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ABSTRACT

Digital library mediators alow interoperation between di-
verse information services. In this paper we describe a flex-
ible and dynamic mediator infrastructure that allows media
torsto be composed from a set of modules (“blades’). Each
modul e implements a particular mediation function, such as
protocol trandation, query translation, or result merging. All
theinformation used by the mediator, including the mediator
logic itself, is represented by an RDF graph. We illustrate
our approach using a mediation scenario involving a Dienst
and a Z39.50 server, and we discuss the potential advantages
and weaknesses of our framework.

KEYWORDS: mediator, wrapper, interoperability, compo-
nent design

1 INTRODUCTION

Heterogeneity is one of the main challenges faced by dig-
ital libraries. Too often documents are stored in different
formats, collections are searched with disparate query lan-
guages, search servicesare accessed withincompatibleproto-
cols, intellectua property protection and access schemes are
diverse, and retrieved informationisreturned using dissimilar
representations and ranked in inconsistent ways. Given that
information sharing is of vital importance, there has been
significant work on interoperable digita libraries in recent
years, trying to bridge the gap between different information
representations and systems [24].

Important advances have been made, specifically in devel-
oping mediators that can access information from multiple
sources. A mediator typicaly receives a request (eg., a
guery), submits a trandated version of the request to sev-
erd digital libraries, collects and merges the responses, and
presents them to the user. However, today’s mediators till
have some important shortcomings:

o Current mediators are often hard to extend beyond theini-

tial set of services they were designed for.

e It is difficult to incorporate into a mediator components
that were devel oped elsewhere. For example, once a partic-
ular query trandation agorithm has been implemented in a
mediator, it is very hard to replace it by some other query
trand ation package.

o Mogt often mediators do not tackle protocol differences.
For instance, many mediators assume that al their targets
communicate viaHTTP.

e Usudly it is not easy to extend a mediator to non-search
tasks. For example, if a mediator is designed to query mul-
tiple search engines, it is hard to make it mediate among
different payment mechanisms or among different document
summarization services.

In this paper we propose a mediation framework that ad-
dresses these shortcomings. The framework presents a very
flexible environment where different components (that we
will call “blades”) can be combined to address a specific me-
diation task. One of the components, in particular, will be
responsiblefor tranglating protocols. For example, thiscom-
ponent may receive a single synchronous message from a
user, and in turn issue a sequence of asynchronous messages
to perform the requested task.

For our solution we have taken a number of existing ideas,
from component based software engineering, extensible
database systems, programming languages, operating sys-
tem kernels, and so on, and combined them in a way that
we believe is especially well suited for a digital library en-
vironment. Our framework does offer substantia flexibility,
but it may introduce significant performance overhead and
additional complexity. And it is not clear to us yet if our
approach scales well to scenarios with large numbers of ser-
vices and many different mediation tasks. (Then again, we
do not know of any other mediation approach that scales
very well.) Nevertheless, our initial experience using this
framework (in low-complexity scenarios) indicates that the
framework is good when it is important to adapt quickly to
new services and information models, or when it is impor-
tant to experiment with different mediation components and
algorithms.

Westart in Section 2 by briefly illustratingatypical mediation
scenario. Then in Section 3 we present our proposed recon-
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figurable and extensible mediation framework. In Section 4
wediscuss potential drawbacks of our approach, whilein Sec-
tion 5 we comment on the current status of an implemented
prototype. In Section 6 we review related work.

2 SAMPLE SCENARIO

In this section we illustrate the principles and components
of a mediation infrastructure for digital libraries. We illus-
trate with a scenario, depicted in Figure 1, based on retrieva
services. The client on the right of the figure issues queries
viaSDLIP[29], a protocol developed as part of the InterLib
Project!. This protocol, as well asthe others used in our sce-
nario, are simply examplestoillustratethe diversity available
in digital libraries. One of the servers on the left provides
access to an NCSTRL [18] document collection using the
Dienst protocol, and the other server implements the Z39.50
protocol.

The SDLIP client encodes queriesin XML according to the
DASL specification, and waits for asynchronous delivery of
portions of the search result. The NCSTRL server deploys
a stateless request-reply model and accepts URL-encoded
gueries. The 239.50 server expects aquery in Reverse Polish
Notation encoded according to ASN.1. For agiven query, the
Z39.50 server returnsthe number of search resultsand allows
the client to retrieve subsets of the result in separate requests.
The client and the servers are the native components in our
medi ation scenario.

