
Declarative mediation in distributed systems?

Sergey Melnik

Stanford University, Stanford CA 94305 USA??

melnik@db.stanford.edu

Abstract. The mediation architecture is widely used for bridging het-
erogeneous data sources. We investigate how such architecture can be ex-
tended to embrace information processing services and suggest a frame-
work that supports declarative speci�cation of mediation logic. In this
paper we show how our framework can be applied to enrich interface
descriptions of distributed objects and to integrate them with other
client/server environments.

1 Introduction

More and more information processing services are becoming available online.
Such services accept data, process it, and return results. A variety of services
like summarizers, indexers, report generators, calendar managers, visualizers,
databases, and personalized agents are used in today's client/server systems.
As more such components are deployed for use, the diversity of program-level
interfaces is emerging as an important stumbling block. Interoperation of het-
erogeneous information processing services is hard to achieve even within a given
domain like digital libraries [13].

The mediation architecture [17] has often been used for leveraging solutions
for the interoperability problem. It introduces two key elements, wrappers and
mediators. The wrappers hide a signi�cant portion of the heterogeneity of ser-
vices, whereas the mediators perform a dynamic brokering function in a relatively
homogeneous environment created by the wrappers.

Frequently, mediation is implemented on top of distributed object architec-
tures like CORBA or DCOM. Typically, a wrapper acts as a server object and
provides a standard interface through which mediators can access heterogeneous
components. This solution works well in environments targeted at querying of
data sources. The reason for this is that it is relatively easy to develop a com-
mon querying interface that has to be supported by all wrapped sources. Serious
complications arise, however, when the underlying components support a rich
set of interfaces and protocols. In this case, even if the individual components
are wrapped by distributed objects, their interfaces remain very diverse. Thus,
mediators become more detailed and complex, expensive to create and maintain.

? This work was supported by a German Research Council fellowship and by the NSF
grant 9811992

?? Permanent address: Leipzig University, Augustusplatz 10, D-04109 Germany

In this paper we describe a framework tailored for declarative speci�cation of
mediation logic that is required to integrate heterogeneous information process-
ing services. We examine an environment in which services expose rich interface
descriptions and mediators are speci�ed using declarative languages. Such envi-
ronment promises signi�cant advantages over hard-coded mediators [14, 18]. In
fact, developing mediators for disparate systems becomes an engineering task
leveraging established formal methods as opposed to error-prone programming.

Although declarative mediation promises substantial bene�ts, it may intro-
duce penalties in eÆciency and additional complexity. Nevertheless, our initial
experience suggests that the framework o�ers substantial exibility that can be
exploited in di�erent application scenarios. In [10] we describe one such scenario
based on heterogeneous retrieval services. In this paper we investigate how our
approach can be applied to enhancing the distributed object technology and
bridging it with other client/server environments.

The next section introduces a sample scenario that we use throughout the
paper to illustrate the major tasks needed to implement mediator systems based
on declarative speci�cations. Sect. 3 introduces canonical wrappers that provide
mediators with logical abstractions of the components. Sect. 4 gives an overview
of our approach to declarative mediation. In Sect. 5 we elaborate on the tech-
niques that can be used to manipulate the content of the messages exchanged by
heterogeneous components. Sect. 6 sketches our approach to representing the dy-
namic aspect of mediation, i.e. how message sequences originating at one compo-
nent can be translated into message sequences expected by another component.
Interface descriptions of services are examined in Sect. 7. Sect. 8 summarizes
the challenges of building declarative mediators. Sect. 9 describes the execution
environment used for our running example. Related work is discussed in Sect. 10.

2 Running Example

A typical operation needed for a digital library is the document conversion be-
tween di�erent formats like PostScript, PDF, plain text etc. A rudimentary
conversion model can be described by an operation which accepts source and
destination format speci�cations and a sequence of bytes as the content of the
document. The result of the conversion is a byte sequence in the destination
format. In following, we examine two rather obvious implementations of the
conversion, one as a CORBA object and another as a Web form. A CORBA
client intending to use an HTTP-based service faces a number of obstacles that
we sketch below.

