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ABSTRACT
Digital library mediators allow interoperation between di-
verse information services. In this paper we describe a flex-
ible and dynamic mediator infrastructure that allows media-
tors to be composed from a set of modules (“blades”). Each
module implements a particular mediation function, such as
protocol translation, query translation, or result merging. All
the information used by the mediator, including the mediator
logic itself, is represented by an RDF graph. We illustrate
our approach using a mediation scenario involving a Dienst
and a Z39.50 server, and we discuss the potential advantages
and weaknesses of our framework.

KEYWORDS: mediator, wrapper, interoperability, compo-
nent design

1 INTRODUCTION
Heterogeneity is one of the main challenges faced by dig-
ital libraries. Too often documents are stored in different
formats, collections are searched with disparate query lan-
guages, search services are accessed with incompatibleproto-
cols, intellectual property protection and access schemes are
diverse, and retrieved information is returned using dissimilar
representations and ranked in inconsistent ways. Given that
information sharing is of vital importance, there has been
significant work on interoperable digital libraries in recent
years, trying to bridge the gap between different information
representations and systems [24].

Important advances have been made, specifically in devel-
oping mediators that can access information from multiple
sources. A mediator typically receives a request (e.g., a
query), submits a translated version of the request to sev-
eral digital libraries, collects and merges the responses, and
presents them to the user. However, today’s mediators still
have some important shortcomings:

� Current mediators are often hard to extend beyond the ini-

tial set of services they were designed for.
� It is difficult to incorporate into a mediator components
that were developed elsewhere. For example, once a partic-
ular query translation algorithm has been implemented in a
mediator, it is very hard to replace it by some other query
translation package.
� Most often mediators do not tackle protocol differences.
For instance, many mediators assume that all their targets
communicate via HTTP.
� Usually it is not easy to extend a mediator to non-search
tasks. For example, if a mediator is designed to query mul-
tiple search engines, it is hard to make it mediate among
different payment mechanisms or among different document
summarization services.

In this paper we propose a mediation framework that ad-
dresses these shortcomings. The framework presents a very
flexible environment where different components (that we
will call “blades”) can be combined to address a specific me-
diation task. One of the components, in particular, will be
responsible for translating protocols. For example, this com-
ponent may receive a single synchronous message from a
user, and in turn issue a sequence of asynchronous messages
to perform the requested task.

For our solution we have taken a number of existing ideas,
from component based software engineering, extensible
database systems, programming languages, operating sys-
tem kernels, and so on, and combined them in a way that
we believe is especially well suited for a digital library en-
vironment. Our framework does offer substantial flexibility,
but it may introduce significant performance overhead and
additional complexity. And it is not clear to us yet if our
approach scales well to scenarios with large numbers of ser-
vices and many different mediation tasks. (Then again, we
do not know of any other mediation approach that scales
very well.) Nevertheless, our initial experience using this
framework (in low-complexity scenarios) indicates that the
framework is good when it is important to adapt quickly to
new services and information models, or when it is impor-
tant to experiment with different mediation components and
algorithms.

We start in Section 2 by briefly illustratinga typical mediation
scenario. Then in Section 3 we present our proposed recon-
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Figure 1: Mediation architecture that shows
an SDLIP client accessing NCSTRL and Z39.50
servers

figurable and extensible mediation framework. In Section 4
we discuss potential drawbacks of our approach, while in Sec-
tion 5 we comment on the current status of an implemented
prototype. In Section 6 we review related work.

2 SAMPLE SCENARIO
In this section we illustrate the principles and components
of a mediation infrastructure for digital libraries. We illus-
trate with a scenario, depicted in Figure 1, based on retrieval
services. The client on the right of the figure issues queries
via SDLIP [29], a protocol developed as part of the InterLib
Project1. This protocol, as well as the others used in our sce-
nario, are simply examples to illustrate the diversity available
in digital libraries. One of the servers on the left provides
access to an NCSTRL [18] document collection using the
Dienst protocol, and the other server implements the Z39.50
protocol.

The SDLIP client encodes queries in XML according to the
DASL specification, and waits for asynchronous delivery of
portions of the search result. The NCSTRL server deploys
a stateless request-reply model and accepts URL-encoded
queries. The Z39.50 server expects a query in Reverse Polish
Notation encoded according to ASN.1. For a given query, the
Z39.50 server returns the number of search results and allows
the client to retrieve subsets of the result in separate requests.
The client and the servers are the native components in our
mediation scenario.

