

The Zebra Striped Network


John H. Hartman


John K. Ousterhout


File System


Computer Science Division


Electrical Engineering and Computer Sciences


University of California


Berkeley, CA 94720


Abstract


Zebra is a network file system that increases throughput


by striping file data across multiple servers. Rather than


striping each file separately, Zebra forms all the new data
from each client into a single stream, which it then stripes


using an approach similar to a log-structured file system.


This provides high performance for writes of small tiles as


well as for reads and writes of large files. Zebra also writes


parity information in each stripe in the style of RAID disk


arrays; this increases storage costs slightly but allows the


system to continue opemtion even while a single storage


server is unavailable. A prototype implementation of Zebra,


built in the Sprite operating system, provides 4-5 times the


throughput of the standard Sprite file system or NFS for


large files and a 20%-3x improvement for writing small


files.


1 Introduction


Zebra is a network tile system that uses multiple file
servers in tandem. The goal of the system is to provide
greater throughput and availability than can be achieved
with a single server. Clients stripe file data across servers so
that different pieces of data are stored on different servers.
Striping makes it possible for a single client to keep several
servers busy and it distributes the load among the servers to
reduce the likelihood of hot spots. Zebra also stores parity
information in each stripe, which allows it to continue
operation while any one server is unavailable.


In current network file systems the read and write
bandwidth for a single file is limited by the performance of
a single server, including its memory bandwidth and the


This work was supported in part by the National Science Founda-
tion under grant CCR-8900029, the National Aeronautics and
Space Administration and the Advanced Research Projects Agency
under contract NAG 2-591, and the California MICRO Program.


Permlsslon to copy without fee all or part of this material is


granted provided that the copies are not made or distributed for


direct commercial advantage, the ACM copyright notice and the


title of the publication and its date appear, and notice is given


that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee


and/or specific permission.


SIGOPS ‘93/121931 N. C., USA


01993 ACM 0-89791-632-81931001 2...91.50


speed of its processor, network interface, 1/0 busses, and
disks. It is possible to split a file system among multiple
servers but each file must reside on a single server and it is
difficult to balance the loads of the different servers. For
example, the system directories often lie on a single server,
making that server a hot spot.


In the future, new styles of computing such as multi-
media and parallel computation are likely to demand much
greater throughput than today’s applications, making the
limitations of a single server even more severe. For
example, a single video playback can consume a substantial
fraction of a file server’s bandwidth even when the video is
compressed. A cluster of workstations can easily exceed the
bandwidth of a file server if they aIl run video applications
simultaneously, and the problems will become much worse
when video resolution increases with the arrival of HDTV.
Another example is parallel applications. Several research
groups are exploring the possibility of using collections of
workstations connected by high-speed low-latency
networks to run massively parallel applications. These


“distributed supercomputers” are likely to present 1/0 loads
equivalent to traditional supercomputers, which cannot be
handled by today’s network file servers.


A striping tile system offers the potential to achieve
very high performance using collections of inexpensive


computers and disks. Several striping file systems have
already been built, such as Swift [Cabrera91] and Bridge
Dibble88]. These systems are similar in that they stripe


data within individual tiles, so only large files benefit from
the srnping. Zebra uses a different approach borrowed from
log-structured file systems (LFS) ll?osenblum9 1]. Each
client forms its new data for all files into a sequential log
that it stripes across the storage servers. This allows even
small files to benefit from striping. It also reduces network


overhead, simplifies the storage servers, and spreads write
traffic uniformly across the servers.


Zebra’s style of striping also makes it easy to use
redundancy techniques from RAID disk arrays to improve
availability and data integrity @atterson88]. One of the
fragments of each stripe stores parity for the rest of the
stripe, allowing the stripe’s data to be reconstructed in the
event of a disk or server failure. Zebra can continue
operation while a server is unavailable. Even if a disk is
totally destroyed Zebra can reconstruct the lost data.


We have constructed a prototype implementation of
Zebra as part of the Sprite operating system [Ousterhout88].
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Although it does not yet incorporate all of the reliability and
recovery aspects of the Zebra architecture, it does
demonstrate the performance benefits. For reads and writes


of large files the prototype achieves up to 4 Mbytes/second
for a single client with four servers, which is 4-5 times the
throughput of either NFS or the standard Sprite file system.
For small files the Zebra prototype improves performance
by more than a factor of 3 over NFS. The improvement over
Sprite is only about 20%, however. This is because both
Zebra and Sprite require the client to notify the file server of
file opens and closes, and when writing small files these
notifications dominate the running time. With the addition
of file name caching to both systems we would expect Zebra
to have even more of an advantage over Sprite.


The rest of the paper is organized as follows. Section 2
describes the RAID and log-structured-file-system
technologies used in Zebra and introduces Zebra’s logging
approach. Section 3 describes the structure of Zebra, which
consists of clients, storage servers, a file manager, and a
stripe cleaner. Section 4 shows how the components of the
system work together in normal operation; communication
between the components is based on deltas, which describe
block creations, updates, and deletions. Section 5 describes
how Zebra restores consistency to its data structures after


crashes, and Section 6 shows how the system provides
service even while components are down. Section 7 gives
the status of the Zebra prototype and presents some
performance measurements. Section 8 discusses related
work and Section 9 concludes.


2 Striping in Zebra


Zebra distributes file data over several file servers while
ensuring that the loss of a single server does not affect the
availability of the data. To do this Zebra borrows from two
recent innovations in the management of disk storage
systems: RAID technology (Redundant Arrays of
Inexpensive Disks) @atterson88], and log-structured file
systems (LFS) Bosenblum9 1]. RAID technology allows
Zebra to provide scalable file access performance while
using parity instead of redundant copies to guard against
server failures. The log-structured approach simplifies the
parity implementation, reduces the impact of managing and
storing parity, and allows clients to batch together small
writes to improve server efficiency.


2.1 RAID


RAID is a storage system architecture in which many
small disks work together to provide increased performance
and data availability. A RAID appems to higher-level
software as a single very large and fast disk, Transfers to or
from the disk array are divided into blocks called striping
units. Consecutive striping units are assigned to different
disks in the array as shown in Figure 1 and can be
transferred in parallel. A group of consecutive striping units
that spans the array is called a stripe. Large transfers can
proceed at the aggregate bandwidth of all the disks in the
array, or multiple small transfers can be serviced


concurrently by different disks.


Since a RAID has more disks than a traditional disk
storage system, disk failures will occur more often.
Furthermore, a disk failure anywhere in a RAID can
potentially make the entire disk array unusable. To improve
data integrity, a RAID reserves one of the striping units
within each stripe for parity instead of data (see Figure 1):
each bit of the parity striping unit contains the exclusive OR
of the corresponding bits of the other striping units in the
stripe. If a disk fails, each of its striping units can be
recovered using the data and parity from the other striping


units of the stripe. The file system can continue operation
during recovery by reconstructing data on the fly.


A RAID offers large improvements in throughput, data
integrity, and availability, but it presents two potential
problems. The first problem is that the parity mechanism
makes small writes expensive. If all write operations are in


units of whole stripes, then it is easy to compute the new
parity for each stripe and write it along with the data. This
increases the cost of writes by only I/(N-l) relative to a


system without parity, where N is the number of disks in the
array. However, small writes are much more expensive. In
order to keep the stripe’s parity consistent with its data, it is
necessary to read the current value of the data block that is
being updated, read the current value of the corresponding
parity block, use this information to compute a new parity
block, then rewrite both parity and data. This makes small
writes in a RAID about four times as expensive as they
would be in a disk array without parity. Unfortunately the
best size for a striping unit appears to be tens of kilobytes or
more [Chen90], which is larger than the average file size in
many environments [Baker9 1], so writes will often be
smaller than a full stripe.