For the CORBA implementation of the service it may make sense to pro-
vide a BLOB interface to large binary objects in order to enable the server to
determine the size of the object to be converted in advance and fetch its pieces
incrementally. A likely CORBA speci�cation of the conversion service comprises
two interfaces:

interface Converter {

BLOB convert(in BLOB doc, in int sourceFormatID, in int destFormatID); }

interface BLOB {

long getSize();

sequence<octet> getBytes(in long start, in long end); }

A conventional Web form for an HTTP-based conversion service includes two
�elds, say from and to identifying the source and destination format and a file
�eld which allows the user to upload a �le to be converted from the local disk.

To enable the CORBA-based client to utilize the HTTP-based server, an
intermediate component (mediator) is required. In our example, such mediator
translates requests between two services. The translation could be achieved using
the following algorithm:

1. Receive the request parameters doc, sourceFormatID and destFormatID

via the Converter interface
2. Translate the format identi�ers sourceFormatID and destFormatID into

corresponding format strings from and to for the Web-based service
3. Retrieve the size of the source object using doc.getSize()

4. Retrieve the binary content of the source object via doc.getBytes() to �ll
the file �eld of the HTML form

5. Emit an HTTP POST request after completing the appropriate form �elds
6. Create a BLOB instance for the binary data contained in the HTTP reply.

Our goal is to capture the translation between the CORBA client and the
HTTP service in a declarative fashion. Such declarative speci�cation would de-
scribe how the messages originating from the client are transformed into the
messages understood by the server, and the other way around. For that, the
mediator needs to be able to manipulate the content of the messages and the
order in which they are exchanged.

3 Canonical Wrappers

Mediators need a convenient way to manipulate the content of the messages
passed back and forth between di�erent components. For our purposes, conve-
nient means that the message manipulation operations can be described in a
declarative fashion, ideally without using a programming language like C++ or
Java. To do that, we use logical descriptions of the messages encoded as directed
labeled graphs. Represented as a labeled graph, the message content can be
manipulated using algebraic operations, transformation rules etc.

Logical descriptions of messages exchanged by the components can often be
derived from their informal descriptions in a straightforward way. Consider how
one could formulate a conversion request message as a CORBA invocation:

`This is a conversion request specifying which BLOB object to convert
(obj), and what the source format (sourceFormatID) and the destina-
tion format (destFormatID) of the conversion are.'

This sentence can be represented using the following �ve logical statements
of the kind `subject predicate object':

CR is-a ConvertRequest

CR object-to-convert obj

CR source-format sourceFormatID

CR destination-format destFormatID

obj is-a BLOB

The entity CR designates an instance of a CORBA conversion request. The
logical description of the request can be represented graphically as a directed
labeled graph depicted in Fig. 1. The object reference of obj is IOR:XYZ, and
the source and destination format IDs are 10 and 11 respectively. Ovals represent
any entities that might have relationships with other entities. In the �gure, such
entities are, for example, the concrete BLOB object identi�ed by its object refer-
ence, or the type of the object (BLOB), or the concept ConvertRequest. Arrows
represent relationships among entities. They might be conceptual relationships,
such as the is-a, or `has-property' relationships, such as destination-format.
Literals (string values) are depicted in rectangles. The representation used in
the �gure is similar to an entity-relationship diagram that includes instances of
entity types.

1110

ConvertRequest

is-a is-a

object-to-convert

IOR:XYZ

BLOB

source-format destination-format

CR

Fig. 1. Logical representation of the
CORBA conversion request

application/pdf

SGV5LCB5b3UglzIG1lc3Mh...

application/postscript

ConvertFile

is-a

base64-file

from to

Fig. 2. Logical representation of the
HTTP-based conversion request

A logical description of the request makes it possible to abstract out factors
irrelevant to the purpose of the service e.g. whether it is implemented as a dis-
tributed object or a CGI script. The corresponding HTTP request is represented
as shown in Fig. 2. The name of the entity in the middle is not relevant and is
omitted for clarity. Note that using logical descriptions allows us to talk about
things as di�erent as CORBA calls and HTTP requests in a uniform language.

The mediator and the wrappers used in our running example are depicted on
the left-hand side of Fig. 3. Wrapper A acts as a CORBA conversion server for
the CORBA client. Logical descriptions of CORBA invocations are passed by
wrapper A as object graphs to the mediator. The mediator irons out semantic
incompatibilities in the structure and ordering of the messages received from
wrapper A and forwards the translated logical representations (graphs) to wrap-
per B which invokes the corresponding CGI script. In this way, the wrappers A
and B allow the mediator to treat the interfaces of the components uniformly.
Recall that our example is very simple; a realistic mediation environment con-
tains many more components.

