

The Information Bus@-


An Architecture for Extensible Distributed Systems


Brian Oki, Manfred Pjluegl, Alex Siegel, and Dale Skeen


Teknekron Software Systems, Inc.
530 Lytton Avenue, Suite 301


Palo Alto, California 94301
{boki, pfluegl, alexs, skeen}@tss.com


Abstract


Research can rarely be performed on large-scale, distributed


systems at the level of thousands of workstations. In this


paper, we describe the motivating constraints, design


principles, and architecture for an extensible, distributed


system operating in such an environment. The constraints


include continuous operation, dynamic system evolution,


and integration with extant systems. The Information


Bus, our solution, is a novel synthesis of four design


principles: core communication protocols have minimal


semantics, objects are self-describing, types can be


dynamically defined, and communication is anonymous. The


current implementation provides both flexibility and high


performance, and has been proven in several commercial


environments, including integrated circuit fabrication plants


and brokerage/trading floors.


1 Introduction


In the 1990s, distributed computing has truly moved out


of the laboratory and into the marketplace. This transition


has illuminated new problems, and in this paper we present


our experience in bringing large-scale, distributed computing


to mission-critical applications. We draw from two commer-


cial application areas: integrated circuit (IC) fabrication


plants and brokerage/trading floors. The system we describe


in this paper has been installed in over one hundred fifty pro-


duction sites and on more than ten thousand workstations.


We have had a unique opportunity to observe distributed


computing within the constraints of commercial installations


and to draw important lessons.


This paper concentrates on the problems posed by a “24


by 7“ commercial environment, in which a distributed sys-


tem must remain operational twenty-four hours a day, seven


Permission to copv without fee all or part of this material is


granted provided that the copies are not made or distributed for


direct commercial advantage, the ACM copyright notice and the


title of the publication and Its date appear, and notice IS given


that copying is by permission of the Association for Computing


Machinery. To copy otherwise, or to republlsh, requires a fee


and/or specific permission.


SIGOPS ‘93/12 /93/N. C., USA


~ 1993 ACM 0-89791 -632 -8/93 /0012 . ..$l .50


days a week. Such a system must tolerate software and


hardware crashes; it must continue running even during


scheduled maintenan- periods or hardware upgrades; and it


must be able to evolve and scale gracefully without affect-


ing existing services. This environment is crucially impor-


tant to our customers as they move toward real-time


decision support and event-driven processing in their com-


mercial applications.


One class of customers manufactures integrated circuit


chips. An IC factory represents such an enormous invest-


ment in capital that it must run twenty-four hours a day. Any


down time may result in a huge financial penalty from both


lost revenue and wasted materials. Despite the “24 by 7“


processing requirement, improvements to software and


hardware need to be made frequently.


Another class of customers is investment banks, bro-


kers, and funds managers that operate large securities trad-


ing floors. Such trading floors are very data-intensive


environments and require that data be disseminated in a


timely fashion to those who need it. A one-minute delay can


mean thousands of dollars in lost profits. Since securities


trading is a hi@J competitive business, it is advantageous


to use the latest software and hardware. Upgrades are fre-


quent and extensive. The system, therefore, must be


designed to allow seamless integration of new services


without affecting existing services.


In the systems that we have built and installed, dynamic


system evolution has been the greatest challenge. The sheer


size of these systems, which can consist of thousands of


workstations, requires novel solutions to problems of sys-


tem evolution and maintenance. Solving these problems in a
large-scale, “24 by 7“ environment leads to more than just


quantitative differences in how systems are built-these


solutions lead to fundamentally new ways of organizing


systems.


The contributions of this paper are two-fold. One is the
description of a set of system design principles that were


crucial in satisfying the stringent requirements of “24 by 7“


environments. The other is the demonstration of the useful-


ness and validity of these principles by discussing a body of


58







software out in the field. This body of software consists of


several tools and modules that use a novel communications


infrastructure known as the Information Bus. All of the soft-


ware components work together to provide a complete dis-


tributed system environment.


This paper is organized as follows. Section 2 provides a


detailed description of the problem domain and summarizes


the requirements for a solution. Section 3 outlines the Infor-


mation Bus architecture in detail, states principles that


drove our design, and discusses some aspects of the imple-


mentation. Section 4 describes the notion of adapters, which


mediate between old applications and in the Information


Bus. Section 5 describes other software components that


use the Information Bus and provide a complete application


environment. This section also provides an example to illus-


trate the system. Section 6 presents related work. Section 7


summarizes the paper and discusses open issues. The


Appendix discusses the performance characteristics of the


Information Bus.


2 Background


An IC fabrication plant represents a huge capital invest-


ment. This investment, therefore, is cost-effective only if it


can remain operational twenty-four hours a day. To bring


down an entire plant in order to upgrade a key software


component, such as the” Work-In-Process” tracking system,


would result in lost revenue and wasted material. There is


no opportunity to “reboot” the entire system. We state this


requirement as RI:


RI Continuous operation. It is unacceptable to bring


down the system for upgrades or maintenance.