The wrappers shown in Figure 1 hide some of the hetero-
geneity of the native components. In particular, the wrappers
communicate with the native components via native proto-
cols, i.e. SDLIP, Dienst and Z39.50. In turn, the wrappers
provide a relatively homogeneous message-passing environ-

1InterLib is a joint digital library project between UC Berkeley, UC Santa
Barbara, Stanford University, California Digital Library, and San Diego
Supercomputer Center.
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Figure 2: A finite-state machine representation of
the mediator

ment for the mediator in the center of the figure.

The mediator performs dynamic brokering by taking requests
from the client, translating those requests into requests to the
servers, combining the information received from the servers,
and passing it along to the client. Even though the mediator
is shielded from the native components by the wrappers, it
still has to deal with the semantic interoperability between
incompatible representations of information provided by the
wrappers. In our scenario, the major problems include pro-
tocol, query and data translation.

Protocol translation
Assume that the mediator takes the query submitted by the
SDLIP client, translates it into an NCSTRL query, sends it to
the NCSTRL server, retrieves the results that are encoded as
BIB, translates them into Dublin Core, and asynchronously
sends the results to the client. Then, it sends a translated
Z39.50 query to the Z39.50 server which first returns the size
of the result set. After that, the mediator fetches the result in
chunks of say 50 records, does its best to convert them from
MARC to Dublin Core, and forwards the chunks to the client.

A formal representation of the algorithm described above is
depicted in Figure 2 as a finite-state automaton. The la-
bels of the arcs specify events and actions performed by the
automaton on a transition from one state to another. The
notation q  1?SDLIPquery specifies that a message
of type “SDLIP query” arriving on channel 1 is stored in
a memory cell q. The channels 1, 2, and 3 correspond to
the SDLIP client, NCSTRL and Z39.50 server, respectively
(these are the labels used in Figure 1). The bang “!” de-
notes sending a message. A pseudo code expression like
q1=SDLIPQ2NCSTRL(q) denotes that the application of
function SDLIPQ2NCSTRL on the message q yields the re-
sult q1.

We do not describe the rest of Figure 2 because our goal is not
to define fully this finite-state automaton formalism. We are
not even arguing that this formalism is the best for describing



protocol translations. In our particular running example, we
believe that this formalism is a convenient way to represent
the work that must be done by the mediator, but perhaps there
are other mechanisms (e.g., Petri nets, Java programs) that
are better suited for other scenarios or for other implementers.
The other formalisms that we introduce below (RDF, query
translation rules, Datalog) are again only examples of the
diverse types of machineries that are available to describe
mediation tasks.

Query translation
Assume that the SDLIP client in our scenario submits a search
request for music recordings authored by Lou Bega. The
original query represented in XML according to the DASL
specification is shown in the top left part of Figure 3. The
wrapper of the SDLIP client receives the search request con-
taining the query via the native SDLIP interface. Then, the
wrapper converts the request into a logical representation.
The top right part of the figure shows the logical structure of
the native SDLIP query that is represented as an RDF model.
RDF (Resource Description Framework [17]) is a metadata
standard recommended by the W3 Consortium for describing
objects and their relationships. The choice of the particular
RDF representation for the query is made by the designer of
the SDLIP wrapper.

In RDF, all information is represented by nodes (resources) in
a graph. Each node may have a value, and labeled properties
that link it to other nodes. For instance, consider the RDF
representation of the SDLIP query in Figure 3. The leftmost
node labeled � is the root of the query structure. The type
property of � tells us this is a “Basic Search Query,” while the
where property links to the Boolean condition that selects
documents. The rest of the nodes specify the components of
this search condition.

The mediator receives the RDF model representing the query
and translates it into the RDF representations suitable for the
wrappers of the Z39.50 and NCSTRL servers. The server
wrappers in turn transform the logical representations of the
queries into a URL-encoded query and the Z39.50 syntax for
the NCSTRL and Z39.50 server, respectively. Both native
encodings and the corresponding RDF models of the target
queries are depicted in the bottom part of the figure.

