible to


hold about 2 million instructions worth of continuous execution


before the machine must either be stalled or collection


suspended while the data is dumped to permanent storage.


Stalling the processor creates problems in managing the real


time clock and perturbs the measurement. For very simple


benchmarks, like the SPEC suite, stalling is acceptable. For


more complex benchmarks, like the transaction processing and


large multi-user suites, the perturbation of the J/O system would


be unacceptable. These traces use statistical sampling. While


the system is executing the workload, the hardware tracer


captures several traces spaced out in time. The trace includes all


executed instructions, instruction addresses, and data reference


addresses for that interval: operating system state, user state,


interruptions, everything. For this study 20 traces were


collected for each workload. The trace were stripped of the


TLB misses generated by the measurement system since they


correspond to a specific hardware organization. The paper by


Jog [Jog90] first describes this environment.


The stripped traces are run through a simulator to @c the


V*1OUS environments. For example, to simply measure the TLB


miss rate, the simulator is configured with the desired size,


associativity, and replacement algorithm. Each trace is executed


by the simulator and the data collected from the TLB


simulation. The trace is executed in the sense that the data and


instruction memory addresses are applied to a simulation of the


targets ystem to capture a variety of relevant measures.


A warm start approximation for the caches is utilized which


uses the cache state at the end of one trace as the starting point


of the next trace. Measurements of actual systems have


vrdidated this approach [Cal193].


There were 330 milhon instructions captured in the traces


and over 4.7 billion instructions were simulated.


For this study, the simulator is configured to measure the


behavior of TLB miss handling. When a TLB miss occurs, the


simulator mimics the memory references that the model


requires, generates those addresses, and applies them to the


cache and memory models. This two step approach allows the


measurement of complex and long mnning workloads and still


retain flexibility in cache, TLB, and page table organization.


Generally speaking, a trace’s TLB miss rate is unaffected by


the underlying translation structure. But the TLB miss rate is


effected by the sharing model. Traditionally, IPT based systems


have shared data using common global addresses. Shared


instruction and memory segments have the potential to reduce


the TLB miss rate by finding a translation from the previous


process. This only requires a single TLB entry to exist to map


the page for all processes. Forward-mapped page table based


systems traditionally share data using address aliasing. Each


alias requirks an additional TLB entry. When little sharing


occurs this is not important but environments with large


amounts of instruction or data sharing may encounter different


miss rates.


AU traces labelled ASA4 are HP-UX traces that have been


modified to simulate what would have been the address trace in


a per-process address space model. The simulator observes


when a context switch occurs, and adjusts the instruction and


data address stream to appear to be per-process. This approach


generates aliases when the original trace is sharing data or


instructions. The most common data sharing is by the


instruction segment. Some data sharing occurs in the multi-user
benchmarks.


Measurements of the originaJ IPT structure were not


modeled using the two steps of tracing and simulation since the


benefits for using an HPT over the IPT had already been
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demonstrated with prototype software h the lab. At the time


this paper was written, resource constraints prevented re-


running the traces against just the IPT model. Instead, the IPT


data is generated by using an equivalent sized HPT’s first bucket


cache hit rate as an approximation to the IPT’s hash anchor


table cache hit rate. This cache cost plus a fixed overhead in


instruction cycles is then added to the equivalent sized HPT’s


total cost.


The following workloads were collected while executing the


HP-UX operating system


● finite - a large finite element application


● doduc - SPEC


. eqntott - SPEC


. espresso - SPEC


● fPPPP - SpEC
● gcc - SPEC


. hilo - circuit simulator


● Ii - SPEC


● matrix - SPEC


● nasker - SPEC


● spice - SPEC


● tomcatv -SPEC


● OLTP 1-UX - A large on-line transaction processing relational


database application.


. telcom-ux - A telecommunications benchmark.


● 0LTP2-ux - A variation on OLTP1 -UX.


Additional workloads were collected whale executing the


MPEliX operating system:


● B atch-mpe - Batch hierarchical database application.