Despite the need for continuous operation, frequent


changes in hardware and software must also be supported.


New applications and new versions of existing applications


need to be brought on-line. Business requirements and fac-


tory models change, and such changes need to be reflected


in the application behavior. For example, new equipment


types could be introduced into the factory. We state this


requirement as R2:


R2 Dynamic system evolution. The system must be


capable of adapting to changes in application ar-


chitecture and in the type of information ex-


changed. It should also support the dynamic


integration of new services and information.


In the systems that we have built and installed, this


requirement has posed the greatest challenge. The sheer size


of these systems, typically ranging from one hundred to a


thousand workstations, makes changes expensive or even


impossible, unless change is planned from the beginning.


Businesses often have huge outlays iu existing hard-


ware, software, and data. To be accepted by the business


community, a new system must be capable of leveraging


existing technology; an organization will not throw away


the product of an earlier costly investment. We state this


requirement as R3:


R3 Legacy systems. New software must be able to


interact smoothly with existing software, regard-


less of the age of that software.


Other important requirements are fault-tolerance, scal-


ability, and performance. The system must be fault-tolerant


in particular it must not have a single point of failure. The


system must scale in terms of both hardware and data.


Finally, our installations must meet stringent performance


standards. In this paper, we focus on requirements RI, R2,


and R3 because they represent “real-world” constraints that


have been less studied in research settings.


The typical customer environment consists of a distrib-


uted collection of independent processors, nodes, that com-


municate with each other by passing messages over the


network. Nodes and the network may fail, and it is assumed


that these failures are fail-stop [Schneider83] and not Byz-


antine [Lamport82], 1 The network may lose, delay, and


duplicate messages, or deliver messages out of order. Link


failures may cause the network to partition into subnet-


works that are unable to communicate with each other. We


assume that nodes eventually recover from crashes. For any


pair of nodes, there will eventually be a time when they can


communicate directly with each other after each crash.


3 Information Bus Architecture


The requirements of a “24 by 7“ environment dictated


numerous design decisions that ultimately resulted in the


Information Bus that we have today. We have distilled those


decisions into several design principles, which are high-


lighted as they become apparent in this section.


Because it is impossible to anticipate or dictate the


semantics of fiture applications, it is inadvisable to hard-


code application semantics into the core communications


software-for performance reasons and because there is no


“right” answer for every application [Cheriton93], For


example, complex ordering semantics on message delivery


are not supported directly, Atomic transactions are also not


supported: in our experience most applications do not need


the strong consistency requirements of transactions, Instead,


we provide tools and higher-level services to cover the


range of requirements, This allows us to keep the communi-


cations software efficient, while still allowing us to adapt to


the specific needs of each class of customers. The following


principle is motivated by requirements R2 and R3.


:, Failures in our customer environments closely approximate
fail-stop behavior; furthermore, protecting against the rare Byzan-
tine failure is generally too costly.


59







FIGURE 1. Model of computation


Service object Service object local data
objects


reply
A A


T T


Information Bus 0
0 000


A
000


A


/ mblish subscribe reuuest rePN


d
subject


data


Data o Ject
flo


0
0 tl


.“


o
0


Client appl. Client appl.


PI Minimal core semantics. The core communica-


tion system and tools can make few assumptions


about the semantics of application programs.


OW model of computation consists of objects, both


data objects and service objects, and two styles of distrib-


uted communication. traditional request/reply (using


remote procedure call [Birrel184]) and publish/subscribe,


the hallmark of the Information Bus architecture. This is


depicted in Figure 1. Publish/subscribe supports au event-


ctriven communication style and permits data to be dissemi-


nated on the bus, whereas requestJreply supporta a dernand-


driven communication style reminiscent of client/server


architectures. For each communication style, there are dif-


ferent levels of quality of service, which reflect different


design trade-offs between performance and fault-tolerance.


The next section elaborates on these mechanisms.


An object is an instance of a class, and each class is an


implementation of a type2. Our system model distinguishes


between two different kinds of objects: service objects that


control access to system resources and data objects that


contain information and that can easily be transmitted. A


service object encapsulates and controls access to


resources such as databases or devices and its local data


objects. Service objects typically contain extensive state


and may be fault-tolerant. Because they tend to be large-


grained, they are not easily marshaled into a wire format


and transmitted. Instead of migrating to another node, they
are invoked where they reside. using a form of remote pro-


cedure call. Examples of service objects include network


2. A type is an abstraction whose behavior is defined by an inter-
face that is completely specified by a set of operations. Types are
organized into a supertype/subtype hierarchy. A class is an imple-
mentation of a type. Specifically, a class defines methods that
implement the operations defined in a type’s interface.


file systems, database systems, print services, and name ser-


vices.


A data object, on the other hand, can be easily copied,


marshaled, and transmitted. Such objects are at the granular-


ity of typical C++ objects or database records. They abstract


and encapsulate application-level concepts such as docu-


ments, bank accounts, CAD designs, and employee records.


They run the gamut from abstracting simple data records to


defining complex behaviom, such as “recipes” for control-


ling IC processing equipment.