The wrappers shown in Figure 1 hide some of the hetero-
geneity of the native components. In particular, the wrappers
communicate with the native components via native proto-
cols, i.e. SDLIP, Dienst and Z239.50. In turn, the wrappers
provide a relatively homogeneous message-passing environ-

TinterLibisajoint digital library project between UC Berkeley, UC Santa
Barbara, Stanford University, California Digital Library, and San Diego
Supercomputer Center.
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Figure 2: A finite-state machine representation of
the mediator

ment for the mediator in the center of the figure.

The mediator performs dynamic brokering by taking requests
from the client, trand ating those requests into requests to the
servers, combiningtheinformationreceived from the servers,
and passing it dong to the client. Even though the mediator
is shielded from the native components by the wrappers, it
gtill has to deal with the semantic interoperability between
incompatible representations of information provided by the
wrappers. In our scenario, the major problems include pro-
tocol, query and data trandlation.

Protocol translation

Assume that the mediator takes the query submitted by the
SDLIP client, trandatesit intoan NCSTRL query, sendsit to
the NCSTRL server, retrieves the results that are encoded as
BIB, trandates them into Dublin Core, and asynchronously
sends the results to the client. Then, it sends a trandated
Z39.50 query to the 239.50 server which first returnsthe size
of the result set. After that, the mediator fetches theresult in
chunks of say 50 records, does its best to convert them from
MARC to Dublin Core, and forwardsthe chunksto theclient.

A formal representation of the algorithm described above is
depicted in Figure 2 as a finite-state automaton. The la
bels of the arcs specify events and actions performed by the
automaton on a transition from one state to another. The
notation g — 1?SDLI Pquery specifies that a message
of type “SDLIP query” arriving on channel 1 is stored in
a memory cell g. The channels 1, 2, and 3 correspond to
the SDLIP client, NCSTRL and Z39.50 server, respectively
(these are the labels used in Figure 1). The bang “!” de-
notes sending a message. A pseudo code expression like
g1=SDLI PQ2NCSTRL( q) denotes that the application of
function SDLI PQ2NCSTRL on the message q yieldsthe re-
sultgl.

We do not describetherest of Figure 2 because our goal isnot
to define fully thisfinite-state automaton formalism. We are
not even arguing that thisformalismisthebest for describing



protocol trandations. In our particular running example, we
believe that thisformalism is a convenient way to represent
thework that must be done by the mediator, but perhaps there
are other mechanisms (e.g., Petri nets, Java programs) that
are better suited for other scenarios or for other implementers.
The other formalisms that we introduce below (RDF, query
trandation rules, Datalog) are again only examples of the
diverse types of machineries that are available to describe
mediation tasks.

Query translation

Assumethat the SDLIP clientin our scenario submitsasearch
request for music recordings authored by Lou Bega. The
original query represented in XML according to the DASL
specification is shown in the top left part of Figure 3. The
wrapper of the SDLIP client receives the search request con-
taining the query viathe native SDLIP interface. Then, the
wrapper converts the request into a logical representation.
The top right part of the figure showsthelogica structure of
the native SDLIP query that isrepresented as an RDF moddl.
RDF (Resource Description Framework [17]) is a metadata
standard recommended by the W3 Consortiumfor describing
objects and their relationships. The choice of the particular
RDF representation for the query is made by the designer of
the SDLIP wrapper.

InRDF, al informationisrepresented by nodes(resources) in
agraph. Each node may have avaue, and |abeled properties
that link it to other nodes. For instance, consider the RDF
representation of the SDLIP query in Figure 3. The leftmost
node labeled @ isthe root of the query structure. Thet ype
property of ¢ tellsusthisisa“Basic Search Query,” whilethe
wher e property links to the Boolean condition that selects
documents. Therest of the nodes specify the components of
this search condition.

The mediator receives the RDF model representing the query
and trandatesit into the RDF representations suitable for the
wrappers of the 239.50 and NCSTRL servers. The server
wrappers in turn transform the logical representations of the
gueriesinto a URL-encoded query and the Z39.50 syntax for
the NCSTRL and Z39.50 server, respectively. Both native
encodings and the corresponding RDF models of the target
gueries are depicted in the bottom part of the figure.