3 Uglz I G1...B5 lc3Mh SGV5LCb
content

application/pdf

SGV5LCB5b3UglzIG1lc3Mh...

application/postscript

ConvertFile

ConvResult

is-a

is-a

base64-filefrom

to

/Converter?from=application/postscript&

to=application/pdf&...

HTTP/1.0 OK 200 ...

3B5Uglzlc3MhISGV5LCbG1 ...

1

1

2

2

3

3
4

4

mediator

CORBA client

CGI script

wrapper B

wrapper A

HTTP

IIOP

graphs

graphs

Fig. 3. Canonically wrapped HTTP-based converter

In our approach, wrappers are as simple as possible, and all data conver-
sion and protocol translation logic is embodied in mediators. We call a wrapper
canonical if it faithfully preserves the semantics of the component and captures
information contained in the messages of the component by means of logical
descriptions. A canonical wrapper is not required to do any processing beyond
trivial syntactic transformation of the messages of the wrapped component.

The right-hand side of the Fig. 3 illustrates a request-reply interaction with
the canonically wrapped HTTP-based conversion service. The wrapper accepts a
logical description of the message, translates it into a native HTTP request and
delivers the response of the component as a set of facts. Note that the wrapper
performs no semantic translation of data and protocols used by the component
and does not commit to any high-level query language. In this sense, the wrapper
is `thin' and requires a minimal implementation e�ort.

4 Declarative Mediation

Canonical wrappers like the one described above allow the mediator to ma-
nipulate the messages exchanged between the components as directed labeled
graphs. To illustrate, consider the following example. In our scenario, one com-
plication the mediator has to face in order to reconcile the representations of
the CORBA and HTTP requests are incompatible format speci�cations. On
the Web, PostScript is identi�ed using the MIME type `application/postscript'
whereas for our CORBA service it is the integer 10.

The mapping of the format IDs can be formalized using one rule and two
facts illustrated in Fig. 4. Every expression in parentheses is again of the form
(subject predicate object) where variables are in boldface. Two top state-
ments are facts representing the mapping between the integers and MIME types.
The body of the rule (right-hand side) is a conjunction of expressions that pro-
duces a set of variable substitutions. The head of the rule (left-hand side) de-
scribes how new statements are obtained from the variable substitutions.

Applying this rule to the CORBA conversion request (Fig. 1) delivers almost
the desired HTTP request (Fig. 2). The missing element are the bits and bytes

needed to �ll the base64-file property in the HTTP request from the descrip-
tion (IOR:XYZ is-a BLOB). To retrieve the binary content the mediator has to
issue at least two additional CORBA invocations, getSize() and getBytes().

(is-a ConvertRequest) &
(source-format

(destination-format

(maps-to

(maps-to

X
X V

X V

V T

V T

1

2

1 1

2 2

) &

) &

) &

) &

(is-a ConvertFile
(from

(to

X
X T

X T

)
)

)
1

2

(”10” maps-to “application/postscript”)
(”11” maps-to “application/pdf”)

Fig. 4. Speci�cation of the format transla-
tion from CORBA to HTTP

Hence, to complete the trans-
lation we need to specify the dy-
namic behavior of the mediator,
i.e. how a series of messages of
one component are mapped into
series of messages of another com-
ponent. We call such mappings
dynamic transformations as op-
posed to the manipulations of the
content of the messages, which we
call static transformations.

The need for dynamic and static transformations suggests that, in general,
a number of di�erent formalisms is required to describe the mediator logic. For
example, manipulations of the content of the messages can be expressed us-
ing Datalog rules like the one depicted in Fig. 4. Transformations of message
sequences can be described using �nite-state machines, Petri nets etc. Thus, in
order to build a fully functional declarative mediator, a variety of questions need
to be answered:

{ How do we express dynamic and static transformations performed by the
mediator? Which formalisms are appropriate for that?

{ How can di�erent formalisms be used in the same mediator speci�cation?
How can we represent expressions that use di�erent languages?

{ How can declarative mediators be executed? Which middleware and APIs
are necessary to build wrappers and mediators?