Each data object is labelled with a subject string. Sub-


jects are hierarchically structured, as illustrated by the fol-


lowing well-formed subject “fab5.cc.litho8 .thick.” This


subject might translate to plant “fab5,” cell controller, lithog-


raphy station “litho8,” and wafer thickness. Subjects are cho-


sen by applications or users.


The second principle, P2, is motivated by requirements


R2 and R3, and together with data abstraction, allows appli-


cations to adapt automatically to changes in au object’s


implementation and data representation.


P2 Selj-dexribing objects. Objects, both service and


data objects, are “self-describing.” Each supports


a meta-object protocol [Kiczales91 ], allowing


queries about its type, attribute names, attribute


types, and operation signatures.


P2 enables our systems and applications to support
introspective access to their services, operations, and


attributes. In traditional environments, introspection is used


to develop program analysis tools, such as class browsers


and debuggers. In the Information Bus environment, intro-


spection is used by applications to adapt their behaviom to


change. This is key to building systems that can adapt to


change at run-time.


60







Introspection enables programmers to write generic


software that can operate on a wide range of types. For


example, consider a “print” utility. Our implementation of


this utility can accept any object of any type and produce a


text description of the object. It examines the object to


determine its type, and then generates appropriate output. In


the case of a complex object, the utility will recursively


descend into the components of the object. The print utility


only needs to understand the fundamental types, such as


integer or string, but it can print an object of any type com-


posed of those types.


The third principle, P3, enables new concepts and


abstractions to be introduced into the system.


Pa Dynamic classing. New classes implementing


either existing or new types can be dynamically


defined and used to create instances. This is sup-


ported for both service and data objects.


P3 enables new types to be defined, on-the-fly. Note


that P2 enables existing applications to make use of these


new types without re-programming or re-linking.


To support dynamic classing, we have implemented


TDL, a small, interpreted language based on CLOS


[Keene89]. We have chosen a subset of CLOS that supports


a full object model, but that could be supported in a small,


efficient run-time environment.


3.1 Publish/Subscribe Communication


To disseminate data objects, data producers generate


them, label them with an appropriate subject, and publish


them on the Information Bus. To receive such objects, data


consumers subscribe to the same subject. Consumers need


not know \/ho produces the objects, and producers need not


know who consumes or processes the objects. This property


is expressed in principle P4. We call this model Subject-


Based Addressing~~, and it is a variant of a generative


communication model [Carriero89]. This principle is moti-


vated by requirements RI and R2, and it allows applications


to tolerate architectural changes on the fly,


P4 Anonymous communication. Data objects are


sent and received based on a subject, indepen-


dent of the identities and location of data pro-


ducers and data consutnem.


Subjects can be partially specified or “wildcarded” by


the consumer, which permits access to a large collection of


data from multiple producers with a single request. The


Information Bus itself enforces no policy on the interpreta-


tion of subjects. Instead, the system designers and develop-


ers have the freedom and responsibility to establish


conventions on the use of subjects.


for


Anonymous communication is a powerful mechanism


adapting to software changes that occur at run-time. A


new subscriber can be introduced at any time and will start


receiving immediately new objects that are being published


under the subjects to which it has subscribed. Similarly, a


new publisher can be introduced into the system, and exist-


ing subscribers will receive objects from it. Our model of


computation does not require a traditional name service like


Sun’s NIS or Xerox’s Clearinghouse [Oppen83].


In a traditional distributed system, whenever new ser-


vices are added to the system, or a service is being replaced


with a new implementation, the name service must be


updated with the new information. To use that information,


all applications must be aware that the new services exist,


must contact the name service to obtain the location of the


new service, and then bind to the service. In our model, the


new implementation need only use the same subjects as the


old implementatio~ neither publishers nor subscribers must


be aware of the change. Subject names can be rebound at


any time to a new address, a facility that is more general


than traditional late-binding.


The semantica of publish/subscribe communication


depends on the requirements of the application. The usual


semantics we provide is reliable message delivery. Under


normal operatiom if a sender and receiver do not crash and


the network does not suffer a long-term partition, then mes-


sages are delivered exactly once in the order sent by the


same sendeq messages from different senders are not


ordered, If the sender or receiver crashes, or there is a net-


work partition, then messages will be delivered at most


once.


A stronger semantics is guaranteed message delivery.


In this case, the message is logged to non-volatile storage


before it is sent. The message is guaranteed to be delivered


at least once, regardless of failures. The publisher will


retransmit the message at appropriate times until a reply is


received. If there is no failure, then the message will be


delivered exactly once. Guaranteed delivery is particularly


useful when sending data to a database over an unreliable


network.


For local area networks, reliable publication is imple-


mented with Ethernet broadcast, This choice allows the


same data to be delivered to a large number of destinations


without a performance penalty. Moreover, Ethernet broad-


cast eliminates the need for a central communication server.


oar current implementation uses UDP packets in combina-


tion with a retransmission protocol to implement reliable


delivery semantics.


in our implementation of subject-based addressing, we


use a daemon on every host. Each application registers with


its local daemon, and tells the daemon to which subjects it


has subscribed. The daemon forwards each message to each
application that has subscribed. It uses the subject contained


in the message to decide which application receives which


message.