● OLTP 1-rope - An on-line transaction processing relational


database application.


● 0LTP2-mpe - A batch manufacturing database application.


● 0LTP3 -rope - A variation on OLTP 1-rope.


All the traces - in particular, the matrix and nasker traces - are


from older generation compilers and do not represent the latest


optimization. For most programs, this will have little effect on


the TLB miss pattern. For matrix, and to a lesser extent nasker,


this is a very significant effect. Consider matrix to represent a


program that misses the data TLB on every 16 or so instructions.


The last three &aces (OLTP1, telcom, and 0LTP2) are large


multi-user benchmarks and better represent workloads fully


utilizhg the available memory.


The simulations modeled a 96 entry fully-associative


combined TLB. The TLB requires an extra 1 cycle penrdty for


each page crossing to validate a mapping for the current


instruction address. Additionally, block TLB entries map the


static portion of the HP-UX operating system and significantly


reduce the number of TLB misses. The MPE/iX operating


system is paged and does not utilize block TLB entries.


Penalties consistent with current PA-RISC systems are


assumed. The hardware portion of TLB miss handling with an


HPT takes a basic 9 cycles. For associative table entries, the


hardware requires an extra 2 cycles to examine a second entry.


The basic software access to the HPT takes 27 cycles. Chain


walking takes an extra 9 cycles per chain element. The basic


software forward-mapped table access takes 28 cycles and, if


necessary requires 8 cycles to update a HPT cache.


AU the measurements use the smne hash algorithm cost, and


equivalent basic cycle costs such that performance differences
only reflect the differences in page table structure.


The cache is a 256K direct-mapped data cache and an equal


size instruction cache. The average data cache miss penalty is


30 cycles.


In summary, these measurements are derived from actual


traces of significant workloads. The restdts are measured using


a simulation of the desired system using instruction traces as


stimulation.


4.1 Key to graph labels


The graphs used in the remaining sections are labeled to


identify the environment. The label encodes the base operating


system type, software or hardware table walking, page table


forma~ HPT size, and associativity. The HPT size ranges from


1/4 the number of physical pages to 4 times the number of


physical pages. For example, with 32Megabytes of memory,


16K table entries are 2 times the number of physical 4Kbyte
pages.


Name Tjpe
Hw Total #


support of entries. .
UX-SW-IPT4X-lW
UX-SW-HPT4X- 1w
UX-HW-HPT4X-1 W


UX-HW-HPT2X-2W


ASM-HW-HPT2X- 1W


ASM-HW-HPT1 X- 1W


ASM-HW-HPT.5X-lW


ASM-HW-HPT.25X-IW


ASM-SW-FMPT


ASM-HW-FMPT


iX-SW-WT2x- 1w
iX-HW-HPT2x- 1w


iX-SW-HPT2x-lw


IPT
HPT
HPT


HPT


FMPT


FMPT


FM17


FMPT


FMPT


FMPT


IPT
HPT


AN Sw
All Sw
HW-HPT
SW-0ver60w
HW-HPT
SW-overtlOw
HW-HPT


SW-FMPT
HW-HPT
SW-FMPT
HW-HPT
SW-FMPT
HW-HPT
SW-FMPT
‘u Sw
No HPT
All m
No HPT
Au Sw
HW-HPT
SW overflow
‘MI Sw


32K
32K
32K


32K


16K


8K


4K


2K


32K
32K


32K


Each HP-UX @ace was taken on a machine with 32


Megabytes of memory. The MPE/iX workloads were collected


on a 64Megabyte machine.


These measurements represent the management of a 48-bit


virtual address space. The HP-UX operating system


environment allocates the upper 16 bits in a uniform distribution


and the lower 32 bits are allocated in the standard instruction,


data, and stack segments.