The second problem with disk arrays is that all the
disks are attached to a single machine, so its memory and
I/O system are likely to be a performance bottleneck. For
example, a SCSI 1/0 bus can accommodate up to eight
disks, each with a bandwidth of 1-2 Mbytes/second, but the
SCSI bus has a total bandwidth of only 2-10
Mbytes/second. Additional SCSI busses can be added, but
data must be copied from the SCSI channel into memory
and from there to a network interface. On the DECstation
5000/200 machines used for the Zebra prototype these
copies can only proceed at about 6-8 Mbytes/second. The


Data Parity


Figure 1. Striping with parity. The storage space of a
RAID disk array is divided into stripes, where each
stripe contains a striping unit on each disk of the array.
All but one of the striping units hold data; the other
striping unit holds parity information that can be used to
recover after a disk failure.
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Fimtre 2. Per-file strir)in~ for a large file. The file is
di~ided up into stripe ‘oni& that are ~istributed among
the servers. Each stripe contains one parity fragment.


Berkeley RAID project has built a special-purpose memory
system with a dedicated high-bandwidth path between the
network and the disks Lee92] but even this system can
support only a few dozen disks at full speed.


In order to eliminate the performance bottlenecks
multiple paths must exist between the source or sink of data
and the disks so that different paths can be used to reach
different disks. For example, this might be done by
spreading the disks among different machines on a single
very high speed network, or even by using different
networks to reach different disks. Unfortunately, this turns
the disk array into a distributed system and introduces
issues such as who should allocate disk space or compute


parity. One of our goals for Zebra was to solve these
distributed system problems in a simple and efficient way.


2.2 Per-File Striping in a Network File
System


A striped network file system is one that distributes file
data over more than one file server in the same way that a
RAID distributes data over multiple disks. This allows
multiple servers to participate in the transfer of a single file.
The terminology we use to describe a striped network file
system is similar to RAID’s: a collection of file data that
spans the servers is called a so-ipe, and the portion of a
stripe stored on a single server is called a stripefragment.


The most obvious way to organize a striped network
file system is to stripe each file separately, as shown in
Figure 2. We refer to this method as per-jile striping. Each
file is stored in its own set of stripes. As a result, parity is
computed on a per-file basis because each stripe contains
data from only one file. While conceptually simple, per-file
striping has two drawbacks. First, small files are difficult to
handle efficiently. If a small file is striped across all of the
servers as in Figure 3(a) then each server will only store a
very small piece of the file. This provides little performance
benefit, since most of the access cost is due to network and
disk latency, yet it incurs overhead on every server for every
file access. Thus it seems better to handle small files
differently than large files and to store each small file on a
single server, as in Figure 3(b). This leads to problems in
parity management, however. If a small file is stored on a
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Figure 3. Per-file striping for a small file. In (a) the file
is striped evenly across the servers, resulting in small
fragments on each server. In (b) the entire file is placed
on one server but the parity takes as much space as the
fite.


single server then its parity will consume as much space as
the file itself, resulting in high storage overhead. In addition,
the approach in Figure 3(b) can result in unbalanced disk
utilization and server loading.


Second, per-file striping also leads to problems with
parity management during updates. If an existing file is
modified then its parity must be updated to reflect the
modification. As with RAIDs, small updates like this
require two reads (the old data and the old parity) followed


by two writes (the new data and the new parity).
Furthermore the two writes must be carried out atomically.
If one write should complete but not the other (e.g. because


a client or server crashed) then the parity will be
inconsistent with the data; if this parity is used later for
reconstructing lost data, incorrect results will be produced.
There exist protocols for ensuring that two writes to two
different file servers are carried out atomically


[Bemstein81] but they are complex and expensive.


2.3 Log-Structured File Systems and
Per-Client Striping


Zebra solves the problems with per-tile striping by
applying techniques from log-structured file systems (LFS)
tRosenblum9 1]. LFS is a disk management technique that
treats the disk like an append-only log. When new files are
created or existing files are modified, the new data are
batched together and written to the end of the log in large
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Figure 4. Per-client striping in Zebra. Each client
forms its new tile data into a single append-only log and
stripes this log across the servers. In this example tile A
spans several servers while file B is stored entirely on a
single server. Parity is computed for the log, not for
individual files.


sequential transfers. LFS is particularly effective for writing
small files, since it can write many files in a single transfe~
in contrast, traditional file systems require at least two
independent disk transfers for each file. Rosenbhtm reported
a tenfold speedup over traditional file systems for writing
small files. LFS is also well-suited for RAIDs because it
batches small writes together into large sequential transfers
and avoids the expensive parity updates associated with
small random writes.


Zebra can be thought of as a log-structured network file
system: whereas LFS uses the logging approach at the
interface between a file server and its disks, Zebra uses the
logging approach at the interface between a client and its
servers. Figure 4 illustrates this approach, which we caIl
per-client striping. Each Zebra client organizes its new file
data into an append-only log, which it then stripes across the


servers. The client computes parity for the log, not for
individual files. Each client creates its own log, so a single
stripe in the file system contains data written by a single
client.


Per-client srnping has a number of advantages over per-
file striping. The first is that the servers are used efficiently
regardless of file sizes: large writes are striped, allowing
them to be completed in parallel, and small writes are
batched together by the log mechanism and written to the
servers in large transfers; no special handling is needed for
either case. Second, the parity mechanism is simplified.
Each client computes parity for its own log without fear of
interactions with other clients. Small files do not have
excessive parity overhead because parity is not computed
on a per-tile basis. Furthermore, parity never needs to be
updated because file data are never overwritten in place.


The above introduction to per-client striping leaves
some unanswered questions. For example, how can files be
shared between client workstations if each client is writing
its own log? Zebra solves this problem by introducing a
central file manager, separate from the storage servers, that
manages metadata such as directories and file attributes and
supervises interactions between clients. Also, how is free


Figure 5: Zebra schematic. Clients run applications;
storage servers store data. The file manager and the
stripe cleaner can nm on any machine in the system,
although it is likely that one machine will run both of
them. A storage server mav atso be a client..


space reclaimed from the logs? Zebra solves this problem
with a stripe cleaner, which is analogous to the cleaner in a
log-structured file system. The next section provides a more
detailed discussion of these issues and several others.


3 Zebra Components


The Zebra file system contains four main components
as shown in Figure 5: clients, which are the machines that
run application programs; storage servers, which store file
data; a jile manager, which manages the file and directory
structure of the file system; and a stripe cleaner, which
reclaims unused space on the storage servers. There maybe
any number of clients and storage servers but only a single
file manager and stripe cleaner. More than one of these
components may share a single physical machine; for
example, it is possible for one machine to be both a storage
server and a client. The remainder of this section describes
each of the components in isolation; Section 4 then shows
how the components work together to implement operations


such as reading and writing files, and Sections 5 and 6
describe how Zebra deals with crashes.


We will describe Zebra under the assumption that there
are several storage servers, each with a single disk.
However, this need not be the case. For example, storage
servers could each contain several disks managed as a
RAID, thereby giving the appearance to clients of a single
disk with higher capacity and throughput. It is also possible
to put all of the disks on a single serve~ clients would treat
it as several logical servers, all implemented by the same
physical machine. This approach would still provide many
of Zebra’s benefits: clients would still batch small files for
tmmsfer over the network, and it would still be possible to
reconstruct data after a disk failure. However, a single-
server Zebra system would limit system throughput to that
of the one server, and the system would not be able to
operate when the server is unavailable.