61







Given the high traffic rates, Ethernet broadcast across


wide area networks is undesirable. We could use IP multi-


cast [Cheriton85], but unfortunately, commercial implemen-


tations are not mature enough for mission-critical use.


Therefore, wide area networks require additional communi-


cation tools.


Our implementation uses application-level “informa-


tion routers” to solve the problem posed by wide area net-


works. To the Information Bus, these routers look like


ordinary applications, but they actually integrate multiple


instances of the bus. Messages are received by one router


using a subscription, transmitted to another router, and then


re-published on another bus. The router is intelligent about


which messages are sent to which routers: messages are


only re-published on buses for which there exists a sub-


scription on that subject; the router can also perform other


functions, such as transforming subjects or logging mes-


sages to non-volatile storage. Thus, the overall effect is to


create the illusion of a single, large bus that is capable of


publishing over any network.


3.2 Dynamic Discovery


In a distributed system, it is often necessary for an


application to discover the identify of the participants in a


protocol. For example, a new client needs to determine the


set of servers that serve a subject a new server needs to


determine if any clients have pending requests; a replicated


server needs to find the other servers that maintain the repli-


cated data. Specifically, in Xerox’s corporate email service,


a traditional distributed system, client mail applications find


a mail service for posting mail messages by using an


expanding ring broadcast technique, a kind of discovery


protocol [Xerox88].


In the Information Bus, the discovery protocol is in the


form of two publications. One participant publishes “Who’s


out there?’ under a subject. The other participants publish “I
am” and other information describing their state, if they


serve the subject in question. Section 3.3 provides a specific


example of this exchange. This approach preserves P4


(anonymous communication). The subject alone is enough


for one participant to make contact with ita cohorts.


The publish/subscribe communication model is well-


-suited to supporting a discovery protocol. Since publication


does not require any boot-strapping or name resolution, it


can be the first step in a protocol. We are effectively using
the network itself as a name service. A subject is mapped to


a specific set of servers by allowing the servers to choose


themselves. The “Who’s out there?” publication can contain


service-specific information, so further refinements are pos-


sible when selecting servers.


3.3 Remote Method Invocation


Remote method invocation (RMI), or remote procedure


call, is the second means of performing distributed compu-


tations. This paired request/reply satisfies the demand-


driven style of interaction. Clients invoke a method on a


remote server object without regard to that server object’s


location, the server object executes the method, and the


server replies to the client. Servera are named with subjects.


Standard RMI provide exactly-once semantics under


normal operation and at-most-once semantics in the pres-


ence of failures. Customer-specific requirements such as


exactly-once semantics, which guarantees that the method


will be executed exactly once, even in the presen~ of fail-


ures, can be built on the a layer above standard RMI.


There are two parts to RMI: discovering the server


object for a clien~ and establishing a connection to that


server over which requests and replies will flow. The dis-


covery algorithm in our implementation employs publisw


subscribe communication as described in Section 3.2. In


this algorithm, the client searches for all servers by publish-


ing a query message on a subject specific to that service.


The servers receive this message, and then they publish


their point-to-point address to all clients on the same sub-


ject. Finally, the client invokes a service request on a server


object using the point-to-point address. The point-to-point


address can refer to any simple, connection mechanism,


such as a TC!P/IP connection poste18 1]. Figure 2 illustrates


this protocol.


FIGURE 2. RMI Protocol


Client Server


P
publish


publish


oint-to-point request


reply


1


More than one server can respond to requests on a sub-


ject, Several server objects can be used to provide load bal-


ancing or fault-tolerance. Our system allows an application


to choose between several different policies. The servers


can decide among themselves which one will respond to a


request from the client. Alternative y, the client can receive
every response from all of the servers and then decide


which server the client wants to use.


4 Adapters


The Information Bus must allow for interaction with


existing systems, as dictated by requirement R3. To inte-


grate existing applications into the Information Bus we use


62







software modules called adapters. These adapters convert


information from the data objects of the Information Bus


into data understood by the applications, and vice versa.


Adapters must live in two worlds at once, translating com-


munication mechanisms and data schemas. Adapters often


require PI in order to be feasible.


Adapters are essential for integrating the Information


Bus into a commercial environment. In the factory floor


example, our customer already had a Work In Progress


(wB?) system with its own data schemas. We designed an


adapter that allows the existing WE’ software to communi-


cate with the Information Bus. This achievement demon-


strates the flexibility of the Information Bus model: the


existing WIP system is written in Cobol, and there is only a


primitive terminal interface. The adapter must act as a vir-


tual user to the terminal interface.


The Object Repository is an example of a sophisticated


adapter that integrates a commercially available relational


database system into the Information Bus architecture. The


Object Repository maps Information Bus objects into data


base relations for storage or retrieval. This mapping is


driven by the meta-data of each object. Besides satisfying


requirement R3 as an adapter, the design of the repository


also supporta dynamic system evolution, which satisfies


requirement R2. Users may work freely in the object model


without concerning themselves with the relational data


mode13 [Codd70]. Using P2, the repository can automati-


cally adapt the relational model to the type structure of the


data objects.