To trandate the queries, the mediator calls a query rewrit-
ing component.  In Figure 2, these cdls correspond
togl=SDLI PQ2NCSTRL( q) and q2=SDLI PQ2Z39(q) .
The task of the query rewriting component is to transform
the RDF-based representation of the query chosen by the
SDLIP wrapper into the representations used by the NC-
STRL and Z39.50 wrappers. The query trandation must take
into account the capabilities of the servers, and the supported
attribute models of the servers.

In general, query rewriting is a very hard problem, and full
solutions do not exist yet. However, rule-based systems are
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Figure 4: Result of conversion of a bibliographic
record?

often useful for performing the most common rewritings.
Here we illustrate with a rule that may be useful in our sce-
nario; please refer to [6, 7] for amore compl ete discussion of
query trandation.

[aut hor = $1+" "+$2] <= [FirstNane
[ Last Nane

$1] and
$2]

The rule translates DA SL -encoded search predicates to NC-
STRL. If the DASL query specifies aconjunctive search con-
ditionontheFi r st Name and theLast Nane attributes, the
values of these attributes, e.g. “Lou” and “Bega’, are bound
to the variables $1 and $2, respectively. Then the left hand
side of theruleistriggered, yielding a corresponding condi-
tion for the NCSTRL query. This new condition searches for
the “author” whose full name is the concatenation of the $1
and $2 variables.

Data translation

The next problem that the mediator has to address is that
the wrappers deliver search results using different represen-
tations. Thus, the mediator needs to convert semantically
incompatible data instances returned by the search service
wrappers into a format supported by the client wrapper. In
our scenario, both serversreturn setsof bibliographicrecords.
The mapping between attribute model s such as BIB, MARC
and Dublin Core can be specified, for example, using a set of
Datalog rules. To illustrate, a mapping of MARC attributes
720 and 245to their Dublin Core equival entsis shown below.
Uppercase | etters denote variables.

X dc: Creator C <=
X dc:Title T <=

X marc: 720 C
Xmarc:245 T

The rules transform the graph returned as a search result
into another graph. For example, the first rule specifies that
for every two nodes X and C' connected by an arc labeled
mar c: 720 in the source graph, an arc dc: Cr eat or will
be placed between X and C' in the destination graph. A
mapping between different classification schemas used by

3 ASIN: a number used by Amazon.comto catalog anything that is not a
book.
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Figure 3: Native queries for SDLIP, NCSTRL and Z39.50 and their logical models

the servers and the client can be expressed using a similar
approach. For example, if the Z39.50 server usesthe Library
of Congress Subject Headings (LCSH), the trandaionto the
Dewey Decimal Classification (DDC) could be implemented
using one rule and a set of facts:

X marc: 650 L
F mlcsh L
F m ddc D

&
X dc: Subject D <= &

fl1 mddec 784
fl1 mlcsh ‘@Qiitar choir nusic

f2 mddc ‘784.1888’
f2 mlcsh * Choros’
f2 mlcsh ‘ Manbos’

Appliedtothe MARC record shown on thetop of Figure4, the
above set of rules produces the Dublin Core record depicted
on the bottom of the figure.

3 PROPOSED SOLUTION

Suppose that we implement the mediator for the sample sce-
nario of Section 2 by writing alarge program in our favorite
language. Thisprogramwouldimplement thelogicdescribed
by the finite-state automaton of Figure 2. If we did not want
to hard-code the query trandation rules, perhaps we could
develop a data structure to represent the rules we need, and
code our own interpreter for theserules. For datatrandation,
we could either hard-code the transformation, or again de-
velop some more general rule execution machinery. Thisis
actually the way many mediators are written today.

Unfortunately, this approach is not very flexible. For exam-
ple, say we change our mind and wish to query the Z39.50
server first, because it has faster response times. Thiswould
require rewriting parts of the mediator and recompiling it.
Say we needed to add anew search server in our architecture,
or say we wanted to execute server queriesin parallel instead
of serially. Again, thiswould require amajor effort.

The solution we proposein this paper isamodular, plug and
play mediator. With this mediator, the mediation tasks are
well defined, and can be executed by loosely connected, re-
placeable modules. For example, the predicate rewriting task
is performed by a query trandation module. The mediator
can be configured with one or more trandlation modul es, that
can be called as necessary. We will cdl these plug and play
modul es blades since they are analogous to database system
blades (in turn ana ogous to shaving blades used to “config-
ure” arazor). Each blade can be coded and specified in the
language that is best suited for the task at hand, representing
information in the most convenient way. We use the term
“plug and play” blades, because as we will see, the mediator
will detect and configure a new blade in much the same way
a plug and play operating system automatically detects and
configures new hardware.