3.1 Clients


Clients are machines where application programs
execute. When an application reads a file the client must


32







determine which stripe fragments store the desired data,
retrieve the data from the storage servers, and return them to
the application. As will be seen below, the file manager
keeps track of where file data are stored and provides this
information to clients when needed. When an application


writes a file the client appends the new data to its log by
creating new stripes to hold the data, computing the parity
of the stripes, and writing the stripes to the storage servers,


Clients’ logs do not contain file attributes, directories,
or other metadata. This information is managed separately
by the file manager as described below.


3.2 Storage Servers


The storage servers are the simplest part of Zebra. They
are just repositories for stripe fragments. As far as a storage
server is concerned, a stripe ffagment is a large block of
bytes with a unique identifier. The identifier for a fragment
consists of an identifier for the client that wrote the
fragment, a sequence number that identifies the stripe
uniquely among aIl those written by the client, and an offset
for the fragment within its stripe. All fragments in Zebra are
the same size, which should be chosen large enough to
make network and disk transfers efficient. In the Zebra
prototype we use 512-Kbyte fragments.


Storage servers provide five operations:


Store a fragment. This operation allocates space for
the fragment, writes the fragment to disk, and records
the fragment identifier and disk location for use in sub-
sequent accesses. The operation is synchronous: it does
not complete until the fragment is safely on disk. The
fragment must not already exist unless it is a parity
fragment, in which case the new copy of the fragment
replaces the old. This is done in a non-overwrite man-
ner to avoid corruption in the event of a crash.


Append to an existing fragment. This operation is


similar to storing a fragment except that it allows a cli-
ent to write out a fragment in pieces if it doesn ‘t have
enough data to fill the entire fragment at once (this can
happen, for example, if an application invokes the
fs ync system call to force data to disk). Appends are
implemented atomically so that a crash during an
append cannot cause the previous contents of the frag-
ment to be lost.


Retrieve a fragment. This operation returns part or all
of the data from a fragment. It is not necessary to read
the entire fragmen~ a fragment identifier, offset, and
length specify the desired range of bytes.


Delete a fragment, This operation is invoked by the
srnpe cleaner when the fragment no longer contains
any useful data. It makes the fmgment’s disk space
available for new fragments.


Identify fragments. This operation provides informa-
tion about the fragments stored by the server, such as
the most recent fragment written by a client. It is used
to find the ends of the clients’ logs after a crash.


Stripes are immutable once they are complete. A stripe
may be created with a sequence of append operations, but
non-parity fragments are never overwritten and once the


stripe is complete it is never modified except to delete the
entire stripe. A parity fragment, however, can be overwritten
if data are appended to a partial stripe (see Section 4.2).


3.3 File Manager


The file manager stores all of the information in the file
system except for file data. We refer to this information as
metadata: it includes file attributes such as protection
information, block pointers that tell where file data are
stored, directories, symbolic links, and special files for 1/0
devices. The tile manager performs atl of the usual
functions of a tile server in a network file system, such as
name lookup and maintaining the consistency of client file
caches. However, the Zebra file manager doesn ‘t store any
file dam, where a traditional file server would manipulate
data the Zebra tile manager manipulates block pointers. For
example, consider a read operation. In a tmditional file
system the client requests the data from the file server; in
Zebra the client requests block pointers from the file
manager, then it reads the &ta from the storage servers.


In the Zebra prototype we implemented the file
manager using a Sprite file server with a log-structured file


system. For each Zebra file there is one file in the file
manager’s file system, and the “data” in this file are an array
of block pointers that indicate where the blocks of data for


the Zebra file are stored. This allows Zebra to use almost all
of the existing Sprite network file protocols without
modification. Clients open, read, and cache Zebra metadata
in the same manner that they cache “regular” Sprite files.
There is nothing in the Zebra architecture that requires
Sprite to be used as the network file system, however any
existing network file server could be used in the same way
by storing block pointers in files instead of data.


The performance of the file manager is a concern
because it is a centralized resource. In our implementation
clients must contact the file manager on each open and
close, so communication with the file manager is a


performance bottleneck when clients are accessing small
files. We believe that this problem can be solved by caching
naming information on clients so that the file manager need
not be contacted for most opens and closes. Client-level
name caching has been used successfully in the AFS file
system [Howard88] and Shirriff found that a name cache
occupying only 40 Kbytes of a client’s memory can produce
a hit rate of 97% [Shirrif192]. We decided not to implement
name caching in the Zebra prototype because it would have
required major modifications to the Sprite file system, but
we would expect any production version of Zebra to
incorporate name caching.


The centralized nature of the file manager also makes
its reliability a concern; this issue is addressed in Section 6.


3.4 Stripe Cleaner


When a client writes a new stripe it is initially full of
live data. Over time, though, blocks in the stripe become
free, either because their files are deleted or because the
blocks are overwritten. If an application overwrites an
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existing block of a file, Zebra doesn’t modify the stripe
containing the block, instead it writes a new copy of the
block to a new stripe. The only way to reuse free space in a
stripe is to clean the stripe so that it contains no live data
whatsoever, then delete the entire stripe. At this point the
storage servers will reuse the stripe’s disk space for new
stripes.


The Zebra stripe cleaner runs as a user-level process
and is very similar to the segment cleaner in a log-structured
tile system. It first identities stripes with large amounts of
free space, then it reads the remaining live blocks out of the


stripes and writes them to a new stripe (by appending them
to its client’s log). Once this has been done, the stripe
cleaner deletes the stripe’s fragments from their storage
servers. Section 4.5 describes the cleaning algorithm in
more detail.


4 System Operation


This section describes several of the key algorithms in
Zebra to show how the pieces of the system work together
in operation. Most of these algorithms are similar to the
approaches used in log-structured file systems, RAIDs, or
other network file systems.


4.1 Communication via Deltas


A client’s log contains two kinds of information: blocks
and deltas. A block is just a piece of raw data from a file, i.e.
the information that is read and written by applications.
Deltas identify changes to the blocks in a file, and are used
to communicate these changes between the clients, the file
manager, and the stripe cleaner. For example, a client puts a
delta into its log when it writes a file block, and the file
manager subsequently reads the delta to update the metadata
for that block. Deltas contain the following information:


File identifier: a unique identifier for a file, analogous
to an i-number in UNIX file systems.


File version: identifies the point in time when the
change described by the deka occurred. A fde’s version
number increments whenever a block in the file is writ-


ten or deleted. The version numbers allow deltas in dif-
ferent logs to be ordered during crash recovery.


Block number: identifies a particular block by its posi-
tion within the file.


Old block pointer: gives the fragment identifier and
offset of the block’s old storage location. If this delta is
for a new block then the old block pointer has a special
null value.


New block pointer: gives the fragment identifier and
offset for the block’s new storage location. If this delta
is for a block deletion then the new block pointer has a
special null value.


Deltas are created whenever blocks are added to a file,
deleted from a file, or overwritten. All of these are called
update deltas. Deltas are atso created by the stripe cleaner
when it copies live blocks out of stripes; these are called
cleaner deltas. Lastly, reject deltas are created by the file


manager to resolve races between stripe cleaning and file
updates. All of these deltas will be described in more detail
in the rest of the paper.