The repository behaves as a kind of schema converter


from objects to database tables, and vice versa. Users are


thus insulated from any changes implementors may wish to


make to the database representation of objects. For exam-


ple, our conversion algorithm decomposes a complex object


into one or more database tables and reconstructs a complex


object from one or more database tables to answer a query


from a user. This conversion respects the type hierarchy,


enabling queries to return all objects that satisfy a con-


straint, including objects that are instances of a subtype. Old


queries will still work even as new subtypes are introduced,


which helps to satisfy R2. This operation can be fully auto-


mated, only the type information is necessary to do the


transformation. When the repository needs to store an


instance of a previously unknown type, it is capable of gen-


erating one or more new database tables to represent the


new type.


3. Our object model dfiers significantly from the relational data
model in the following way. A database table is a flat structure
composed of simple data types and has little semantics, while an


object may contain other objects, may have subtypes or super-


types, and may have methods to manipulate instances of the type.


The repository may be configured in any number of


ways, depending on the application. For example, it maybe


configured as a capture server that captures all objects for a


given set of subjects and inserts those objects automatically


into the repository under those subjects; it may also be con-


figured as a query server to receive requests from clients


and return replies.


5 Example Application


In the previous section, we discussed the Information


Bus architecture primarily in terms of an abstract object


model and two communication styles, and we espoused sev-


eral principles of system design. To make the architecture


more concrete, we present an example that shows how the


various components fit together into a single application and


that illustrates how an application can adapt to changes in


the environment. In particular, we show how the principles


are applied in the context of the example, and discuss some


software components that have been built on top of the


Information Bus and that are installed at customer sites.


Figure 3 shows an example taken from a tinancial trad-


ing floor, where traders must receive news stories in near


real-time. Two news adapters receive news stories from


communication feeds connected to outside news services,


such as Dow Jones and Reuters. Each raw news service


defines its own news format. Each adapter pames the


received data into an appropriate vendor-specific subtype of


a common Story supertype, and publishes each story on the


Information Bus under a subject describing the story’s pri-


mary topic (for example, “news. equit y.gmc” for stories on


General Motors). PI ensures that the raw feeds do not have


to support complex semantics.


The figure depicts two applications that consume the


Story objects: the Object Repository and the News Monitor.


The News Monitor subscribes to and displays all stories of


interest to its user. Incoming stories are first displayed in a


“headline summary list.” This list format is defined by a


“view” that specifies a set of named attributes from incom-


ing objects and formatting information. When the user


selects a story in the summary list, the entire story is dis-


played. This is accomplished by using the object’s meta-


data to iterate through all of its attributes and display them,


as provided by P2.


The Object Repository subscribes to all news stories


and inserts them into a relational database. The repository


converts Story objects into a database table format. This


conversion is nontrivial because a story is a highly struc-


tured object containing other objects such as lists of “indus-


try groups,” “ sources;’ and “country codes.” Every object


4. “At@ibutes” of an object are often referred to as “instance vari-


ables” or “fields. ”


63







FIGURE 3. Brokerage Trading Floor


Dow Jones Reu ers


fib


Adapter Adapter 1
++


Information Bus


44 I
Object


Repository


must be mapped into collections of simple database rela-


tions.


5.1 Graphical Application Builder


We needed a simple, general way to access information


on the Information Bus and in the database in a pleasing,


graphical form. It was not satisfacto~ to build a single,


static solution, since each customer has different needs, and


they change frequently. Instead, we built a graphical appli-


cation builder, designed for applications with a graphical


user interface builder. We have used it for several applica-


tions, including the News Monitor example and the front-


end to a Factory Configuration System, which is the system


for storing factory control information.


The application builder is an interpreter-driven, user


interface toolkit. It combines the ability to construct sophis-


ticated user interfaces with a simple, object-oriented lan-


guage, All high-level application behavior is encoded in the


interpreted language; only low-level behavior that is com-


mon to many applications is actually compiled.


The resulting applications are fully integrated into the


Information Bus, providing access to all subjects and ser-


vices. It is possible to examine the list of available services


on the Information Bus by using various name services.


Services are self-describing, so users can inspect the inter-


face description for each service. Using that information, a


user can quickly construct a basic user interface for any ser-


vice. This whole process requires only a few minutes, and
typically no compilation is involved. Sometimes, a single
user interface can be used to access several services, further


reducing the amount of work involved.


5.2 Dynamic System Evolution


In this section we illustrate how our design principles


support the requirement of dynamic system evolution. First,


we consider the introduction of a new type into the Infor-


mation Bus (P3), The Object Repository can dynamically


generate extensions to the database schema to accommo-


date such new types. Such generation may entail creating


one or more new database tables for each new type,


depending on the particular database representation. When


instances of the new type are received, they are dynami-


cally converted to the new database schema. P2 implies that


the repository will be able to recognize and process objects


that have a new type.