To translate the queries, the mediator calls a query rewrit-
ing component. In Figure 2, these calls correspond
to q1=SDLIPQ2NCSTRL(q) and q2=SDLIPQ2Z39(q).
The task of the query rewriting component is to transform
the RDF-based representation of the query chosen by the
SDLIP wrapper into the representations used by the NC-
STRL and Z39.50 wrappers. The query translation must take
into account the capabilities of the servers, and the supported
attribute models of the servers.

In general, query rewriting is a very hard problem, and full
solutions do not exist yet. However, rule-based systems are
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Figure 4: Result of conversion of a bibliographic
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often useful for performing the most common rewritings.
Here we illustrate with a rule that may be useful in our sce-
nario; please refer to [6, 7] for a more complete discussion of
query translation.

[author = $1+" "+$2] <= [FirstName = $1] and
[LastName = $2]

The rule translates DASL-encoded search predicates to NC-
STRL. If the DASL query specifies a conjunctive search con-
dition on theFirstName and theLastName attributes, the
values of these attributes, e.g. “Lou” and “Bega”, are bound
to the variables $1 and $2, respectively. Then the left hand
side of the rule is triggered, yielding a corresponding condi-
tion for the NCSTRL query. This new condition searches for
the “author” whose full name is the concatenation of the $1
and $2 variables.

Data translation
The next problem that the mediator has to address is that
the wrappers deliver search results using different represen-
tations. Thus, the mediator needs to convert semantically
incompatible data instances returned by the search service
wrappers into a format supported by the client wrapper. In
our scenario, both servers return sets of bibliographicrecords.
The mapping between attribute models such as BIB, MARC
and Dublin Core can be specified, for example, using a set of
Datalog rules. To illustrate, a mapping of MARC attributes
720 and 245 to their Dublin Core equivalents is shown below.
Uppercase letters denote variables.

X dc:Creator C <= X marc:720 C
X dc:Title T <= X marc:245 T

The rules transform the graph returned as a search result
into another graph. For example, the first rule specifies that
for every two nodes X and C connected by an arc labeled
marc:720 in the source graph, an arc dc:Creator will
be placed between X and C in the destination graph. A
mapping between different classification schemas used by

3ASIN: a number used by Amazon.com to catalog anything that is not a
book.



<basicsearch>
<where>
<and>
<eq>
<prop><dcq:FirstName/></prop>
<literal>Lou</literal>

</eq>
<eq>
<prop><dcq:LastName/></prop>
<literal>Bega</literal>

</eq>
</and>

</where>
</basicsearch>
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Figure 3: Native queries for SDLIP, NCSTRL and Z39.50 and their logical models

the servers and the client can be expressed using a similar
approach. For example, if the Z39.50 server uses the Library
of Congress Subject Headings (LCSH), the translation to the
Dewey Decimal Classification (DDC) could be implemented
using one rule and a set of facts:

X marc:650 L &
X dc:Subject D <= F m:lcsh L &

F m:ddc D

f1 m:ddc ‘784’
f1 m:lcsh ‘Guitar choir music’

f2 m:ddc ‘784.1888’
f2 m:lcsh ‘Choros’
f2 m:lcsh ‘Mambos’

Applied to the MARC record shown on the top of Figure 4, the
above set of rules produces the Dublin Core record depicted
on the bottom of the figure.

3 PROPOSED SOLUTION
Suppose that we implement the mediator for the sample sce-
nario of Section 2 by writing a large program in our favorite
language. This program would implement the logic described
by the finite-state automaton of Figure 2. If we did not want
to hard-code the query translation rules, perhaps we could
develop a data structure to represent the rules we need, and
code our own interpreter for these rules. For data translation,
we could either hard-code the transformation, or again de-
velop some more general rule execution machinery. This is
actually the way many mediators are written today.

Unfortunately, this approach is not very flexible. For exam-
ple, say we change our mind and wish to query the Z39.50
server first, because it has faster response times. This would
require rewriting parts of the mediator and recompiling it.
Say we needed to add a new search server in our architecture,
or say we wanted to execute server queries in parallel instead
of serially. Again, this would require a major effort.