Deltas provide a simple and reliable way for the various
system components to communicate changes to files. Since
deltas are stored in the client logs and the logs are reliable,
each component can be sure that any delta it writes will not


be lost. When a client modifies a block of a file it only needs
to write the block and the update delta to the log to ensure
that both the file manager and the stripe cleaner learn of the
modification. After crashes the file manager and stripe


cleaner replay deltas fi-om the client logs to recover their
state.


4.2 Writing Files


In order for Zebra to run efficiently clients must collect
large amounts of new file data and write them to the storage
servers in large batches (ideally, whole stripes). The existing
structure of the Sprite file caches made batching relatively
easy. When an application writes new data they are placed
in the client’s file cache. The dirty data aren ‘t written to a
server until either (a) they reach a threshold age (30 seconds
in Sprite), (b) the cache fills with dirty data, (c) an
application issues an fs ync system call to request that data
be written to disk, or (d) the file manager requests that data
be written in order to maintain consistency among client
caches. In many cases files are created and deleted before
the threshold age is reached so their data never need to be
written at all [Baker9 1].


When information does need to be written to disk, the


client forms the new data into one or more stripe fragments
and writes them to storage servers. For each file blink
written the client also puts an update delta into its log and
increments the file’s version number. In the Zebra prototype
file deletion and truncation are handled by the file manager,
so it generates deltas for these operations and increments
the file version numbers appropriately. In a system with
name caching the deltas for deletion and truncation would
be generated by clients.


To benefit from the mtdtiple storage servers it is


important for a client to transfer fragments to all of the
storage servers concurrently. We added support for
asynchronous remote procedure calls to Sprite to allow
clients to do this. A client can also transfer the next stripe
fragment to a storage server while the server is writing the
current stripe fragment to disk, so that both the network and
the disk are kept busy. The client computes the parity as it
writes the fragments and at the end of each stripe the client
writes the parity to complete the stripe. In the Zebra
prototype the client also sends the stripe’s deltas to the file
manager and stripe cleaner. This improves performance by
avoiding disk accesses for the file manager and stripe
cleaner to read the deltas from the log, but it isn’t necessary
for correct operation. If the client crashes before sending the
deltas then the file manager and stripe cleaner will read the
deltas from the log on their own.


If a client is forced to write data in small pieces (e.g.
because an application invokes fs ync frequently) then it
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fills the stripe a piece at a time, appending to the first stripe
fragment until it is full, then filling the second fragment, and
so on until the entire stripe is full. When writing partial
stripes the client has two choices for dealing with parity.
First, it can delay writing the parity until the stripe is
complete, This is the most efficient alternative and it is
relatively safe (the client has a copy of the unwritten parity,
so information will be lost only if both a disk is destroyed
and the client crashes). For even greater protection the client
can update the stripe’s parity fragment each time it appends
to the stripe. Parity fragments written in this way include a
count of the number of bytes of data in the stripe at the time
the fragment was written, which is used to determine the
relationship between the parity and the data after crashes.
Parity updates are implemented by storage servers in a non-
overwrite fashion, so either the old parity or the new parity
is always available after a crash.


The rate at which applications invoke fs ync will have
a large impact on Zebra’s performance (or any other file
system’s) because fs ync’s require synchronous disk


operations. Baker et. al [Baker92b] found that under a
transaction processing workload up to 90% of the segments
written on an LFS file system were partial segments caused
by an fs ync. Such a workload would have poor
performance on Zebra as well. Fortunately, they found that
on non-transaction processing workloads fs ync accounted
for less than 20% of the segments written.


4.3 Reading Files


File reads in Zebra are carried out in almost the same
fashion as in a non-striped network file system. The client
opens and closes the file in the same way as for a non-Zebra
file; in Sprite this means a remote procedure call to the file
manager for each open or close. Reading data is a two-step
operation in the Zebra prototype. First the client must fetch
the block pointers from the file manager, then it reads the
file data from the storage servers. This results in an extra
RPC relative to a non-striped file system; a better approach
would be to return the block pointers as the result of the
open RPC. In the prototype this extra RPC takes 2 ms if the
file manager has the block pointers cached, and 19.5 ms
otherwise. As many as 2048 block pointers can be returned
by the RPC, allowing all of the block pointers for files up to
8 Mbytes in size to be fetched in a single RPC. Zebra clients
cache both block pointers and data, so this information is
only fetched on the first access to a file; name caching
would eliminate most of the open and close RPCS as well.


For large files being accessed sequentially, Zebra
prefetches data far enough ahead to keep all of the storage
servers busy. As with writing, asynchronous RPCS are used
to transfer data from all of the storage servers concurrently
and to read the next stripe fragment on a given server from
disk while transferring the previous one over the network to
the client.


The Zebra prototype does not attempt to optimize reads
of small files: each file is read from its storage server in a
separate operation, just as for a non-striped file system.
However, it is possible to prefetch small files by reading
entire stripes at a time, even if they cross file boundaries. If


there is locality of file access so that groups of files are
written together and then later read together, this approach
might improve read performance. We speculate that such
locality exists but we have not attempted to verify its
existence or capitalize on it in Zebra.


4.4 Client Cache Consistency


If a network file system allows clients to cache file data
and also allows files to be shared between clients, then
cache consistency is a potential problem. For example, a
client could write a file that is cached on another client; if
the second client subsequently reads the file, it must discard
its stale cached data and fetch the new data. We chose to use
the Sprite approach to consistency, which involves flushing
or disabling caches when files are opened melson88],
because it was readily available, but any other approach
could have been used as well. The only changes for Zebra
occur when a client flushes a file from its cache. Instead of
just returning dirty data to a file server, the Zebra client must
write the dirty blocks to a storage server and then the file
manager must process all of the deltas for the blocks so that
it can provide up-to-date block pointers to other clients.


4.5 Stripe Cleaning


The first step in cleaning is to select one or more stripes
to clean. To do this intelligently the stripe cleaner needs to
know how much live data is left in each stripe. Deltas are
used to compute this information. The stripe cleaner
processes the deltas from the client logs and uses them to
keep a running count of space utilization in each existing
stripe. For each delta the cleaner increments the utilization
of the stripe containing the new block (if any), and
decrements the utilization of the srnpe that contained the
old blink (if any). In addition, the cleaner appends all of the
deltas that refer to a given stripe to a special file for that
stripe, called the stripe status jile, whose use will be
described below. The stripe status files are stored as
ordinary Zebra files. Note that a single update or cleaner
delta can affect two different stripes; a copy of the delta is
appended to the status files for both stripes.


Given the utilizations computed above the stripe
cleaner first looks for stripes with no live data. If any are
found then the cleaner deletes the stripes’ fragments from
the storage servers and also deletes the corresponding stripe
status tiles. If there are no empty stripes and more free space
is needed then the cleaner chooses one or more stripes to
clean. The policy it uses for this is identical to the one
described by Rosenblum Rosenblum9 1], i.e. a cost-benefit
analysis is done for each stripe, which considers both the
amount of live data in the stripe and the age of the data.


There are two issues in cleaning a stripe: identifying the
live blocks, and copying them to a new stripe. The stripe


status files make the first step easy: the cleaner reads the
deltas in the stripe’s status fde and finds blocks that haven’t
yet been deleted. Without the stripe status files this step
would be much more difficult, since the deltas that cause
blocks to become free could be spread throughout the
stripes in the file system.
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Once the live blocks have been identified the stripe
cleaner, which executes as a user-level process, copies them
to a new stripe using a special kernel call. The kernel call
reads one or more blocks from storage servers, appends
them to its client log, and writes the new log contents to the
storage servers. For each block a cleaner delta is included in
the client’s log. The kernel call for cleaning blocks has the
same effect as reading and rewriting the blocks except that
(a) it doesn’t open the file or invoke cache consistency
actions, (b) it needn’t copy data out to the user-level stripe
cleaner process and back into the kernel again, (c) it doesn’t
update last-modified times or version numbers for files, and
(d) the deltas that it generates are marked as cleaner deltas
instead of update deltas.