In our approach we take modularity to the extreme and make
themediator logicitself (illustratedin Figure 2) ablade. This
means that to change the logic of the mediator (e.g., to go
from serial to parale query execution), we can simply re-
place the“main” mediator blade by onethat has anew finite-
state automaton. Furthermore, if we do not find finite-state
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Figure 5: Mixing of declarative languages: a transition of the finite-state machine and a query rewriting rule are

both encoded using RDF

automaton a convenient formalism, we can insert a different
type of blade, that representsitslogic in a different way. For
exampl e, we could use Petri netsto represent protocol dynam-
ics. We call the main blade that drives mediator execution
the dynamic blade since it captures the dynamic nature of the
mediator.

Buildingamediator from aset of reconfigurabl e blades seems
likean attractiveidea, butisit feasible? How will themediator
be able to represent al the different types of information,
from queries, to rules, to automaton, to results? How will we
coordinate the different blades, so that each one does what
it is supposed to do at the right time? How will information
be passed to and from blades? In the rest of this section
we answer these questions, as we describe a plug and play
mediator framework that has been implemented and provides
the flexibility we advocate.

Mixing of specification languages

The challenge we face is how to describe mediator tasks and
information using different formalisms which, nonetheless,
can be plugged together in a seamless way. To achieve that,
weneed ameta-languagethat allowsusto encode expressions
indisparatelanguages, like Datal og and finite-state machines,
in a uniform way. A further requirement is to be able to
establish relationships across expressions stated in different
languages. For example, it should be possible for a finite-
state automaton description to point or link to a particular
guery conversion rule that needs to be invoked.

Themeta-languagethat weusein our mediationinfrastructure
isRDF. To illustrate how different languages can be encoded
in RDF, consider the first transition of the state automaton
of Figure 2. The top part of Figure 5 presents the RDF en-
coding of that transition. The transition is centered on the
node (RDF resource) labeled ««. Node « has four properties
(outgoing arcs): origind state (p: or i gSt at e), destination
state (p: dest St at e), p: event and p: acti on. (Inad-
ditionit hasatype property (t ), indicating that « isindeed a
transitionnode.) Noticethat al propertiesand literalsthat are
associated with atransition event have a prefix p: . All these
strings are part of the vocabulary, i.e. language el ements, of
thefinite-state modd.

The p: event property, for instance, pointsto a sub-graph
that describesthetriggering event (thereception of amessage
of type SDLI Pquer y viaChannel 1). Upon the transition,
the automaton moves fromthe p: ori gSt at e (labeled “1”
in the figure for convenience) to the p: dest State (la
beled “2") and performs the p: act i on whose description
is shown in the middle part of the figure. (For clarity, only
one of the actions associated with thistransition is shown in
thefigure.)

The centra part of Figure 5, centered on node labeled
G, represents the assignment statement for the action
g2=SDLI PQ2Z39( q) , while the bottom part, centered at
node v, represents the set of rulesthat are used to implement
the SDLI PQ2Z39 query rewrite. Finaly, the subgraph cen-
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tered at node ¢ represents one of the trandation rules (the
rest are not shown). The conditions and variables that make
up thisrule are described by ther : head andr: t ai | sub-
graphs, athough we do not discuss the details here.

Figure 5 illustrates how diverse formalisms like finite-state
machines and predicate rewriting rules can be represented in
asinglemetamodel. Thefigureasoillustratesthat it iseasy
tolink thedifferent formalisms, oncethey areall in RDF. For
example, the connection between the transition description
at node « (part of the finite automata formalism) and an
assignment statement (part of an action execution model) is
represented by thep: act i on link out of «.

Plug-and-Play configuration

Every formalism used in the mediator specification is pro-
cessed by a separate blade. The chalenge is to compose
these blades so that they can dynamically interact with each
other. To enable such composition, we introduce a specia
component, called the blade manager. The manager orches-
trates calls to blades, acting as a mediator “kernel.” For
example, if the blade manager encountersthe specification of
the predicate rewriting rule SDLI PQ2Z39 it makes sure that
the appropriate query translation blade is called to evauate
the rule. Thus, the manager “binds’ statements in different
languages into the blade that can execute the statements.