The solution we propose in this paper is a modular, plug and
play mediator. With this mediator, the mediation tasks are
well defined, and can be executed by loosely connected, re-
placeable modules. For example, the predicate rewriting task
is performed by a query translation module. The mediator
can be configured with one or more translation modules, that
can be called as necessary. We will call these plug and play
modules blades since they are analogous to database system
blades (in turn analogous to shaving blades used to “config-
ure” a razor). Each blade can be coded and specified in the
language that is best suited for the task at hand, representing
information in the most convenient way. We use the term
“plug and play” blades, because as we will see, the mediator
will detect and configure a new blade in much the same way
a plug and play operating system automatically detects and
configures new hardware.

In our approach we take modularity to the extreme and make
the mediator logic itself (illustrated in Figure 2) a blade. This
means that to change the logic of the mediator (e.g., to go
from serial to parallel query execution), we can simply re-
place the “main” mediator blade by one that has a new finite-
state automaton. Furthermore, if we do not find finite-state
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automaton a convenient formalism, we can insert a different
type of blade, that represents its logic in a different way. For
example, we could use Petri nets to represent protocol dynam-
ics. We call the main blade that drives mediator execution
the dynamic blade since it captures the dynamic nature of the
mediator.

Buildinga mediator from a set of reconfigurable blades seems
like an attractive idea, but is it feasible? How will the mediator
be able to represent all the different types of information,
from queries, to rules, to automaton, to results? How will we
coordinate the different blades, so that each one does what
it is supposed to do at the right time? How will information
be passed to and from blades? In the rest of this section
we answer these questions, as we describe a plug and play
mediator framework that has been implemented and provides
the flexibility we advocate.

Mixing of specification languages

The challenge we face is how to describe mediator tasks and
information using different formalisms which, nonetheless,
can be plugged together in a seamless way. To achieve that,
we need a meta-language that allows us to encode expressions
in disparate languages, like Datalog and finite-state machines,
in a uniform way. A further requirement is to be able to
establish relationships across expressions stated in different
languages. For example, it should be possible for a finite-
state automaton description to point or link to a particular
query conversion rule that needs to be invoked.

The meta-language that we use in our mediation infrastructure
is RDF. To illustrate how different languages can be encoded
in RDF, consider the first transition of the state automaton
of Figure 2. The top part of Figure 5 presents the RDF en-
coding of that transition. The transition is centered on the
node (RDF resource) labeled �. Node � has four properties
(outgoing arcs): original state (p:origState), destination
state (p:destState), p:event and p:action. (In ad-
dition it has a type property (t), indicating that � is indeed a
transition node.) Notice that all properties and literals that are
associated with a transition event have a prefix p:. All these
strings are part of the vocabulary, i.e. language elements, of
the finite-state model.

The p:event property, for instance, points to a sub-graph
that describes the triggeringevent (the reception of a message
of type SDLIPquery via Channel 1). Upon the transition,
the automaton moves from the p:origState (labeled “1”
in the figure for convenience) to the p:destState (la-
beled “2”) and performs the p:action whose description
is shown in the middle part of the figure. (For clarity, only
one of the actions associated with this transition is shown in
the figure.)

The central part of Figure 5, centered on node labeled
�, represents the assignment statement for the action
q2=SDLIPQ2Z39(q), while the bottom part, centered at
node 
, represents the set of rules that are used to implement
the SDLIPQ2Z39 query rewrite. Finally, the subgraph cen-
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tered at node � represents one of the translation rules (the
rest are not shown). The conditions and variables that make
up this rule are described by the r:head and r:tail sub-
graphs, although we do not discuss the details here.

Figure 5 illustrates how diverse formalisms like finite-state
machines and predicate rewriting rules can be represented in
a single meta-model. The figure also illustrates that it is easy
to link the different formalisms, once they are all in RDF. For
example, the connection between the transition description
at node � (part of the finite automata formalism) and an
assignment statement (part of an action execution model) is
represented by the p:action link out of �.

Plug-and-Play configuration
Every formalism used in the mediator specification is pro-
cessed by a separate blade. The challenge is to compose
these blades so that they can dynamically interact with each
other. To enable such composition, we introduce a special
component, called the blade manager. The manager orches-
trates calls to blades, acting as a mediator “kernel.” For
example, if the blade manager encounters the specification of
the predicate rewriting rule SDLIPQ2Z39 it makes sure that
the appropriate query translation blade is called to evaluate
the rule. Thus, the manager “binds” statements in different
languages into the blade that can execute the statements.