Second, we consider what happens if a new service of a


completely different nature is introduced. Consider a Key-


word Generator, as illustrated in Figure 4. The Keyword


Generator subscrhs to stories on major subjects and


searches the text of each story for “keywords” that have


been designated under several major “categories.” For each


Story objeet, a list of keywords is constructed as a named


Property5 object of the Story object and published under the


same subject. It also supports an interactive interface that


allows clients to browse categories and associated key-


words.


When the Keyword Generator comes on-line, the News


Monitor will start receiving Property objects on the same


subjects on which it is receiving Story objects. According to


P4, the News Monitor will be able to receive the new data


immediately. Since properties are a general concept in the


architecture, it can reasonably be assumed the News Moni-


tor is configured to accept Property objects, to associate


them with the objects they referenee, and to display them


along with the attributes of an object when the object is
selected. This capability can be set up using the scripting


language of the Graphical Application Builder,


5. The Object Management Group’s “Object Services Architec-


ture” is the bssis for the nomenclature used here. Accordingly, a


“property” is a name-value pair that can be dynamically defined


and associated with an object. In this example, the property name


is “keywords” and the value is the set of keywords found.


64







FIGURE 4. Adding a Key Word Generator to the Brokerage Trading Floor.


Dow Jones


News Monitor


Adapter Adapter


I +++
* L I I


Information Bus +


v~ WV


Object Keyword
Repository Generator


The interactive interface of the Keyword Generator is


an instance of a new service type. Using introspection, the


News Monitor can enable the user to interact with this new


type: menus listing the operations in the interface can be


popped up, and dialogue boxes that are based on the opera-


tions’ signatures can lead the user through interactions with


the new service.


Hence, as soon as the Keyword Generator service


comes on-line, the user’s world becomes much richer, both


in terms of information and of services. As seen by the user,


the new service and information is dynamically integrated


into the environment. This shows the adaptive flexibility of


the overall approach. Note that the example requires only


that the News Monitor support Property objects, but it does


not require knowledge of how properties are generated, in


compliance with P4.


6 Related Work


The Linda system, developed at Yale University, was


the first system to support a generative corrnnunication


model [Carriero89]. In Linda, processes generate tuples,


which are lists of typed data fields. These generated tuples


are stored in tuple space and persist until explicitly


deleted, Other Linda processes may invoke operations to


remove or read a tuple from tuple space. Storing a tuple in


tuple space, in effect, is like one process “broadcasting” a


tuple to many other processes.


A key difference between Linda and the Information


Bus is the data model. Linda tuples are data records, not


objects. Moreover, Linda does not support a full meta-


object protocol. Self-describing objects have been invalu-


able in enabling data independence, the creation of generic


data manipulation and visualization tools, and achieving the


system objective of permitting dynamic integration of new


services.


Another key difference between Linda and the Infor-


mation Bus is the mechanism for accessing data. Linda


accesses dats based on attribute qualification, just as rela-


tional databases do. Though this access mechanism is more


powerful than subject-based addressing, we believe that it is


more general than most applications require, We have found


that subject names are quite adequate for our needs, and


they are far easier to implement than attribute qualification.


We also argue that subject-based addressing scales more


easily, and has better performance, than attribute qualifica-


tion.


In the ISIS system [Birman89] processes may join pro-


cess groups, and messages can be addressed to every mem-


ber of a process group. ISIS has focused on various message


delivery semantics without regard for application-level


semantics. Hence, it does not support a high-level object


model.


Usenet [Fair84] is the best known example of a large-


scale communications system. A user may post au article


to a news group. Any user who has subscribed to that news


group will eventually see the article. Usenet, however,


makes no guarantees about message delivery: messages can


be lost, duplicated, or delivered out of order. Delivery


latency can be very large, on the order of weeks in some


cases. On the other hand, Usenet moves an impressive vol-


ume of data to a huge number of sites.


Usenet should be viewed as a communication system,


whose focus is moving text among humans. News articles


are unstructured, and no higher-level object model is sup-


ported. It would make au unsuitable communications envi-


ronment for our customer’s applications, given its weak


delivery semantics and long latencies,


The Zephyr notification service [DellaFera88], devel-


oped at MIT as part of Project Athena [Balkovich85], is


used by applications to transport time-sensitive textual


information asynchronously to interested clients in a distrib-
uted workstation environment, The notice subscription ser-


vice layer is of particular interest because it most resembles


our publish/subscribe communication model. In Zephyr, a


65







client interested in receiving certain classes of messages,


registers its interest with the service. The service uses “sub-


scription multicasting” (their term) to compute dynamically


the set of subscribers for a particular class of message and


sends a copy of the message only to those recipients that


have subscribed.


This subscription multicasting mechanism relies


heavily on a centralized location database that maps unique


Zephyr IDs to information like geographical location and


host 1P address, and it is not at all clear how well such an


implementation would work in a wide-area network. Fur-


thermore, this mechanism is inefficient if the number of


interested clients is very large.


7 Conclusion


In this paper, we described the requirements posed by a


“24 by 7“ commercial environment, such as the factory floor


automation system of a semiconductor fabrication plant.