The blade manager initialy learns what resources are avail-
ablethrougha configuration object, as suggested by Figure 6.
Uponinitialization of themediator, theblademanager isgiven
aURL pointingto the RDF-encoded mediator configuration.
The configuration contai nsdescriptionsof theavail able blade
factories. A blade factory is an executable module that gen-
erates specific blades needed for mediation. Factories are
dynamically loaded into the mediator, and are called upon to
generate blades, which are then also loaded and executed.

Toillustratethisprocess, et uswalk throughtheinitialization
and blade instantiation process, as illustrated in Figure 6.

First, the configuration is read by the blade manager and the
bladefactoriesareregistered (Steps1-4). Inour prototype, the
factories are downloadable or locally installed Java modul es.
For example, the module Quer yTr ansl at i onFact ory
generates Quer yTr ansl at i on blades. The configuration
also includes the RDF-encoded description of the actions to
be taken by the mediator. In our example, thisisthe structure
shownin Figure5. We call thiscomplete structurethe moddl .

Next, the blade manager needs to instantiate a dynamic blade
to execute the main logic of the mediator (Step 5). Initially,
themanager doesnot know which of itsinstalled factoriescan
generate such a blade, so it questions each registered factory.
Every factory offers a default interface for such questions,
caled the Bl adeFact ory interface:

public interface Bl adeFactory {
public Bl ade getBl ade(Resource id,
Model m);

}

Parameter misthe model in use, whilei d identifiesthe par-
ticular subgraph withinthe model that the required blade will
interpret. In our case, i d identifiesthe portion of the model
that captures the mediator logic (e.g., that includes the tran-
sitions like « shown in Figure 6). When the get Bl ade
method of QueryTransl ati onFactory iscdled, the
factory does not recognize the i d structure as something
it operates on, so it returns a null factory. Eventualy a
Dynami cBl adeFact ory is caled (Step 6), and it does
recognize parameter i d. In our scenario, i d is recognized
by the factory that understands finite-state automata descrip-
tions. This factory generates and returns a dynamic blade
St at eMachi ne to the blade manager (Step 7). When the
blade is generated, it is“configured” to execute the logic de-
scriptioni d. For instance, in our example, the factory may
parsethelogicdescriptioni d, and compileitinto“code’ that
will actually be executed by the St at eMachi ne. Thisway
the parsing and compilationwork isdoneonce. Thisstrategy
is more efficient than having the St at eMachi ne interpret
the RDF description each timeit isinvoked to perform some
action.

Oncethedynamic blade St at eMachi ne isinstalled by the
blade manager, the mediation process can start up. Dynamic
blades offer savera methods for this start up. For example,
the blade manager can invoke the set Channel method of
St at eMachi ne to bind the communication channels used
by thedynamic blade (e.g., Channels 1 and 2 in our example)
to actual TCP/IP connectionsfor the client and server wrap-
pers. (The blade manager getsthe TCP/IP connectionsto use
from the configuration.)

After startup, dynamic blade St at eMachi ne waits for
incoming requests in its start State 1. Once a request ar-
rives via Channel 1 (see Figure 2), the dynamic blade tries
to match the request reception event against the events of
transitions that are defined for the State 1. When a mes-



sage arrives and the blade verifies that it is of the ap-
propriate type, the blade decides to execute the statement
g1=SDLI PQ2NCSTRL( q) . However, the dynamic blade
does not actuadly execute the statements. Instead, it asks
the blade manager (step 8 in Figure 6) to locate the appro-
priate blade for thistask. The blade manager contacts each
availablefactory (usingtheBl adeFact or y interface), ask-
ing it to examine the statement in question. (Parameter i d
of get Bl ade identifies the statement.) The query trans-
lation factory Quer yTr ansl at i onFact or y determines
that resourcei d involvesan SDLIPto NCSTRL trandation,
which it recognizes. Thus, the factory generates and returns
the appropriate blade. Again, thefactory may decideto com-
pile the statement, so its blade can operate more efficiently.

When the blade manager receives the query trand ation blade,
the manager recordsin a cache the parameters that generated
theblade(i d and ), plustheidentity of theblade. Ingeneral,
before the manager invokes method get Bl ade to generate
aneeded blade, it checks its cache to see if the blade aready
exists. If the blade exists, then the search for a matching
factory can be skipped atogether.