To facilitate mixing and reuse of di�erent formalisms, the declarative lan-
guages used by our mediators are represented using a meta-model that is capable
of capturing and linking expressions in di�erent languages. To illustrate the role
of the meta-model, consider that we choose to map the message sequences of the
CORBA component to that of the HTTP component using a �nite-state automa-
ton. Let the automaton speci�cation be encoded in some XML-based syntax. On
transitions from one state to another, the automaton executes actions that ma-
nipulate the content of the messages. These actions could be formalized using
rules that are stored in an ASCII �le. Further imagine that the rule language
does not support regular expressions or arithmetic operations, but we need both
of them to transform one message represented as a graph into another. Regular
expressions happen to use yet another syntax, and the arithmetic operations are
implemented by a Java program.

A common meta-model allows us to represent expressions in all these dis-
parate languages in a uniform way and to link them with each other. Our meta-
model is based on directed labeled graphs, similarly to how the messages them-
selves are encoded. To represent expressions in di�erent languages we deploy

the Resource Description Framework [8] that has been designed for the use on
the Web. Using a Web-ready meta-model has the advantage that the mediator
speci�cations can be disseminated on the Web and refer to each other. All graph
representations used in the �gures in this paper are based on the RDF model.

To execute mediators that deploy di�erent formalisms and languages, a com-
prehensive runtime environment is required. Such environment has, for instance,
to make sure that the appropriate interpreters are invoked for the declarative
languages used in the speci�cations, or that the whole speci�cation can be com-
piled into executable code. We describe the details of language mixing and the
runtime environment elsewhere [10]. The following two sections demonstrate dif-
ferent formalisms for implementing static and dynamic transformations that can
be used in our sample scenario. We also illustrate how expressions in di�erent
languages can be represented using a meta-model. After that, we describe the
architecture of the prototype system that supports execution of declaratively
speci�ed mediators like the one used in our sample scenario.

5 Static Transformations

To illustrate how di�erent static transformations can be described declaratively,
let us return to our running example. After receiving the initial CORBA con-
version request, the mediator �rst needs to retrieve the size of the binary object
to be converted. The only parameter required for the getSize() invocation is
the object reference received in the conversion request. Thus, the corresponding
CORBA getSize() message can be generated by applying a static transforma-
tion T to the received request.

This static transformation T can be expressed using the following rule (let
GSR be a constant that represents an instance of a GetSizeRequest):

(GSR is-a GetSizeRequest)

(GSR blob B) <= (B is-a BLOB)

(B is-a BLOB)

This rule �nds an instance B of type BLOB and constructs a new message
that contains a reference to B. A possible encoding of the above rule in the
meta-model is shown in the top part of Fig. 5. We omitted some portions of
the graph like (B is-a t:Variable) for better readability. Pre�x t: denotes
speci�c language elements (vocabulary) used for representing static transforma-
tions of this kind. The bottom part of the �gure shows the result of applying
transformation T to the received request.

The language we use to specify transformations like the one above is a variant
of Datalog with negation and allows us to encode arbitrary rules and facts. In
this and further examples we are using this and other formalisms like �nite-
state machines merely for illustrating our approach to declarative mediation.
They might not even be the best choice for our running example.

Using the Datalog-based language, more complex functions can be de�ned
which can still be analyzed automatically. For instance, a request that may have
an optional parameter of type PType can be described using the expression shown
below:

(X is-a Request) & (not exists Y (X opt-param Y) ||

((X opt-param Z) & (Z is-a PType)))

t:StaticTransformation

is-a

t:s
ubjectt:subject

t:subject

t:subject

B

B

B

GSR

GSR

is-a

is-a

is-a

BLOB

BLOB

blob

GetSizeRequest

t:predicatet:predicate

t:predicate

t:predicate

t:objectt:object

t:object

t:object

t:bodyt:head

t:head

t:h
ead

T

1110

ConvertRequest

is-a is-a

object-to-convert
IOR:XYZ

BLOB

source-format destination-format

CR(GSR

GetSizeRequest

is-a is-a

IOR:XYZ

BLOB

c:blob =T)
Fig. 5. Transformation T of the CORBA conver-
sion request into a getSize() invocation

For a graph represen-
tation of a message, this
condition is satis�ed only
if every node of type
Request either has no arc
labeled with opt-param,
or the node reachable via
opt-param is marked to be
of type PType.