One concern about the stripe cleaner is how much of
the system’s resources it will consume in copying blocks.
We do not have measurements of Zebra under real
workloads, but we expect the cleaning costs for Zebra to be
comparable to those for other log-structured file systems. In
a transaction-processing benchmark on a nearly full disk
Seltzer found that cleaning accounted for 60-80% of all
write traffic and significantly affected system throughput
[Seltzer93]. However, in a software development
benchmark that is more typical of workstation workloads
Seltzer found cleaning costs to be negligible. Rosenblum
measured production usage of LFS on Sprite for several
months and found that only 2-7% of the data in srnpes that
were cleaned were live and needed to be copied
Dlosenblum9 1]. Based on these measuremen~ we believe
that the cleaning overhead will be low for typical
workstation workloads but more work is needed to reduce


the overheads for transaction-processing workloads.


4.6 Conflicts Between Cleaning and
File Access


It is possible for an application to modify or delete a fde


block at the same time that the srnpe cleaner is copying it.
Without any synchronization a client could modify the
block after the cleaner reads the old copy but before the
cleaner rewrites the block, in which case the new data
would be lost in favor of the rewritten copy of the old data.
In the original LFS this race condition was avoided by
having the cleaner lock files to prevent them from being
modified until after cleaning was finished. Unfortunately,
this produced lock convoys that effectively halted all
normal file accesses during cleaning and resulted in


significant pauses.


Zebra’s stripe cleaner uses an optimistic approach
similar to that of Seltzer et al. [Seltzer93]. It doesn’t lock
any files during cleaning or invoke any cache consistency
actions. Instead the stripe cleaner just copies the block and
issues a cleaner delta, assuming optimistically that its
information about the block is correct and the block hasn’t
been updated recently. If in fact the block was updated
while the cleaner was cleaning it, an update delta will be
generated by the client that made the change. Regardless of
the order in which these deltas arrive at the file manager, the
file manager makes sure that the final pointer for the block


Type of Block Pointer Update Issue Reject
Delta Matches? Pointer? Delta?


Update Yes Yes No


Cleaner Yes Yes No


Update No Yes Yes


Cleaner No No Yes


Table 1: File manager delta processing. When a delta
arrives at the file manager, the old block pointer in the
delta is compared with the current block pointer. If they
do not match (the bottom two scenarios) then a conflict
has occurred.


reflects the update delta, not the cleaner delta. This approach
results in wasted work by the cleaner in the unusual case
where a conflict occurs, but it avoids synchronization in the
common case where there is no conflict.


The file manager detects conflicts by comparing the old
block pointer in each incoming delta with the block pointer
stored in the file manager’s metada’m; if they are different it
means that the block was simultaneously cleaned and
updated. Table 1 shows the four scenarios that can occur.
The first two scenarios represent the cases where there is no
conflicc the delta’s old block pointer matches the file
manager’s current block pointer, so the file manager updates
its block pointer with the new block pointer in the delta. If
an update delta arrives with an old block pointer that doesn’t
match, it can only mean that the block was cleaned (any
other update to the block is prevented by the cache
consistency protocol); the file manager updates its block
pointer with the new block pointer from the delta. If a
cleaner delta arrives with an old block pointer that doesn’t
match, it means that the block has already been updated so
the cleaned copy is irrelevant: the cleaner delta is ignored.


In both of the cases where the tile manager detects a
conflict it generates a reject delta, which is placed in the
client log for its machine. The old block pointer in the reject
delta refers to the cleaned copy of the block and the new
pointer is null to indicate that this block is now free. The
reject delta is used by the stripe cleaner to keep track of
stripe usage; without it the stripe cleaner would have no
way of knowing that the block generated by the cleaner is
unused.


It is also possible for an application to read a block at
the same time that it is being cleaned. For example, suppose
that a client has retrieved a block pointer from the file
manager but the block is moved by the cleaner before the


client retrieves it. If the client then tries to use the out-of-
date block pointer, one of two things will happen. If the
block’s stripe still exists then the client can use it safely,
since the cleaner didn’t modify the old copy of the block. If
the stripe has been deleted then the client will get an error
horn the storage server when it tries to read the old copy,
This error indicates that the block pointer is out of date: the
client simply discards the pointer and fetches an up-to-date
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version from the file manager.


4.7 Adding a Storage Server


Zebra’s architecture makes it easy to add a new storage
server to an existing system. All that needs to be done is to
initialize the new server’s disk(s) to an empty state and
notify the clients, file manager, and stripe cleaner that each
stripe now has one more fragment. From this point on
clients will stripe their logs across the new server. The
existing stripes can be used as-is even though they don’t
cover all of the servers; in the few places where the system
needs to know how many fragments there are in a s@ipe
(such as reconstruction after a server failure), it can detect
the absence of a fragment for a stripe on the new server and
adjust itself accordingly. Over time the old stripes will
gradually be cleaned, at which point their disk space will be
used for longer stripes that span all of the servers. Old
stripes are likely to be cleaned before new ones since they
will probably contain less live data. If it should become
desirable for a particular tile to be reallocated immediately
to use the additional bandwidth of the new server, this can
be done by copying the file and replacing the original with
the copy.


5 Restoring Consistency After
Crashes


There are two general issues that Zebra must address
when a client or server machine crashes: consistency and
availability. If a crash occurs in the middle of an operation
then data structures may be left in a partially-modified state
after the crash. For example, the file manager might crash
before processing all of the deltas written by clients; when it
reboots its metadata will not be up-to-date with respect to
information in the clients’ logs. This section describes how
Zebra restores internal consistency to its data structures
after crashes. The second issue is availability, which refers
to the system’s ability to continue operation even while a
component is down. Zebra’s approach to availability is
described in Section 6.


In many respects the consistency issues in Zebra are the
same as in other network file systems. For example, the file
manager will have to restore consistency to all of its
structures on disk. Since the file manager uses the same disk
structures as a non-srnped file system, it can also use the
same recovery mechanism. In the Zebra prototype the
metadata is stored in a log-structured file system, so we use
the LFS recovery mechanism described by Rosenblum
[Rosenblum9 1]. The file manager must also recover the
information that it uses to ensure client cache consistency
for this Zebra uses the same approach as in Sprite, which is
to let clients reopen their files to rebuild the client cache
consistency state melson88]. If a client crashes then the file
manager cleans up its data structures by closing all of the
client’s open files, also in the same manner as Sprite.


However, Zebra introduces three consistency problems
that are not present in other file systems. These problems
arise from the distribution of system state among the storage


servers, file manager, and stripe manager; each of the
problems is a potential inconsistency between system
components. The first problem is that srnpes may become


internally inconsistent (e.g. some of the data or parity may
be written but not all of it); the second problem is that
information written to srnpes may become inconsistent with
metadata stored on the file manager and the third problem
is that the stripe cleaner’s state may become inconsistent
with the stripes on the storage servers. These three problems
are discussed separately in the subsections that follow.