The centerpiece of our solution is the Information Bus. The


Information Bus has been ported to most desktop and server


platforms, and has been installed at more than one hundred


fifty sites around the world, running on over ten thousand


hosts. We have demonstrated that this architecture is a suc-


cessful approach to building distributed systems in a com-


mercial setting.


Minimal core semantics (PI), self-describing objects


(P2), a dynamic classing system (P3), and anonymous com-


munication (P4) allow applications that use the Information


Bus to evolve gracefully over time. P 1 prevents applications


from being crippled by the communication system. P2


allows new types to be handled at run-time. P3 enables new


types to be introduced without recompilation. P4 permits


new modules to be transparently introduced into the envi-


ronment.


The first requirement was continuous availability (RI).


Anonymous communication (P4) allows a new service to be


introduced into the Information Bus, A new server that


implements such a service can transparently take over the


function of an obsolete server. The old server can be taken


off-line after it has satisfied all of outstanding requests. Wh.h


this technique, software upgrades can be performed on a
live system. In addition, new services can be offered at any


time, and existing clients can take advantage of these new


services.


The second requirement was support for dynamic sys-


tem evolution (R2). New services and new types can be


added to the Information Bus without affecting existing ser-


vices or types. Self-describing data (P2) ensures that the


data model and data types can be substantially enhanced


without breaking older software. In many cases, older soft-


ware can make use of the enhancements in the data objects


immediately. This ability implies that applications can pro-


vide addh.ional functionality by only changing the data


model.


The third requirement was the ability to integrate leg-


acy systems (R3). The Information Bus connects to legacy


systems through the use of adapters (Section 4), which


mediate between other systems and the Information Bus.


The principle of minimal core semantics (PI) aids in the


construction of adapters.


Acknowledgments


The authors wish to thank the anonymous referees for


their many helpful comments. We thank Mendel Rosenblum


for passing onto us the program committee’s comments that


greatly strengthened the final version of the paper. Our


thanks also go to Tommy Joseph, Richard Koo, Kieran


Harty, Andrea Wagner, and Brendon Whateley. Finally, we


thank TSS management, and Dr. JoMei Chang in particular,


for their patience during the lengthy preparation of this


paper.


References


[Balkovich85]


[Birman89]


[Birrel184]


[Carriero89]


[Cheriton85]


[Cheriton93]


Balkovich, E., S.R. Lerman, and R.P.
Parmele. “Computing In Higher Educa-
tion The Athena Experience,” Communic-
ations of the ACM 28, 11 (November
1985), pp. 1214-1224.


Birman, Ke~ and Thomas Joseph.
“Exploiting Replication in Distributed
Systemsj’ in Distributed Systems, Mul-
lender, Sape, editor, Addison-Wesley,
1989, pp. 319-365.


Birrell, Andrew D. and Bruce J. Nelson.
“Implementing Remote Procedure Calls.”
ACM Transactions on Computer Systems


2, l(February, 1984), pp. 39-59.


Carriero, Nicholas and David Gelernter.
“Linda in Context”. Communications of
the ACM 32,4 (April, 1989), pp. 444-
458.


Cheriton, David R, and Steven E. Deering.
“Host Groups: a muh.icast extension for
datagram intemetworks.” In Proceedings
of the 9th Data Communications Sympo -
vium, ACM SIGCOMM Computer Com-
munications Review 15, 4 (September


1985), pp. 172-179.


Cheriton, David R. and Dale Skeen.
“Understanding the Limitations of Caus-
ally and Totally Ordered Communica-
tion.” In Proc. of the 14th Symp. on
Operating Systems Principles, Asheville,
North Carolina, December 1993.


66







[Codd70]


@lellaFera88]


~air84]


llAunPort82]


[Keene89]


Wczales91]


[Oppen83]


roste181]


[Schneider83]


[Skeen92]


[Xerox88]


Codd, E. F. “A Relational Model for Large
Shared Data Banks.” Cornrnwzications of
the ACM 13,6 (June, 1970).


DellaFera, C. Anthony, Mark W. Eichin,
Robert S. French, David C. Jedlinsky,


John T. Kohl, and Wdliam E. Summers-


feld. “The Zephyr Notification Semite,”
Usenix Conference Proceedings, Dallas,
Texas (February 1988).


Erik Fair, “Usenet, Spanning the Globe.”
Unix/World, 1 (November, 1984), pp. 46-
49.


Lamport, Leslie, Robert Shostak, and
Marshall Pease. “The Byzantine Generals
Problem.” ACM Transactions on Pro-
gramming Languages and Systems 4,3
(July 1982), pp. 382-401.


Keene, Sonya. Object-Oriented Program-
ming in Common Lisp: A Programmer’s


Guide to CLOS, Addison-Wesley, 1989.


Kiczales, Gregor, Jim des Rivieres, and
Daniel Bobrow. The Art of the Metaobject
Protocol, MIT Press, 1991.