After the query trandation blade has been generated, the
manager callsitto performtheneeded trandation. All blades,
except for dynamic ones, offer the same generic interface;

interface StaticBlade extends Bl ade {
Model conput e( Eval uati onCont ext ctx);

}

The single parameter ct x is an evaluation context. Such a
context isan object that includes everything that is necessary
to perform the blade’s service. For our example, ct x alows
the query trand ation blade to obtain the query to be rewritten.
The context ct x for abladeisinitidly created by the blade
manager, and is reused for al calls to the same blade. Thus,
some blades actually store data needed in subseguent callsin
their context.

When the blade manager invokestheconput e interface, the
guery tranglation blade extracts the operands from ct x and
transformsthe query. The trandated query, represented as an
RDF graph (of typeModel ), isreturned to the blade manager,
whichinturnreturnsit to the dynamic blade (astheresult, the
desired statement is executed). After computing the second
trand ated query, the dynamic blade completes its transition
to State 2. Then, it examines the transitionsfrom State 2 and
sendsthetrandated query storedin g1 over Channel 2 to the
NCSTRL wrapper.

In our description of blades and how they are called, we
have omitted many implementation details, focusing only on
the main steps. For example, the messages received by the
dynamic blade are verified in our prototype using Datalog
rules. Furthermore, there is great flexibility as to exactly
what each blade does. For instance, in our example, we said
that the dynamic blade made one call to the manager for each

guery trandation statement it wished to execute. However,
we can just as easily design a dynamic blade that packages
al the actions for a given transition into a single block of
statements. The dynamic blade can then ask for a blade to
execute the entire block as one unit. For this, we would need
abladethat takesasinput ablock, interpretsit, and makesthe
appropriate callsto execute each statement. With thisscheme
we can isolate the statement execution logic from the state
transition logic, enhancing modul arity.

To summarize, themediator used inour scenario usesasingle
dynamic blade, i.e. a state machine interpreter, and a num-
ber of static blades, e.g., a Datalog interpreter or a query
trandation component. A blade can either execute code that
was compiled by its factory, or can interpret RDF graphs
that encode its actions. In our initial prototype, for instance,
the dynamic blade actually interprets an RDF description of
the state automaton (Figure 5), while our query trandation
blade executes rules represented in a compact notation (anal -
ogous to “intermediate code’ generated by compilers). As
we described, the blades for different formalisms are linked
together by the blade manager.

The plug and play mediator we have described offerstremen-
dous flexibility. The rules and logic descriptions used can
be easily changed by modifying their RDF descriptions in
the mediator configuration. Furthermore, the formalism or
language used to describe the rules or the operational logic
can be replaced, as long as new blades are available to work
with the new formalism. Of course, the added flexibility of
our approach does imply a higher performance overhead, as
compared to the static, monolithic approach introduced ear-
lier. Thisisaclassic flexibility versus performance tradeoff.
We believe that for many digita library mediation scenarios,
where servers and clientsare so varied and change so rapidly,
a flexible mediator that can rapidly adapt is preferable to a
faster one that worksin limited cases.

Wrappers

A wrapper is conceptually similar to a mediator, except that
it only needs to trand ate between one native component and
one mediator. For example, in Figure 1, the Z39.50 wrapper
isthe gateway between the mediator and the 239.50 server.

In our mediation infrastructure, we use the same machinery
for wrappers as for mediators. The core of the wrapper is
again a blade manager that loads suitable modules at run-
time. For example, the configuration of the Z39.50 wrapper
describes where to find the interface description of the wrap-
per and specifiesthat the St at eMachi neFact or y should
be used. The dynamic blade St at eMachi ne isdefined us-
ing a programming language (Java, in our prototype), since
the wrapper has to deal with the intricacies of the native pro-
tocol.

Philosophically, we advocate that wrappers be as ssimple as
possible. For example, our Z39.50 wrapper only deals with



the syntactic conversion of the RDF-encoded query into ana-
tivestring. The native Z39.50 protocol isnot trand ated by the
wrapper; its messages are simply encoded in the appropriate
RDF. The actua query and protocol trandation work is left
to the mediator.

Since wrappers deal with native components directly, it is
best if they are developed by the people who run the native
services and clients. The less work the wrapper needs to
do, the more likely these devel opers will provide the needed
wrappers. Once the information from a native component
is “packaged” in a way that the mediator can understand,
the mediator can take over and do the harder trand ation and
mediation work.