The solutions to all of the consistency issues are based
on logging and checkpoints. Logging means that operations
are ordered so it is possible to tell what happened after a
particular time and to revisit those operations in order.
Logging also implies that information is never modified in
place, so if a new copy of information is incompletely
written the old copy will still be available. A checkpoint
defines a system state that is internally consistent. To
recover from a crash, the system initializes its state to that of
the most recent checkpoint, then reprocesses the portion of
the log that is newer than the checkpoint.


The combination of these two techniques allows Zebra
to recover quickly after crashes. It need not consider any
information on disk that is older than the most recent
checkpoint. Zebra is similar to other logging file systems
such as LFS, Episode [Chutani92], and the Cedar File
System [Hagmann87] in this respect. In contrast, file
systems without logs, such as the BSD Fast File System
[McKusick84], cannot tell which portions of the disk were
being modified at the time of a crash, so they must re-scan
all of the metadata in the entire file system during recovery.


5.1 Internal Stripe Consistency


When a client crashes it is possible for fragments to be
missing ftom stripes that were in the process of being
written. The file manager detects client crashes and recovers
on behalf of the clienr it queries the storage servers to
identify the end of the client’s log and verifies that any
stripes that could have been affected by the crash are
complete. If a stripe is missing a single fragment then the
missing data can be reconstructed using the other stripes in
the fragment. If a stripe is missing more than one fragment
then it is discarded along with any subsequent stripes in the
same client’s log, effectively truncates the client’s log to the
last recoverable stripe. This means that data being written at
the time of a crash can be lost or partially written, just as in
other file systems that maintain UNIX semantics.


When a storage server crashes and recovers, two forms
of stripe inconsistency are possible. First, if a stripe
fragment was being written at the time of the crash then it
might not have been completely written. To detect
incomplete stripe fragments, Zebra stores a simple
checksum for each fragment. After a storage server reboots
it verifies the cheeksums for fragments written around the


time of the crash and discards any that are incomplete.


The second inconsistency after a storage server crash is


that it won’t contain fragments for new stripes written while
it was down. After the storage server reboots it queries other
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storage servers to find out what new stripes were written.
Then it reconstructs the missing fragments as described in
Section 6.2 and writes them to disk. The prototype does not
yet do this reconstruction.


5.2 Stripes vs. Metadata


The file manager must maintain consistency between
the client logs and its metadata. To to do this it must ensure
that it has processed all of the deltas written by clients and
updated its metadata accordingly. During normal operation
the file manager keeps track of its current position in each
client’s log and at periodic intervals it forces the metadata to
disk and writes a checkpoint file that contains the current
positions. If a client crashes, the file manager checks with
the storage servers to find the end of the client’s log and
make sure it has processed all of the deltas in the log. If the
file manager crashes, then when it reboots it processes all of


the deltas that appear in the client logs after the positions
stored in the last checkpoint, thereby bringing the metadata
up-to-date. A checkpoint is relatively small (a few hundred
bytes) since all it contains is current log positions for each
client, but it does have a performance impact because the
metadata is flushed before it is written. Decreasing the
checkpoint interval improves the file manager’s recovery
time at the expense of normal operation; we anticipate that a
checkpoint interval on the order of several minutes will
provide acceptable recovery time without significantly
affecting the system performance.


There are two complications in replaying deltas, both of
which are solved with version numbers. The first
complication is that some of the deltas may have already
been processed and applied to the metadata. This will
happen if the file manager crashes after it writes metadata
out to disk but before it writes a new checkpoint. If an
update delta is encountered that has already been applied
then its version number will be less than that of the file, and
it is ignored. As in normal operation, a cleaner delta is
applied only if its old block pointer matches the file
manager’s current block pointer.


The second complication is that a file could have been
modified by several different clients, resulting in deltas for
the file in several client logs. The file manager must replay
the deltas for each file in the same order that they were
originally generated. If the file manager encounters a delta
during replay whose version number is greater than the
tile’s version number, it means that there are deltas in some
other client log that must be replayed first. In this case the
file manager must delay the processing of the delta until all
the intervening deltas have been processed from the other
client logs.


5.3 Stripes vs. Cleaner State


In order for the stripe cleaner to recover from a crash


without completely reprocessing all of the stripes in the file


system, it checkpoints its state to disk at regular intervals.
The state includes the current utilizations for all of the
stripes plus a position in each client log, which identifies the
last delta processed by the stripe cleaner. Any buffered data


for the stripe files are flushed before writing the checkpoint.


When the stripe cleaner restarts after a crash, it reads in
the utilizations and log positions, then starts processing
deltas again at the saved log positions. If a crash occurs after
appending deltas to a stripe status file but before writing the
next checkpoint, then the status file could end up with


duplicate copies of some deltas. These duplicates are easily
weeded out when the cleaner processes the status files.


6 Availability


Our goal for Zebra is for the system to continue to
provide service even if some of its machines have crashed.
A single failure of either a storage server, the file manager,
or the stripe cleaner should not prevent clients from
accessing files, neither should any number of client failures
affect the remaining clients. Each of the system components
is discussed separately in the sections below. The prototype


does not yet implement all of these features, as noted.


6.1 Client Crashes


The only way that one client can prevent other clients
from accessing files is through the cache consistency
protocol: if a client has a file open and cached then other
clients’ access to the file is restricted to prevent
inconsistencies. After a client crash the file manager closes
all the open tiles on the client, thus allowing those files to be
cached by other clients.


6.2 Storage Manager Crashes


Zebra’s parity mechanism allows it to tolerate the
failure of a single storage server using algorithms similar to


those described for RAIDs CPatterson88]. To read a file
while a storage server is down, a client must reconstruct any
stripe fragment that was stored on the down server. This is
done by computing the parity of rdl the other fragments in
the same strip% the result is the missing fragment. Writes
intended for the down server are simply discarde@ the
storage manager will reconshuct them when it reboots, as
described in Section 5.1. In the protot~e clients are capable
of reconstruction, but only under manual control. Clients do
not yet automatically reconstruct fragments when a server


crashes.


For large sequential reads reconstruction is relatively
inexpensive all the fragments of the stripe are needed
anyway, so the only additional cost is the parity calculation.
For small reads reconstruction is expensive since it requires
reading all the other fragments in the stripe. If small reads


are distributed uniformly across the storage servers then


reconstruction doubles the average cost of a read.


6.3 File Manager Crashes


The file manager is a critical resource for the entire


system because it manages all of the file system metadata. If


the metadata is stored non-redundantly on the file manager


then the file system will be unusable whenever the file
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manager is down and the loss of the file manager’s disk will
destroy the file system. We believe that these problems can
be eliminated by using the Zebra storage servers to store the
file manager’s metadata. Instead of using a local disk, the
file manager writes the metadata to a virtual disk
represented as a Zebra file. Updates to the metadata will be
added to the file manager’s client log as part of the virtual
disk file and striped across the storage servers with parity,
just like any other Zebra tile. This provides higher
performance for the metadata than storing it on a local disk,
and also improves its availability and integrity. This
approach also allows the file manager to run on any
machine in the network, since it doesn’t depend on having
local access to a disk. If the file manager’s machine should
break then the file manager can be restarted on another
machine. Of course, if the file manager crashes Zebra will
be unavailable until the file manager restarts, but it should
be possible to restart the file manager quickly [Baker92a].


We have not yet implemented this approach to
improving the file manager’s availability and integrity. A


similar approach has been proposed by Cabrera and Long
for the Swift file system [Cabrera91] for making its storage
mediator highly available.