4.2 TLB Overhead Percentage


Oraphs 1 and 2 measure the percentage of total cycles per


instruction (CPI) attributed to TLB miss activity when utilizing


an HPT or IPT data structure. The graphs give insight into the


relative importance of the TLB miss component with respect to


various workloads. They rdso demonstrate the impact of an HPT


on overall performance. Oraph 1 contains HP-UX trace data


from both technical and commercial workloads. Oraph 2


contains MPE/iX trace data for commercial workloads.


For example, the OLTP1 -UX benchmark spends 12% of its


time in TLB miss handling. That benchmark mns s~o faster just
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due to a software HPT vs. the original IPT structure. Hardware


TLB handling gives another 4% improvement. The OLTP3-


mpe workload in graph 2 spends 18.5% of its time handling


TLB misses under the software IPT model. The software HPT


saves 4~o and a hardwme HPT saves an additional 6Y0.


Large multi-user programs consistently show the greatest


improvement when moving to the HPT. This is to be expected
since their more demanding use of address space results in a


higher TLB miss rate.


4.3 HPT cache miss rate vs HPT Size


Graph 3 measures the data cache miss rate into the head


HPT bucket as a function of the HPT size. Insights into the


importance of the cache miss penalty with respect to overall


TLB overhead can be obtained by joining data in this graph with


graphs 1, 4, and 5. For example, the multi-user workloads show


a fairly high TLB overhead in graph 1. From graph 3 these


workloads show a cache miss rate of approximately 2070 (at 30


cycles per miss). This is a sizeable component of their overall


TLB miss penalty given in graph 4.


While the graph does not show the individual cache miss


rates for the forward-mapped page table, the following data is


presented for comparison. Simulation of the forward mapped


page tables under the OLTP1-UX, Telcom, and the 0LTP2-ux


multi-user workloads showed a 2-39Z0cache miss rate in the root


table, and a 12-15% miss rate in the leaf entry. Under the


numeric benchmarks the root table miss rate ranges tkom a O-370


while the leaf entries range all the way up to a 25’ZOcache miss


rate.


4.4 Original IPT vs HPT


To better understand the TLB miss overheads graph 4


displays the average cycles per TLB miss including cache miss


penrdties for several configurations all with the same number of


total entires. The original software IPT scheme, software l-way


HPT, hardware 1-way HPT, and hardware 2-way HPT are


shown. For example, the finite benchmark has a 56 cycle per


TLB miss penalty when using a software-only IPT.


The cycles per miss data shows that a software HPT can save


a significant number of cycles over’the original IPT. The savings


can be broken into a static and dynamic component. The HPT


saves 6 cycles per miss over the IFT in just basic cycle costs.


The remaining difference is attributed to the one less cache line


load. The cost of that load is 30 cycles times the cache miss rate


into the IPT hash table for the given workload. Those


workloads with a modest TLB CPI component, and a high cache


miss rate into the translation table, will benefit the most.


In the multi-user benchmarks, the cache penalty cycles


accumulated whale walking the HPT or IPT amount to 2(L3570


of the average TLB miss overhead. The use of a hardware HPT


miss handler is significantly faster. The basic overhead (not


counting cache penalty cycles) is nearly half the software


equivalent. The measured dynamic chain lenghts ranged from


1.02 to 1.13 in length.


A 2-way associative HPT performs slightly worse then the


l-way HPT. This was due to the serial compares in hardware


(an extra 2 cycles). Had the compares been done in parallel, the


higher hit rate in the 2-way table would have made a 2-way


table more attractive.


4.5 HPT hybrid vs forward-mapped table


Graph 5 compares various forward-mapped page table


(FMPT) results with a native hardware HPT and a small HPT


used as a cache for the software managed forward-mapped page


tables. The different strategies are compared based on their


respective cycles per TLB miss. For example, the small HPT


fronting an FMPT is 3 cycleshniss less than a direct hardware


FMPT in thejnite benchmark.


A problem with these HP-UX benchmarks is that they do not


use enough of the address space to force the creation of


additional levels in the forward-mapped page table la two level


page table is sufficient). A more aggressive use of the 64-bit


virtual address space, by the HP-UX operating system, to


concurrently map more objects such as is done by MPE/ii


would force one or more additional levels to be instantiated in


the forward-mapped tables. This would in turn push up the


forward-mapped table cycles per miss count.