The blade manager initially learns what resources are avail-
able through a configuration object, as suggested by Figure 6.
Upon initialization of the mediator, the blade manager is given
a URL pointing to the RDF-encoded mediator configuration.
The configuration contains descriptions of the available blade
factories. A blade factory is an executable module that gen-
erates specific blades needed for mediation. Factories are
dynamically loaded into the mediator, and are called upon to
generate blades, which are then also loaded and executed.

To illustrate this process, let us walk through the initialization
and blade instantiation process, as illustrated in Figure 6.

First, the configuration is read by the blade manager and the
blade factories are registered (Steps 1-4). In our prototype, the
factories are downloadable or locally installed Java modules.
For example, the module QueryTranslationFactory
generates QueryTranslation blades. The configuration
also includes the RDF-encoded description of the actions to
be taken by the mediator. In our example, this is the structure
shown in Figure 5. We call this complete structure the model.

Next, the blade manager needs to instantiate a dynamic blade
to execute the main logic of the mediator (Step 5). Initially,
the manager does not know which of its installed factories can
generate such a blade, so it questions each registered factory.
Every factory offers a default interface for such questions,
called the BladeFactory interface:

public interface BladeFactory {
public Blade getBlade(Resource id,

Model m);
}

Parameter m is the model in use, while id identifies the par-
ticular subgraph within the model that the required blade will
interpret. In our case, id identifies the portion of the model
that captures the mediator logic (e.g., that includes the tran-
sitions like � shown in Figure 6). When the getBlade
method of QueryTranslationFactory is called, the
factory does not recognize the id structure as something
it operates on, so it returns a null factory. Eventually a
DynamicBladeFactory is called (Step 6), and it does
recognize parameter id. In our scenario, id is recognized
by the factory that understands finite-state automata descrip-
tions. This factory generates and returns a dynamic blade
StateMachine to the blade manager (Step 7). When the
blade is generated, it is “configured” to execute the logic de-
scription id. For instance, in our example, the factory may
parse the logic descriptionid, and compile it into “code” that
will actually be executed by the StateMachine. This way
the parsing and compilation work is done once. This strategy
is more efficient than having the StateMachine interpret
the RDF description each time it is invoked to perform some
action.

Once the dynamic blade StateMachine is installed by the
blade manager, the mediation process can start up. Dynamic
blades offer several methods for this start up. For example,
the blade manager can invoke the setChannel method of
StateMachine to bind the communication channels used
by the dynamic blade (e.g., Channels 1 and 2 in our example)
to actual TCP/IP connections for the client and server wrap-
pers. (The blade manager gets the TCP/IP connections to use
from the configuration.)

After startup, dynamic blade StateMachine waits for
incoming requests in its start State 1. Once a request ar-
rives via Channel 1 (see Figure 2), the dynamic blade tries
to match the request reception event against the events of
transitions that are defined for the State 1. When a mes-



sage arrives and the blade verifies that it is of the ap-
propriate type, the blade decides to execute the statement
q1=SDLIPQ2NCSTRL(q). However, the dynamic blade
does not actually execute the statements. Instead, it asks
the blade manager (step 8 in Figure 6) to locate the appro-
priate blade for this task. The blade manager contacts each
available factory (using theBladeFactory interface), ask-
ing it to examine the statement in question. (Parameter id
of getBlade identifies the statement.) The query trans-
lation factory QueryTranslationFactory determines
that resource id involves an SDLIP to NCSTRL translation,
which it recognizes. Thus, the factory generates and returns
the appropriate blade. Again, the factory may decide to com-
pile the statement, so its blade can operate more efficiently.

When the blade manager receives the query translation blade,
the manager records in a cache the parameters that generated
the blade (id andm), plus the identityof the blade. In general,
before the manager invokes method getBlade to generate
a needed blade, it checks its cache to see if the blade already
exists. If the blade exists, then the search for a matching
factory can be skipped altogether.