4 CHALLENGES

The system described in the preceding sections promisesaver
riety of advantagesto thedesigner of mediators. |n particular,
it suggests agraph based representation of client/server oper-
ations, such as query submissions. The ideaisthat transfor-
mations of these graphstake the place of computer programs.
We have also introduced finite-state machines to model the
dynamics of protocol interactions, and a rule-based approach
to query trandation. These building blocks are the compo-
nents which can be combined with occasiona code segments
to construct mediation blades.

The intention of this approach is to introduce a maximum
of flexibility into the construction of mediation modules.
Client/server protocols are made into first-class objects that
can be constructed by adesigner, and can then betransformed
or executed by “interpreters” Theintended result istheeasy,
interactive creation of mediators, and convenient reuse of
mediation modules. What are some of the challenges of this
approach?

One issue is the potential complexity of graph-based ap-
proaches. Computer programs are very efficient for rep-
resenting operations and data structures. But graphs can
be better at giving overviews, and at displaying connections
among the programs’ various parts. The drawback of graph-
based approaches is that they are difficult to scale, because
they become complex quickly. One chalenge will be the
construction of mediator devel opment tools that balance the
advantages of textua programs and their graphical counter-
parts. Mediator designers must be able to specify protocol
interfaces easily, and without being overwhelmed by cogni-
tivecomplexity. After all, the standard to measure against for
ease of program crestion, reuse, and maintenance is the tra-
ditiona programming approach. We will have to prove that
at least for the application of digital library interoperability,
the proposed approach is superior.

A second chalenge will be support for debugging. Rule-
based systems tend to be very powerful, but their inherent
parallelism and non-sequential nature can makethem difficult
to debug. In order to analyze which rulesfire when, and how

the system undergoes state changes, traditional debugging
techniques must be adapted.

A third challenge will be scalability in performance. In-
terpreted systems are intrinsically slower than compiled ap-
proaches. However, many interpreted programming lan-
guages have relied on increased processor speeds to make
their performance acceptable. The success of the proposed
approach will depend in part on optimization techniques that
help speed up execution. Programming language optimiza-
tion techniques will be of help.

5 CURRENT IMPLEMENTATION

This section briefly describes some implementation details
of our framework. We have used the framework to imple-
ment a mediator and wrappers for the scenario of Figure 1.
Thewrapper interfacesare represented as state machineswith
four, two and five statesfor the SDLIP, NCSTRL and Z39.50
wrapper, respectively. Currently, not all possibleerror condi-
tions are considered. The actions of the state machines that
describe wrapper interfaces are implemented as native Java
modules. The following statistics describe the amount of
code needed to “glue”’ the declarative automata descriptions
with the native libraries used by the wrappers.

The SDLIP wrapper is based on the SDLIP toolkit devel-
oped in the InterLib project. The amount of native Java
code used by the SDLIP wrapper is about 300 lines. The
NCSTRL wrapper was implemented from scratch using an
HTTP server library and contains about 250 lines of code.
The implementation of the Z39.50 wrapper uses the 239.50
libraries developed by OCLC. The code needed is about 900
lines of code in additionto thelibraries.

The implementation of the mediator involves the blade man-
ager, i.e. the “kerne” of the mediator, and the blade fac-
tories needed to execute the mediator specification. The
mediator uses ten states as depicted in Figure 2. The
blade manager implementation in Java comprises about 200
lines of code. The maor blades used in the scenario are
St at eMachi ne, Dat al og, and Quer yTransl ati on.
The St at eMachi neFact ory creates a blade that inter-
pretsthe RDF specification of the automaton. Theinterpreter
contains about 500 lines of code. The Dat al ogFact ory
is built on top of a Javarbased inference engine devel oped
at Karlsruhe university. The implementation of this factory
required about 550 lines of code. The Dat al ogFact ory
trand atesRDF-encoded rul esinto the nativeencoding of rules
supported by the inference engine (F-logic). The blade gen-
erated by the Datalog factory passes trandated rules to the
inference engine. The inference engineisinvoked withinthe
same Java virtua machine.

Query trandation is currently hard-coded in Java. We are
working on the implementation of the query rewriting blade
factory that uses declaratively specified rules. At present,
we do not have an implementation of our mediation scenario



that uses a hard-wired mediator. Without such reference
implementation we cannot provide meaningful performance
comparisons with more traditiona approaches.