Although rule-based de-
scriptions provide a power-
ful instrument for specify-
ing static transformations,
many useful transforma-
tions cannot not be eas-
ily expressed. For example,
consider removing certain
facts from a message. In
this case, however, we can
obtain the result as a set
di�erencem�T (m), where T selects the records to be removed from the message
m. Therefore, we generalize static transformations as functions F (m1; : : : ;mn)
applied to sets of facts mi. Many frequently used n-ary functions can be ex-
pressed as a composition of Datalog-based unary functions like the ones pre-
sented above and the conventional binary set operators \, [, and �. Together,
the rule-based unary functions and the set operators form an expressive algebra
for static transformations of logical descriptions.

In the next section we describe a language that can be used in our run-
ning example for describing the dynamic behavior of the mediator. We show
how we represent the expressions in this language using the same RDF-based
meta-model, and how we combine it with the static transformations to produce
complete mediator descriptions.

6 Dynamic Transformations

In our example, after receiving a CORBA conversion request, the mediator has
to perform a callback doc.getSize() asking for the size of the binary object and
then retrieve the object content via one or more invocations of doc.getBytes()
before forwarding it to the HTTP-based service. These interactions constitute a
part of the dynamic transformation realized by the mediator.

A mediator compensating the discrepancies in behavior between these two
interfaces can be modeled in di�erent ways. For our scenario, it is convenient
to use a simple �nite-state machine with additional memory. Thus, we can use

a mediator that has a number of internal states and moves from one state to
another until a �nal state is reached. The state transitions are triggered by
external events like sending and receiving a message and may cause actions, e.g.
storing the received message in a memory cell. Fig. 6 depicts a state machine that
carries out the dynamic transformation between the CORBA client interface and
the HTTP server interface. Assume that the mediator communicates with these
components via channel c and channel h, respectively. In the notation we use, ?c
ConvertRequestmeans that a message of type ConvertRequest is expected via
channel c whereas !h ConvFile denotes sending a message of type ConvFile

over channel h.

?c ConvertRequest !c GetSizeRequest
?c GetSizeResult

!c GetBytesRequest?c GetBytesResult

!h ConvFile

?h ConvResult

!c ConvertResult

?c GetSizeRequest !c GetSizeResult

?c GetBytesRequest!c GetBytesResult

?c Terminate

!c Terminate

Fig. 6. Finite-state automaton of
the mediator

Upon receiving a conversion request
from the CORBA client (1-2), the media-
tor retrieves the size of the binary object
to be converted (2-3-4). Knowing the size,
the mediator fetches the binary content
of the object1 (4-5-6). In state 6, the me-
diator has obtained all information that
is necessary to send a conversion request
to the HTTP server. After receiving the
content of the converted object (7-8), the
mediator informs the CORBA client that
the conversion has been completed (8-9).
In state 9, the mediator gives the client
an opportunity to inquire about the size
(9-10-9) and the content (9-11-9) of the
converted object. The mediation protocol
terminates in state 12.

Note that in our model a message is not atomic but consists of a set of facts.
Every such message can be characterized by a `classi�cator' function delivering
true or false depending on whether the message is of a certain type. The
state automaton needs such functions to recognize the types of the received
messages and to trigger the appropriate transitions. Both classi�cator functions
and manipulations on the content of the messages can be realized using static
transformations discussed in the previous section. We implement classi�cator
functions as rule-based transformations that produce some substitutions for true
and deliver the empty set for false. For example, a simple classi�cator for the
CORBA conversion request can be speci�ed as follows:

(X is-a ConvertRequest) &

(X source-format V1) &

(X destination-format V2) &

(X object-to-convert B) &

(B is-a BLOB)

1 This operation could be split in multiple requests to retrieve very large objects if
needed.

The format parameters contained in the initial CORBA request (transition
1-2) have to be stored until the binary content of the object is retrieved (2-3-4-
5-6), and merged with the content in a combined HTTP request sent in (6-7).
The actions used in our example are storing a message in a memory cell, reading
from a cell, and arbitrary static transformations of the messages.