The results indicate that a small 1-way associative HPT,


sitting in front of a forward mapped table, can be effective in


reducing the cycles per miss overhead. Under the workloads


investigated the combined hybrid strategy gives performance


similar to a hardware forward mapped walker, and maintains a


simpler hardware structure. This is an important result since it


demonstrates that a simple hardware HPT can be designed in a


flexible manner which supports/enhances more then one style of


page table management.


4.6 TLB miss rate vs sharing Model


With the ASM model, shared memory does not share the


same TLB entry. For all the single process benchmarks this


makes no difference to the overall TLB miss rate. But with the


multi-user benchmarks that share instructions and to a lesser


extent dat% the TLB miss rate changes significantly.


Oraph 6 shows TLB miss rates for the 3 multi-user


benchmarks. These small values are magnified by the cost of a


miss. The 61% increase in the number of TLB misses for the


Telcom-UX benchmark (.35% to .57%) amounts to a


proportional change in overall TLB costs from roughly 3.5% to


5%. These numbers do not reflect the use of shared libraries or


mapped files that could further increase the sharing of TLB


entries across processes.


4.7 Page Table front bucket Hit Rate


Graph 7 measures the hit rate into the head bucket for four


different HPT organizations. For example, 82% of the TLB


misses are resolved in the front bucket while executing the


doduc benchmark with the ASM-HW-HPTIX-lW workload.


From the graph, the hit rate into the front bucket is


reasonably high. As expected, the larger the table the more


likely the first entry holds the desired translation. A 2-way


associate HPT achieves a higher hit rate then the 1-way.


However as graph 4 demonstra~es, the increased hit rate is n~t


enough to offset the extra cycles spent in searching the two


entries in series.


The effectiveness of moving an entry to the head bucket on a


miss (chain reordering) is apparent when one looks at the hit


rate of the much smaller ASM HPT verses the HP-UX HPT


(8000 vs 32000 entries). The reason the ASM model can


perform ahnost as well, and occasionally better, is that it is


constantly moving the faulting translation into the HPT cache


where it is visible to the hardware handler. This suggests that it
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might be useful to consider reordering the HP-UX HPT under


certain workloads.


Graph 8 shows the sensitivity of the miss rate of the front


bucket as a function of the HPT cache size. Generally, the


cache is effective, but some workloads - especially the multi-


user ones - show the need for large caches to hold the translation


working set.


5. Conclusions


This paper demonstrates the effectiveness of a hardware


HPT which is flexible enough to be used as the primary


translation mechanism for large address space machines or as an


efficient cache fronting a different page table design. The HPT


is designed to maximize the effectiveness of TLB management


by minimizing the overhead in handling TLB misses while still


allowing complete operating system VM flexibility. Both


hardware and software participate in the HPT trade-offs to


provide a cost effective solution.


The analysis and data demonstrate that an HPT will out


perform the standard IPT. An HPT maintains the same scalable


storage properties as the IPT. This is a significant attribute


when managing sparse access patterns.


It is shown that the HPT can be configured to operate like a


cache in front of a more traditional forward-mapped table. Not


all operating system environments can tolerate the limited


aliasing capabilities of a “native” HPT. The data demonstrates


that under most work loads the hybrid solution exceeds or


equals the performance of the hardware forward-mapped


walker.


The measurements reflect the behavior of TLBs in large


address space machines in the sense that all the virtual memory


of each process is being managed as a single sparsely allocated


unit. Since the measured systems contained only 32 or 64


megabytes of physical memory, the measurements are only an


approximation of fiture systems which use a larger virtual


address space. The HPT’s performance is independent of the


physical memory size, the amount of allocated virtual memory,


and the sparseness of the virtual memory.


The HPT is being used in HP’s latest operating system


release on PA-RISC hardware platforms.
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