In additiontothescenario of Figure 1, wehaveimplemented a
prototype of amediator for document format conversion ser-
vices. The mediator is capable of mapping arelatively com-
plex CORBA-based conversion interface to a simple CGI-
based one. The state automaton of the CGI wrapper contains
only two states (wait for request, request processed). In
the CORBA-based interface, the client passes to the server
the object handle for the document to convert together with
the specification of the source and destination format. The
server issues a callback to the client to determine the size of
the object, and then incrementally fetches the pieces of the
document content. After that, it converts the document, say
from PostScript to PDF and delivers the handle of the con-
verted object to the client. The client fetches the content of
the converted object analogously. The CORBA-based con-
version interface is described as afinite-state machine using
eight states. The mediator automaton is based on ten states.
The mediator deploysthe same blades St at eMachi ne and
Dat al og that are used in our retrieval scenario.

In our current implementation, the wrappers and mediators
exchange RDF models over the network using the standard
RDF seriaizationin XML. The low-level communicationin-
terfaceisimplemented as full-duplex asynchronousexchange
of serialized RDF models via TCP/IP connections. How-
ever, other low-level interfaces, eg. a CORBA-based, are
also conceivable. In order to support the building of wrap-
pers, we provideacomprehensive RDF API for manipul ating
in-memory RDF models accompanied by alightweight RDF
parser/seridizer.

6 RELATED WORK

Thefocusof our work isintegration of infor mation processing
servicesindigital libraries. A wesalth of prior work addressed
interoperability of heterogeneous data sources. For exam-
ple, the following “monolithic” systems support mediator-
supported querying: TSIMMIS [13], Information Manifold
[19], Garlic[27], SIMS[ 3], InfoMaster [14],and MOMIS[4].
The work presented in [15] considers a mediation approach
for updateable data sources. Rich interactions between users
and services are examined in [20]. Semantic-oriented ap-
proachesto integration are discussed in particular in [28, 21].
In [11, 10] agents are used to perform mediation tasks in
digital libraries.

Interoperability for digita library services was extensively
addressed in the Stanford InfoBus [23]. In InfoBus, every
service like search, attribute translation or metadata service
isadistributed object implementing awell-known interface.
In contrast, our framework focuses on a mediation-based
approach. Furthermore, wrapper implementers do not have
to agree on a set of common application-specific interfaces.
The extensibility of theinfrastructureisincreased by relaxing

therigidlow-level interfacestypical indistributed computing.
A detailed comparison of approaches to interoperability for
digital libraries can be found in [24].

The formalisms used in our mediation infrastructure for pro-
tocol, language and data trandation (finite-state machines,
Datalog, query rewriting) are only examples of mechanisms
that are available for description of mediation tasks and have
been studiedin-depth e sawhere(cf. [2,30] for protocol trans-
lation, [8, 25] for data conversion, [6, 7] for query rewriting).

Our architecture borrowsfrom severa areas of computer sci-
ence. We can thus draw on a variety of traditions and expe-
riences. Component based software engineering is one such
tradition [12]. Some commercial databases use data blades,
analogous to our mediator blades. Experimental database
designs have gone beyond these more limited blade facilities
to introduce far reaching extensibility. They have opened the
entire database to modification through plug-inmodules. The
Open OODB at Texas Instruments was one such project [5].
It enabled designers to change large-granularity modules in
order to introduce new or optimized functionality.

The operating systems community has also experimented
with component based approaches. Maybe the most famous
of theseisthe Mach operating system[1, 26]. It offered aker-
nel, analogous to our blade manager, and allowed designers
to insert their own virtua memory manager. Programming
language designers have explored a third component based
approach. They use metaobject protocols that make sys
tem internals into first class objects [16]. By manipulating
these objects, fundamental behaviors of the language can be
changed.

Our approach is heavily based on interface description.
CORBA based systems also emphasize the separation of
interface and implementation [22]. While we rely on this
separation, the finite-state machine portion of our proposed
approach was inspired by CORBA's inability to describe the
dynamics of a client/server interaction.

Rule-based systems have been used extensively in expert sys-
tem design. Specific languages, such as Prolog, are available
for processing rules. We used the SILRI inference engine[9]
that supportsavariant of Datal og with negation to implement
our prototyperule system.

7 CONCLUSION

In this paper we have explored what it takes to build a very
flexible and dynamic digital library mediator, that can be
adapted as services and technologies evolve. We described
how diverse models and information can be represented,
and described an extensible execution environment where
“blades’ perform different mediation functions, orchestrated
by a blade manager. We believe that our approach holds
promisein environmentswhere target services and mediation
tasks are not fixed in advance, and where high performance
is not the main objective.
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