7 Interface Descriptions

The interface de�nition languages used in today's distributed object systems
(e.g. CORBA IDL) are remarkably limited. For instance, given a �le interface
de�nition in CORBA IDL that has the methods open and write, it is not possible
to specify that write can be called only after open. Or take our converter service
as an example. The service comprises two interfaces, and it is not possible to
derive valid interaction patterns directly from those interfaces. Rich interface
descriptions and the ability to discover and compare interfaces of the components
are, however, essential in a mediation environment with a variety of complex
information processing services.

Similarly to the mediator speci�cation, interface descriptions of the canonical
wrappers for the CORBA client and HTTP service can be captured using �nite-
state automata (see Fig. 7). Having interface descriptions of the wrapped compo-
nents has a number of notable advantages. First, they can be used to support the
wrapper designer by generating wrapper skeletons automatically. The wrapper
implementor solely has to provide the native code to perform component-speci�c
actions for every transition. The wrapper skeleton can also enforce the correct-
ness of the protocol. Secondly, for any pair of interface descriptions is it possible
to determine algorithmically whether they are compatible [19]. Analogously, we
can �nd all available mediator speci�cations that are capable of translating be-
tween the given server interface and other client interfaces. Finally, mediator
speci�cations can be simpli�ed by including by reference portions of the inter-
face descriptions of the components. Evident candidates for that are classi�cator
functions that determine the types of the messages.

I

II

III

A

! ConvResult

? ConvFile

HTTP server

? ConvertResult

! GetSizeRequest? GetSizeRequest
? GetSizeResult! GetSizeResult

! GetBytesRequest? GetBytesRequest

? GetBytesResult! GetBytesResult

? Terminate

! Terminate

! ConvertRequest

B

C

D

E

F

G

H

CORBA client

Fig. 7. Interface descriptions of the CORBA conversion client and the HTTP-based
conversion service

In distributed object environment, there can be further immediate bene�ts
of having rich interface descriptions of services. For example, the CORBA con-
version service returns a reference to a BLOB object that contains the converted

�le. For the server it is not possible to determine when it is safe to release the
converted object without cooperation from the client (e.g. using special proto-
cols for asynchronous garbage collection). However, if the server has an interface
description for the client like the one presented in the top part of Fig. 7, it can
dispose the converted object whenever the client reaches the state H.

8 Challenges of Integrating Distributed Services

The idea of using declarative speci�cations for mediators that integrate infor-
mation processing services seems promising since it makes developing mediators
an engineering task. However, it also presents a number of challenges.

One of the biggest challenges is harnessing the complexity of declarative
speci�cations. Even for the simple scenario presented in this paper the com-
plete speci�cation of the mediator comprises about than 350 statements (i.e.
contains as many arcs in the meta-model representation). Additionally, is uses
interfaces descriptions of the wrapped components that contain about 270 and
190 statements for the CORBA and HTTP wrapper, respectively (they are so
verbose because the structure of every message needs to be completely speci�ed).
Fortunately, this is merely the internally used encoding of the mediators that
is not intended to be manipulated by human engineers directly. Ideally, every
formalism used for mediation will have specialized graphical editor that allows
to `click' mediators together using graphical representations similar to that in
Fig. 6. The rules used for static transformations can be input in their textual
notation and translated into the meta-model representation automatically. To
handle the complexity of descriptions, support for mediator composition is re-
quired. Supporting composition is non-trivial, since multiple formalisms may be
used throughout the mediator. For example, a complex mediator may be spec-
i�ed as a �nite-state machine on the high-level and may invoke Petri nets for
executing subtasks that require concurrency control.

Another concern is the eÆciency of mediation. For simplicity, we implemented
the sample scenario described in the paper using a set of interpreters for the
�nite-state machines, Datalog-rules etc. (more implementation details are de-
scribed in the next section). In turned out that runtime interpretation of state
machine transitions and execution of the rules has a noticeable performance
impact as compared to a hard-coded Java implementation. To deploy declara-
tive mediators in realistic environments, more work on optimization is needed.
On-demand compilation of mediators into bytecode may be a viable strategy.

Furthermore, we experienced a number of diÆculties speci�c to the dis-
tributed object environments. Examples include adequate handling of streams or
large binary objects, dealing with exceptions and mapping of complex nested pa-
rameters used in IDL speci�cations to our declarative descriptions. For instance,
the complexity of mediator descriptions rapidly increases if all exceptions need
to be represented. We found that it would be bene�cial to use a representation
where the exception handling does not belong to the core interface.