After the query translation blade has been generated, the
manager calls it to perform the needed translation. All blades,
except for dynamic ones, offer the same generic interface:

interface StaticBlade extends Blade {
Model compute(EvaluationContext ctx);

}

The single parameter ctx is an evaluation context. Such a
context is an object that includes everything that is necessary
to perform the blade’s service. For our example, ctx allows
the query translation blade to obtain the query to be rewritten.
The context ctx for a blade is initially created by the blade
manager, and is reused for all calls to the same blade. Thus,
some blades actually store data needed in subsequent calls in
their context.

When the blade manager invokes thecompute interface, the
query translation blade extracts the operands from ctx and
transforms the query. The translated query, represented as an
RDF graph (of typeModel), is returned to the blade manager,
which in turn returns it to the dynamic blade (as the result, the
desired statement is executed). After computing the second
translated query, the dynamic blade completes its transition
to State 2. Then, it examines the transitions from State 2 and
sends the translated query stored in q1 over Channel 2 to the
NCSTRL wrapper.

In our description of blades and how they are called, we
have omitted many implementation details, focusing only on
the main steps. For example, the messages received by the
dynamic blade are verified in our prototype using Datalog
rules. Furthermore, there is great flexibility as to exactly
what each blade does. For instance, in our example, we said
that the dynamic blade made one call to the manager for each

query translation statement it wished to execute. However,
we can just as easily design a dynamic blade that packages
all the actions for a given transition into a single block of
statements. The dynamic blade can then ask for a blade to
execute the entire block as one unit. For this, we would need
a blade that takes as input a block, interprets it, and makes the
appropriate calls to execute each statement. With this scheme
we can isolate the statement execution logic from the state
transition logic, enhancing modularity.

To summarize, the mediator used in our scenario uses a single
dynamic blade, i.e. a state machine interpreter, and a num-
ber of static blades, e.g., a Datalog interpreter or a query
translation component. A blade can either execute code that
was compiled by its factory, or can interpret RDF graphs
that encode its actions. In our initial prototype, for instance,
the dynamic blade actually interprets an RDF description of
the state automaton (Figure 5), while our query translation
blade executes rules represented in a compact notation (anal-
ogous to “intermediate code” generated by compilers). As
we described, the blades for different formalisms are linked
together by the blade manager.

The plug and play mediator we have described offers tremen-
dous flexibility. The rules and logic descriptions used can
be easily changed by modifying their RDF descriptions in
the mediator configuration. Furthermore, the formalism or
language used to describe the rules or the operational logic
can be replaced, as long as new blades are available to work
with the new formalism. Of course, the added flexibility of
our approach does imply a higher performance overhead, as
compared to the static, monolithic approach introduced ear-
lier. This is a classic flexibility versus performance tradeoff.
We believe that for many digital library mediation scenarios,
where servers and clients are so varied and change so rapidly,
a flexible mediator that can rapidly adapt is preferable to a
faster one that works in limited cases.

Wrappers
A wrapper is conceptually similar to a mediator, except that
it only needs to translate between one native component and
one mediator. For example, in Figure 1, the Z39.50 wrapper
is the gateway between the mediator and the Z39.50 server.

In our mediation infrastructure, we use the same machinery
for wrappers as for mediators. The core of the wrapper is
again a blade manager that loads suitable modules at run-
time. For example, the configuration of the Z39.50 wrapper
describes where to find the interface description of the wrap-
per and specifies that theStateMachineFactory should
be used. The dynamic blade StateMachine is defined us-
ing a programming language (Java, in our prototype), since
the wrapper has to deal with the intricacies of the native pro-
tocol.

Philosophically, we advocate that wrappers be as simple as
possible. For example, our Z39.50 wrapper only deals with



the syntactic conversion of the RDF-encoded query into a na-
tive string. The native Z39.50 protocol is not translated by the
wrapper; its messages are simply encoded in the appropriate
RDF. The actual query and protocol translation work is left
to the mediator.

Since wrappers deal with native components directly, it is
best if they are developed by the people who run the native
services and clients. The less work the wrapper needs to
do, the more likely these developers will provide the needed
wrappers. Once the information from a native component
is “packaged” in a way that the mediator can understand,
the mediator can take over and do the harder translation and
mediation work.

4 CHALLENGES
The system described in the preceding sections promises a va-
riety of advantages to the designer of mediators. In particular,
it suggests a graph based representation of client/server oper-
ations, such as query submissions. The idea is that transfor-
mations of these graphs take the place of computer programs.
We have also introduced finite-state machines to model the
dynamics of protocol interactions, and a rule-based approach
to query translation. These building blocks are the compo-
nents which can be combined with occasional code segments
to construct mediation blades.