6.4 Stripe Cleaner Crashes


Crashes of the stripe cleaner are relatively easy to
handle. The stripe cleaner need not be running in order for
Zebra to provide service; all that is needed is for the cleaner
to restart before disk space is exhausted. All of the stripe
cleaner’s state is stored in the Zebra file system, so if the
stripe cleaner’s machine becomes permanently unavailable
the stripe cleaner can be restarted on a different machine.


7 Prototype Status and Performance


The implementation of the Zebra prototype began in
April 1992. As of August 1993 Zebra supports all of the


usual UNIX file operations, the cleaner is functional, and
clients can write parity and reconstruct fragments. The file
manager and cleaner both checkpoint their states and are
able to recover after a failure, The prototype does not yet
implement all of the crash recovery and availability features
of Zebra, however. The metadata is not yet stored on the
storage servers as described in Section 6.3, clients do not
automatically reconstruct stripe fragments when a storage
server crashes, storage servers do not reconsmuct missing
fragments after a crash, and the file manager and stripe
cleaner are not automatically restarted. We have simplified
the prototype by choosing not to implement name caching
or support for concurrent write-sharing.


The rest of this section contains some preliminary
performance measurements made with the prototype. The
measurements show that Zebra provides a factor of 4-5
improvement in throughput for large reads and writes
relative to either NFS or the Sprite file system, but its lack
of name caching prevents it from providing much of a
performance advantage for small files. We estimate that a
Zebra system with name caching would also provide


substantial performance improvements for small writes.


For our measurements we used a cluster of DECstation-


5000 Model 200 workstations connected by an FDDI ring
(maximum bandwidth 100 Mbits/second). The workstations
are rated at about 20 integer SPECmarks and each contained
32 Mbytes of memory. In our benchmarks the memory
bandwidth is at least as important as CPU speed these
workstations can copy large blocks of data from memory to
memory at about 12 Mbytes/second but copies to or from
disk controllers and FDDI interfaces run at only about 8
Mbytes/second. Each storage server is equipped with a
single RZ57 disk with a capacity of about 1 Gbyte and an
average seek time of 15 ms. The disks transfer large blocks
of data at about 2 Mbytes/second, but the SCSI bus and
controller can only sustain about 1.6 Mbytes/second.


We had a total of eight workstations available for
running these experiments. The minimum configuration we
tested consisted of one client, one storage server, and one
file manager. In the maximum configuration there were
three clients, four storage servers and one file manager.
During the measurements the tile manager did not generate
checkpoints, nor was the stripe cleaner running. Each data
point was collected by running the benchmark 10 times and
averaging the results.


For comparison we also measured a standard Sprite


configuration and an Ultrix/NFS configuration. The Sprite
system used the normal Sprite network protocols with a log-
structured file system as the disk storage manager. Its
hardware was the same as that used for Zebra. The NFS
configuration had a slightly faster server CPU and slightly
faster disks. The NFS server included a l-Mbyte
PrestoServe card for buffering disk writes.


The fist benchmark consisted of an application that
writes a single very large file (12 Mbytes) and then invokes
fs ync to force the file to disk. We ran one or more
instances of this application on different clients (each
writing a different file) with varying numbers of servers,


and computed the total throughput of the system (total
number of bytes written by all clients divided by elapsed
time). Figure 6 graphs the results.


Even with a single client and server, Zebra runs at
about twice the speed of either NFS or Sprite. This is
because Zebra uses large blocks and its asynchronous RPC
allows it to overlap disk operations with network transfers.
The limiting factor in this case is the server’s disk system,
which can only write data at about 1.1 Mbyte/second. As
servers are added in the single-client case Zebra’s
performance increases by more than a factor of 2 to 2.4
Mbytes/second with four servers. The non-linear speedup in
Figure 6 occurs because the benchmark runs in two phases:
in the first phase the application fills the kernel’s tile cache
by writing the file, and in the second phase the client’s
kernel flushes its cache by transferring stripes to the servers.
These phases are not overlapped and only the second phase
benefits from additional storage servers. When we measured
the second phase aIone we found that the throughput scales
nearly linearly from 1.1 Mbytes/second with one server to
3.8 Mbytes/second with four servers, at which point the
client’s FDDI interface saturates. Performance with two or
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Figure 6. Total system throughput for large file
writes. Each client ran a single application that wrote a
12-Mbyte file and then flushed the file to disk. In mtdti-
server configurations data were striped across all the
servers with a fragment size of 512 Kbytes. Parity was
only computed for the line labeled”1 client w/ parity”.


more clients is limited entirely by the servers, so it scales
linearly with the number of servers.


Figure 6 also shows the throughput for a single client
when it generates and writes parity; the throughput is
measured in terms of useful file data not including parity.
Zebra incurs almost no overhead for parity aside from the
obvious overhead of writing more data to more servers. In
the best case Zebra’s throughput with two servers and parity
should be the same as the throughput with one server and no
parity, since it is writing one byte of parity for each byte of
data; the performartce in Figure 6 is only slightly less than
this. Ideally, Zebra’s throughput with four servers and parity
should be the same as the throughput with three servers and
no parity. In reality it is somewhat less than this because the
client CPU is saturated in the former but not in the latter.


Figure 7 shows Zebra’s throughput for reading large
files. Zebra’s performance for reading is better than for
writing because the servers can read data from their disks at
the full SCSI bandwidth of 1.6 Mbytes/second Thus a single
client can read a file at 1.6 Mbytes/second from a single
server, and three clients can achieve a total bandwidth of 5.2
Mbytes/second with four servers. Two servers can saturate a
single client, however, causing the single client curve in
Figure 7 to level off at 2.8 Mbytes/second. At that speed the
client is spending most of its time copying data between the
application, the file cache, and the network. This overhead
could be reduced significantly by modifying the Sprite
kernel to use the FDDI interface’s DMA capability to
transfer incoming network packets directly into the file
cache, rather than into an intermediate network buffer.


The performance of reads that require reconstruction is
shown in the line labeled “ 1 client (recon)” in Figure 7. In
this test one of the storage servers was unavailable and the
client had to reconstruct any stripe fragments stored on that
server by reading all of the other fragments in each stripe
and computing their parity. With two servers the throughput
during reconstruction is only slightly less than in normal
operation with a single serve~ this is because a parity block
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Figure 7. Throughput for large file reads. Each client
ran a single application that read a 12-Mbyte file. In
multi-server configurations data were striped across all
the servers with a fragment sizeof512 Kbytes. The line
labeled “1 client (recon)” shows reconstruction
performance: one server was unavailable and the client
had to reconstruct the missing stripe fragments. For
example, the system represented by the left-most point
had two servers, one of which was unavailable.
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Figure 8. Performance for small writes. A single client
created 2048 files, each 1 Kbyte in lengt~ then flushed
all the files to a single server. The elapsed time is divided
into four components: the time to open and close the
files, the time for the application to write the data, the
time for the client to flush its cache, and the time for the
server to flush its cache to disk. For NFS, each file was
flushed as it was closed. The two rightmost bars are
estimates for Sprite and Zebra if name caching were
implemented.


in a two server system is a mirror image of its data block
and therefore reconstruction doesn’t require any additional
computation by the client. The throughput doesn’t increase
much with additional servers because the client CPU has
saturated due to additional copying and exclusive-or
operations to reconstruct the missing data.