Moreover, to enable a closer integration with the existing distributed object
systems the rich interface descriptions should reuse and extend the existing IDL
speci�cations. For this, a meta-model representation for IDL is needed. Finally,
a mediation environment of a realistic scale needs to address the problem of
management of declarative speci�cations in database systems. The speci�cations
need to be stored, queried, and analyzed. Powerful manipulations of complex
declarative speci�cations will require use of advanced database techniques.

9 Architecture of the Prototype

In this section we briey describe a prototype implementation of the elements of
the mediation infrastructure that have been introduced in our running example.
In our implementation declarative speci�cations of mediators are interpreted at
runtime. The complete runtime environment for our sample scenario is presented
in Fig. 8. The native components, i.e. the CORBA client and the CGI script, are
presented on the bottom of the �gure. The canonical wrappers are depicted above
the native components. Both wrappers consist of two generic modules and one
component-speci�c module. The component-speci�c module accesses the native
API of the component. The generic modules are a �nite-state machine (FSM)
language interpreter and an inference engine that supports extended Datalog
descriptions. These interpreters process interface descriptions of the components
that are encoded in RDF and stored on the Web. Both interface descriptions
contain exactly the FSM speci�cations presented in Fig. 7 plus the classi�cator
functions of the messages.

Canonical wrapper Canonical wrapper

Canonical wrapper

Mediator

CORBA conversion client CGI conversion script

WWW

CORBA client
interface description

Mediator specification

HTTP server
interface description

refers to

uses
uses

uses

refers to

CORBA transition handler HTTP transition handler

inference engine

inference engine

inference engine

FSM interpreter FSM interpreter FSM interpreter

action interpreter

RAM interpreter

IIOP HTTP

graphs graphs

Fig. 8. Runtime environment for the sample scenario

Similarly to the wrappers, the mediator consists of four generic interpreter
modules. In addition to the FSM and the inference engine, the mediator contains
an `action interpreter' for built-in and custom actions that can be incorporated
into state machines. A random memory access (RAM) interpreter processes the
descriptions of store and read memory operations. We use a generic executable
module to launch the mediator and the wrappers. The parameters of this module
are a reference to a declarative speci�cation and a list of interpreters and native

components. This module loads the declarative speci�cation and tries to �nd
suitable interpreters that can process it.

10 Related Work

Integration of heterogeneous systems raised a variety of questions both in data-
intensive and interaction-intensive application domains. Diversity of data-intensive
systems inspired a number of projects focused on the integration of heteroge-
neous data sources. Examples include TSIMMIS [4], Information Manifold [9],
Garlic [15], InfoSleuth [3], Infomaster [5], and OBSERVER [11], just to name a
few. In essence, integration of data sources deals with translation and routing of
queries and reconciling heterogeneous data structures returned by the sources.
Some attempts has been made to cover database operations like updates [6].

Recently, incorporating declarative capability descriptions into query evalua-
tion [9] has gained interest reaching beyond the scope of generation of executable
query plans. For example, work presented in [20] examines computing capabil-
ities of mediators based on the capabilities of sources they integrate. On the
other hand, interaction-intensive applications urged research targeted at bridg-
ing the di�erences between applications that have functionally compatible but
protocol-incompatible interfaces [19, 1]. The diÆculties that arise upon tackling
both data and protocol integration became tangible during building of the Stan-
ford InfoBus [12].

In approaching this combined integration problem we tried to select the tools
developed for data-intensive and interaction-intensive applications and to adjust
them to our needs. In particular, data integration was addressed in-depth in
MedMaker/MSL [14] and YATL [2]. Both approaches use nested data struc-
tures, Skolem functions, path expressions and powerful restructuring primitives
that are desirable in the general case of data integration but may be an overkill
for manipulation of logical descriptions of requests and replies of information
processing services. Our decision to use logical languages for both capturing the
mediation and representing the information ow between heterogeneous compo-
nents was motivated by the work like [14, 7, 16].