The intention of this approach is to introduce a maximum
of flexibility into the construction of mediation modules.
Client/server protocols are made into first-class objects that
can be constructed by a designer, and can then be transformed
or executed by “interpreters.” The intended result is the easy,
interactive creation of mediators, and convenient reuse of
mediation modules. What are some of the challenges of this
approach?

One issue is the potential complexity of graph-based ap-
proaches. Computer programs are very efficient for rep-
resenting operations and data structures. But graphs can
be better at giving overviews, and at displaying connections
among the programs’ various parts. The drawback of graph-
based approaches is that they are difficult to scale, because
they become complex quickly. One challenge will be the
construction of mediator development tools that balance the
advantages of textual programs and their graphical counter-
parts. Mediator designers must be able to specify protocol
interfaces easily, and without being overwhelmed by cogni-
tive complexity. After all, the standard to measure against for
ease of program creation, reuse, and maintenance is the tra-
ditional programming approach. We will have to prove that
at least for the application of digital library interoperability,
the proposed approach is superior.

A second challenge will be support for debugging. Rule-
based systems tend to be very powerful, but their inherent
parallelism and non-sequential nature can make them difficult
to debug. In order to analyze which rules fire when, and how

the system undergoes state changes, traditional debugging
techniques must be adapted.

A third challenge will be scalability in performance. In-
terpreted systems are intrinsically slower than compiled ap-
proaches. However, many interpreted programming lan-
guages have relied on increased processor speeds to make
their performance acceptable. The success of the proposed
approach will depend in part on optimization techniques that
help speed up execution. Programming language optimiza-
tion techniques will be of help.

5 CURRENT IMPLEMENTATION
This section briefly describes some implementation details
of our framework. We have used the framework to imple-
ment a mediator and wrappers for the scenario of Figure 1.
The wrapper interfaces are represented as state machines with
four, two and five states for the SDLIP, NCSTRL and Z39.50
wrapper, respectively. Currently, not all possible error condi-
tions are considered. The actions of the state machines that
describe wrapper interfaces are implemented as native Java
modules. The following statistics describe the amount of
code needed to “glue” the declarative automata descriptions
with the native libraries used by the wrappers.

The SDLIP wrapper is based on the SDLIP toolkit devel-
oped in the InterLib project. The amount of native Java
code used by the SDLIP wrapper is about 300 lines. The
NCSTRL wrapper was implemented from scratch using an
HTTP server library and contains about 250 lines of code.
The implementation of the Z39.50 wrapper uses the Z39.50
libraries developed by OCLC. The code needed is about 900
lines of code in addition to the libraries.

The implementation of the mediator involves the blade man-
ager, i.e. the “kernel” of the mediator, and the blade fac-
tories needed to execute the mediator specification. The
mediator uses ten states as depicted in Figure 2. The
blade manager implementation in Java comprises about 200
lines of code. The major blades used in the scenario are
StateMachine, Datalog, and QueryTranslation.
The StateMachineFactory creates a blade that inter-
prets the RDF specification of the automaton. The interpreter
contains about 500 lines of code. The DatalogFactory
is built on top of a Java-based inference engine developed
at Karlsruhe university. The implementation of this factory
required about 550 lines of code. The DatalogFactory
translates RDF-encoded rules into the native encoding of rules
supported by the inference engine (F-logic). The blade gen-
erated by the Datalog factory passes translated rules to the
inference engine. The inference engine is invoked within the
same Java virtual machine.

Query translation is currently hard-coded in Java. We are
working on the implementation of the query rewriting blade
factory that uses declaratively specified rules. At present,
we do not have an implementation of our mediation scenario



that uses a hard-wired mediator. Without such reference
implementation we cannot provide meaningful performance
comparisons with more traditional approaches.