Oppen, Derek C. and Y. K. Dalal. “The
Clearinghouse: A decentralized agent for
locating named objects in a distributed
environment.” ACM Transactions on Office
Information Systems 1,3 (July 1983), pp.
230-253.


Postel, Jon, “Internet Protocol - DARPA
Internet Program Protocol Specification,”
RFC 791, Network Information Center,
SRI International, Menlo Park, CA, Sep-
tember 1981.


Schneider, Fred. “Fail-Stop Processors.”
Digest of Papers from Spring CompCon
’83 26th IEEE Computer SocieQ Interna-
tional Conference, March 1983, pp. 66-70.


Skeen, Dale, “An Information Bus Archi-
tecture for Large-Scale, Decision-Support
Environments,” Unix Conference Pro-
ceedings, Winter 1992, pp. 183-195.


Mailing Protocols. Xerox System Integra-
tion Standard (May 1988), XNSS 148805.


Appendix


For some of our customers, the Information Bus must


handle thousands of nodes with thousands of publishers,


consumers, clients, and servers. Therefore, performance is


crucial, In this sectiou we measure the performance of the


publish/subscribe communication model.


The two factors that most characterize performance are


throughput, measured in messages per second or bytes per


second, and latency, measured in seconds. Latency is the


average time between the sending of a message and its


receipt. In this appendix we present several figures illustrat-


ing the performance of the publishhubscribe communica-


tion mcdel. The key parameters for performance are the


message size and the number of data consumers. Hence, we


will plot the throughput and latency versus message size in


bytes and explain the effect of the number of consumers.


All data presented here was collected on our develop-


ment network of Sun SPARCstation 2s and Sun IPXS with


twenty-four to forty-eight megabytes of memory running


SunOS 4.1.1. The netsvork was a 10 Megabits/second Ether-


net, and it was lightly loaded. Since all monitored publish-


ers/consumers are on the same subneg information does not


need to go through any bridges or rout.ms. All message


delivery is reliable but not guaranteed. For any given test


run, the message size was constant. For the performance


data shown here, publishers and consumers were spread


over fifteen nodes.


FIGURE 5. Latency vs. Msg Size


Latency of Publish/Subscribe Paradigm (mill isec)


35 Latency (msec )


30


25


20


15


10


5


Messageslze (Bytes)


2000 4000 6000 8000 10000


The data for Figure 5 was collected by executing one


publisher publishing under a single subject. The information


is consumed by fourteen consumem (one consumer per
node). It shows that the latency depends on the message


size. Although not shorn the latency is independent of the


number of consumers. The 99%-confidence interval is pre-


67







sented with dashed lines. The Information Bus has a batch


parameter that increases throughput by delaying small mes-


sages, and gathering them together. When measuring the


latency, the batch parameter was turned off to avoid inten-


tionally delaying the publications. Variances of the data sets


used in Figure 5 ranged from 1.1X10-4 to 1.7x10-2 millisec-


onds.


FIGURE 6. Throughput - Msgs/Sec vs. Msg Size


Throughput of Publish/Subscribe Paradigm (Msgs/See)


Throughput (Msgs/See)


sand-byte messages is due to collisions from unrelated net-


work activity.


This set of test cases also verified that the publication


rate is independent of the number of subscribers. Therefore,


the cumulative throughput over all subscribers is propor-


tional to the number of subscribe. The variances of the


data sets used in Figure 6 ranged from 0.25 to 125 mes-


sageslsecond. Figure 7 was plotted based on the same data.


FIGURE 8. Throughput - Effect of the Number of
Subjects


Throughput of Publish/Subscribe Paradigm (Bytes/See)


1
2000 4000 6000 8000 10000


FIGURE 7. Throughput - Bytes/See vs. Msg Size


Throughput of Publish/ Subscr~be Paradigm (Bytes/See)


!


300000
Throughput (Bytes/jed _ – – _ _ _ _


----
-.


250000


200000


150000


100000.


50000


Messageslze (Bytes)


1.
2000 4000 6000 8000 10000


Figure 6 and 7 show the throughput of a network with


one publisher publishing under one subject, sending to four-


teen consumers. For this test, the batching parameter was


turned on. For messages larger than five thousand bytes, the


devim bandwidth becomes the limiting factor: it is difficult


to drive more then 300 Kb/sec through Ethernet with a raw


UDP sockeg suggesting that the Information Bus represents


a low overhead. The slight decrease in throughput and


increase in variance between five thousand and ten thou-


300000.
Throughput (Bytes/;eS) _ _ _ _ _ _ _


————————-


250000


200000


150000


100000 ~~


50000~~


Messagesize (Bytes)


2000 4000 6000 8000 10000


The difference between the environment of Figure 7


and Figure 8 is that the publisher published on ten thousand


different subjects instead of one, and the fourteen consum-


ers subscribed to all ten thousand subjects. As the data in


Figure 8 shows, the number of subjects has an insignificant


intluence on the throughput. For Figure 8, we collected data


in messages/second. These data sets have a variance that


ranges from 1.2 to 4.6 messages/second. The time to pro-


cess each subscription request is not shown in the above fig-


ure since these requests are performed once at start-up time.


68