Figure 8 shows the elapsed time for a single client to
write small files. In the NFS and Sprite tests the client was
writing to a single file server, while the Zebra test used one
storage server and one file manager. Although Zebra is
substantially faster than NFS for this benchmark, it is only
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Figure 9: Resource utilizations. Utilizations of the file
manager (FM) CPU and disk, client CPU, and storage
server (S S) CPU and disk during the previous three
benchmarks. The Zebra system consisted of a single
client, a single file manager, and a single storage server;
the Sprite system consisted of a single client and a single
file server, which serves as both file manager and storage
server. Parity was not computed.


about 2070 faster than Sprite. The main reason for this is
that neither Zebra nor Sprite caches naming information
each open and close requires a separate RPC to either the
file server or file manager, and the figure shows that most of
the time is spent in these RPCS. The rightmost bars in the
figure estimate the times for Sprite and Zebra if name
caching were implemented; the estimates were made by
running the same benchmark directly on a Sprite file server.
Zebra is significantly faster than Sprite during the cache-
flush portion of the benchmark. Both systems merge the
small files into large blocks for writing, but Sprite doesn ‘t
do it until the data have reached the server: each file is
transferred over the network in a separate message
exchange. Zebra batches the files together before
transferring over the network, which is more efficient,


Figure 9 shows the utilizations of various system
components during the benchmwks, both for Zebra and for
Sprite. For large reads and writes the Zebra file manager’s
CPU and disk are almost idle; the system could scale to
dozens of storage servers before the file manager becomes a
performance bottleneck. In comparison to Sprite, Zebra has
higher utilizations of the client CPU, server CPU, and
server disk; this causes Zebra to complete the benchmark
faster.


For small writes both Zebra and Sprite spend most of
their time in synchronous RPCS to open and close files. In
both systems the sum of client CPU utilization and file
manager CPU utilization is nearly 100%; it cannot exceed
100% because the RPCS do not allow much overlap in
processing between the two CPUS. In both Zebra and Sprite
it appears that the server CPU will saturate with the addition
of a second client; without name caching the semer CPU
will be a performance bottleneck.


Most of the key ideas in Zebra were derived from prior
work in disk arrays and log-structured file systems.
However, there are many other related projects in the areas
of srnping and availability.


RAID-II lLee92], DataMesh Nilkes92], and
TickerTAIP [Cao93] all use RAID technology to build high-
performance file servers. RAID-II uses a dedicated high-
bandwidth data path between the network and the disk array
to bypass the slow memory system of the server host.
DataMesh is an array of processor/disk nodes connected by
a high-performance interconnect, much like a parallel
machine with a disk on each node. TickerTAIP is a
refinement of DataMesh that focuses on distributing the
functions of the traditionally centralized RAID controller
across multiple processors, thus removing the controller as a
single point of failure. In all of these systems the striping is
internal to the server, whereas in Zebra the clients
participate in striping files.


RADD (Redundant Array of Distributed Disks)
[Schloss90] is similar to RAID in that it uses parity to
withstand the loss of a disk, but it differs by separating the
disks geographically to decrease the likelihood of losing
multiple disks. Furthermore, RADD does not stripe daw
the data stored on each disk are logically independent, thus
RADD does not improve the performance of individual data
accesses.


Several other striping file systems have been built over
the last several years. Some, such as HPFS moston88]
stripe across local disks; others, such as sfs ToVerso93] and
Bridge [Dibble90] stripe across 1/0 nodes in a parallel
compute~ but to our knowledge only one, Swift
[Cabrera91], stripes across servers in a network file system.
All of these systems use per-file striping, so they work best
with large files. Swift’s performance while reading and
writing large files improves nearly linearly as the number of
servers increases to three, but the CPUS and disks for Swift
are much slower than those for Zebra so its absolute
performance is lower than Zebra’s. A per-file parity
mechanism is planned for Swift, although it does not appear
to resolve the potential problems with small files and atomic
parity updates, The implementation of this mechanism is
currently in progress and performance measurements should
be forthcoming.


There have also been several recent research efforts to
improve the availability of network file systems, such as
Locus [Walker83], Coda [Satyartarayanan90], Deceit
[Siege190], Ficus [GuY90] and Harp ~iskov91]. All of
these systems replicate data by storing complete copies,
which results in higher storage and update costs than
Zebra’s parity scheme. Harp uses write-behind logs with
uninterruptible power supplies to avoid synchronous disk
operations and thereby reduce the update overhead. In
addition, some of the systems, such as Locus and Coda, use
the replicas to improve performance by allowing a client to
access the nearest replica; Zebra’s parity approach does not
permit this optimization.


Another approach to highly available file service is to
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design file servers that can quickly reboot after a software
failure [Baker92a]. The idea is to reboot the file server so
quickly that file service is not interrupted. This alternative


does not require redundant copies or parity, but neither does
it allow the system to continue operation in the event of a
hardware failure.


Zebra borrows its log structure from LFS


Bosenblum91], a high-performance write-optimized file
system. A recent paper by Seltzer et. al [Seltzer93] has
shown that adding extents to FFS [McKusick84] results in a
file system (called EFS) that has comparable performance to
LFS on large reads and writes: However, EFS does not
improve performance for small files as does LFS and
therefore Zebra, nor does it address the parity and srnping
issues presented by a srnped network file system.


The create and delete deltas used by Zebra are similar


to the active and deleted sublists used in the Grapevine mail
system to manage entries in a registration database
[Birrel182]. Grapevine used timestamps whereas Zebra uses
version numbers, but they each allow the system to establish
an order between different sources of information and to
recover from crashes.


9 Conclusions


Zebra takes two ideas that were originally developed
for managing disk subsystems, striping with parity and log-
structured file systems, and applies them to network file
systems. The result is a network file system with several
attractive properties:


Performance. Large files are read or written 4-5 times
as fast as other network file systems and small files are
written 209i0-3x faster.


Scalability. New disks or servers can be added incre-
mentally to increase the system’s bandwidth and capac-
ity. Zebra’s stripe cleaner automatically reorganizes
data over time to take advantage of the additional band-
width.


Cost-effective servers. Storage servers do not need to
be high-performance machines or have special-purpose
hardware, since the performance of the system can be
increased by adding more servers. Zebra transfers
information to storage servers in large stripe fragments
and the servers need not interpret the contents of
stripes, so the server implementation is simple and effi-
cient.


Availability. By combining ideas from RAID and LFS,
Zebra can use simple mechanisms to manage parity for
each stripe. The system can continue operation while
one of the storage servers is unavailable and can recon-
struct lost data in the event of a total failure of a server
or disk.


Simplicity. Zebra adds very little complexity over the
mechanisms already present in a network file system
that uses logging for its disk structures. Deltas provide
a simple way to maintain consistency among the com-
ponents of the system.


There are at least four areas where we think Zebra could


benefit from additional work


Name caching. Without name caching, Zebra provides


only about a 20910speedup for small writes in compari-
son to a non-striped Sprite file system. We think that a
system with name caching would provide a much
greater speedup.


Transaction processing. We expect Zebra to work well
on the same workloads as LFS, which includes most
workstation applications. However, there is little expe-
rience with LFS in a transaction processing environ-
ment and Seltzer’s measurements suggest that there
may be performance problems [Seltzer93]. More work
is needed to understand the problems and see if there
are simple solutions.


Metadata. It was convenient in the Zebra prototype to
use a file in an existing file system to store the block
pointers for each Zebra file, but this approach suffers
from a number of inefficiencies. We think that the sys-
tem could be improved if the metadata structures were
redesigned from scratch with Zebra in mind.


Small reads. It would be interesting to verify whether
there is enough locality in small fde reads for prefetch-
ing of whole stripes to provide a substantizd perfor-
mance improvement.


Overall we believe that Zebra offers higher throughput,
availability, and scalability than today’s network file
systems at the cost of only a small increase in system
complexity.
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