In addition to the scenario of Figure 1, we have implemented a
prototype of a mediator for document format conversion ser-
vices. The mediator is capable of mapping a relatively com-
plex CORBA-based conversion interface to a simple CGI-
based one. The state automaton of the CGI wrapper contains
only two states (wait for request, request processed). In
the CORBA-based interface, the client passes to the server
the object handle for the document to convert together with
the specification of the source and destination format. The
server issues a callback to the client to determine the size of
the object, and then incrementally fetches the pieces of the
document content. After that, it converts the document, say
from PostScript to PDF and delivers the handle of the con-
verted object to the client. The client fetches the content of
the converted object analogously. The CORBA-based con-
version interface is described as a finite-state machine using
eight states. The mediator automaton is based on ten states.
The mediator deploys the same blades StateMachine and
Datalog that are used in our retrieval scenario.

In our current implementation, the wrappers and mediators
exchange RDF models over the network using the standard
RDF serialization in XML. The low-level communication in-
terface is implemented as full-duplexasynchronous exchange
of serialized RDF models via TCP/IP connections. How-
ever, other low-level interfaces, e.g. a CORBA-based, are
also conceivable. In order to support the building of wrap-
pers, we provide a comprehensive RDF API for manipulating
in-memory RDF models accompanied by a lightweight RDF
parser/serializer.

6 RELATED WORK
The focus of our work is integration of information processing
services in digital libraries. A wealth of prior work addressed
interoperability of heterogeneous data sources. For exam-
ple, the following “monolithic” systems support mediator-
supported querying: TSIMMIS [13], Information Manifold
[19], Garlic [27], SIMS [3], InfoMaster [14], and MOMIS [4].
The work presented in [15] considers a mediation approach
for updateable data sources. Rich interactions between users
and services are examined in [20]. Semantic-oriented ap-
proaches to integration are discussed in particular in [28, 21].
In [11, 10] agents are used to perform mediation tasks in
digital libraries.

Interoperability for digital library services was extensively
addressed in the Stanford InfoBus [23]. In InfoBus, every
service like search, attribute translation or metadata service
is a distributed object implementing a well-known interface.
In contrast, our framework focuses on a mediation-based
approach. Furthermore, wrapper implementers do not have
to agree on a set of common application-specific interfaces.
The extensibilityof the infrastructure is increased by relaxing

the rigid low-level interfaces typical in distributedcomputing.
A detailed comparison of approaches to interoperability for
digital libraries can be found in [24].

The formalisms used in our mediation infrastructure for pro-
tocol, language and data translation (finite-state machines,
Datalog, query rewriting) are only examples of mechanisms
that are available for description of mediation tasks and have
been studied in-depth elsewhere (cf. [2, 30] for protocol trans-
lation, [8, 25] for data conversion, [6, 7] for query rewriting).

Our architecture borrows from several areas of computer sci-
ence. We can thus draw on a variety of traditions and expe-
riences. Component based software engineering is one such
tradition [12]. Some commercial databases use data blades,
analogous to our mediator blades. Experimental database
designs have gone beyond these more limited blade facilities
to introduce far reaching extensibility. They have opened the
entire database to modification through plug-in modules. The
Open OODB at Texas Instruments was one such project [5].
It enabled designers to change large-granularity modules in
order to introduce new or optimized functionality.

The operating systems community has also experimented
with component based approaches. Maybe the most famous
of these is the Mach operating system [1, 26]. It offered a ker-
nel, analogous to our blade manager, and allowed designers
to insert their own virtual memory manager. Programming
language designers have explored a third component based
approach. They use metaobject protocols that make sys-
tem internals into first class objects [16]. By manipulating
these objects, fundamental behaviors of the language can be
changed.

Our approach is heavily based on interface description.
CORBA based systems also emphasize the separation of
interface and implementation [22]. While we rely on this
separation, the finite-state machine portion of our proposed
approach was inspired by CORBA’s inability to describe the
dynamics of a client/server interaction.

Rule-based systems have been used extensively in expert sys-
tem design. Specific languages, such as Prolog, are available
for processing rules. We used the SiLRI inference engine [9]
that supports a variant of Datalog with negation to implement
our prototype rule system.

7 CONCLUSION
In this paper we have explored what it takes to build a very
flexible and dynamic digital library mediator, that can be
adapted as services and technologies evolve. We described
how diverse models and information can be represented,
and described an extensible execution environment where
“blades” perform different mediation functions, orchestrated
by a blade manager. We believe that our approach holds
promise in environments where target services and mediation
tasks are not fixed in advance, and where high performance
is not the main objective.
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