Conclusion

We take a step towards integration of heterogeneous information processing ser-
vices by developing a framework in which mediators are speci�ed in a declar-
ative fashion. To make declarative mediation feasible, we introduced canonical
wrappers that provide logical abstractions of the underlying components. Fur-
thermore, we examined how di�erent formalisms can be deployed for mediator
speci�cations and how the static and dynamic transformations performed by
the mediators can be formalized. We demonstrated how our framework can be
applied to addressing some of the mediation problems in distributed object sys-
tems, and discussed the bene�ts and challenges of our approach.

References

1. R. Allen and D. Garlan. A formal basis for architectural connection. ACM Trans-
actions on Software Engineering and Methodology, 6(3):213{249, July 1997.

2. S. Cluet, C. Delobel, J. Simeon, and K. Smaga. Your Mediators Need Data Con-
version! In ACM SIGMOD Int. Conf., pages 177{188, 1998.

3. R. Bayardo et al. InfoSleuth: Semantic Integration of Information in Open and
Dynamic Environments. In Proc. ACM SIGMOD Conf., pages 195{206, Tucson,
Arizona, 1997.

4. H. Garc��a-Molina et at. The TSIMMIS Approach to Mediation: Data Models and
Languages. Journal of Intelligent Inf. Systems 8:2, pages 117{132, 1997.

5. M. R. Genesereth, A. M. Keller, and O. M. Dushka. Infomaster: An Information
Integration System. In In Proc. ACM SIGMOD Conference, Tucson, 1997.

6. T. H�arder, G. Sauter, and J. Thomas. The Intrinsic Problems of Structural Het-
erogeneity and an Approach to their Solution. The VLDB Journal 8:1, 1999.

7. V. Kashyap and A. Sheth. Semantic Heterogeneity in Global Information Sys-
tems: The Role of Metadata, Context and Ontologies. In M. Papazoglou and G.
Schlageter (Eds.), Boston: Kluwer Acad. Press, 1997.

8. O. Lassila and R. Swick. Resource Description Framework (RDF) Model and
Syntax Speci�cation. http://www.w3.org/TR/REC-rdf-syntax/, 1998.

9. A. Levy, A. Rajaraman, and J. Ordille. Querying heterogeneous information
sources using source descriptions. In Proc. of the 22nd VLDB Conference, pages
251{262, Bombay, India, September 1996.

10. S. Melnik, H. Garcia-Molina, and A. Paepcke. A Mediation Infrastructure for
Digital Library Services. In Proc. ACM Digital Libraries 2000, June 2000.

11. E. Mena, A. Illarramendi, V. Kashyap, and A. Sheth. OBSERVER: An Approach
for Query Processing in Global Information Systems based on Interoperation across
Pre-existing Ontologies. Distributed and Parallel Databases Journal, 1999.

12. A. Paepcke, M. Baldonado, C. Chang, S. Cousins, and H. Garcia-Molina. Using
Distributed Objects to Build the Stanford Digital Library Infobus. IEEE Com-
puter, February 1999.

13. A. Paepcke, K. Chang, H. Garc��a-Molina, and T. Winograd. Interoperability for
Digital Libraries Worldwide. Communications of the ACM, 41(4):33{43, April
1998.

14. Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Object fusion in me-
diator systems. In Proc. of the 22nd VLDB Conference, pages 413{424, Bombay,
India, September 1996.

15. M. T. Roth and P. M. Schwarz. Don't Scrap It, Wrap It! A Wrapper Architecture
for Legacy Data Sources. In Proc. 23rd VLDB Conf., Athens, Greece, 1997.

16. K. Shah and A. Sheth. Logical Information Modeling of Web-accessible Heteroge-
neous Digital Assets. In Proc. of the Forum on Research and Technology Advances
in Digital Libraries (ADL'98), Santa Barbara, CA, 1998.

17. G. Wiederhold. Mediators in the Architecture of Future Information Systems.
IEEE Computer 25:38-49, 1992.

18. G. Wiederhold and M. Genesereth. The Conceptual Basis for Mediation Services.
IEEE Expert, 12(5):38{47, 1997.

19. D. M. Yellin and R. E. Strom. Protocol Speci�cations and Component Adaptors.
ACM Transactions on Programming Languages and Systems, 19(2):292{333, Mar
1997.

20. R. Yerneni, Ch. Li, H. Garcia-Molina, and J. D. Ullman. Computing Capabilities
of Mediators. In Proc. of ACM SIGMOD, pages 443{454, Philadelphia, PA, 1999.

